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Abstract:  

BACKGROUND: Synthetic auxins such as 2,4-D have been widely used for selective control of 

broadleaf weeds since the mid-1940s. In 2009, an Amaranthus tuberculatus (common 
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waterhemp) population with 10-fold resistance to 2,4-D was found in Nebraska, USA. The 2,4-D 

resistance mechanism was examined by conducting [14C] 2,4-D absorption, translocation and 

metabolism experiments. 

RESULTS: No differences were found in 2,4-D absorption or translocation between the resistant 

and susceptible A. tuberculatus. Resistant plants metabolized [14C] 2,4-D more rapidly than did 

susceptible plants. The half-life of [14C] 2,4-D in susceptible plants was 105 h, compared to 22 h 

in resistant plants. Pre-treatment with the cytochrome P450 inhibitor malathion inhibited [14C] 

2,4-D metabolism in resistant plants and reduced the 2,4-D dose required for 50% growth 

inhibition (GR50) of resistant plants by 7-fold to 27 g ha-1, similar to the GR50 for susceptible 

plants in the absence of malathion. 

CONCLUSIONS: Our results demonstrate that rapid 2,4-D metabolism is a contributing factor 

to resistance in A. tuberculatus, potentially mediated by cytochrome P450. Metabolism-based 

resistance to 2,4-D could pose a serious challenge for A. tuberculatus control due to the potential 

for cross-resistance to other herbicides. 

 

Key words: 2,4-D resistance, 2,4-D metabolism, Amaranthus tuberculatus, 2,4-D uptake and 

translocation, cytochrome P450.  
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1 INTRODUCTION 

The synthetic auxin herbicide 2,4-D was introduced for weed control in agriculture in the 

mid-1940s1 and has since become one of the most widely used herbicides in the world. This and 

other auxinic herbicides are popular among growers, in part because of their ability to selectively 

control broadleaf weeds. In 2005, the United States Environmental Protection Agency estimated 

annual 2,4-D use in agriculture and non-agriculture settings at 20.9 million kg.2 Even after the 

introduction of newer herbicides, such as glyphosate, triazines, and acetolactate synthase (ALS) 

inhibitors, auxinic herbicide use has remained high, primarily because of their selectivity, 

efficacy, broad-spectrum of control, and low cost.1 More recently, the widespread and increasing 

evolution of resistance in weed species to various other herbicides has resulted in an increase in 

auxinic herbicide use. The development and commercialization of 2,4-D-resistant cotton 

(Gossypium hirsutum) and soybean (Glycine max) crop varieties3 will likely increase 2,4-D use 

for in-crop selective weed control. 

Synthetic auxin herbicides are known to mimic several physiological and biochemical 

responses induced by the natural plant hormone, indole acetic acid (IAA).4 Despite their 

extensive use in agriculture for several decades, the precise mechanism of synthetic auxin 

herbicide action is not completely understood. Upon discovery of IAA receptors Transport 

Inhibitor Response 1 (TIR1) and Auxin F-Box (AFB) proteins,5,6 the role of these proteins in 

auxinic herbicide-mediated responses has also been examined.7,8 One hypothesis is that 

functional redundancy in auxin receptors (i.e., TIR1 and AFBs 1-5) might contribute to multiple 

sites of action for auxinic herbicides. The precise role of these proteins in auxinic herbicide-

mediated responses is still elusive. Previous research also suggests that auxinic herbicides 

This article is protected by copyright. All rights reserved.



activate metabolic processes that initiate ethylene accumulation, resulting in epinasty.4 Other 

factors potentially leading to plant death include abscisic acid (ABA) accumulation resulting in 

1) photosynthesis inhibition, 2) H2O2 production, and 3) increase in reactive oxygen species 

(ROS).4,9 

The selectivity of auxinic herbicides in controlling broadleaf species is primarily due to 

auxinic herbicide metabolism by tolerant species.10 Metabolism also plays a key role in 

conferring resistance to these herbicides in dicot species as well.11 In most cases, auxinic 

herbicides undergo oxidation, hydrolysis, or conjugation resulting in reduced biological 

activity.11-13 In tolerant monocots, metabolic reactions typically occur through ring hydroxylation 

followed by irreversible glucose conjugation.14 In sensitive dicots, auxinic herbicides may be 

conjugated to amino acids, which are reversible to active forms and may still have partial 

herbicidal activity themselves.15 

 Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea and Tardif (common 

waterhemp) is a major troublesome weed of cropping systems in North America.16 Especially in 

agricultural fields of the Midwestern United States, this weed poses a serious problem causing 

significant yield losses in maize (Zea mays) and soybean.17-20 A. tuberculatus is dioecious and a 

prolific seed producer, which enables rapid spread.20 High genetic variability coupled with 

intense herbicide selection pressure has resulted in evolution of resistance to several commonly 

used herbicides in A. tuberculatus.21-23 US Midwestern populations of A. tuberculatus have 

various combinations of herbicide resistance spanning six modes of action including 

photosystem II (PSII)-inhibitors, ALS-inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, 

