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Abstract
A validated comprehensive axisymmetric numerical model, which includes the high pressure transient effects, vari-
able thermo-physical properties and inert species solubility in the liquid phase, has been employed to study the evap-
oration of moving n-heptane droplets within a zero-gravity nitrogen environment, for a wide range of ambient pres-
sures and initial freestream velocities. At the high ambient temperature considered (1000 K), the evaporation constant 
increases with the ambient pressure. At low ambient pressure, the evaporation constant becomes almost a constant 
during the end of the lifetime. At high ambient pressures, the transient behavior is present throughout the droplet 
lifetime. The final penetration distance of a moving droplet decreases exponentially with increasing ambient pressure. 
The average evaporation constant increases with ambient pressure. The variation is almost linear for reduced ambi-
ent pressures smaller than approximately 2. For higher values, depending on the initial freestream velocity, the aver-
age evaporation constant either becomes a constant (at low initial freestream velocities) or it non-linearly increases (at 
high initial freestream velocities) with the ambient pressure. Droplet lifetime decreases with increasing ambient pres-
sure and/or increasing initial freestream velocity.

Keywords: droplet evaporation, high pressure, zero-gravity, axisymmetric model

1. Introduction

The understanding of droplet evaporation characteristics in high pressure and high temperature envi-
ronments is important in the study of many industrial applications such as diesel engines and high speed 
combustors of aircraft jet engines. Transient characteristics of liquid- and gas-phases, the non-ideal behav-
ior of the gas-phase, the real gas effects on the heat of vaporization and on the vapor–liquid equilibrium 
conditions at the droplet interface, and the solubility of the ambient inert species into the liquid droplet, 
become important at high pressure and high temperature environments. Studies on droplet evaporation at 
high pressures have been reported by several authors [1–3]. Several investigators [4–12], have addressed 
the problem of gas solubility in their research works on high pressure droplet vaporization. Nomura et 
al. [13] have measured experimentally the temporal variation of (d / d0)2 for an n-heptane droplet at dif-
ferent ambient pressures and temperatures under microgravity conditions. Several investigators have re-
ported about the transition from subcritical to supercritical vaporization regime and several others have 
studied the characteristics of droplet gasification at supercritical conditions [14–25]. Numerical research 
on liquid droplet evaporation in a high temperature convective environment has been carried out by Shih 
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and Megaridis [26]. They have employed a hybrid discretization scheme to improve representation of the 
physical liquid phase energy transport processes. The implications to the overall droplet vaporization be-
havior are also discussed. Pope and Gogos [27] have developed a new multicomponent diffusion formula-
tion for the finite-volume method and have applied the same to convective droplet combustion. Recently, 
Zhang and Gogos [28] carried out numerical research on a vaporizing droplet in a forced convective en-
vironment. A comprehensive numerical model to study a vaporizing n-heptane droplet in a forced con-
vective environment has been presented. The validation of their numerical results with the experimental 
results [13] is also reported. In the experiments [13], the droplet had been moved from the droplet-gener-
ator to a test portion for a short period of time, which imparted an initial small relative velocity between 
the droplet and the surrounding gas. When such a small relative motion was included in the numerical 
model, their model was able to predict the experimental time histories quite accurately. Further investi-
gations on the evaporation of a suspended droplet in forced convective high pressure environments have 
been carried out by Zhang [29].

In this study, vaporization of moving n-heptane droplets within a zero-gravity nitrogen environ-
ment has been presented. A numerical model which has been developed and thoroughly validated [28, 
29]against the experimental results available in the literature [13], has been employed for the simulations. 
Vaporization of an n-heptane droplet with an initial diameter of 100 μm and at an initial temperature of 
300 K, within a zero-gravity, N2 environment at 1000 K has been studied for a wide range of ambient pres-
sures (0.1 – 9 MPa) and initial freestream velocities (0.25 – 5 m/s). Initial freestream velocities larger than 
5 m/s have not been considered in order to maintain the value of Weber number (We = ρ∞U2

∞d /σs) less 
than 1. When Weber number is less than approximately 1, even at Reynolds numbers as high as 400, drop-
let would remain nearly spherical [30].

