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M A J O R A R T I C L E

Shiga Toxin–Producing Escherichia coli in Montana:
Bacterial Genotypes and Clinical Profiles

Jill K. Jelacic,1 Todd Damrow,4 Gilbert S. Chen,1 Srdjan Jelacic,3 Martina Bielaszewska,7 Marcia Ciol,3

Humberto M. Carvalho,5 Angela R. Melton-Celsa,5 Alison D. O’Brien,5 and Phillip I. Tarr2,3,6

1University of Washington School of Medicine, 2Departments of Pediatrics and Microbiology, University of Washington School of Medicine,
and 3Children’s Hospital and Regional Medical Center, Seattle, Washington; 4Montana Department of Public Health and Human Services, Helena;
5Uniformed Services University of the Health Sciences, Bethesda, Maryland; 6Division of Pediatric Gastroenterology and Nutrition, Edward
Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; 7Institut für Hygiene, Universitätsklinikum
Münster, Münster, Germany

The diseases and virulence genes associated with Shiga toxin–producing Escherichia coli (STEC) are charac-
terized incompletely. We analyzed, by polymerase chain reaction, 82 STEC isolates collected prospectively in
Montana and profiled associated illnesses by patient chart review. All E. coli O157:H7 contained stx2-group
genes, as well as eae, iha, espA, and ehxA; 84% contained stx1. Non-O157:H7 STEC less frequently contained
stx1 ( ), stx2 ( ), iha ( ), eae, and espA ( for both), were isolated less often fromP p .046 P ! .001 P ! .001 P p .039
patients treated in emergency departments ( ), and tended to be associated less frequently with bloodyP p .022
diarrhea ( ). There were no significant associations between stx genotype and bloody diarrhea, butP p .061
isolates containing stx2c or stx2d-activatable were recovered more often from patients who underwent diagnostic
or therapeutic procedures ( ). Non-O157:H7 STEC are more heterogeneous and cause bloody diarrheaP p .033
less frequently than do E. coli O157:H7. Bloody diarrhea cannot be attributed simply to the stx genotype of
the infecting organism.

Many different Escherichia coli produce Shiga toxin

(Stx). Stxs belong to 1 of 2 groups. Stx1 [1] is nearly

identical to Stx, the principal extracellular cytotoxin

produced by Shigella dysenteriae serotype 1. Members

of the Stx2 group (Stx2, Stx2c, Stx2d, Stx2d-activatable, Stx2e,

and Stx2f) [2–5] have sequences that are less similar to

Stx. E. coli O157:H7 is the best known and the most

frequently isolated of the Stx-producing E. coli (STEC);

the comparatively high rate of isolation and promi-

nence of this serotype is attributable, at least in part,
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to its inability to ferment sorbitol [6]. When plated on

MacConkey agar that contains sorbitol in lieu of lactose,

E. coli O157:H7 appear as colorless colonies. This

non–sorbitol-fermenting phenotype is, therefore, an

easily distinguishable characteristic that can be sought

in economical and efficient screening protocols, if stool

samples are plated on sorbitol MacConkey (SMAC)

agar when they arrive in the laboratory [7]. However,

it will not detect most non-O157:H7 STEC, which gen-

erally ferment sorbitol, so such organisms are easily

overlooked.

The fact that E. coli O157:H7 causes diarrhea, bloody

diarrhea, and hemolytic-uremic syndrome (HUS) has

been well established since 1983, when E. coli O157:H7

was first associated with human disease [8, 9]. In con-

trast, the spectrum of illnesses associated with non-

O157:H7 STEC, the characteristics of patients from

whom they are isolated, the genotypes of these organ-

isms, and the extent to which these organisms are path-

ogenic to humans, are less well established [10]. How-

ever, several studies suggest that illnesses associated with

non-O157:H7 STEC differ from those caused by E. coli
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O157:H7, particularly in the lesser ability of the former group

of organisms to cause bloody diarrhea and HUS [4, 11–14].