4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors, 5-enolpyruvylshikimate-3-phosphate 

synthase (EPSPS) inhibitors, and 2,4-D.24 
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 Herbicide resistance has become a major global issue and numerous agriculturally 

important weeds have confirmed resistance to multiple herbicide modes of action.24 Even after 

several decades of continuous auxinic herbicide use, the rate of resistance evolution to auxinic 

herbicides is comparatively low.25 There are currently 34 weed species known to have evolved 

resistance to auxinic herbicides,24 including A. tuberculatus. In 2009, the first failure to control 

A. tuberculatus with 2,4-D was reported in Nebraska, USA. This population was confirmed to 

have evolved resistance to 2,4-D with a resistance ratio of 10 relative to a susceptible 

population.26 The resistance mechanism in this A. tuberculatus population has not been 

determined. The objective of this research was to examine [14C] 2,4-D uptake, translocation, and 

metabolism in an effort to identify the resistance mechanism. 

2 MATERIALS AND METHODS 

The 2,4-D-resistant A. tuberculatus from southeast Nebraska was used in this research.26 

This population was found in a seed production field of little bluestem (Schizachyrium scoparia 

Michx. Nash) that had been in no-till management with annual application of 2,4-D for over 10 

years. The 2,4-D resistant A. tuberculatus seed was collected from the field followed by one 

generation of 2,4-D selection in the greenhouse to produce the seed used in these studies. An A. 

tuberculatus population from Nebraska known to be susceptible to 2,4-D was also used for 

comparison. 

2.1 [14C] 2,4-D Absorption and Translocation 

 

Resistant and susceptible A. tuberculatus seeds were planted on potting soil, kept in a 4oC 

room for one week and then transferred to a greenhouse with controlled conditions at 25 oC and 

75% RH until reaching 8 cm or 4 true leaves. Plants were then transplanted to fine washed silica, 
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irrigated with fertilizer (0.05% Miracle-Gro solution, Scotts Miracle-Gro Company, Marysville, 

OH), and transferred to a growth chamber under the same conditions as the greenhouse except 

for the lighting, which was supplied with fluorescent and incandescent light. 

Plants were treated at the stage of 4-6 true leaves (1 wk after transplanting). The fourth 

true leaf was marked and covered with aluminum foil. Plants were then sprayed in a single 

nozzle overhead track sprayer (DeVries Generation III Research Sprayer, Hollandale, MN, USA) 

with 500 g ha-1 2,4-D (2,4-D amine, 455 g L-1, DuPont) in a water volume of 224 L ha-1 

containing 1% COC. The aluminum foil was then removed and a solution of [14C]-2,4-D mixed 

with formulated 2,4-D and COC was applied using 10 droplets of 1 µl each, so that the treated 

leaf received the same amount of herbicide as the rest of the plant (5 µg cm-2 and 3 µl cm-2). 

Total radioactivity applied per plant was 3.33 KBq (200,000 dpm). Three replications per time 

point were used, and the experiment was repeated. 

Evaluation time points were at 12, 24, 48, 96, and 192 HAT. The treated leaves were cut 

and washed with 5 ml of 10% methanol and 1% NIS washing solution. The leaf rinse solution 

was mixed with 10 ml of scintillation cocktail (EcoscintTM XR) and measured for radioactivity 

using LSS (Packard Tri-carb 2300TR). Roots were washed with 10 ml water, and 3 ml of the 

wash solution was measured with LSS. Plants including treated leaves were pressed in 

newspaper and dried in a 60oC oven for 72 h before exposure to Phosphor Screen film for 3 d 

followed by imaging with a Typhoon Trio Imager (GE Healthcare). The dried tissue was 

separated into treated leaf, untreated leaves, stem, and roots, and then oxidized in a Biological 

oxidizer (OX500) followed by radioactivity measurement with LSS. The proportion of absorbed 

herbicide was calculated using the following equation:  

%Habs = [(14C ot) / (14C ot + 14C wl)] ×100  
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where “%Habs” is the proportion of absorbed herbicide, “14C ot” is the amount of 14C measured in 

oxidized tissue, and “14C wl” is the amount of 14C detected in the treated leaf. For herbicide 

translocation studies the following equation was used: 

%Htr = 100 - [(14C al) / (14C al + 14C ot) ×100] 

where “%Htr” is the proportion of translocated herbicide, “14C al” is the amount of 14C measured 

in the treated leaf, and “14C ot” is the amount of 14C detected in other untreated tissues of the 

plant. 

