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" Infrared techniques are fast, accurate, and low-cost for biomass analysis.
" A comparison of infrared techniques and chemical method is made.
" Chemometric analaysis provides prediction model for composition analysis.
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a b s t r a c t

Current wet chemical methods for biomass composition analysis using two-step sulfuric acid hydrolysis
are time-consuming, labor-intensive, and unable to provide structural information about biomass. Infra-
red techniques provide fast, low-cost analysis, are non-destructive, and have shown promising results.
Chemometric analysis has allowed researchers to perform qualitative and quantitative study of biomass
with both near-infrared and mid-infrared spectroscopy. This review summarizes the progress and appli-
cations of infrared techniques in biomass study, and compares the infrared and the wet chemical meth-
ods for composition analysis. In addition to reviewing recent studies of biomass structure and
composition, we also discuss the progress and prospects for the applications of infrared techniques.

� 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Lignocellulosic biomass has become an alternative source for
production of chemicals and fuels because it is renewable and
could reduce greenhouse gas emissions by replacing petroleum
sources [1]. The major components of lignocellulosic biomass are
cellulose, hemicellulose, and lignin. Cellulose and hemicellulose
are polysaccharides, which could be hydrolyzed to molecules via
a relatively low degree of polymerization for further biological/
chemical utilization [2]. The next generation of cellulosic ethanol
is being developed from these polysaccharides with microbial fer-
mentation [3,4]. Lignin, a phenolic polymer, is also an important
source for industrial applications such as adhesive resin [5,6] and
lignin gels [7,8]. Lignin and cellulose are being developed for the
synthesis of biodegradable polymers [9]. Biomass composition var-
ies by variety and production location/conditions [10], which, in
turn, significantly affects processing strategies. For example, alkali
pretreatment is more effective with low lignin-content biomass
[11]. Biomass composition also changes significantly during bio-
mass processing [12], so a fast and accurate determination of bio-
mass composition is critical for accelerating biomass utilization.

Classic wet chemical methods for biomass determination,
which employ a two-step sulfuric acid hydrolysis, have been used
for over a century, and improvements have adapted them to differ-
ent objects and conditions [13,14]. The National Renewable Energy
Laboratory also distributed a series of procedures for biomass
determination that have become the de facto procedures for bio-
mass application [15]. Standard wet chemical methods provide
reliable information about biomass composition and have been
proven to work well with both wood and herbaceous feedstock,
but they are labor-intensive and time-consuming, which make
them inappropriate for industrial applications or large numbers
of samples; for example, a complete analysis using wet chemical
methods costs $800–2000 per sample [16]. Recent developments
in the wet chemical method include a small-scale, high-through-
put method that is able to process a large number of samples in re-
duced time [17]. However, besides the additional costs of the
instruments/devices (e.g., powder/liquid-dispensing system), these
methods still need development because some components of bio-
mass (e.g., acid-soluble lignin and ash) are not determined. Other
disadvantages of the wet chemical methods are that they require
pre-conditioning to remove extractives, and they generate reliable
results only from samples within a certain range of particle size
[18]. In addition, chemical methods are not able to differentiate
among types of hemicellulose, such as xyloglucan and arabinoxy-
lan [19]. Thus, a reliable low-cost, time-saving method is urgently
needed for biomass analysis.

Infrared spectroscopy (IRS) has been widely used for qualitative
and quantitative analysis in various areas such as the food and
pharmaceutical industries [20–23]; for example, the composition
of protein and oil in meat products, cereal crops, and food products
was predicted successfully using near-infrared spectroscopy (NIRS)
[24–26], as were Brix value and starch content in fruits [27]. The
cost of analysis of grain materials using NIRS ($13 per sample) is
lower than that using feed analysis (over $17 per sample) [28].
Infrared spectroscopy also has been proven able to produce quali-
tative and quantitative results for biomass application [16,29]; for
example, Fourier transform infrared spectroscopy (FTIR) has been
used successfully for compositional analysis of lignocellulosic bio-
mass [30]. The main advantages of IRS technology are that sample
preparation is simple, analysis is fast and precise, and many con-
stituents can be analyzed at the same time. Thus, the cost of bio-
mass sample analysis could be reduced to about $10 for each
sample [16]. One exclusive characteristic of the IRS method is that
it is non-destructive, so the sample could be used for other analysis
after IRS measurement. IRS analysis also uses no hazardous chem-
icals. A comparison of IRS and wet chemical methods on biomass
analysis is shown in Fig. 1. In addition to the determination of
the major polysaccharides in biomass, IRS is capable of providing
other structural information. Although numerous chemicals or re-
agents, such as enzymes and alkali, could be used to extract the
polymeric components in plant cell walls, the complicated cross-
linkages between the polymer chains may not be well elucidated
by chemical extraction. The IRS techniques could be used for com-
position and structural analysis, such as detection of functional
groups [31]. Only a few studies have been reported for the deter-
mination of biomass composition, because earlier IRS analysis suf-
fered from blanket absorption of water [32], but the development
of Fourier transform data processing and computer modeling could
solve this problem.