The characteristics of STEC-induced illnesses in humans re-

late, presumably, to the genomic contents of the infecting

strains. Ostroff et al. [15] reported that E. coli O157:H7 that

contained stx2-group genes but that did not contain stx1 were

more likely to be isolated from patients with HUS than were

E. coli O157:H7 isolates containing both stx1 and stx2-group

genes. This trend was observed again in a recent prospective

study in the Pacific Northwest [16]. Indeed, Donohue-Rolfe et

al. [17] have reported that the removal of stx1 from an stx1
+/

stx2
+ E. coli O157:H7 isolate augments its virulence in gnoto-

biotic piglets. Boerlin et al. [12] reported a strong association

between the presence of stx2-group genes in human STEC from

8 major serotypes and the severity of associated disease. Fried-

rich et al. [4] refined stx genotype analysis by examining allelic

variants within the stx2 group and suggested that STEC con-

taining stx2d or stx2e were associated with less-severe disease or

were not pathogenic to humans.

STEC contain a repertoire of putative virulence loci, in ad-

dition to their stx genes. eae, which encodes intimin, is in the

locus of enterocyte effacement (LEE) [18] and is the best char-

acterized of the non-stx virulence loci. eae is necessary for

pathogenicity in several animal models of enteric infection

[19–21]. Additional candidate virulence loci in STEC include

other LEE genes, such as espA, which encodes a filamentous

organelle on the surface of E. coli O157:H7 [22], as does its

homologue in enteropathogenic E. coli [23]; iha, which is found

on the tellurite-resistance, adherence-conferring island and en-

codes a novel adhesin [18] in E. coli O157:H7 (a homologue

of Iha is found in the outer membranes of other STEC) [24];

and genes encoded on the large plasmid found in most pre-

sumptively pathogenic STEC, such as ehxA, which encodes the

enterohemorrhagic E. coli–hemolysin [25–29].

Studies that have attempted to associate STEC genotypes and

the characteristics of the illnesses in the patients from whom

these organisms were isolated have often analyzed existing

strain collections for the sake of convenience. Such selection

could lead to unintentional biases in analyses and conclusions.

In addition, there have been no detailed attempts to relate

bacterial genotypes to clinical manifestations of non-O157:H7

STEC in the United States, and the analyses of non-O157:H7

STEC infections from North America have consisted of small

numbers of patients or limited descriptions of their illnesses

[13, 30–34]. Here, we analyze STEC belonging to a variety of

serotypes that were collected from patients in Montana during

a defined interval in a statewide surveillance project. We also

profile the illnesses in the patients from whom these organisms

were recovered and attempt to determine whether there are

discernible associations between STEC genotype and illness

observed.

MATERIALS AND METHODS

Patient isolates. Between June 1998 and May 2000, all stool

samples submitted to each of 16 Montana microbiology labora-

tories (Billings Deaconess Clinic Health System and St. Vincent’s

Hospital, Billings; Bozeman Deaconess, Bozeman; Browning

Indian Health Service, Browning; St. James Hospital, Butte;

Crow Agency Indian Health Service, Crow Agency; Barrett Me-

morial Hospital, Dillon; Benefis Healthcare and Great Falls

Clinic, Great Falls; Northern Montana Hospital, Havre; St. Pe-

ter’s Hospital, Helena; Kalispell Regional Hospital, Kalispell;

Central Montana Medical Center, Lewiston; Holy Rosary

Health Center, Miles City; and Missoula Community Medical

Center and St. Patrick’s Hospital, Missoula) were evaluated for

the presence of Salmonella species, Shigella species, and Cam-

pylobacter jejuni at point of receipt and then were sent as swab

specimens in Cary-Blair transport media to the Montana State

Public Health Laboratory (Helena) for the isolation and iden-

tification of STEC.

After arrival at the reference laboratory, the swabs were re-

moved from the transport media and inoculated into 10 mL

of MacConkey broth. Broths then were incubated overnight at

35�C. One hundred microliters of this culture was tested for

the presence of Stx by use of the Premier EHEC EIA kit (Me-

ridian Biosciences), according to the manufacturer’s instruc-

tions. Broths that produced a signal indicating the presence of

Stx were further cultured to standard MacConkey and to SMAC

agar plates. After overnight incubation at 35�C, non–sorbitol-

fermenting colonies were tested for the presence of the O157

antigen by use of the Wellcolex O157:H7 STEC latex aggluti-

nation test (Abbott Laboratories). If non–sorbitol-fermenting

colonies were not observed or if the non–sorbitol-fermenting

colonies failed to react with the O157-specific antibody, 2 or 3

lactose-fermenting colonies were grown overnight in MacConkey

broth at 35�C and were tested the next day for the production

of Stx by use of the Premier EHEC EIA kit on broth, as described

above.

