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Abstract
Blast wave induced a frequency spectrum and large deformation of the brain tis-
sue. In this study, new material parameters for the brain material are determined 
from the experimental data pertaining to these large strain amplitudes and wide 
frequencies ranging (from 0.01 Hz to 10 MHz) using genetic algorithms. Both hy-
perelastic and viscoelastic behavior of the brain are implemented into 2D finite el-
ement models and the dynamic responses of brain are evaluated. The head, com-
posed of triple layers of the skull, including two cortical layers and a middle dipole 
sponge-like layer, the dura, cerebrospinal fluid (CSF), the pia mater and the brain, 
is utilized to assess the effects of material model. The results elucidated that fre-
quency ranges of the material play an important role in the dynamic response of 
the brain under blast loading conditions. An appropriate material model of the 
brain is essential to predict the blast-induced brain injury. 

Keywords: Brain, hyper-viscoelastic material model, high frequency, finite strain, 
blast wave 

1. Introduction 

Complete understanding of mild traumatic brain injuries (TBI) induced by 
blast waves is challenging, due to the fact that currently no medical diagnostic 
tools could indicate the onset of the ailment [Hoge et al., 2008]. Finite element (FE) 
modeling has been widely used to predict the blast-induced brain responses and 
better understand the mechanism of TBIs [Moore et al., 2009; Moss et al., 2009; 
Taylor et al., 2009; Chafi et al., 2010; Ganpule et al., 2010; Grujicic et al., 2010]. The 
numerical predictions depends on the appropriate material characterization un-
der blast loading conditions. 
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 Brain material is strain- and frequency-dependent [Bilston et al., 2001]. Blast 
scenarios require knowledge of brain tissue behavior over a large strain/high 
frequency range [Pervin and Chen, 2009]. Current experimental research has fo-
cused on the large strain/low frequency or small strain/high frequency behavior 
of the tissue, as summarized in Table 1. Some material models are based on hy-
perviscoelastic assumptions, i.e., a linear viscoelastic model in conjunction with 
a nonlinear hyperelastic model [Darvish and Crandall, 2001; Mendis et al., 1995; 
Miller, 1997; Nicolle et al., 2005; Prange and Margulies, 2002; Takhounts et al., 
2003]. The large strain/high frequency behavior of brain tissue is newly added 
into this database [Pervin and Chen, 2009]. However, documented FE models 
(Table 2) have not been updated yet to reflect the new experimental data in pre-
dicting human head/brain behavior under blast conditions. Computational anal-
yses of dynamic response of the brain under blast conditions only covered the 
low frequency response (<200 Hz) and neglected the critical high frequency re-
gime [Chafi et al., 2010; Moore et al., 2009; Taylor and Ford, 2009]. No material 
model of the brain under blast scenario, corresponding to a wide range of fre-
quencies (0.01 Hz–10 MHz) along with finite strain, has been presented in the lit-
erature, which is critical to better predict the response of the head under blast 
conditions and improve the TBI prevention. 

In this study, a finite strain material model of the brain was developed to 
cover a wide range of frequencies (0.01 Hz–10 MHz). Different experimental 
studies on the brain tissue were combined to obtain master curves in compres-
sion and shear. The material coefficients were determined from curve fitting us-
ing genetic algorithms (GAs). The influence of this new material model, as well as 
the effect of viscoelasticity and hyperelasticity was evaluated through the brain’s 
dynamic responses subjected to the blast loading. 

2. Material Model of Brain Tissue 

Brain properties are affected by a variety of factors, such as testing modes, 
strain rates, frequency ranges, specimen preparations, species, regional differ-
ences, local anisotropy, tissue freshness, and so on [Gefen et al., 2004; Nicolle et 
al., 2004]. The mechanical properties of fresh human brain tissue was reported to 
be nearly 30% stiffer than that of porcine or bovine brain tissue under the same 
test conditions [Takhounts et al., 2003]. Recently, Pervin and Chen [2011] con-
ducted uniaxial compression tests over a wide range of strain rates on the fresh 
brain tissue of porcine, bovine, and caprine origin using a conventional hydrau-
lic test frame. No significant difference was found in the compressive response of 
the brain tissue of different species. However, all the brain tissues showed signifi-
cant sensitivity to the applied strain rates. 