 

2.2 [14C] Metabolism 

 

 Plants were treated with the same procedures and conditions as the absorption and 

translocation studies. They were harvested at 12, 24, 48, 96, 192, and 264 HAT and at each time 

point, treated leaf, roots, and sand were washed and the plant tissue was rapidly frozen in liquid 

nitrogen and stored at -80 oC. Metabolite extraction was performed by grinding the entire plant 

with a mortar and pestle, then digesting tissue with a 10 ml solution of 1% acetic acid in 50 ml 

plastic tubes on a table shaker for 10 min. Extracts were put in 50 ml centrifuge filters with 25 ml 

microfiltration membranes (pore size of 0.45 μm), then the tissue digestion step was repeated 

two more times. Filters and tissue were dried and kept for oxidation to quantify the non-extracted 

metabolites. Final extracted volume of 30 ml was applied to a solid phase extraction C18 

cartridge, and 5 ml of digestion solution that passed through the cartridge was quantified by LSS. 

About 95% of radioactivity interacted with the silica matrix and was recovered with 4 ml of 

acetonitrile and dried in an evaporation system under vacuum at 40 oC. Entire extracts were 

suspended in 225 µl of HPLC A solvent and filtered in 1.5 ml centrifuge tubes with 0.4 µm 
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microfiltration membranes at 12,000×g. Filtered solution (200 µl) was used for HPLC (Hitachi 

Instruments, Inc., San Jose, CA) using a C18 4.6 mm by 150 mm column (C18 Column, Zorbax 

Eclipse XDB-C18, Agilent Technologies, Santa Clara, CA, USA), attached to a radio-detector 

(FlowStar LB 513, Berthold Technologies GmbH & Co.) with a flow cell YG-150-U5D solid 

cell YG-Scintillator (150 µl). Mobile Phase A contained 89.9% water, 10% acetonitrile, and 

0.1% formic acid and phase B contained 99.9% acetonitrile and 0.1% formic acid. A calibration 

curve for radioactivity detection was constructed using a series of different counts of [14C]-2,4-D 

(8.3 Bq, 16.7 Bq, 83.3 Bq, 166.7 Bq, 1666.7 Bq, and 3333.3 Bq). The proportion of 2,4-D 

metabolism was calculated using the equation:  

%2,4-DParent = [(HPLC detected 2,4-D) / (HPLC detected 2,4-D + HPLC detected metabolites + 

counts in oxidized filters + counts in digestion solution after C18 cartridge separation + counts in 

washed sand)] ×100 

where “%2,4- DParent” is the proportion of non-metabolized herbicide. The experiment had 3 

replications and it was repeated. 

2.3 Malathion Effects on 2,4-D Resistance and Metabolism 

Resistant and susceptible A. tuberculatus plants were grown in a greenhouse under 

controlled conditions as described above, except that plants were grown in potting soil. Half of 

the resistant and susceptible plants were treated with malathion (Spectracide, United Industries 

Corporation, St. Louis, MO) at 2,000 g ha-1, 24 h before 2,4-D treatment. Plants were treated 

with 2,4-D (2,4-D amine, 455 g L-1, DuPont) at the developmental stage of 4-5 true leaves and 

treatments were 0, 15, 30, 63, 125, 250, 500, 1,000, 2,000, and 6,000 g ha-1. Plants were 

harvested 28 d after treatment and dried in a 60 oC oven before weighing. 
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Another study to analyze malathion effects on 2,4-D metabolism was conducted as 

described above. Half of the plants transplanted to fine silica were sprayed with malathion at 

2,000 g ha-1, and at 24 HAT all resistant and susceptible plants were treated with [14C] 2,4-D as 

described above. After 264 h, [14C] 2,4-D treated leaves and roots were washed and the tissue 

was frozen with liquid nitrogen for metabolite extraction as described above. The amount of 2,4-

D recovered was calculated using the equation “%2,4- DParent” described above. Each treatment 

had 3 replications and the experiment was repeated. 

2.4 Data Analysis 

The experiments were analyzed using the software R.28 Absorption and translocation over 

time were analyzed using a rectangular hyperbolic model.29 2,4-D metabolism and 2,4-D dose 

response with malathion were analyzed using a three-parameter log-logistic model.30 Malathion 

effect on 2,4-D metabolism was analyzed using a factorial ANOVA in R and contrast 

comparisons were adjusted by the Tukey method. 