To date, a critical review of IRS application on biomass analysis
is not available. This review, in addition to summarizing the basic
principle of IRS and the characterization of biomass, discusses the
applications of IRS in biomass utilization.

2. Physical principles of IRS

Infrared spectroscopy is usually a result of the fundamental
molecular vibration mechanism, which refers to energy-matter
interaction [33]. Upon an interaction of the IR radiation with an
oscillating dipole moment associated with a vibrating bond, the
absorption of the radiation corresponds to a change of the dipole
moment. Generally, different functional groups correspond to dif-
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ferent components of the IR spectrum; therefore, the spectral
features could be used for structural analysis. The infrared region
consists of three regions according to wavelength range: near-
infrared (780–2500 nm or 12800–4000 cm�1), mid-infrared
(2500–25,000 nm or 4000–400 cm�1), and far-infrared (25,000–
1000,000 nm or 400–10 cm�1) [34]. Mid-infrared is used to inves-
tigate the fundamental vibrations and related structures, whereas
near-infrared analysis provides information on molecular over-
tones and combinations of vibrations. One interesting feature in
NIRS is the overtone, which consists of numerous combinations
of vibrational bands. Even for some simple molecules with few fun-
damental vibration modes, many overtone bands could be shown
in NIR spectra, depending on various combinations; chloroform,
for example, has six fundamental modes but about 34 overtone
modes [34]. Although the NIR spectra appear complicated, they
are not a random mix, which makes it possible to analyze structure
information with chemometric techniques.

The components of the IRS system usually include lenses, a
radiation source, filters, a detector, and a data processing unit
(Fig. 2A) [35]. The filter system is used to define wavelength range,
which makes it a crucial component in the infrared system. Several
types of filters are available: fixed filters, variable filters, and tilting
filters. IRS typically measures light absorption, and light reflec-
tance mode is used for solid biomass [16]. Attenuated total reflec-
tance (ATR) is widely used with FTIR in biomass measurement,
which simplifies sample preparation. In the NIR system, a diffuse
reflection approach in use is an integrating sphere (Fig. 2B), in
which light is directed onto a sample. The integrating sphere is
suitable for measuring inhomogeneous samples such as biomass
material (e.g., stover, wood chips) because the sampling area is
large. Numerous NIR systems have been developed for applications
from indoor laboratory to field uses; for example, a field spectrom-
eter has been developed that can be carried in a backpack [36], and
remote techniques can be coupled with outdoor spectrometers for
field monitoring [37].

To date, a computerized spectrophotometry system has been
widely used to perform advanced investigation. With a combina-
tion of microscopy and spectroscopy, FTIR could be used to quan-
tify the chemical composition of microscopic samples [38]. Both
FTIR and NIR imaging techniques that provide spatially resolved
chemical information have been applied in pharmaceutical
[39,40] and food industry [41]. The imaging techniques are helpful

for better understanding biomass structure. For example, in situ
FTIR microscopic was employed to monitor the structural changes
of native plan cell walls with enzymatic treatment [42]. With this
technique, it is possible to reveal the intrinsic mechanism of
enzymatic hydrolysis and the biomass recalcitrance to enzyme.
More study of biomass structure with infrared microscopy is
suggested.