The blast scenario generally leads to brain tissue undergoing a finite strain 
over a wide frequency range. A hyper-viscoelastic material model was developed 
for the brain by combining different sets of experimental data [Franceschini et al., 
2006; Pervin and Chen, 2009; Bilston et al., 1997; Nicolle et al., 2005; Brands et al., 
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2000; Arbogast and Margulies, 1997, 1998; Lippert et al., 2004; Shuck and Advani, 
1972]. The constitutive models are formulated in terms of a viscoelastic frame-
work, considering linear viscous deformations in combination with nonlinear hy-
perelastic behavior. The total Cauchy stress tensor is the summation of both vis-
coelastic and hyperelastic induced stress.  

Two hyperelastic material models were developed in this work to describe the 
strain-dependent mechanical properties of brain tissue. The models are based on 
a two-term Ogden strain energy density function and a Mooney–Rivlin model, 
respectively. The Ogden model assumes that the strain energy density is a sepa-
rate function of three principal stretches as (for incompressible materials): 
                                                                                           N

W = W(λ1, λ2, λ3) = ∑   
μi

  (λ
αi
1 + λαi

2 + λαi
3 − 3),                                    (1) 

                                                                                           
i=1 

 
αi

where λ1, λ2, and λ3 are the principal stretch ratios and μi and αi are constants to be 
determined experimentally for every value of i. Once W is defined, the Cauchy 
stress created in the tissue by its elastic contribution can be calculated by taking 
the derivative with respect to strain, 

σi = –p + λi 
∂W  ,                                                           (2) 

                                                                         
∂λi

where σ is the Cauchy stress tensor. Only one index is used for the stress ten-
sor since the derivative of W, with respect to the principal stretch tensors, gives 
the principal stresses. Four Ogden parameters were determined from the two ex-
perimental resources reported by Franceschini et al. [2006] and Pervin and Chen 
[2009]. An optimization approach based on GAs has been used to determine the 
material parameters from the experimental data. The obtained parameters are 
shown in the second and third columns of Table 3. A comparison between experi-
mental and fitted stress-strain curves is shown in Figure 1. 

For the Mooney–Rivlin model, the strain energy function is defined as a poly-
nomial function of the principal strain invariants as (for incompressible material) 

W = C10(I1 − 3) + C01(I2 − 3),                                            (3) 

where W is the strain energy potential; C10 and C01 are material constants; I1 and 
I2 are the first and second principal stress invariants. A long-term shear modulus 
from the viscoelastic experimental data are used to obtain C10 and C01 which in 

Table 3. Hyperelastic material parameters fitted to experiments [Pervin and Chen, 2009; 
Franceschini et al., 2006]. 

Brain’s  	 Ogden model- 	 Ogden model- 	 Mooney–Rivlin 
constitutive law	 Pervin et al., 2009 	 Franceschini et al., 2006 	 model 

Hyperelastic terms 	 μ1 = −132.6 kPa 	 μ1 = 0.1138 kPa 	 C10 = 514.62 Pa 
	 μ2 = 0.481 kPa 	 μ2 = −0.2711 kPa 	 C01 = 566.08 Pa 
ν = 0.49999948 	 α1 = 0.00374 	 α1 = 11.64 
K = 2.19 GPa 	 α2 = 10.01 	 α2 = −11.06  
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turn is derived from σμiα i/2. The relation adopted by Mendis [Mendis et al., 1995] 
is used between G∞, C10, and C01, thus G∞ = 2(C10 + C01), together with C10 = 0.9 
C01. Poisson’s ratio is calculated to maintain the bulk modulus at a constant value 
of 2.19 GPa for the shear modulus of 2160 Pa. The fourth column of Table 3 pres-
ents the Mooney–Rivlin model parameters.  