3 RESULTS 

3.1 [14C] 2,4-D Absorption and Translocation 

To investigate the 2,4-D resistance mechanisms in A. tuberculatus, we first determined if 

reduced absorption or translocation of [14C] 2,4-D contributed to resistance. There were no 

differences in the amount of [14C] 2,4-D absorbed between 2,4-D-resistant or -susceptible plants 

at all harvest times (Figure 1A, Supporting Information Tables 1 and 2). No difference was 

found in Amax (maximum absorption) between populations (S: 73% ±4 and R: 73% ±4) (Figure 

1A), or in t90 (time in h for 90% of maximum absorption) between populations (S: 43 h ±4 and 

R: 33 h ±7). 
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2,4-D is a systemic herbicide that translocates via xylem and phloem to other parts of the 

plant following absorption. Translocation was similar between resistant and susceptible plants 

through 96 HAT (Figure 1B, Supporting Information Tables 1 and 2). Although the experiment 

was conducted over a reasonable time course of 192 h, 2,4-D translocation in resistant plants did 

not reach an asymptote by the last time point. The T192 value (translocation at 192 HAT) was 

higher in resistant plants (42 h ±9) than in susceptible plants (23 h ±6). This suggests 2,4-D 

translocation in susceptible plants is self-limiting beyond 96 HAT when plant death occurs, 

while 2,4-D translocation continues in resistant plants. Phosphor images confirmed no 

differences in translocation between the two populations through 96 HAT (Figure 1C). 

Therefore, differences in 2,4-D absorption or translocation do not contribute substantially to 2,4-

D resistance in this A. tuberculatus population. 

3.2 [14C] 2,4-D Metabolism 

To determine if 2,4-D metabolism was a factor in the resistance mechanism of this A. 

tuberculatus population, we measured how much [14C] 2,4-D was metabolized over time. The 

parent compound of [14C] 2,4-D resolved at peak retention time (RT) of about 12.5 min by 

reverse-phase HPLC with no other peaks observed (data not shown). This indicates that peaks at 

other retention times observed in plant lysates are products derived from 2,4-D metabolism 

(Figures 2A, B). At 264 HAT, a large amount of 2,4-D was detected and just one main 

metabolite was produced in susceptible plants (metabolite 1), at RT of 10.40 min (Figure 2A). In 

resistant plants, a small 2,4-D peak was detected and another main metabolite was produced at 

RT of 8 min (metabolite 4, Figure 2B). Additional metabolites were also detected, including 

metabolite 1 also found in susceptible plants, metabolite 2 (RT = 9.5 min), metabolite 3 (RT = 

8.7 min), metabolite 5 (RT = 7 min), and metabolite 6 (RT = 2 min) (Figure 2B). Analyzing 
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metabolism over time using a log-logistic model (Figure 2C, Supporting Information Table 1) 

showed that resistant plants had a 2,4-D half-life (time to reach 50% 2,4-D metabolism) of 22 h 

±4, five times faster than susceptible plants (105 h ±7). The time to reach 70% 2,4-D metabolism 

in resistant plants was 54 h ±4, and 307 h ±36 for susceptible plants. From these results, it is 

evident that the resistant A. tuberculatus plants rapidly metabolize 2,4-D (Supporting 

Information Table 3). 

3.3 Malathion Effects on 2,4-D Resistance and Metabolism 

To test the hypothesis that enhanced 2,4-D metabolism was conferred by cytochrome 

P450, the known cytochrome P450-inhibitor malathion was tested. The 2,4-D dose required to 

reduce growth by 50% (GR50) in resistant plants in the absence of malathion was 176 g ha-1 ±37, 

eight times higher than the GR50 for susceptible plants (22 g ha-1 ±5). Pre-treatment with 

malathion followed by 2,4-D dose response resulted in the resistant population having a 7-fold 

reduction in GR50 compared to no pre-treatment and a similar 2,4-D response as the susceptible 

population (Figure 3A, Supporting Information Table 1). With malathion pre-treatment, the GR50 

for resistant plants was 27 g ha-1 ±10, similar to the GR50 for susceptible plants following 

malathion pre-treatment (22 g ha-1 ±3). 

 To investigate whether malathion affected 2,4-D metabolism, malathion treated and 

untreated plants were treated with [14C] 2,4-D and harvested 264 HAT. Malathion reduced 2,4-D 

metabolism in both resistant and susceptible populations (Figure 3B). With 2,4-D treatment only, 

susceptible plants had 25% of the parent 2,4-D remaining at 264 HAT while resistant plants had 

7% parent 2,4-D remaining. Following malathion treatment, the resistant and susceptible 

populations had similar amounts (73% and 74%, respectively) of parent 2,4-D remaining at 264 

HAT (Figure 3B, Supporting Information Table 1). 
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4 DISCUSSION 