3. Structure of lignocellulosic biomass

Lignocellulosic biomass has become a promising alternative
source of materials for industrial applications [9]. The major com-
ponent of most biomass, such as sorghum biomass, is plant cell
wall. Plant cell wall naturally protects the cell from outside erosion
and allows turgor. Different layers of the cell wall play different
roles and perform special physiological functions [43]. For exam-
ple, the primary wall, which contains 1–10% cellulose, allows cell
expansion, and the secondary wall provides a barrier against po-
tential pathogens [44]. The major components of the plant cell wall
are cellulose, hemicellulose, and lignin, in which cellulose and
hemicellulose are generally referred to as polysaccharides.

Cellulose (molecular formula, (C6H10O5)n) is one of the most
important polysaccharides in the plant cell wall and has been
widely used in the paper industry [45]. With an ordered structure
in the plant cell wall, cellulose consists of hundreds of glucose mol-
ecules linked by glucosidic linkage [46]. The glucan chains are usu-
ally connected by hydrogen bonds to form microfibrils in the cell
wall. There are 4 different types of cellulose (I, II, III, and IV) [47],
and cellulose I is considered native cellulose. FTIR is widely used
to study native cellulose; for example, FTIR was employed to study
the conversion from cellulose Ia, which is enriched in some mi-
crobes, to Ib, which is found primarily in plant cell wall [48]. Nat-
urally, the two types of cellulose I co-exist in the plant cell wall in
different proportions depending on the plant species. Cellulose has
both a well-ordered structure and a randomly ordered structure, or
crystalline and amorphous structure, respectively. FTIR is an effi-
cient method to study crystallinity, and the hydrogen-bonding for-
mation in amorphous cellulose has been investigated by FTIR [49].
The specially ordered structure of cellulose in the fiber system, or
the distribution of cellulose orientation, also can be studied by dy-
namic FTIR [50].
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Fig. 2. (A) Block diagram of infrared measurement system and (B) diagram of Thermo NIR integrating sphere (Image courtesy of Thermo scientific).
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Hemicellulose is another polysaccharide that usually contains
much more complicated structure and linkages than cellulose. Nat-
urally, hemicellulose is connected with cellulose microfibrils by
non-covalent linkages [51], and hemicellulose generally consists
of more than one type of monosaccharide unit, including both hex-
ose and pentose. Depending on the variety of biomass, hemicellu-
lose may contain xyloglucan, xylan ((C5H8O4)n), glucomannans,
galactoglucomannans, etc. The detailed structure of hemicellulose
remains unknown, and IRS is one method that could be used to re-
veal its structural secrets [52]. Coupled with thermogravimetric
analysis, FTIR has been employed to investigate the mechanism
of the hemicellulose pyrolysis [53].

Lignin is made of phenolic polymers that consist of three types
of phenylpropane untis: p-coumaryl alcohol, coniferyl alcohol, and
sinapyl alcohol [54]. Because the native structure of lignin is very
complicated and usually plays a negative role during monosaccha-
rides production from biomass [55], different techniques have
been employed to understand how lignin affects biomass process-
ing [56]. Traditionally, lignin has been measured with time-con-
suming and labor-intensive methods [57]. The analytical
methods along with IRS could provide a rapid and low-unit-cost
solution for lignin measurement. For example, FTIR investigation
of various lignin model compounds was conducted and explained
the different hydrogen-bonding systems between hardwood and
softwood [58].

4. Biomass analysis via near-infrared spectroscopy

The applicability of NIR for biomass analysis was revealed in the
last decade [16,59]. Although the throughput is essential in the
mid-IR region, bright sources have become available in the NIR re-
gion, so wavelength resolution is not an issue [60]. The NIR mea-
surement is non-destructive and can be completed within
milliseconds. A pre-constructed computer model could automati-
cally analyze the NIRS data and perform predictions. Online NIR
could allow real-time quality control of substrate and monitoring
biomass processing. FT-NIR provides spectra with high resolution
without degradation of optical throughput [61].

4.1. Absorbance bands of NIRS related to biomass materials

For biomass analysis, related NIR absorption bands are assigned
before an initial calibration process. Previous study of wood sam-
ples suggested a high degree of inter-correlation between the
absorption bands [62]. After recognition of the fundamental bands,
a combination of bands could be used for calibration. Table 1 sum-

marizes the reported results of absorption bands from woody bio-
mass. Because the absorption bands in NIR cover a large amount of
information and, depending on the objective, only part of the spec-
tra may be needed for model construction, a model with reduced
spectral range works well; for example, a model to measure chem-
ical properties of wood has a correlation coefficient over 0.9 [63].
Recognizing and selecting a useful spectral range is critical because
it also saves the cost of determination.