Strain rate effects are taken into account using the Maxwell viscoelastic 
model. The associated Cauchy stress is computed through: 

σij = J −1 Fik· Skm· FT
mj ,                                                        (4) 

where σij is the Cauchy stress, F is the deformation gradient tensor, J is the Jaco-
bian of transformation, and Sij is the second Piola–Kirchhoff stress, which is esti-
mated using a convolution integral: 

Sij = ∫ 
0

t
 
 Gijkl(t − τ) ∂Ekl

  dτ,                                                   (5) 
                                                                            ∂τ

where ∂Ekl is the Green’s strain tensor, and Gijkl is the tensorial stress relaxation 
function. The relaxation modulus for an isotropic material can be represented by 
a Prony series: 
                                                                                                     n

G(t) = G∞ + ∑  Gie
−βit,                                                     (6) 

                                                                                   i=1

where G∞ is the long-term modulus and β is the decay constant. The relaxation 
moduli and decay constants are estimated from the experimental data reported 
by Bilston et al. [1997], Nicolle et al. [2005], Brands et al. [2000], Arbogast and 

Figure 1. Nonlinear hyperelastic behavior of the brain tissue (experimental-1 source: Per-
vin and Chen, 2009; experimental-2 source: Franceschini et al., 2006).    
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Table 4. Viscoelastic material parameters fitted to experiments [Bilston et al., 1997; Nicolle 
et al., 2005; Brands et al., 2000; Arbogast and Margulies, 1997 and 1998; Lippert et al., 2004; 
Shuck, Advani, 1972]. 

Brain’s constitutive law 	 Frequency range [0.02 Hz–10 MHz] 

Viscoelastic terms 	 G∞ = 2160 Pa 
	 G1 = 156,488.3 kPa 
	 G2 = 326,025.8 kPa 
	 G3 = 0.0016 kPa 
	 G4 = 1.2313 kPa 
	 G5 = 17.583 kPa 
	 G6 = 0.0254 kPa 

ν = 0.49999948 	 β1 = 1.0763e + 9 sec−1 
K = 2.19 GPa 	 β2 = 35.7999e + 6 sec−1 

	 β3 = 383.5146e + 3 sec−1 
	 β4 = 1e + 3 sec−1 
	 β5 = 10 sec−1 
	 β6 = 3.6533 sec−1  

Figure 2. Complex shear modulus — experimental data and the fitted six-term Maxwell 
viscoelastic model (experimental source: Bilston et al., 1997; Nicolle et al., 2005; Brands et 
al., 2000; Arbogast and Margulies, 1997, 1998; Lippert et al., 2004; Shuck and Advani, 1972).   
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Margulies [1997, 1998], Lippert et al. [2004] and Shuck and Advani [1972], which 
provide the brain material tests at a wide frequency range between 0.01 Hz–10 
MHz. The fitted material parameters are depicted in Table 4. To the best of our 
knowledge, this is the first material model for the brain that covers such sweep-
ing interval of frequencies. The numerical and experimental data is presented in 
Figure 2. The long-term shear modulus of the model is 2160 Pa. It is necessary to 
mention that there would be 15 or 17 material parameters for the entire hyper-
viscoelastic model depending on the chosen Mooney–Rivlin or Ogden hyperelas-
tic model, respectively. Then the total Cauchy stress is the superimposition of the 
stress tensor determined from both the hyperelastic strain energy function and 
the viscoelastic effect. 
  

3. Finite Element Model 

An explicit nonlinear dynamic FE model has been developed to study the in-
fluences of various brain material models in different frequency ranges and strain 
regimes on the brain’s dynamic response under blast loading. The FE model in-
cludes the triple layers of the skull (two cortical layers and middle dipole sponge-
like layer; with a thickness of 4.5 mm), the dura (thickness of 1 mm), cerebrospi-
nal fluid otherwise known as CSF (thickness of 1.5 mm), the pia mater (thickness 
of 1 mm), and the brain. The dimensions of the model are 5 cm × 12 cm which 
was meshed with 6700 4-noded plane strain elements. 

A summary of the material properties of each head components used in this 
study is presented in Table 5. These properties are adopted from Kleiven and 
Hardy [2002], Horgan and Gilchrist [2004], Baumgartner and Willinger [2005] 
and are consistent with properties reported by Liu et al. [2007]. A three-layered 
nonhomogeneous material is used to model the skull. The innermost layer that 
is in contact with the dura mater and the outmost layer are modeled as the same 
stiff material. Sandwiched in between them is the so-called dipole, in which the 
Young’s modulus is smaller than those of the inner and outermost layers. 