2. Numerical model

A liquid fuel droplet with an initial diameter d0 is evaporating and moving within a hot inert environ-
ment of infinite expanse. The initial temperature of the droplet is T0, and the ambient pressure and temper-
ature are p∞ and T∞, respectively. The relative velocity between the droplet and the surrounding medium 
is termed as the freestream velocity U∞. The drag acting on the moving droplet reduces this freestream ve-
locity with time. Since, this study is focused on the zero-gravity environment, natural convection is ab-
sent. Initially both the liquid phase (n-heptane fuel droplet) and the gaseous phase (nitrogen) consist of a 
single species. Due to the elevated pressure effects, the ambient inert gas (nitrogen) dissolves in the liquid 
phase. The following assumptions are employed in the numerical model: (1) the droplet shape remains 
spherical, (2) radiation effects are negligible, (3) second-order effects, such as the Soret and Dufour effects 
are negligible, (4) viscous dissipation is neglected and (5) the flow is laminar and axisymmetric.

A comprehensive axisymmetric numerical model has been developed to study droplet evaporation 
over a wide range of ambient temperatures and pressures. The model captures the transient high pres-
sure vaporization process, by employing temperature and pressure dependent variable thermo-phys-
ical properties in the gas- and the liquid phases, the real gas effects and the solubility of inert species 
into the liquid phase. Changes in the liquid phase density due to both thermal expansion and change 
in species composition contribute to the rate at which the droplet surface recedes and are incorporated 
in the model. The unsteady equations of mass, species, momentum and energy conservation in axisym-
metric spherical coordinates are solved using the finite-volume and SIMPLEC methods. The axisym-
metric numerical model has been thoroughly validated against the extensive microgravity experimental 
data of Nomura et al. [13]. The details of the governing equations, solution method, evaluation of vari-
able thermo-physical properties, convergence criteria, boundary and initial conditions, and validation 
are available elsewhere [28, 29]. An equation of state is required for closing the set of governing equa-

Table 1. Validation of the numerical model against the experimental results of Gokalp et al. [31]

                                                                                                         Lifetime (s)
d0 (mm)                            U∞ (m/s)                                               Experimental [29]                                       Numerical

1.43 2.53 19.20 19.98
1.18 6.00 12.04 12.46
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tions and boundary conditions. Peng–Robinson equation of state has been employed because of its ac-
curacy [9, 21, 23]. Transient calculations have been terminated when (d / d0)2 ≤ 0.2, or when the critical 
state for the binary system is reached.

Figure 1. Temporal variation of droplet surface temperature at different ambient pressures; d0 = 100 μm, T∞ = 1000 K. 
Initial freestream velocity of moving droplet is 1.5 m/s.

Figure 2. Temporal variation of droplet center temperature at different ambient pressures; d0 = 100 μm, T∞ = 1000 K. 
Initial freestream velocity of moving droplet is 1.5 m/s.
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3. Results and discussion

As mentioned earlier, the comprehensive numerical model has been thoroughly validated against the 
microgravity experimental data of Nomura et al. [13]. Additional validation of the model is presented 
in the present paper by comparing with the experimental results of Gokalp et al. [31]. Table 1 shows the 

Figure 3. Temporal variation of temperature at different ambient pressures; d0 = 100 μm, T∞ = 1000 K (a) moving drop-
let; initial freestream velocity = 1.5 m/s (b) stagnant droplet.
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droplet lifetimes for 2 cases of initial droplet diameters and freestream velocities obtained from the nu-
merical model and experimental results of Gokalp et al. [31]. The comparison between the numerical re-
sult and the experimental data is very good. The ambient gas employed in the numerical model is N2 and 
that used in the experiment [31] is air.