4.1 Metabolism of 2,4-D primarily contributes to 2,4-D resistance in A. tuberculatus  

Auxinic herbicides were the first chemical family of selective herbicides to be discovered 

and are the most widely used selective herbicides. The phenoxy herbicide 2,4-D is effective in 

controlling a number of broadleaf weeds including A. tuberculatus. Herbicide resistance 

mechanisms have been categorized into two types, a) non-target-site, involving decreased 

absorption, translocation and/or enhanced herbicide metabolism, and b) target-site, resulting 

from mutations in the target gene or increased levels of the target protein by gene amplification 

or transcriptional upregulation.31 Previous research found that auxinic herbicide resistance in 

wild mustard (Sinapis arvensis),32 false cleavers (Galium spurium),33 kochia (Kochia 

scoparia),34 and yellow starthistle (Centaurea solstitialis)35,36 was not due to differences in 

herbicide absorption, translocation and/or metabolism and, by deduction, might be due to other 

mechanisms, such as altered target site. A different dicamba-resistant K. scoparia population was 

found to have reduced dicamba translocation.37 

In this research, 2,4-D resistance was investigated by determining [14C] 2,4-D uptake, 

translocation, and metabolism in resistant and susceptible A. tuberculatus populations from NE. 

Our results indicate that 2,4-D absorption and translocation were similar between resistant and 

susceptible A. tuberculatus, and therefore do not appear to contribute to resistance. Previously, a 

similar amount of total 2,4-D absorption and translocation was reported in leafy spurge 

(Euphorbia esula) and cucumber (Cucumis sativus).38,39 However, in 2,4-D susceptible ground 

ivy (Glechoma hederacea), 37% more 2,4-D was absorbed than in resistant plants.40 In a 

Jimsonweed (Datura stramonium) population susceptible to 2,4-D, about 70% of the absorbed 

2,4-D was translocated within the plant.41 Reduced MCPA (phenoxy herbicide) translocation 
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was found in resistant hemp-nettle (Galeopsis tetrahit) compared to susceptible.42 Recently, 

reduced 2,4-D translocation was found to confer resistance in a wild radish (Raphanus 

raphanistrum) population.43 However, in another wild radish population resistant to MCPA, it 

was found that the resistant plants translocated MCPA more rapidly to roots than did susceptible 

plants, and also less [14C] MCPA (as % applied) was recovered in resistant plants than in 

susceptible plants at 48 and 72 HAT.44 In that study, [14C] MCPA was translocated to the roots, 

but in A. tuberculatus, most of the translocated radioactivity was found in the foliage and very 

little in the roots. The higher translocation observed in resistant A. tuberculatus at 264 HAT may 

be related to the possible greater mobility of 2,4-D metabolites than parent 2,4-D, as well as the 

possibility of self-limiting translocation in susceptible plants once plant death occurs. 

Our results show that enhanced 2,4-D metabolism contributes to resistance in the A. 

tuberculatus population from NE. The susceptible plants had higher parent [14C] 2,4-D 

remaining at all time points. The model of 2,4-D metabolism over time showed that resistant 

plants metabolized 2,4-D seven times faster than did susceptible plants. Previously, 2,4-D-

susceptible hemp dogbane (Apocynum cannabinum) was found to metabolize only 48% of the 

herbicide at 12 d after application.45 Euphorbia esula plants susceptible to 2,4-D contained 85% 

of the parent [14C] 2,4-D at 72 HAT.38 One study reported elevated 2,4-D metabolism in less-

susceptible wild cucumber when compared to more-susceptible cultivated cucumber.39 An 

MCPA-resistant G. tetrahit population had increased MCPA metabolism compared to a 

susceptible population.42 The bacterial aryloxyalkanoate dioxygenase transformed in 2,4-D 

resistant crops show that rapid 2,4-D metabolism can confer robust 2,4-D resistance.3 

Collectively these results suggest that if enough 2,4-D is metabolized in A. tuberculatus from 24-
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48 HAT, the enhanced metabolism will enable the resistant plant to survive short-term 2,4-D 

induced toxicity and continue to grow. 

Auxinic herbicide selectivity in crops is primarily dependent on plant metabolism of 

these herbicides. Metabolic detoxification of 2,4-D typically occurs through side-chain cleavage, 

or ring hydroxylation followed by glucose conjugation. Tolerant plants can convert the parent 

biologically active molecule to more polar and insoluble residues.46 Sensitive species can 

sometimes metabolize 2,4-D faster than tolerant species, however, the main metabolites formed 

in sensitive species are reversible conjugates that can rapidly convert back to the biologically 

active, parent compound.47 The metabolites produced by tolerant species are generally more 

stable and irreversible.47 In auxinic herbicide-tolerant monocots, the formation of stable 

metabolites via phenyl and heterocyclic ring hydroxylation followed by subsequent sequestration 

of the non-biologically active compounds has been reported.48 

The specific reactions involved in 2,4-D detoxification in our resistant population need to 

be investigated. One main metabolite was produced in susceptible plants while resistant plants 

produced the same metabolite with several additional metabolites. The structures of these 

metabolites have not yet been identified, but this information would help determine the 

biochemical steps involved in the enhanced 2,4-D metabolism in resistant plants. In our 

malathion experiments, we showed that this cytochrome P450 inhibitor reduced 2,4-D 

metabolism at 264 HAT in resistant plants and reversed 2,4-D resistance in a whole-plant dose 

response. Cytochrome P450s are versatile enzymes involved in phase I of herbicide metabolism 

including ring hydroxylation, and plants have a high diversity of cytochrome P450 gene families 

that are able to metabolize natural and xenobiotic compounds.49,50 Many weed species have been 

reported with enhanced metabolic resistance mediated by cytochrome P450s to various herbicide 
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modes of action including ALS, acetyl Co-A carboxylase (ACCase), photosystem II, and 

