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RESEARCH Open Access

Student, instructor, and observer
agreement regarding frequencies of
scientific teaching practices using the
Measurement Instrument for Scientific
Teaching-Observable (MISTO)
Mary F. Durham1,3, Jennifer K. Knight2, Emily K. Bremers1, Jameson D. DeFreece1, Alex R. Paine2

and Brian A. Couch1*

Abstract

Background: The Scientific Teaching (ST) pedagogical framework encompasses many of the best practices
recommended in the literature and highlighted in national reports. Understanding the growth and impact of ST
requires instruments to accurately measure the extent to which practitioners implement ST in their courses.
Researchers have typically relied on students, instructors, or observers to document course teaching practices, but it
remains unclear whether and how these perspectives differ from each other. To address this issue, we modified our
previously published instrument to generate the Measurement Instrument for Scientific Teaching-Observable (MISTO),
which can be completed by students, instructors, and observers, and we investigated the degree of similarity between
these three perspectives across 70 undergraduate science courses at seven different institutions in the USA.

Results: We found that the full MISTO and Active Learning subcategory scores showed the highest correlations among
the three perspectives, but the degree of correlation between perspectives varied for the other subcategories. Match
scores between students and instructors were significantly higher than observer matches for the full MISTO and for the
Active Learning, Inclusivity, and Responsiveness subcategories.

Conclusions: We find that the level and type of agreement between perspectives varies across MISTO subcategories and
that this variation likely stems from intrinsic differences in the course access and scoring decisions of the three perspectives.
Building on this data, we recommend MISTO users consider their research goals, available resources, and potential artifacts
that may arise when deciding which perspective best fits their needs in measuring classroom teaching practices.
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Background
Undergraduate science education is in the midst of
broad-scale efforts to shift teaching and learning
approaches from traditional lecture-style instruction to
more active, evidence-based strategies that foster student
success (American Association for the Advancement of
Science (AAAS) 2015; Freeman et al. 2014; National
Research Council (NRC) 2003, 2012; President’s Council
of Advisors on Science and Technology (PCAST) 2012).
Professional development programs play a major role in
facilitating this change by training instructors in effective
pedagogies and best practices. National-level programs
have been established in several disciplines including the
Geosciences (Manduca et al. 2010), Chemistry (Baker et
al. 2014), Physics and Astronomy (Henderson 2008), and
Biology (Ebert-May et al. 2015; Pfund et al. 2009; Wood
and Handelsman 2004). The Scientific Teaching (ST)
pedagogy encapsulates many of the best practices
highlighted in these workshops. ST aims to engage
students in the process of science and encourage in-
structors to use data to inform their instructional deci-
sions. ST includes a wide range of research-based
instructional strategies organized into three main pillars:
Active Learning, Assessment, and Inclusivity (Handels-
man et al. 2007).
In previous work, we developed a taxonomy of observ-

able ST practices to identify and delineate the various
pedagogical goals and instructional techniques of ST
(Couch et al. 2015). Briefly, ST practices reflect a back-
ward design approach to align learning objectives with
group activities and formative assessments that foster
student engagement (Frederick 1987; Prince 2004; Wig-
gins and McTighe 2005). ST enables the success of all
students through the use of inclusive teaching practices,
such as reducing unconscious biases and stereotype
threats (Dasgupta and Greenwald 2001; Seymour 2000;
Steele 1997; Tanner and Allen 2007; Uhlmann and
Cohen 2005). ST also focuses on the development of
science process skills in which students practice and
communicate science (Bao et al. 2009; Coil et al. 2010;
Goldey et al. 2012; Hanauer et al. 2006; Wei and Woo-
din 2011) and make connections between science and
society (Chamany et al. 2008; Labov and Huddleston
2008; Pierret and Friedrichsen 2009; Sadler et al. 2004;
Zeidler et al. 2005). Finally, ST prioritizes certain cogni-
tive skills, such as higher-order thinking (Bloom et al.
1956), interdisciplinary reasoning (Bialek and Botstein
2004; Labov et al. 2010; Tra and Evans 2010), and meta-
cognitive reflection (Ertmer and Newby 1996; Pintrich
2002; Schraw et al. 2006; Tanner 2012).
To better gauge the impacts of professional develop-

ment and other transformation efforts on undergraduate
science education, valid and reliable measurement
instruments are needed to document the current state of

undergraduate science classrooms, monitor how teach-
ing changes over time, and determine what student out-
comes result from any changes (Gess-Newsome et al.
2003; Smith et al. 2013; Wieman and Gilbert 2014). We
recently published a survey called the Measurement In-
strument for Scientific Teaching (MIST), designed to
gauge the frequencies of ST practices in undergraduate
science courses (Durham et al. 2017). This instrument
provides estimates of the degree of implementation for
the ST pedagogy overall and within each of eight ST
subcategories: Active Learning Strategies, Learning Goal
Use and Feedback, Inclusivity, Responsiveness to Stu-
dents, Experimental Design and Communication, Data
Analysis and Interpretation, Cognitive Skills, and Course
and Self Reflection. MIST questions were designed with
minimal jargon and worded in the third-person so that
students, instructors, or observers can all potentially re-
spond to each question given comparable exposure to
the course.
Understanding differences between student, instructor,