Isolates that produced Stx in broth were confirmed to be E.

coli by use of a Vitek Junior Model 32 System J1733 analyzer

(BioMerieux Vitek). Somatic antigens 26, 104, 111, 121, and

157 were sought by agglutination for all STEC. An isolate was

considered to be motile if a line of diffuse emanation was

observed in motility media after inoculation and overnight in-

cubation. If an isolate did not grow diffusely from the inoc-

ulation line, it was considered to be nonmotile (NM). The

presence or absence of the H7 antigen was determined by use

of the Wellcolex E. coli latex agglutination test (Abbott Labo-

ratories) for all isolates that expressed the O157 lipopolysac-

charide. Isolates with undetermined O or H antigens were typed

at the Centers for Disease Control and Prevention (Atlanta)

for each of the 181 known O antigens and 52 of the 56 known

H antigens. Isolates that agglutinated completely with all O-
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specific antisera were classified as “Orough,” because of their

self-agglutination phenotype. Isolates that were nonreactive in

E. coli O antigen antiserum pools were classified as “Onon-

typeable” (ONT).

Bacterial genotypes. Table 1 lists the primers for the

alleles sought, the polymerase chain reaction (PCR) condi-

tions, and the positive control strains for each primer pair

used in this study. The negative control for each reaction was

E. coli HB101 [35]. Bacteria were grown overnight in Luria-

Bertani broth [35]. Template DNA was prepared by adding

45 mL of bacterial broth culture to 5 mL of 0.1% Triton-X in

sterile Eppendorf tubes and by boiling the mixture for 20

min. dNTPs were purchased from Promega, and Taq DNA

polymerase and restriction endonucleases were purchased

from New England Biolabs. After amplification in a thermal

cycler (iCycler; Bio-Rad), PCR products were analyzed by

electrophoresis in 0.5� Tris-borate EDTA (TBE) [35] 1.5%

agarose, followed by ethidium-bromide staining. stx2 and stx2c

genes were preliminarily differentiated by restriction analysis

of the GK3-GK4 amplification products, using HaeIII and FokI

[36]. However, stx2c alleles are indistinguishable from stx2d-acti-

vatable genes (A.R.M.-C., unpublished observation) by the initial

PCR technique used in this study [36]; therefore, isolates with

apparent stx2c alleles were tested using stx2d-activatable primer pairs,

as noted in table 1, to generate an 890-bp amplicon. PstI cleaves

this amplicon into 504- and 386-bp fragments if the target gene

is stx2c, but does not cleave amplicons derived from stx2d-activatable.

Because the stx2-group amplicon of an E. coli O28ab:H28

failed to yield predicted fragments when digested with FokI or

HaeIII, we produced an amplicon that spans the genes encoding

the holotoxin, using primers 5′-CAAAGCAGCAATGGCGCT-

AGG-3′ and 5′-TTTCACCAGTCGCCCCTCCAC-3′, digested

the amplicon with EcoRV, modified the resulting fragments

using the A-tailing procedure (Promega), inserted them into

the pGEM-T Easy Vector (Promega), and sequenced them using

an ABI PRISM 377 DNA Sequencer (Applied Biosystems).

Then, we amplified a 382-bp amplicon spanning the presumed

EcoRV site by use of primers 5′-TACTGGGTTTTTCTTCG-

GTA-3′ and 5′-GTGGTATAACTGCTGTCCGT-3′, which also

was inserted into the pGEM-T Easy Vector and sequenced.

Activation assay. Two isolates that contained stx2d-activatable

as their sole stx genes were tested further, to determine whether

the Stx that they produced exhibited the activatable phenotype.

The activation assay was performed as described elsewhere [37].

In brief, culture supernatants from strains containing Stx2-type

toxins were incubated with mouse small-intestinal mucus or a

buffer control and incubated at 37�C for 2 h. The cytotoxicity

of the toxin-mucus or toxin-buffer mixture then was measured

on Vero cells. The toxin is considered to be activatable if the

resulting cytotoxicity increases at least 8-fold after incubation

with the mouse mucus.