4.2. Sample selection

Sample selection is critical, because informative samples could
provide adequate variance for analysis. All parameters that could
affect sample properties should be considered in sample selection
procedure. For example, samples from different production loca-
tions or times should be included in the calibration/validation set
even though one is studying other parameters. For investigated
parameters, the data range obtained from the reference method
(e.g., the wet chemical method in composition determination)
should be wide and smooth, avoiding too many samples with sim-
ilar concentrations on certain parameters. At least 100 reference
samples with adequate variances could generate a robust model.
Sample number also could be determined by the number of the
concerned parameter [64]. For example, at least 10 samples are
necessary for each independent parameter. American Society for
Testing and Materials (ASTM) International also provides guide-
lines for sample calibration. The particle size of a powder sample
influences NIR reflectance, but an adjustment of particle size before
measurement is not necessary because the effect could be cali-
brated by signal correction with software.

4.3. Chemometric analysis

Because IR spectra contain robust information about chemical
bonds, compositional information is not directly available from
their results [65]; thus, chemometric techniques, such as multivar-
iate models, are necessary for spectra analysis. By reducing the
large amount of spectral data in several latent variables, the statis-
tical methods/models could build a relationship between spectral
features and chemical components/bonds. Previous studies also
demonstrated the successful application of chemometric analysis
(e.g., principle component analysis (PCA) and partial least squares
(PLS)) on the determination of biomass components [66].

After NIR measurement, chemometric analysis usually includes
calibration, validation, and prediction (Fig. 3). Data treatment be-
fore calibration is helpful. For example, derivatives are usually em-
ployed in cases with overlapping peaks and baseline variation [67].
It should be noted that although derivatives are valuable, they
sometimes generate false information. Michell [68] found that
the second derivative form was not always more precise than the
normal form for lignin prediction in a wood study.

The calibration procedure in NIR analysis is to build relation-
ships between NIR data and reference values. For quantitative
analysis of biomass, a complete understanding of the sources of
NIRS data is not necessary, because the calibration methods for
modeling the spectra would extract related information. Since
the optical response (e.g., reflectance) to chemical composition is
not linear, multivariate regression is usually employed [64]. Differ-
ent statistical methods could be used for calibration [69,70]. The
data processing/conditioning of NIRS results could be performed
with statistical software such as Matlab. Most NIR instruments
come with compatible software packages. For example, the FT-
NIR system Antaris II (Thermo-Fisher Sci. Inc.) comes with TQ Ana-
lyst software that contains the PLS/PCA function, which could be
used for modeling and prediction. Once a calibration model is ob-
tained, it is also important to update it periodically. To date, differ-

Table 1
Near-infrared major absorbance bands for biomass (eucalyptus) analysis; adapted
from [99].

Wavelength
(nm)

Bond vibration Related
structure

1520 OAH stretch first overtone CONH2

1616 CAH stretch first overtone @CH2

1688 CAH stretch first overtone Aromatic
1724 CAH stretch first overtone �CH2

1740 SAH stretch first overtone –SH
1782 CAH stretch first overtone Cellulose
1896 OAH stretch CAO stretch C@O, CO2H
1910 OAH stretch first overtone ArAOH
2028 C@O stretch second overtone CONH2

2074 NAH2 deformation second overtone Amide II
2266 OAH CAO combination bands Cellulose
2332 CAH stretch, CAH deformation Cellulose,

starch
2386 CAO stretch OAH deformation second

overtone
Primary
alcohols
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ent calibration models have been developed for various biomass
samples. Jin and Chen [71] obtained a successful prediction of total
ash, insoluble ash, moisture, cellulose, hemicellulose, and Klason

lignin in rice straw. After calibration, another set of samples, the
external validation set, usually is prepared for validation to com-
pare the predicted values from the calibration model and those
from the reference method. Cross validation also is employed in
case the number of available calibration samples is small [72].
Evaluation of model could be performed with parameters given
by software, such as correlation coefficient (R2) (Table 2) and root
mean squared error of cross validation (RMSECV).