and observer perspectives is important because each of
these three perspectives has potential benefits and limi-
tations for measuring instructional practices. Students
have the ability to report on how they experience a
course, but they are commonly criticized for infusing
personal biases in surveys. For example, instructor char-
acteristics, including gender, age, and sense of humor, as
well as external factors, such as the weather on the day
of the survey, have been found to influence student re-
sponses on course evaluations (Becker and Watts 1999;
Braga et al. 2014; Spooren et al. 2013). Instructors have
more pedagogical expertise than students, but they may
over-report their use of research-based instructional
strategies, especially after participation in professional
development programs or when their results are related
to promotion and tenure decisions (Ebert-May et al.
2011; Wieman and Gilbert 2014). Finally, while ob-
servers may have less cause for subjective biases, obser-
vations require substantial logistical coordination efforts
as well as significant time, training, and personnel re-
sources. Furthermore, observers naturally focus on what
they see in class and only score a small sample of class
sessions for a given course, which may or may not be
representative of the entire course (Lund et al. 2015;
Stains et al. 2018). Previous studies comparing these
different perspectives have typically used different
instruments to capture each perspective, preventing a
direct comparison of the same items and scales.
In light of these issues, we sought to investigate the

degree of alignment between student, instructor, and
observer perspectives when documenting course prac-
tices using MIST. Since observers are necessarily limited
to a small sample of classes, we created a modified ver-
sion of MIST, called MIST-Observable (MISTO), which
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includes only the ST practices and frequencies that can
be detected in video samples from 1 week of class
sessions. We measured (1) to what degree student mean,
instructor, and observer MISTO scores correlate with
each other across subcategories, (2) how closely these
three perspectives estimate the amount of class time
devoted to active learning, and (3) how closely the three
perspectives match on individual items and whether
agreement varies across subcategories. Understanding
the relationships between these perspectives will help
researchers, instructors, and administrators better inter-
pret course measurement data and identify the perspec-
tive that aligns most closely with their goals.

Methods
Data collection
We collected survey data and video recordings from 70
courses at seven U.S. institutions (Table 1). We first used
our professional networks and conference presentations
to recruit site coordinators at seven institutions, and these
coordinators then identified individual instructors at their
own institutions who were interested in participating. We
attempted to recruit instructors with a wide range of
teaching styles from low to high ST implementation. Stu-
dents and instructors completed MIST online outside of
class near the end of the semester via Qualtrics survey
software. Instructors were asked to offer their students a
small amount of course credit to incentivize survey com-
pletion. Instructors were video recorded for 1 week of
class sessions, which consisted of 2–3 separate class ses-
sions and typically 150 min of class time. We included
student data from 68 of these courses in our previous
work (Durham et al. 2017).

Development of MIST-Observable
To produce a version of MIST amenable to class observa-
tion, we first identified and removed 12 items referring to
practices that occur outside of class time, such as
out-of-class homework (Additional file 1). This led to the
elimination of the Learning Goal subcategory because the
associated practices generally took place outside of class
time or through course documents. Observational studies
generally use a small sample of class sessions to gauge
teaching practices for a course; so to accommodate a
typical sample size, we designed MISTO for use with
1 week of video recorded class sessions (Lund et al. 2015;
Lund and Stains 2015). The original MIST contains items
with response frequencies that could not be used by an
observer based on a 1-week observation period (e.g., an
observer could not say that something happened once per
month). Thus, any implementation frequencies of less
than once per week were removed from the response
scales. This change applied to 27 out of the 36 MISTO
items. We refer to the resulting survey containing a

reduced item set and modified response scales as
MIST-Observable (MISTO; Table 2). We note that the
question prompts do not change between instruments but
only the response scales are reduced to reflect a 1-week
observation timeframe (Table 3).
To standardize observations, we created a MISTO

video scoring workbook to record teaching practices and
convert these counts to observer survey responses
(Fig. 1). Observers use a scoring sheet to indicate the
specific ST practices that occur in 5-minute intervals
throughout class sessions. Observers record the number
and duration of activities but do not record the quality
or nature of the teaching practices. Because MISTO
scores the number rather than the overall presence/ab-
sence of practices, fine granularity over time was not
required. We found that the 5-minute timeframe parti-
tioned the course video into manageable increments
without overburdening the observer. An Excel file con-
taining the observer video scoring workbook can be
found in Additional file 2. The video scoring workbook
file contains a separate scoring sheet for each class
session along with descriptions of how to score each
practice. Embedded formulas calculate the frequencies,
durations, and proportions of teaching practices in the
video sample, and these values are used to generate
observer MISTO responses.