A coupled Eulerian and Lagrangian formulation is used to mimic the inter-
action between the fluid (CSF), pia, and dura maters. A Gruneisen equation of 
state is used for the CSF with a bulk modulus of 2.19 GPa. An equation of state 

Table 5. Material properties of head components used in this study [Kleiven and Hardy, 
2002; Horgan and Gilchrist, 2004; Baumgartner and Willinger, 2005]. 

Tissue 	 Young’s modulus E (MPa) 	 Density (Kg/m3) 	 Poisson’s ratio 

Pia 	 11.5 	 1130 	 0.45 
Dura 	 31.5 	 1130 	 0.45 
Outer Table 	 15,000 	 2000 	 0.22 
Dipole 	 1000 	 1300 	 0.24 
Inner Table 	 15,000 	 2000 	 0.22 
CSF 	 K = 2.19 GPa 	 1000 	 Incompressible 
Brain 	 Hyper-viscoelastic 	 1040 	 ν = 0.49999948   
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(EOS) determines the hydrostatic behavior of the material by calculating pressure 
as a function of density, energy, and/or temperature. For the CSF, the Gruneisen 
equation of state with a cubic shock velocity-particle velocity is used [Ls Dyna, 
2006], which defines pressure for a compressed material as: 

         
p =

           ρ0C2μ [1 + (1 − 
γ0/2)μ − 

a/2 μ2]               
+ (γ0 + aμ)E,                  (7) 

                        [1 − (S1 − 1)μ − S2 μ
2/(μ+1) − S3 μ

3/(μ+1)2 ]
where μ = (ρ/ρ0) − 1 = (1/V0) − 1. C and S1 are parameters in the shock velocity (vs) 
and particle velocity (vp) according to the relation: vs = C + S1vp. C is the intercept 
of the vs–vp curve, S1, S2, and S3 are the coefficients of the slope of the vs–vp curve. 
Additionally, γ0 is the Gruneisen gamma, a is the first-order volume correction to 
γ0, and E is the internal energy. The Gruneisen equation parameters are decided 
based on bulk modulus and initial density. 

The tied contact algorithm is used for the brain-membrane interfaces because 
it can transfer loads in both compression and tension. If penalty contact algorithm 
is used, only compressive loads are transferred and a gap will be created in the 
countertop region where tension loading is possible [Kleiven and Hardy, 2002]. 
Numerical stability was insured by monitoring the hourglass energy, which is 
negligible in the blast event since the kinetic energy decreases as the head’s inter-
nal energy increases.  

Figure 3. The blast load with 5.4 atm or 17 atm peak overpressure obtained from free-air 
detonation. 
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Two different blast scenarios based on blast characteristics, positive pulse du-
ration, and peak overpressure, have been used in this study with reference to the 
Bowen curves. The applied blast load curve (Figure 3) is obtained from free-air det-
onation [Chafi et al., 2009]. The peak pressure value of 5.4 atm and 17 atm are cho-
sen based on the Bowen curve, which indicates that the threshold for unprotected 
lung injury is 5.4 atm, and LD50 (lethal dose, 50%) meaning an approximately 50% 
survival rate from lung injuries incurred at 17 atm [Bowen et al., 1968]. 

4. Results and Discussion 

The intracranial pressure (ICP), shear stresses and strains were suggested as 
injury predictors for traumatic brain injury. In 1980, Ward et al. [1980] proposed 
a peak ICP concussion threshold of 235 kPa through animal studies and minor or 
no brain injury for ICPs below 173 kPa. In 1999, Anderson et al. [1999] reported 
through caprine tests and numerical analysis that shear stresses over the range of 
8–16 kPa could cause widespread axonal injuries. In addition, Kang et al. [1997] 
suggested through computational simulation of motorcyclist accidents, that shear 
stresses over the range of 11–16.5 kPa could lead to significant brain injury. Mor-
rision et al. [2003] showed that maximum principal strain can be used as a mea-
sure of central nervous system (CNS) injuries such as diffuse axonal injury (DAI) 
and cell death. Bain and Meaney [2000] also demonstrated that DAI is practically 
a function of distortion (strain), rather than pressure, which maybe a more rele-
vant parameter to predict head injury. They estimated a principal strain thresh-
old for axonal damage of 21% for morphological axonal injury, and 18% for de-
terioration of nerve function, all based on experiments done on optic nerves of 
adult guinea pigs. 