HPPD.51,52 Metabolic resistance in A. tuberculatus has been previously reported for ALS,53 

photosystem II54 and HPPD54,55 herbicides, with different cytochrome P450 genes likely 

conferring HPPD resistance in different populations.54,56 2,4-D has been reported as an inducer 

of cytochrome P450 activity in plants both in vitro57,58 and in vivo,59 including the induction of 

demethylation and ring-methyl hydroxylation of chlortoluron in tobacco (Nicotiana tabacum) 

cells.58 More recent studies showed that ACCase-inhibitor-susceptible Lolium plants pre-treated 

with 2,4-D had induction of cytochrome P450 transcripts60 and higher rates of diclofop-methyl 

metabolism, which was reversed after malathion treatment.59 

In conclusion, these results clearly demonstrate 2,4-D metabolism as a contributing factor 

for 2,4-D resistance in A. tuberculatus. Reversal of resistance and reduced 2,4-D metabolism 

following treatment with the cytochrome P450 inhibitor malathion indicate that one or more 

cytochrome P450 genes mediate this enhanced 2,4-D metabolism. Metabolism-based herbicide 

resistance is a particular challenge as it may confer complex and sometimes unpredictable cross-

resistance to current and yet-to-be-discovered herbicides.51,61 
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Figure Legends 

Figure 1. [14C]-labeled 2,4-D absorption and translocation in resistant (R) and susceptible (S) A. 

tuberculatus over a 96 h time course (conducted at Colorado State University). A) 2,4-D 

absorption as percentage of applied radioactivity. B) 2,4-D translocation as percentage of 

absorbed radioactivity. C) Phosphor images showing 2,4-D translocation over time with the 

corresponding plant color image to the left of the phosphor image. 

 

Figure 2. [14C]-labeled 2,4-D metabolism in resistant and susceptible A. tuberculatus (conducted 

at Colorado State University). A) Susceptible and B) resistant HPLC chromatograms of [14C] 

2,4-D metabolism at 264 HAT (radioactive units in Bq vs retention time in min), with different 

metabolites numbered in order of their respective retention times. C) Non-linear regression of 

2,4-D metabolism at different time points after herbicide treatment with dashed lines indicating 

2,4-D half-life. 

 

Figure 3. Malathion reverses 2,4-D resistance and metabolism in resistant (R) and susceptible 

(S) A. tuberculatus. A) Dry weight dose response of R and S with and without malathion pre-

treatment (Mal), 28 d after 2,4-D application with dashed lines indicating GR50 (2,4-D dose 

required to reduce biomass by 50%). B) HPLC chromatograms of [14C] 2,4-D metabolism 

(radioactive units in Bq vs retention time in min) at 264 h after 2,4-D application in R and S with 

and without malathion pre-treatment. Percentage indicated above 2,4-D retention time (13.4 min) 

represents the mean parent [14C] 2,4-D measured in all replicates. Other peaks represent 2,4-D 

metabolites. Letters represent significant differences between R and S (upper case) or between 

malathion treatments (lower case) with Tukey’s test (n=6; α = 0.5). 
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SUPPORTING INFORMATION 

Metabolism of 2,4-dichlorophenoxyacetic acid contributes to resistance in a common 

waterhemp (Amaranthus tuberculatus) population 

 

Results 

Supporting Information Table 1. Equation parameters for [14C] 2,4-D absorption, translocation, 

and metabolism. 

Figure Population Equation 

1A, absorption Susceptible f(x) = (72.6907(x))/(0.11*43.2083+x) 

 Resistant f(x) = (72.9682 (x))/(0.11*33.4752+x) 

1B, translocation Susceptible f(x) = (22.4823(x))/(0.11*61.3814+x) 

 Resistant f(x) = (81.0326 (x))/(0.11*614.8625+x) 

2C, metabolism Susceptible f(x) = (100) exp(− exp(-0.618446 (log(x) – 

58.015172))) 

 Resistant f(x) = (100) exp(− exp(-0.749272 (log(x) − 

13.595200))) 

3A, metabolism Susceptible, - 

malathion 

f(x) = ((3.05020)/ (1 + exp(1.13179(log(x) − 

log(21.74716)))) 

 Resistant, - 

malathion 

f(x) = ((3.23644)/ (1 + exp(1.16502(log(x) − 

log(176.48644)))) 