MISTO scoring and match scores
Prior to analysis, we transformed the original student
and instructor MIST survey responses to the new
MISTO instrument by eliminating the non-observable
items and converting any reported frequencies of less
than once per week to zero. MISTO subcategory scores
could then be calculated similarly for student, instructor,
and observer data using the approaches previously
described for MIST (Durham et al. 2017). Briefly,
response categories were converted to ordinal values
(e.g., “zero times” = 0, “1–2 times per week” = 1, “3–4
times per week” = 2, “more than 4 times per week” = 3),
and each survey response (ordinal or continuous) was
normalized to the maximum possible score for that sur-
vey item (e.g., a question with response values of 0, 1, 2,
and 3 would be divided by 3). Scores from all questions
included in each subcategory were averaged and normal-
ized to a scale of 100 for each course. Thus, MISTO
scores and subcategory scores could potentially range
from 0 to 100. Low MISTO scores reflect less than
weekly implementation of most practices, mid-range
MISTO scores reflect weekly implementation of all prac-
tices or daily implementation of some practices, and
high MISTO scores reflect daily implementation of all
ST practices. We note that even very high ST users will
not reach the top of the scale since it is not realistic to
implement all the practices multiple times in every class.
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We aimed to compare all three perspectives (students,
instructors, and observers) with no a priori assumption
of which perspective would serve as the reference point.
Thus, we derived “match scores” to estimate how closely
aligned responses were between two perspectives. Match
scores for an item were calculated using the following
equation:

1− jscore1−score2jð Þ=maximum scoreð Þ;

where score1 and score2 represent the scores assigned
by each perspective. For students, each item score was
the mean student response for a course. Match scores
were then averaged for the full MISTO and each subcat-
egory for each course. Match scores occur on a scale of
0–1 with a higher match indicating closer agreement be-
tween perspectives.

MISTO observer training and agreement
Once the video scoring rubric was formalized, we devel-
oped a training procedure to achieve acceptable agree-
ment between observers. Initially, two observers
co-coded 1 week of videos from a “training set” of eight
courses. These two observers monitored their agreement
and discussed any disagreements to consensus. Two
additional observers separately scored the eight courses
from the training set, progressing from more guided
scoring to more independent scoring across the eight
courses. The observers monitored agreement with the
consensus scores for these videos and discussed any
disagreements to consensus.
Following training, all observers were tested for

acceptable agreement. One observer first coded 1 week
of videos from five new courses. Next, each of the other

Table 1 MISTO administration demographics

Number % of sample

Institutions 7

Carnegie classification

Highest research activity (R1) 5 56%

Higher research activity (R2) 2 33%

Undergraduate enrollment

Medium (10,000–20,000) 1 14%

Large (20,000–30,000) 3 43%

Very large (> 30,000) 3 43%

Courses 70

Discipline

Biology 68 97%

Other STEM 2 3%

Enrollment

Small (< 25 students) 13 19%

Medium (26–100 students) 16 23%

Large (> 100 students) 41 58%

Course level

Lower division (100–200 level) 34 49%

Upper division (300–400 level) 36 51%

Instructors 58

Academic position

Adjunct/lecturer 2 3%

Contract-based lecturer 14 24%

Tenure-track lecturer 1 2%

Assistant professor 13 22%

Associate professor 9 16%

Professor 19 33%

Age

30–39 16 28%

40–49 10 17%

50–59 18 31%

60–69 11 19%

70 or over 2 3%

Gender

Female 24 41%

Male 34 59%

Ethnicity

Underrepresented minority (URM) 3 5%

Non-URM 55 95%

Native language

Non-English 5 9%

English 52 91%

Table 1 MISTO administration demographics (Continued)

Number % of sample

Teaching experience

First semester 3 5%

1–2 years 5 9%

3–5 years 11 19%

6–10 years 9 16%

11–15 years 8 14%

16–20 years 5 9%

Over 20 years 16 28%

Number of teaching training events (past 5 years)

None 9 16%

1–2 18 31%

3–4 10 17%

5 or more 21 36%
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three raters coded three of these courses, and all three
of the observers achieved an average match score above
0.75, which we considered sufficient for independent
scoring. Again, any disagreements were discussed to
consensus.
The videos from the remaining courses in this study

were each scored by one of the four observers. After all
initial course observations were completed, two of the
observers co-coded a set of ten courses to check whether
acceptable agreement had been maintained, achieving an
average match score of 0.94 across the ten courses.