4.4. NIR studies on biomass

Among studied biomass materials, woody biomass has been
reported frequently in compositional studies with NIR. In the
wood and paper industry, NIRS has been used to study the phys-
ical properties of wood, such as density and compression, in addi-
tion to chemical composition [73,74]. Other physical properties,
such as mechanical properties, also could be investigated via
NIRS, and a reduced spectral range (650–1150 nm) was used suc-
cessfully for prediction [75]. The NIRS method is also a powerful
tool for predicting other properties, such as moisture, ash, and
char content [76,77], which is helpful in evaluating biomass pro-
cessing. Real-time monitoring of biomass composition is impor-
tant for industrial applications, because the composition of

Calibration 
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chemical 
method 

Infrared 
method

Regression 

Validation
Samples

Samples for 
prediction

Calibration 
model

Reference 
chemical 
method

Infrared 
method

Efficient? 

Model 
validation

Predicted 
composition

Yes

No

Fig. 3. Flow chart of calibration and validation process.

Table 2
Chemometric analysis of different biomass samples using infrared spectroscopy.

Biomass Wavelength
region (nm)

Accuracy of
calibration model (R2)

Accuracy of
prediction model (R2)

Modeling methods Data source

Lignin
Decaying forest foliage 1100–2000 0.91 0.87 Stepwise forward

multiple linear regression
[100]

Forest floor (fresh leaf, litterfall) 1100–2500 0.91 0.87 Stepwise multiple
linear regression

[101]

Pulpwood 1100–2500 0.97(Std), 0.93(PLS) NA PCA, PLS a [68]
Woody and herbaceous biomass 1100–2500 0.97 0.99 PLS [81]
Woody biomass 400–2500 NA 0.98 PLS [80]
Wood 400–2500 0.85 0.87 PCA,PLS [99]
Poplar 5500–11000 0.91 0.88 PCA, PLS [102]
Yellow poplar 800–2500 0.81 0.66 PCA, PLS [103]

1300–1800 0.68 0.77
Wood (pine) 600–1900 0.99 0.72 PLS [104]
Wood 500–2400 0.81 0.76 PLS [75]
Softwood residue 5417–15527 0.98 NA PLS [30]
Wood (E. globulus) NA 0.76 0.67 NA [105]
Corn stover 1000–2500 0.94 NA PLS [82]
Corn stover 400–2500 0.85 Cross Validation PLS [79]
Rice straw 1000–2500 0.89 0.86 PLS [71]
Agricultural fiber 500–2400 0.88 0.71 PCA,PLS [106]

Glucan
Wood 500–2400 0.90 0.78 PLS PCA [75]

650–1150 0.88 0.84
Woody biomass(a-cellulose) 400–2500 0.98 0.97 PLS [80]
Agricultural fiber 500–2400 0.94 0.87 PLS PCA [106]
Corn stover 1000–2500 0.97 NA PLS [82]
Corn stover 400–2500 0.68 Cross Validation PLS [79]
Rice straw 1000–2500 0.93 0.93 PLS [71]
Decaying forest foliage 1100–2000 0.90 0.84 Stepwise forward

multiple linear regression
[100]

Forest floor (fresh leaf, litterfall) b 1100–2500 0.88 0.83 Stepwise multiple
linear regression

[101]

Xylan
Corn stover 1000–2500 0.93 NA PLS [82]
Corn stover 400–2500 0.81 Cross Validation PLS [79]
Woody and herbaceous biomass 1100–2500 0.98 0.99 PLS [81]
Wood 500–2400 0.80 0.56 PLS [75]

650–1150 0.80 0.54
Agricultural fiber 500–2400 0.87 0.71 PLS PCA [106]
Straw 1100–2500 0.88 0.86 Modified PLS [107]
Rice straw 1000–2500 0.91 0.91 PLS [71]

a PLS represents partial least squares; PCA represents principal component analysis.
b The analysis is conducted based on holocellulose.
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biomass may vary according to location and variety. Online mon-
itoring of wood chips and bark was realized with NIR coupled
with a silicon diode array spectrometer, which measured the
extractives, Klason lignin, and size distribution [63]. Instead of
woody biomass, several herbaceous feedstocks, such as corn sto-
ver and switchgrass, have been studied using NIRS. Hames et al.
[16] employed NIRS/PLS for compositional analysis of corn stover
and suggested a good prediction for glucan, xylan, lignin, protein,
and ash. Similar studies also reported good prediction for major
components of corn stover [78,79].