 Susceptible, + 

malathion 

f(x) = ((3.15715)/ (1 + exp(1.78556(log(x) − 

log(22.74036)))) 

 Resistant, + 

malathion 

f(x) = ((3.18549)/ (1 + exp(0.69062(log(x) − 

log(24.42846)))) 

 



Supporting Information Materials and Methods 

[14C] 2,4-D Absorption and Translocation 

In an first experiment at Kansas State University (KSU), 2,4-D-resistant and susceptible 

A. tuberculatus were grown in a greenhouse (25/20ºC day/night temperature, 15/9 h day/night 

photoperiod). When the seedlings reached 5-6 cm tall, they were transferred to growth chambers 

maintained at 32.5/22.5 ºC, 15/9 h photoperiod, and 60-70% relative humidity. Light in the 

growth chamber was provided by fluorescent bulbs delivering 550 µmol m-2 s-1 photon flux at 

plant canopy level. Plants were watered as needed both under greenhouse and growth chamber 

conditions. Ten to 12 cm tall plants were treated with four × 2.5 µl (3.33 kBq) droplets of [14C] 

2,4-D on the adaxial surface of a fourth or fifth youngest leaf, which was marked with a black 

permanent marker. Unlabeled 2,4-D was added to the radioactive solution to obtain the field 

labeled rate of 280 g ha-1 in a carrier volume of 187 L ha-1. The adjuvants crop oil concentrate 

(COC, Agridex, Helena Holding Co., Wilmington, DE) and ammonium sulfate (AMS, Liquid N-

PaK; Agriliance, LLC, Inver Grove Heights, MN) were added at 1% v/v and 0.85% v/v, 

respectively, to maximize adherence of herbicide solution to the leaf surface. The treated plants 

were returned to the same growth chamber. Plants were harvested at 6, 24, 48 and 72 h after 

treatment (HAT) and dissected into the tissue of treated leaf (TL), above the treated leaf (ATL), 

below the treated leaf (BTL), and roots (R). Treated leaves were rinsed for approximately 60 sec 

with 5 ml wash solution containing 10% methanol and 0.05% Tween™ to remove any herbicide 

that was not absorbed. Liquid scintillation spectrometry (LSS; Tricarb 2100 TR Liquid 

Scintillation Analyzer; Packard Instrument Co., Meriden, CT) measured the amount of 

radioactivity in the leaf rinsate. The harvested samples were wrapped in a single layer of tissue 

paper and dried at 60°C for 16 h. Subsequently, the plant samples were combusted using a 



biological oxidizer (OX-501, RJ Harvey Instrument, Tappan, NY) and radioactivity was 

determined via LSS. Total 2,4-D absorption was determined by the following equation: % 

absorption = (total radioactivity applied – radioactivity recovered in wash solution) × 100 / total 

radioactivity applied. Herbicide translocation to each plant tissue was determined by the 

following equation: % absorbed = (radioactivity oxidized in plant tissue/total radioactivity 

absorbed) × 100. Total translocation was the sum of radioactivity recovered in ATL, BTL, and 

R. 

[14C] Metabolism 

In an experiment at KSU, 2,4-D-resistant and –susceptible common plants were grown as 

described previously for [14C] 2,4-D absorption and translocation experiments. Ten to 12 cm tall 

plants were treated with [14C] 2,4-D (3.99 kBq) as ten by 1µL droplets on the adaxial surface of 

fully expanded fourth and fifth youngest leaves. To remove any unabsorbed herbicide, the 

treated leaf was harvested and subsequently rinsed with 5% Tween™ solution at 24, 48, and 72 

HAT. All above ground plant tissue was immediately frozen in liquid nitrogen to prevent 

ongoing metabolism and then homogenized with mortar and pestle.  [14C] 2,4-D and its 

metabolites were extracted as described27 with minor modifications. Samples were centrifuged at 

5,000×g for 10 min. Supernatants were extracted and concentrated for 2-3 h at 45°C until 

reaching an approximate final volume of 500 µl (Centrivap, Labconoco, Kansas City, MO). The 

500 µl extract samples were transferred to 1.5 ml microcentrifuge tubes and then centrifuged 10 

min at 10,000×g. Total radioactivity per sample was measured via LSS. Samples were then 

normalized to 6,000 dpm using acetonitrile:water (50:50, v/v) prior to high-performance liquid 

chromatography (HPLC). 