Statistical analyses
All statistical analyses were carried out using R (Core
Team 2016). We used the cor.test function to investigate
Pearson’s product moment correlations between vari-
ables. We tested for differences in match scores between
perspectives using ANOVA with pair-wise post hoc

Table 2 MISTO questions

Item Cat.1 MISTO questions

Q1 ALS Indicate the average percent of class time during which
students were asked to answer questions, solve problems, or
complete activities other than listening to a lecture

Q2 None Learning goals were provided for

Q3 ALS Students were asked to use a polling method to answer
questions in the classroom approximately

Q4 ALS Indicate the approximate percent of polling questions for
which students were asked to discuss the question in pairs or
small groups

Q5 ALS Students were asked to complete in-class activities approximately

Q6 None Indicate the approximate percent of in-class activities for
which students were given some form of general or
individualized feedback during class beyond simply providing
correct or incorrect answers

Q7 None Students were asked to work in groups of two or more for
any portion of this course

Q8 ALS Indicate the average percent of class time during which
students were asked to work in groups of two or more

Q9 ALS Students were asked to work in groups of two or more on in-
class activities, discussions, assignments, or projects other than
polling questions approximately

Q10 ALS The instructor used a strategy, such as assigning roles, to
promote the participation of each group member during in-
class group activities

Q11 ALS At least some students were asked to verbally share the
results of any group work or group discussions with the
whole class approximately

Q12 ALS Students were asked to comment or make suggestions on
each other’s work on class assignments, activities, or projects
approximately

Q13 ALS Students were encouraged to respond to classmates’ ideas
during whole-class discussions

Q14 Inc Examples or analogies used in this course included a diversity
of people and cultures

Q15 Inc Students were encouraged to consider the ideas and
contributions of a diversity of researchers and other people
involved in science

Q16 RtS Students stated interests or asked questions related to the
topic at hand during class

Q17 RtS The instructor was generally aware of instances when a
concept was not understood by the majority of students in
the class prior to an exam

Q18 RtS When it became clear that the class did not understand a
concept, students were provided with follow-up discussion,
activities, or resources

Q19 EDC Students were asked to identify or formulate hypotheses or
make predictions about the results of demonstrations,
experiments, or examples approximately

Q20 EDC Students were asked to critique scientific hypotheses or
experimental strategies approximately

Q21 EDC Students were asked to design experiments to answer scientific
questions approximately

Q22 DAI Students were asked to summarize, interpret, or analyze data
using mathematical or computational procedures approximately

Q23 DAI Students were asked to make graphs or tables approximately

Q24 DAI Students were asked to analyze or interpret scientific data
shown in graphs or tables approximately

Table 2 MISTO questions (Continued)

Item Cat.1 MISTO questions

Q25 DAI Students were asked to use data to make decisions or defend
scientific conclusions approximately

Q26 DAI Students were asked to make or interpret models to summarize
scientific processes approximately

Q27 EDC Students were asked to interpret or critique scientific literature
or media articles related to science approximately

Q28 EDC Students were asked to communicate scientific ideas in formal
written papers or oral presentations approximately

Q29 RtS Students were provided with examples or explanations
showing that course concepts are applicable to everyday
human experiences or real-life applications approximately

Q30 None Historical context was used to recognize why certain
discoveries or advancements changed the way people
viewed related scientific principles approximately

Q31 CS Students were asked to interpret or represent concepts in
non-written formats, such as pictures, diagrams, videos,
simulations, role plays, graphs, mathematical models, etc.

Q32 CS Students were asked to practice knowledge or skills from
other Science, Technology, Engineering, and Math (STEM)
subjects when answering questions or completing class
activities

Q33 CS Students engaged in higher level thought processes that
required them to apply, analyze, incorporate, or evaluate their
knowledge or skills rather than just memorizing facts or
processes approximately

Q34 CS Students were asked to participate in open-ended exercises,
such as case-studies or questions in which multiple correct
answers are possible

Q35 CSR Students were provided with opportunities or suggestions to
reflect on whether their study habits were effective for learning
approximately

Q36 CSR Students were provided with opportunities or suggestions to
reflect on their problem-solving strategies approximately

1 MISTO subcategory abbreviations: ALS Active Learning Strategies, Inc.
Inclusivity, RtS Responsiveness to Students, EDC Experimental Design
and Communication, DAI Data Analysis and Interpretation, CS Cognitive
Skills, CSR Course and Self Reflection
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Tukey’s tests using the TukeyHSD function. Effect sizes,
reflected by Hedge’s g, were estimated using the cohen.d
and hedges.correction functions in the effsize package
(Torchiano 2015). We tested for relationships between
instructor and course characteristics with match scores
using t tests and ANOVAs.

Human subjects research approval
This project was classified as exempt from Institutional
Review Board review at UNL (project ID 15016), CU (pro-
ject ID 15-0297), and all other participating institutions.

Results
Correlation of MISTO scores between perspectives
MISTO scores showed varying degrees of correlation
between perspectives and those correlation levels varied
among the full and subcategory scales (Figs. 2 and 3).
Based on established guidelines for defining correlation
levels (Jackson 2013), full MISTO scores showed moder-
ate to strong correlations (r = 0.59–0.74, p < 0.001; Fig. 2).
The Active Learning subcategory scores showed strong
correlations between all perspectives (r > 0.7, p < 0.001),
with the highest correlations occurring between students
and instructors (Fig. 3a). The remaining subcategories
showed moderate (r = 0.3–0.7) to low (r < 0.3) correla-
tions between perspectives, and these levels varied by
pairings (Fig. 3). The Responsiveness and Reflection
categories showed no significant correlations between
perspectives.