Figure 4. Temporal variation of temperature at different ambient pressures; d0 = 100 μm, T∞ = 1000 K, (a) moving 
droplet; initial freestream velocity = 1.5 m/s (b) stagnant droplet.
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An n-heptane droplet with an initial diameter of 100 μm, initially at a temperature of 300 K, moving 
with an initial freestream velocity of 1.5 m/s, within a zero-gravity nitrogen environment at 1000 K, has 
been studied here. Figure 1 shows the temporal variations of the droplet surface temperatures (at the front 
and the rear stagnation points, θ = 0° and 180°, respectively), at two ambient pressures. Due to the con-
tact of fresh ambient gas at the front stagnation point, the variation of surface temperature at this point is 
different when compared to that at the rear stagnation point. During the later part of the lifetime, the sur-
face temperatures at the front and rear stagnation points tend towards a same value, because of the con-
siderable decrease in the relative velocity between the droplet and the surrounding gas and also due to 
the internal mixing. Temporal variation of the surface temperature of a droplet without any relative mo-
tion (stagnant droplet) is also shown in Figure 1. Non-zero relative velocity between the droplet and its 
hot environment increases the rate of evaporation for the moving droplet. Due to this, the lifetime of the 
moving droplet is less than that of the stagnant droplet. At the low ambient pressure, the difference in the 
variation of the surface temperature between the moving and stagnant droplet cases is not as significant 
as that at the high ambient pressure, where the surface temperature of the moving droplet increases much 
rapidly with time, when compared to that of a stagnant droplet. Also, at high ambient pressure (9 MPa), 
the moving droplet reaches the critical state of the mixture, where the simulations have been stopped, 
whereas, the stagnant droplet has not attained critical state of the mixture at (d / d0)2 = 0.2.

The temporal variation of the temperature at the droplet center for the same cases as above is pre-
sented in Figure 2. The effect of the internal circulation is clearly seen here. The droplet center tempera-
ture rapidly increases for the moving droplet case when compared to the stagnant droplet for both ambi-
ent pressures considered because of the internal mixing.

Time histories of the average droplet surface temperature and the temperature at the droplet center for 
a moving droplet (initial freestream velocity 1.5 m/s) have been presented for three ambient pressures in 
Figure 3a. Similar plot for a stagnant droplet is shown in Figure 3b. It is clear from Figure 3a that, because of 
increased energy transfer due to convection, the surface temperature increases rapidly with time for a mov-
ing droplet. Due to the internal circulation, the droplet center temperature also increases rapidly with time 
for a moving droplet. However, as the ambient pressure increases, the difference between the surface and 
center temperature increases and a substantial difference is maintained until the end of the droplet lifetime. 
It should also be noted that the difference between the surface and center temperatures is more predomi-
nant for the stagnant droplet case (Figure 3b), because of the absence of a thorough internal circulation.

The amount of ambient gas dissolved inside the liquid droplet increases with ambient pressure. Figure 
4 shows the mass fraction of the ambient gas (N2) at the droplet surface (average value) and at the droplet 
center for a moving droplet (Figure 4a) and stagnant droplet (Figure 4b), at two ambient pressures. At an 

Figure 5. Temporal variation of the evaporation constant for a moving droplet at different ambient pressures; 
d0 = 100 μm, T∞ = 1000 K, initial freestream velocity = 1.5 m/s.
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ambient pressure of 3 MPa, only a small and nearly constant amount of N2 is observed on the droplet sur-
face, for both moving and stagnant droplets. At the droplet center, the mass fraction of N2 increases and 
reaches the surface value more rapidly for a moving droplet, due to the presence of internal mixing. At a 
much higher ambient pressure (9 MPa), the mass fraction of N2 increases at the droplet surface for both 
moving and stagnant droplets, but more rapidly for the moving droplet, due to the additional convective 
transport of the species. Similarly, the mass fraction of N2 at the droplet center continuously increases, 
even though it never reaches the surface value. Similar to N2 mass fraction at the surface, the growth of 
the N2 mass fraction at the droplet center is more rapid for the moving droplet.

Temporal variation of the evaporation constant K (mm2/s) for a moving droplet has been plotted in Fig-
ure 5. For the high ambient temperature considered here (1000 K), as the ambient pressure increases, the 

Figure 6. Variation of penetration distance for a moving droplet; initial freestream velocity = 1.5 m/s, d0 = 100 μm, 
T∞ = 1000 K, (a) temporal variation at different ambient pressures and (b) final penetration distance with the ambient 
pressure.
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evaporation constant also increases. It can also be observed that at low ambient pressures, the evaporation 
constant reaches an almost constant value during the end of the droplet lifetime. As the ambient pressure in-
creases, the evaporation constant increases with time monotonically and steeply, throughout the droplet life-
time. As discussed earlier, the droplet lifetime significantly decreases with increasing ambient pressure.