The composition of the major components of biomass has been
modeled with NIRS. Lignin composition has been studied exten-
sively by NIR and FTIR (Table 2). Wood lignin has been investigated
in detail; most calibration models have a correlation coefficient lar-
ger than 0.8, and most prediction models have a correlation coeffi-
cient larger than 0.7. Table 2 (glucan) summarizes the glucan
analysis using NIR. Although different wavelength regions and
modeling methods were used, most of the calibration models
showed a high correlation between results from chemical methods
and NIR data and relatively high accuracy of prediction (R2 > 0.8).
For xylan analysis (Table 2), the results from literature review
showed that most of the calibration models had a correlation factor
larger than 0.8, but the accuracy of prediction models varied.
Hemicellulose is known to have a branched amorphous structure
in the plant cell wall [51], and xylan is just one of the polysaccha-
rides in hemicellulose. More investigation is needed to model the
compositions of other polysaccharides, such as arabinose and man-
nose. Recent attention has been given to monitoring the structure/
composition changes of biomass during processing, and NIRS is
being used as one of the techniques for structural study. For exam-
ple, enzymatic digestibility of woody biomass and its composi-
tional properties were well related in an integrated NIR method
[80]. This efficient and accurate method could be used to evaluate
processing efficiency.

Although NIRS provides fast and reliable results for biomass
analysis, attention should be paid when using NIRS. First, a large
population (over 100 samples) is usually preferred to develop ro-
bust calibrations [71,81], although studies have been reported with
fewer than 100 samples for calibration [79,82]. Second, calibration
conducted in a certain population, such as in targeted species,
could improve accuracy and precision. Third, NIRS is unable to
probe the information of trace elements, non-structural compo-
nents, and those compounds with a concentration less than 1 g/L
(or 1 g/Kg) [16,29]. For IR radiation, only strongly polarized asym-
metric chemical bonds give rise to intense bands; thus, supple-
mentary techniques such as Raman spectroscopy, may serve to
detect non-polar but polarizable bonds [83].

5. Biomass analysis via Fourier transform mid-infrared
spectroscopy

Fourier transform mid-infrared spectroscopic analysis is also a
rapid and non-destructive technique for the qualitative and quan-
titative determination of biomass components in the mid-IR region
[30]. The high IR background absorbance of water is an obstacle
when FTIR is employed in the analysis of wet solid biomass, but
ATR-FTIR allows attenuation of the incident radiation and provides
IR spectra without the water background absorbance. Sample
preparation is critical, because FTIR works well with individual
components extracted from the plant cell wall [84]. As mentioned
above, NIR provides structural information by studying overtone
peaks, whereas FTIR provides information about certain compo-
nents in the plant cell wall through absorbance bands [85]. Table
3 summarizes absorbance bands corresponding to the functional
groups in biomass materials.

Until now, FTIR has been widely employed to study either the
individual components or the structure of biomass. Onion is one
of the most popular substrates used in FTIR. The net orientation
of cellulose and pectin in the cell wall of onion was determined
by FTIR microscope [86], and the hemicellulose and pectin in the
cell wall of onion also have been studied [32,83]. Wilson et al.
[87] studied the mechanical properties and molecular dynamics
of onion using FTIR. Besides onion, woody biomass also has been
investigated for structural information via FTIR [65]. With Raman
spectroscopy, FTIR has been used to investigate the changes in
composition and structure of oak wood and barley straw during
chemical and biochemical treatments [88]. Different spectral fea-
tures were found in soft and hard woods, and the ratio of syringyl
to guaiacyl lignin within one hardwood tree may vary with mor-
phological location and cell type, possibly indicating that different
strategies should be employed for lignocellulosic biomass [65].