Correlation of active learning estimations between
perspectives
Researchers have also used more targeted measures of the
percent of class time in which active learning takes place
as a proxy for the degree of transformed teaching (Owens
et al. 2017, 2018; Smith et al. 2013). Thus, we also calcu-
lated correlations for a single item asking respondents to

“indicate the average percent of class time during which
students were asked to answer questions, solve problems,
or complete activities other than listening to a lecture”
and found strong correlations (r > 0.7) between all per-
spectives (Fig. 4).

Match between perspectives is often high but varies
among MISTO subcategories
To better understand agreement between perspectives,
we also used the “match scores” described in the
methods to determine how closely the perspectives
scored each item relative to its own scale. All three per-
spectives showed relatively high matches, with most
pair-wise comparisons matching above 0.75. The relative
match level varied between perspective pairs for several
MISTO subcategories (Fig. 5 and Additional file 3). Stu-
dent–instructor match scores were significantly higher
than the student–observer and instructor–observer
matches for the full MISTO, Active Learning, Inclusivity,
and Responsiveness subcategories (all p < 0.01). The
instructor–observer match was significantly higher than
either student match for Reflection (p < 0.001), and no
significant differences were observed between perspec-
tives for the Experimental Design, Data Analysis, and
Cognitive Skills subcategories.
We also investigated the effect of several course and in-

structor characteristics on match scores (Additional file 4)
and identified no significant differences in match scores
based on the instructor’s gender, age, number of years
teaching, or number of pedagogical training events
recently attended (p = 0.07–0.89). We also found no sig-
nificant influence of class size or course level on agree-
ment (p = 0.21–0.87).

Similarity among perspectives for an example course
We have included the MISTO score output from an
example course to illustrate the range of variation seen

Table 3 Response scale conversion from MIST to MISTO1

Finite frequency style responses

Example
question

Students were asked to make graphs or tables approximately

MIST response
choices

Zero times 1–2 times during the
semester

About 1 time per
month

2–3 times per
month

1–2 times per
week

3–4 times per week More than 4 times
per week

MISTO response
choices

Zero times (Eliminated) (Eliminated) (Eliminated) 1–2 times per
week

3–4 times per week More than 4 times
per week

General frequency style responses

Example
question

The instructor was generally aware of instances when a concept was not understood by the majority of students in the class prior
to an exam

MIST response
choices

Not at all Rarely Less than half of
the time

Half of the
time

More than half of
the time

Most of the time Always

MISTO response
choices

Not at all (Eliminated) Less than half of
the time

Half of the
time

More than half of
the time

(Eliminated) Always

1Yes/no, 0–100% slider bars, and Likert style agree-disagree scales did not change between MIST and MISTO
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in student responses and how instructors and observers
compare to the distribution of student scores (Fig. 6). In
this example course, the instructor and observer scores
fell within the inner quartile range of student scores for
the full MISTO and five of the MISTO subcategories.
The instructor indicated a lower score than the lower
quartile of student responses in the Inclusivity and Re-
sponsiveness subcategories. The observer also indicated

an Inclusivity score lower than the lower student quar-
tile; however, the observer score was higher than the stu-
dent upper quartile for Active Learning (Fig. 6).

Discussion
Building on our previously developed MIST survey, we
created an observer-compatible version called MISTO to
capture frequencies of ST practices in undergraduate

MISTO video scoring sheet:

Tally and time individual 
practices observed in a 

video in 5 minute 
increments across sampled 

class sessions

Automated calculations:

Observation data are 
totaled and averaged 
within scoring sheet to 
indicate frequencies of 
practices in the sample

Observer survey 
responses:

Calculated frequencies are 
used to output 

corresponding survey 
responses for observers

Obtain video samples:

Video record one week of 
class sessions, capture in 

frame the instructor(s), 
presentation screen/board, 

and some student 
interaction, if present.

Unit Practice observed
Total  

observed
MISTO question

Calculation 
description

Calculation 
example

Survey response 
selected

# times
polling question asked 
(not a re-poll question)

11
Students were asked to use a polling 
method to answer questions in the 
classroom approximately:

total 11
more than 10 

questions per week

# times
polling question 
discussed in groups

5

Indicate the approximate percent of 
polling questions for which students 
were asked to discuss the question in 
pairs or small groups:

(total questions 
discussed in groups/
total questions)*100

(5/11)*100 = 45% 45%

A

B

Fig. 1 MISTO video observation process. a Diagrammatic representation of the observer scoring process. Observers score videos from class sessions
using MISTO video scoring sheets. Embedded formulas in the workbook calculate observer survey responses and scores. b Hypothetical example of
how teaching practices in a video sample are converted to observer survey responses. Here, polling questions are totaled and used to answer the
corresponding survey question resulting in a survey response of “10 or more questions per week.” The number of polling questions discussed in
groups is totaled and then used to calculate the percent of polling questions discussed in groups, which results in an observer survey response of 45%
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Fig. 3 (See legend on next page.)
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science courses, along with a video scoring workbook to
facilitate observation. We used MISTO to measure ST
in videos of class sessions from 70 courses, and we com-
pared results among students, instructors, and observers
to investigate the degree of similarity in MISTO and
subcategory scores between these perspectives. To our
knowledge, this study represents the first instance in
which these three perspectives were compared using an
equivalent instrument.