Figure 7. Variation of non-dimensional average evaporation constant with reduced ambient pressure for a moving 
droplet; d0 = 100 μm, T∞ = 1000 K, different freestream velocities.

Figure 8. Variation of droplet lifetime with reduced ambient pressure for a moving droplet; d0 = 100 μm, T∞ = 1000 K, 
different freestream velocities.
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Figure 6a presents the time history of the distance traveled by the moving droplet (penetration dis-
tance) at different ambient pressures. The curves numbered 1 to 5 represent the evaporating n-heptane 
droplets. Curve numbered 6, shows the penetration distance with time for a solid sphere of diameter equal 
to the initial droplet diameter (100 μm). It is clear from the plot that as the ambient pressure increases, the 
penetration distance decreases because of the increased rate of vaporization (shorter lifetime) at higher 
ambient pressures. In fact, Figure 6b shows that the final penetration distance exponentially decreases 
with increasing ambient pressure. If a solid sphere with the same density and initial diameter as that of an 
n-heptane droplet is considered to be moving with the same initial velocity of 1.5 m/s, due to higher drag 
experienced by the solid sphere, its penetration distance (until its velocity reaches zero) is less than that of 
the n-heptane droplet (curves 5 and 6). The distance traveled with time, for a particle traveling with a uni-
form velocity of 1.5 m/s, without any drag, is also shown in the plot (straight solid line in Figure 6a).

An average evaporation constant (K―) has been obtained following Ristau et al. [11], by time-averag-
ing the evaporation constant, for the time period during which the value of (d / d0)2 is less than 0.5. The 
value of K― has been non-dimensionalized using a reference evaporation constant value (K― = 0.1817 mm2/
s) obtained when the ambient temperature and pressure are T∞ = Tc and p∞ = 1 atm, respectively and 
T0 = 300 K. Figure 7 shows the variation of the average evaporation constant with the ambient pressure 
for different initial freestream velocities. The non-dimensional average evaporation constant increases al-
most linearly with the reduced ambient pressure p∞/pc, where pc is the critical pressure of n-heptane, till 
the ambient reduced pressure is approximately 2. For higher reduced ambient pressures, it either reaches 
an almost constant value (at low initial freestream velocities) or increases non-linearly (at high initial 
freestream velocities). It is clear from Figure 7 that due to convection there is a significant increase in the 
average evaporation constant.

The variation of droplet lifetime with reduced ambient pressure has been presented in Figure 8. At 
high initial freestream velocities, because of convective transport, the rate of evaporation increases, due to 
which the droplet lifetime decreases. Also, as the ambient pressure increases, there is almost an exponen-
tial decay in the droplet lifetime.

4. Conclusions

In this study, vaporization of moving n-heptane droplets within a zero-gravity environment has been 
presented. A numerical model, which has been developed and thoroughly validated [28, 29] against the 
experimental results available in the literature [13], has been employed for the simulations. Vaporization 
of an n-heptane droplet with an initial diameter of 100 μm and at an initial temperature of 300 K, within 
a zero-gravity, N2 environment at 1000 K has been studied for a wide range of ambient pressures (0.1–
9 MPa) and initial freestream velocities (0.25–5 m/s). In general, at the high ambient temperature (1000 K), 
the evaporation constant increases with the ambient pressure. At low ambient pressure, the evaporation 
constant becomes almost a constant during the end of the lifetime. At high ambient pressures, the tran-
sient behavior is present during the entire droplet lifetime. The final penetration distance of a moving 
droplet decreases exponentially with increasing ambient pressure. The average evaporation constant in-
creases with ambient pressure and the variation is almost linear for reduced ambient pressure smaller 
than approximately 2. For higher values, depending on the initial freestream velocity, the average evapo-
ration constant either becomes a constant (at low initial freestream velocities) or it non-linearly increases 
(at high initial freestream velocities) with the ambient pressure. Droplet lifetime decreases with increasing 
ambient pressure and/or increasing initial freestream velocity.
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