Studying the biomass materials for compositional analysis
using FTIR has attracted much attention and shows promise. The
chemometric analysis methods used in NIR also could be applied
to FTIR analysis. Tucker et al. [30] used FTIR-PLS to determine
the composition of pretreated softwood and suggested that the
correlation coefficients for glucose and lignin were over 0.9, but
the coefficients for the other components were low. Similar to
the data analysis in NIR study, Tamaki and Mazza [89] employed
FTIR-PLS to investigate carbohydrate content and lignin as well
as extractives, and the results showed good or excellent predictive
ability [90]. Along with PCA, FTIR was used for investigating the
fine structural features of arabinoxylan in wheat, although the
removal of starch was necessary because of its overlapped bands
with arabinoxylan [91]. Allison et al. [92] suggested that nitrogen
content and alkali index in energy grass could be predicted
accurately with FTIR-PLS. He and his co-workers also found that
the composition of acid detergent lignin, total hydroxycinnamic
acid, total ferulate monomers plus dimers, p-coumarate, and
ferulate dimers could be predicted with FTIR-PLS [93].

Table 3
FTIR absorbance bands in biomass study; adapted from [19]a [108]b [58]c.

Wavenumber
(cm�1)

Assignment/functional group Polymer

875 Glycosidic linkage Hemicellulosea

930 Glycosidic linkage Cellulose, hemicellulosea

990 CAO valence vibration Celluloseb

1035 CAO, C@C, and CACAO
stretching

Cellulose, hemicellulose,
lignina

1160 CAOAC asymmetrical
stretching

Cellulose, hemicellulosea

1200 OAH bending Cellulose, hemicellulosea

1215 CAC + CAO stretch Lignin (wood)c

1270 Aromatic ring vibration Guaicyl lignina

1280 CAH bending Crystalline cellulosea

1310 CH2 wagging Cellulose, hemicellulosea

1327 CAO of syringyl ring Lignin (wood)c

1335 CAH vibration, OAH in-plane
bending

Cellulose, hemicellulose,
lignina

1380 CAH bending Cellulose, hemicellulose,
lignin a

1425 CAH in-plane deformation Lignin (wood)c

1440 OAH in-plane bending Cellulose, hemicellulose,
lignina

1465 CAH deformation Lignina

1500 Aromatic ring vibration Lignina

1595 Aromatic ring
vibration + C@O stretch

Lignina

1682 C@O stretching
(unconjugated)

Lignin (wood)c

1730 Ketone/aldehyde C@O stretch Hemicellulosea

1750 Free ester Hemicellulosea

2840, 2937 CAH stretching Lignin (wood)c

3421 OAH stretching Lignin (wood)c
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With multivariate linear regression, FTIR could not only provide
structural information, but also predict biomass digestibility as
well as sugar yield after enzymatic hydrolysis. For example, FTIR
was used to predict the sugar yield of AFEX(ammonia fiber explo-
sion)-treated rice straw after enzymatic hydrolysis [94], indicating
that a fast method is available for evaluation of pretreatment effi-
ciency. Also, a recent study using FTIR-PLS regression accurately
predicted glucose and xylose conversions [19].

In addition to compositional determination, FTIR has been used
to study the crystalline structure of biomass. An empirical ‘‘crystal-
linity index’’ for native cotton was established [95]. The lateral or-
der index (a1429/893) and hydrogen-bond intensity (a3336/1336)
could be used for qualitative analysis of crystallinity change [96].
However, this method is not applicable to mercerized cotton. In
addition, dynamic FTIR was used to study cellulose allomorph I
composition in pulp samples [97]. The changes in crystalline struc-
ture of cellulose II also were observed with FTIR at the supermolec-
ular and molecular level [98].

6. Summary

� The tremendous amount of information about biomass struc-
ture from IRS analysis provides both qualitative and quantita-
tive results.
� Traditional composition analysis using wet chemical methods is

labor-intensive and time-consuming, and thus does not meet
industrial requirements for providing quick measurements.
IRS techniques promise fast, accurate, and low-cost analytical
methods.
� Statistical tools are important companions of IRS techniques,

which provide robust models to predict the structural informa-
tion of biomass.
� Investigation of IRS on biomass is in development, and efforts

have been made to promote IRS as practical in biomass
processing.
� IRS techniques could be used with other analyses of character-

ization, such as X-ray diffraction and nuclear magnetic reso-
nance, for better understanding of biomass structure.
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