In this work, the dynamic response of the brain was evaluated in terms of 
ICP, maximum shear stress, and maximum principal strain. The impacts of the 
frequency range, large strain behavior, and applied loading magnitude and fre-
quency are investigated to demonstrate the efficiency of the new material model. 

4.1. Influences of viscoelasticity on the brain’s dynamic responses 

It is speculated by some researchers that the viscoelastic effect of the brain is 
negligible under high frequency loadings, such as blast [Moore et al., 2009]. To 
address this issue, we have employed two material models with and without 
considering viscoelasticity of the brain: one is the Ogden hyperelastic model only, 
as presented in the third column of Table 3; the other is the corresponding hyper-
viscoelastic model with the addition of a viscoelastic model presented in Table 4. 

A shock wave with the peak pressure of 5.4 atm, as shown in Figure 3, was ap-
plied onto the head. The dependence of the brain’s dynamic response on the se-
lected material models are demonstrated in Figure 4. The peak ICPs [Figure 4(a)] 
are almost the same for both material models of the brain, i.e., approximately 215 
kPa. However, the damping rate of the ICP varied, and the viscoelasticity led to a 
faster damping effect.  
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Figure 4. Influences of viscoelasticity (hyperelastic versus hyper-viscoelastic) on the 
brain’s dynamic responses subjected to a 5.4 atm peak blast overpressure. 
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The peak maximum shear stress in the hyper-viscoelastic model far exceeded 
that of the hyperelastic model [Figure 4(b)]. The opposite behavior is observed for 
the peak maximum principal strains [Figure 4(c)]. Compared to the results based 
on the hyperelastic model, the peak shear stress in the hyper-viscoelastic model 
increased approximately five times, and the peak principal strain was reduced by 
a factor of nine. This indicates that viscoelastic behavior significantly impacts the 
shear stress and strain field of the brain. It is important to note that this effect is 
not observed in the low frequency (<200 Hz) material model proposed by Moore 
et al. [2009] who used a material model in which only the volumetric response of 
brain tissue was described by the Tait EOS, and concluded that in blast scenar-
ios stress relaxation caused by viscoelastic effects can be neglected. Our results 
herein clearly show that a brain material model under a wide frequency range 
will have a significant impact on brain dynamics and the predictions of the TBI 
accordingly. 

4.2. Influences of hyperelasticity on the brain’s dynamic responses 

To study the influence of hyperelastic terms on the brain tissue under blast 
load, two Ogden models and a Mooney–Rivlin model presented in Table 3 were 

 Figure 4. (continued )  
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employed in the simulation of blast induced brain responses. It is clear from Fig-
ure 5 that two Ogden models resulted in very similar intracranial dynamic re-
sponses in terms of maximum shear stress and principal strain. However, there 
was a clear difference between Mooney–Rivlin model and the Ogden ones, as 
shown in Figure 5(a). 

  Since we found out, in the previous section, that viscoelasticity is important on 
the prediction of brain responses, a viscoelastic model (Table 4) was then added to 
the three hyperelastic material models, and forming three hyperviscoelastic consti-
tutive laws. The differences only lie in the hyperelastic behavior. All these three hy-
perviscoelastic models of the brain demonstrate almost identical brain responses, 
as shown in Figure 5(b). This indicates that the influence of the hyperelastic term 
on the dynamic response of the brain is minimal, especially compared to the visco-
elastic term. The results suggest that a simple Mooney–Rivlin model would be suf-
ficient to represent the hyperelastic portion of the brain’s material model.  

Figure 5. Dynamic responses of the brain tissue subjected to a 5.4 atm peak blast overpres-
sure. (a) Influences of hyperelasticity: the brain was described using a hyperelastic consti-
tutive law only, including two Ogden models and one Mooney–Rivlin model presented in 
Table 3. (b) The dominating viscoelasticity: the brain was described using three hyperelas-
tic materials model presented in Table 3, plus the same viscoelastic model (Table 4). 
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Figure 6. Dynamic responses of the brain tissue subjected to 5.4 atm and 17 atm peak blast 
overpressure, respectively. 
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4.3. Effect of the peak blast overpressure 