Agreement between perspectives varies among
subcategories
We found the full MISTO and subcategory scores fell
into three general types of agreement between per-
spectives: (1) high correlation–high match, (2) moder-
ate correlation–high match, and (3) low correlation–
low match.
The full MISTO and Active Learning subcategory

scores showed high correlations and high match
scores between perspectives (Figs. 2, 3, and 5). This
was particularly striking for student–instructor agree-
ment in the Active Learning subcategory, where there
was a nearly one-to-one correlation (r = 0.91). Previ-
ous studies have raised potential concerns regarding
the shortcomings and limitations of sampling teaching
practices from each of the perspectives measured in
this study (Braga et al. 2014; Ebert-May et al. 2011;
Lund et al. 2015; Spooren et al. 2013). Despite these
criticisms, the high correlations and high match
scores across perspectives for the full MISTO and

Active Learning suggest that students, instructors,
and observers can produce comparable scores.
The Experimental Design, Data Analysis, and Cognitive

Skills subcategories all showed moderate correlations and
high matches (Figs. 3 and 5). The moderate correlations
indicate that each perspective produces somewhat differ-
ent scores, but the high matches suggest consistency in
responses to individual items relative to the response
scales. This apparent discrepancy can be partly ex-
plained by the low overall implementation levels in
the courses sampled for these subcategories. In other
words, the perspectives generally agreed that a set of
practices occurred infrequently, but there was vari-
ation in quantifying the precise level of implementa-
tion. Taken together, the correlations and matches of
these three subcategories indicate that each perspec-
tive may have the capacity to score the occurrence of
these practices similarly, but the practices did not
occur frequently enough to fully support this claim.
This same rationale may also apply to the Reflection
subcategory, which represents a more extreme case
since it only occurred in a few of the 70 courses.
Finally, the Inclusivity and Responsiveness subcat-

egories showed low correlations and low matches
(Figs. 3 and 5). The low agreement between perspec-
tives for these categories can be attributed, at least in
part, to the agree-disagree response scales used for
these questions. However, we note that despite the
inherent subjectivity of these types of scales, the
student–instructor match scores were above 0.75 and

(See figure on previous page.)
Fig. 3 MISTO subcategory score correlations between perspectives. Rows represent each of seven MISTO subcategories: a Active Learning
Strategies, b Inclusivity, c Responsiveness to Students, d Experimental Design and Communication, e Data Analysis and Interpretation, f Cognitive
Skills, g Course and Self Reflection. Columns represent correlations between (i) instructor and observer scores, (ii) student mean and observer
scores, and (iii) student mean and instructor scores. Dots correspond to MISTO subcategory scores for each course; n = 70 total courses. MISTO
subcategory scores can range from 0 to 100
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Fig. 4 Correlations in estimates of percent active learning between perspectives. Correlations between a instructor and observer responses, b
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response for each course; n = 70 total courses
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significantly higher than either of the observer match
scores. This suggests that the observers might be
missing nuanced features of these practices or misin-
terpreting classroom culture.

Student–instructor comparisons showed the highest
agreement
The student–instructor comparisons showed the highest
match scores and strongest correlations for three subcat-
egories (Active Learning, Inclusivity, and Responsive-
ness) as well as the highest match scores for the full
MISTO (Figs. 3 and 5). While individual students may
have misestimated ST practice frequencies, the central
tendencies in their responses fell into closer agreement
with the instructor scores. This provides evidence that,
as a whole, students were generally aware of and attuned
to what was happening in the course and that their
perceptions aligned with instructors. Furthermore, the
lower matches in the observer comparisons suggest that
students and instructors may be using slightly different
criteria to answer these items or that certain practices
occurred outside the purview of the observer. For
example, students and instructors may incorporate
student–instructor rapport when answering Responsive-
ness items, whereas observers followed strict criteria for
scoring instances of instructor feedback. Additionally,
students and instructors may have been including prac-
tices that occurred outside of class time (e.g., online
feedback or discussion boards), while observers were
limited to the in-class portion of a course.