 Total extractable radioactivity in 50 µL was resolved into parent [14C] 2,4-D and its 

metabolites by reverse-phase HPLC (Beckman Coulter, System Gold, Brea, CA) following the 

protocol optimized previously in our laboratory27. Reverse-phase HPLC was performed with a 

Zorbax SB-C18 column (4.6 × 250 mm, 5-µm particle size; Agilent Technologies) at a flow rate 

of 1 mL min-1. The radioactivity in the sample was measured using radio flow detector LB 5009 

(Berthold Technologies). The metabolism experiment had three replicates for each treatment and 

the experiment was repeated. As the parent [14C] 2,4-D had a retention time of 11.6 min in the 

KSU experiment, the radioactivity measured at this retention time was considered to be non-

metabolized [14C] 2,4-D. The percent non-metabolized [14C] 2,4-D was calculated as the 

radioactivity measured at 11.6 min compared to total amount recovered. 

Data Analysis 

The experiments conducted at KSU were in randomized complete blocks and a single 

plant represented an experimental unit. Absorption and translocation experiments included four 

replications and experiments were conducted twice. The metabolism studies included three 

replications and were conducted twice. All data were analyzed using the PROC GLIMMIX 

procedure of SAS (SAS Institute Inc., Cary, NC 27513) for generalized linear mixed model 

analysis to incorporate normally distributed random effects. Variances were homogenous among 

individual runs within each experiment and thus runs were combined for analysis and 

presentation. Treatment means were separated by Fisher’s protected least significant difference 

at P < 0.05 level of significance. 



Supporting Information Table 2. Absorption (percentage of radioactivity applied) and translocation (percentage of absorbed radioactivity) of 

[14C]-2,4-D in 2,4-D-resistant (R) and –susceptible (S) A. tuberculatus. Data are means with standard errors in parentheses from experiment 

conducted at Kansas State University. Means followed by different letters indicate significant differences. 

 

 

 

 

 

 

 Time after treatment  

Plant part Biotype 6 h 24 h 48 h 72 h 96 h 

 
14C 2,4-D (as % applied) 

  

Leaf rinse R 63.22 (2.73) a 47.65 (3.04) a 51.02 (2.59) a 49.39 (3.57) a 43.87 (2.21) a 

 S 59.51 (0.84) a 45.59 (3.55) a 48.69 (2.89) a 49.17 (3.30) a 41.88 (2.95) a 

       

Total absorbed R 36.77 (2.73) a 52.34 (3.04) a 48.97 (2.59) a 50.61 (3.57) a 56.12 (2.21) a 

 S 40.49 (2.44) a 54.40 (3.55) a 51.30 (2.89) a 50.82 (3.30) a 58.11 (2.95) a 

       

  

14C 2,4-D recovered in plant (as % absorbed) 

 

Treated leaf (TL) R 96.40 (1.19) a 89.96 (7.17) a 95.02 (1.07) a 93.28 (1.61) a 95.60 (0.66) a 

 S 96.38 (0.11) a 87.98 (7.20) a 91.70 (2.60) a 90.11 (1.77) a 92.46 (2.35) a 

Shoot above (ATL) R 0.59 (0.19) a 0.85 (0.33) a 0.91 (0.22) a 0.67 (0.12) a 

0.39 (0.06) a 

 

 S 0.58 (0.71) a 0.81 (0.41) a 2.43 (1.95) a 1.15 (0.43) a 0.78 (0.26) a 

 

Shoot below (BTL) R 2.43 (0.93) a 3.64 (2.22) a 2.55 (0.63) a 4.54 (1.39) a 2.26 (0.45) a 

 S 2.73 (0.07) a 9.78 (6.18) a 4.50 (0.88) a 6.50 (1.09) a 4.82 (1.86) a 

 

Roots (BG) R 0.55 (0.15) b 5.53 (4.68) a 1.51 (0.41) a 1.50 (0.37) b 1.73 (0.33) b 

 S 0.41 (0.07) a 1.40 (0.64) b 1.35 (0.51) b 2.22 (0.73) a 1.93 (0.30) a 

 

Total translocated R 3.59 (1.20) a 10.03 (7.17) a 4.98 (1.07) a 6.72 (1.62) a 4.39 (0.67) a 

(ATL+BTL+BG) S 3.62 (0.84) a 12.01 (7.20) a 8.30 (2.60) a 9.89 (1.78) a 7.53 (2.36) a 



Supporting Information Table 3. Least square means and ANOVA of percent parent 

compound [14C] 2,4-D remaining in resistant and susceptible A. tuberculatus populations (P) at 

three harvest (H) timings from experiment conducted at Kansas State University. 

  Parent Compound [14C] 2,4-D* 

(%) 

Harvest Resistant Susceptible 

 24 HAT 47.8 84.3 

 48 HAT 29.4 57.2 

 72 HAT 33.6 53.3 

ANOVA   

 P <0.0001 

 H 0.0004 

 P by H 0.3609 

 

*Analysis of variance using PROC GLIMMIX in SAS 2013 using Fisher’s Protected LSD at P < 

0.05 level of significance. Values reflect three replications and two runs. Each plant received 

3.98 kBq of radiation. 
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