Two blast loading conditions as shown in Figure 3 are used to assess the in-
fluence of the peak blast overpressure. The dynamic responses of brain tissue, in-
cluding ICPs, maximum shear stresses and maximum principal strains, subjected 
to these blast loadings are presented in Figure 6. The ICPs are in the range of −470 
kPa to 640 kPa under applied 17 atm peak blast overpressure, compared to the 
range of −133 kPa to 215 kPa for applied 5.4 atm peak overpressure. The peak 
maximum shear stress and maximum principal strain are 18.5 kPa and 4.5% re-
spectively for applied 17 atm peak overpressure, compared to 8.5 kPa and 2.2% 
for the 5.4 atm overpressure. Based on previously mentioned thresholds for ICP, 
max shear stress and principal strain, no brain injury is predicted for a 5.4 atm 
peak blast overpressure. However, the peak maximum shear stress and ICP in 
the brain indicated the occurrence of brain injury for the applied 17 atm peak 
blast overpressure. 

4.4. Influences of frequency-based loadings on the brain’s dynamic responses 

To investigate the influence of the loading frequency on the responses of brain 
tissue, three different loading conditions have been employed, as shown in Fig-
ure 7. The loads are simplified as sine wave with the same amplitude of 17 atm 
and various frequencies of 10 kHz, 100 kHz, and 1 MHz, respectively. 

Figure 6. (continued )  
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Figure 8 has depicted the ICPs, maximum shear stresses and maximum prin-
cipal strains of the brain corresponding to frequency-based loading inputs. It is 
clear that 10 kHz loading caused a higher peak ICP, maximum shear stress, and 

Figure 7. The sine wave loadings with the amplitude of 17 atm and various frequencies of 
10 kHz, 100 kHz, and 1 MHz.   

Figure 8. Influence of the applied loading frequency on the dynamic responses of the brain 
tissue subjected to 17 atm peak overpressure. 
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Figure 8. (continued ) 
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principal strain in the brain tissue, which are 16, 10, and 20 times higher than 
those resulted from a 100 kHz sine wave load. Such significant differences are not 
apparent between the results of 100 kHz and 1 MHz loadings. The results from 
three frequency-varied input show that the brain behavior is very sensitive to the 
frequency of the applied load, especially around 10 kHz level input. This indi-
cates that blast loading directed from the range of 10 kHz frequency may cause 
less dynamic responses on the brain, and therefore less TBI.  

 5. Conclusions 

Animal studies have suggested that brain injury occurs as a direct result of 
blast waves [Courtney and Courtney, 2009]. However, the mechanism of blast-
induced brain injury is not yet fully understood. Material models of brain tis-
sue appropriate for large strains and a wide range of frequencies (0.01 Hz–10 
MHz) are a fundamental component of realistic numerical simulations of TBI. 
Existing material model of the brain doesn’t cover such sweeping interval of 
frequencies. 

In this study, a new set of parameters for the material model of the brain is de-
rived by including both its hyperelastic and viscoelastic behavior under the fre-
quency of 0.01 Hz up to 10 MHz. Two Ogden models and one Mooney–Rivlin 
model are used for the hyperelastic behavior of the brain. A Maxwell viscoelastic 
model is used to characterize its viscoelastic behavior and the parameters are de-
termined based on the experimental data using GAs. The material models are im-
plemented in a 2D head model to predict the brain’s dynamic response subjected 
blast loadings. The results are summarized as the following: 

• Contrary to current speculations in the literature, viscoelasticity plays a ma-
jor role in the dynamic responses of the brain under blast loadings due to 
the appropriate incorporation of high frequency test data. 

• The contribution of frequency-based viscoelasticity dominates the brain re-
sponses. The results suggest that simple Mooney–Rivlin model would be 
sufficient for representing the hyperelastic behavior of the brain tissue. 

• A 10 kHz loading caused more than 10 times the brain responses in terms of 
peak ICP, maximum shear stress, and principal strain in the brain tissue, 
compared to a 100 kHz loading with the same magnitude. 

• The applied 17 atm blast peak overpressure, corresponding to 50% lethal 
dose for lung injury, will result in a 2–3 times increase of the brain re-
sponses in terms of ICPs, maximum shear stresses, and maximum princi-
pal strains, compared to a 5.4 atm blast peak overpressure. 
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