Benefits and challenges of each perspective
Overall, our results highlight the nuanced nature of
alignment between student, instructor, and observer re-
sponses for the full MISTO and subcategory scores.
Given these results, we recommend that MISTO users
consider their research goals and the resources available
when deciding which perspective (s) to use as a measure
of ST implementation.
Students provide the benefit of larger sample sizes

from which to elicit a measure of central tendency to
estimate ST levels. Students represent a universally avail-
able resource for all courses, and collecting student
responses can help mitigate potential conflicts with
instructor motivations. For example, if an instructor
wished to collect documentation of their teaching prac-
tices for promotion and tenure purposes, data from their
students would likely be seen as more credible than
self-reported data. As the ultimate target of educational
programs, student perspectives also carry a certain
primacy of importance. If students report a particular
set of practices (e.g., inclusivity) at a lower frequency
than instructors or observers, one would want to further

investigate the reasons behind this phenomenon. On the
negative side, student data tends to be noisy on the indi-
vidual student level, and collecting data from students
requires some additional coordination and potentially
institutional review board (IRB) considerations.
Instructors represent the most practical and accessible

option for gathering data, especially under conditions of
limited resources or when data collection spans multiple
institutions. Since instructor surveys can be collected
without any student involvement, the study coordination
and IRB approval processes are substantially more
streamlined. This may be a major motivation driving the
use of instructor self-reports to measure teaching prac-
tices in many studies (Borrego et al. 2013; Dancy and
Henderson 2010; Eagan et al. 2014). Instructors also
potentially have deeper insights into design features and
course content than either of the other two perspectives.
Professional development program facilitators may wish
to use the survey as a formative experience to help
instructors reflect on their teaching (Gormally et al.
2014). Conversely, researchers aiming to evaluate profes-
sional development programs may want to avoid using
instructor responses as their only data source because
instructors could inflate their scores if they feel pres-
sure to convey the success of the program (Ebert-May
et al. 2011).
From the research perspective, observers represent the

most standardized data collection approach. In particular,
observers can be trained to score courses according to
explicit criteria, and their reliability can be gauged through
co-coding with other observers. In this regard, they
minimize many of the potential biases and item
interpretation issues intrinsic to the other perspectives.
Conversely, it must be acknowledged that course observa-
tions require significant resources that may exceed the
means of many investigators and departments. Obtaining
approval, collecting class videos, training observers, and
scoring videos all become increasingly cost and time
prohibitive as the number of courses and institutions in a
study grows. Furthermore, observers are also affected by
their potential inability to observe out-of-class practices,
interpret course norms, or understand course content.
While the prospect of collecting data on teaching prac-

tices from any perspective may seem daunting, we intend
for the data presented here to enable investigators to make
more informed decisions based on the intrinsic benefits
and empirical differences between perspectives. We hope
that this type of reflection will help researchers and depart-
ments more effectively leverage their available resources to
achieve their desired goals. For example, a department
wishing to document ST practices for institutional report-
ing may choose to administer MIST to students because it
approximates data from the other perspectives, requires
fewer resources than observations, and avoids potential
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suspicions regarding instructor self-reports. Furthermore,
we hope that the supporting materials we have provided
here and in our previous publications will help alleviate the
logistical barriers to using MIST and MISTO (Couch et al.
2015; Durham et al. 2017).

Other considerations
Research documenting course practices faces practical
and intrinsic challenges that warrant consideration. This
study used a sample of 70, primarily biology, courses at
seven US institutions, so the broader generalizability of
the conclusions remains to be determined. In comparing
across perspectives, we had to make several necessary
concessions based on observers only being able to view
1 week of class and only viewing in-class events. In par-
ticular, the conversion of MIST responses for students
and instructors to MISTO response scales caused a
general lowering of scores because low implementation
frequencies were reduced to zero. Furthermore, elimin-
ating questions that principally occur outside of class
resulted in MISTO collecting less information than
MIST. Thus, although adjustments were made to enable
observation-based comparisons, we propose that the
original MIST version provides a more thorough repre-
sentation if users only wish to collect data from students
or instructors.
We also note an unavoidable difference between MIST

and MISTO: in MIST, students and instructors were
asked to reflect cumulatively on the whole semester,
whereas in MISTO, observers focused only on a particu-
lar week of class sessions. Several other studies have
used a 1-week sample (Lund et al. 2015; Lund and Stains
2015), and the high correlations for the Active Learning
Strategies between students/instructors (who answered
based on experiencing nearly a whole semester) and ob-
servers (who answered based on 1 week of class) sug-
gests that the degree of activity during a 1-week
timeframe was fairly representative of the broader se-
mester. However, the inherent differences in the level of
detail and accuracy of these reflections represent a limi-
tation that should be considered when interpreting the
results. Although MISTO was designed and used here
for 1-week samples, adjustments can be made to the sur-
vey response scales and scoring sheets to support shorter
or longer observation periods.
In developing MIST, we recognized that some items and

subcategories were inherently more susceptible to variation
in interpretation. For example, the Inclusivity questions are
measured on an agree-disagree scale, which incorporates
some personal interpretation, whereas the Active Learning
subcategory relies on numerical counts of discrete events.
In general, the different levels of agreement across subcat-
egories could be explained by the relative objectivity of the
items. Thus, when considering the range of current and

future instruments available, one would predict that instru-
ments focusing on objective and recognizable practices
(e.g., clicker questions) will have greater potential for agree-
ment between perspectives than those with more subjective
and nuanced practices (e.g., scoring whether instructors in-
corporated scenarios reflecting diverse perspectives). We
also note that practices associated with the Experimental
Design, Data Analysis, and Reflection subcategories were
implemented quite infrequently in our sample. These prac-
tices are likely to be important features of science cur-
riculum, so their low levels of implementation warrant
further research for the broader field.

Conclusions
As transformation efforts in undergraduate science
education continue, measurements of teaching practices
are needed to gauge the status of the field, track how
teaching changes over time, and determine the impact of
specific strategies (Freeman et al. 2014; Gess-Newsome et
al. 2003; Smith et al. 2013; Wieman and Gilbert 2014). To
support this effort, the MIST and MISTO instruments
were designed to measure frequencies of teaching prac-
tices associated with the ST pedagogy, which encompasses
many of the best practices recommended by science edu-
cation research (Couch et al. 2015; Durham et al. 2017;
Handelsman et al. 2007). By developing MISTO, we laid a
foundation for a comparison of classroom practices from
three different perspectives (i.e., students, instructors, and
observers) using a single set of items. Our results indicate
that all three perspectives produce relatively similar esti-
mations of the full MISTO and Active Learning subcat-
egory but exhibit different levels of agreement for the
other subcategories. We found that student–instructor
data were often more closely aligned than either perspec-
tive was to observers. More broadly, our work supports
claims that survey and observation instruments designed
using objective and easily interpreted questions can elicit
relatively accurate estimations of teaching practices and
agreement between perspectives, especially when con-
ducted in low-stakes environments (Wieman and Gilbert
2014), whereas agreement between perspectives may be
more difficult to achieve for more complex practices.

How to use MISTO
We have included the MISTO video scoring workbook
(Additional file 2). While the workbook contains specific
criteria for scoring each practice, we have found that
many practices occur simultaneously and learning to
keep track of these many aspects requires practice.
Depending on incoming expertise in observations or ST,
we estimate about 8–12 h of watching and scoring class
sessions could adequately prepare observers for inde-
pendent scoring. Once observers have completed the
scoring workbook for a course, they can use the scoring
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template to calculate MISTO and MISTO subcategory
scores for each perspective measured (Additional file 5).
While we recommend the full MIST survey for students
and instructors, we have included a Qualtrics file for
cases where users wish to administer MISTO online to
students or instructors (Additional file 6).

Use and availability of MIST instruments
The suite of MIST instruments includes the full MIST,
which is ideal for collecting student and instructor data,
the MIST-Short, which is a shortened version of the
survey that can be used in conjunction with other mea-
sures such as student learning or self-efficacy surveys,
and MISTO, which is designed for observations and
comparisons among perspectives. MIST and MIST-Short
can be found in our previous publication (Durham et al.
2017); MISTO and the video scoring workbook can be
found in the Additional files.

Human subjects research approval
This project was classified as exempt from Institu-
tional Review Board review at UNL (project ID
15016), CU (project ID 15-0297), and all other par-
ticipating institutions.

Additional files

Additional file 1: MIST items removed from MISTO. This file lists all the
MIST survey questions that were removed from MIST in creating MISTO,
generally because the associated ST practices were not observable or
were inconsistently observable in video recordings of classroom sessions.
(DOCX 14 kb)

Additional file 2: MISTO video scoring workbook. This file contains a
multi-sheet Excel workbook where observers record teaching practices
on up to three scoring sheets. Those records are then translated into
observer MISTO survey responses and their corresponding scores for data
analysis (see Fig. 1). (XLSX 360 kb)

Additional file 3: Summary of match score comparisons between
perspectives. This file contains a table listing statistical analyses of
perspectives pairs. Omnibus ANOVA results are shown on the left and
pairwise Tukey HSD results are shown on the right. Significant differences
in pairs are bolded. (DOCX 16 kb)

Additional file 4: Effects of course and instructor characteristics on
match scores. Match pair indicates the perspectives being compared: IO
is instructor–observer, SO is student–observer, and SI is student–
instructor. (DOCX 16 kb)

Additional file 5: MISTO scoring template. After obtaining MISTO
responses either through the online survey or the MISTO video scoring
workbook, this Excel template can be used to calculate MISTO and MISTO
subcategory scores for each perspective measured. Note: This template is
designed for use with the MISTO question set (not the full MIST question
set). (XLSX 2499 kb)

Additional file 6: MISTO Qualtrics file. This qsf file contains the MISTO
survey, which can be administered to students or instructors using the
online Qualtrics platform. This version of the survey should only be used
when asking students or instructors to reflect on a one week sample of
class sessions or when comparing these perspectives to observers. For
other purposes, we recommend using the original MIST survey qsf file,
which is available in the supplement of the original publication (Durham
et al. 2017). (QSF 134 kb)
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