Clinical data. Clinical data were obtained by reviewing

the medical records of Montana residents from whom STEC

were isolated during the study period, after receiving permis-

sion from the Institutional Review Board of the University of

Washington Medical Center. Data recorded included age, sex,

date of first stool culture, site of first medical treatment, symp-

toms described in the chart (presence of blood in the stool,

abdominal pain, nausea, vomiting, fever, headache, and muscle

aches), laboratory results (white blood cell count and fecal

leukocytes), procedures performed, and antimicrobial agents

prescribed. A symptom was characterized as being present if it

was specifically mentioned as having been experienced by the

patient during the illness or as being absent if it was specifically

denied. If a symptom was neither specifically mentioned nor

specifically denied as being present, patients were not entered

into analysis for that variable. A procedure was defined as any

entry of a therapeutic or diagnostic device, including surgery,

into the body, excluding phlebotomies and bladder catheteri-

zations. If a procedure was not mentioned, it was characterized

as not having been performed. If an antimicrobial was not

specifically recorded in the chart, it was characterized as not

having been prescribed. All data obtained were entered into a

relational database for statistical analysis.

Statistics. We used the Wilcoxon rank sum test to assess

the significance of the difference between median ages of pa-

tients infected with E. coli O157:H7 and with non-O157:H7

STEC. The association between pairs of categorical variables

was assessed by Fisher’s exact test. Logistic regression was per-

formed to assess the association between the characteristics of

the infecting organism and the probability of bloody diarrhea.

RESULTS

STEC recovered. Between June 1998 and May 2000, ∼6300

stool samples were analyzed for STEC, as described above.

STEC were recovered from 85 of these stool samples, and 1

stool sample with a positive EIA result failed to yield an STEC

after further subculturing. Three patients whose stool samples

yielded STEC belonging to serotypes O121:H19, O124:H19, and

ONT:NM also were infected with C. jejuni. Because we were

unable to attribute these patients’ symptoms to the C. jejuni

or the non-O157:H7 STEC, these strains and the illnesses of

the patients from whom they were isolated were not entered

into analysis. Of the 82 remaining STEC, 31 (38%) were E. coli

O157:H7, and 1 (1%) was a non–sorbitol-fermenting E. coli

O157:NM. The 32 isolates expressing the O157 lipopolysac-

charide antigen were analyzed together as E. coli O157:H7.

Forty-one of the 50 non-O157:H7 STEC expressed 8 different

identifiable O antigens, 4 were Orough, and 5 were “Ounde-

termined” (table 2). Seventy-two percent and 63% of the re-
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Table 2. stx genotype of Shiga toxin–producing Escherichia coli (STEC) isolates in this study, by serotype, and
proportion with bloody diarrhea.

Serotype (no.)

Genotype, no. of isolates
Bloody

diarrheaa Proceduresb
Emergency
departmentcstx1 stx2 group stx2 stx2c stx2c2 stx2d-activatable

O157:H7 (31) 26 31 29 4 0 0 21/26 (81) 6 17

O157:NM (1) 1 1 0 1 0 0 1/1 (100) 1 1

O26:H11 (16) 16 0 0 0 0 0 5/11 (45) 1 7

O26:NM (2) 2 0 0 0 0 0 1/1 (100) 1 1

O28ab:H28 (1) 0 1 0 0 1 0 0/1 (0) 0 1

O28ac:H25 (1) 0 1 0 0 0 1 1/1 (100) 1 0

O73:H18 (1) 0 1 0 0 0 1 1/1 (100) 0 0

O103:H2 (1) 1 0 0 0 0 0 0/1 (0) 0 0

O103:H25 (1) 1 0 0 0 0 0 0/1 (0) 0 0

O119:H4 (15) 1 0 0 0 0 0 NA 0 0

O121:H19 (15) 1 15 15 0 0 0 7/13 (54) 2 3

O145:NM (1) 1 0 0 0 0 0 1/1 (100) 1 1

O165:H25 (1) 0 1 0 1 0 1 1/1 (100) 1 1

O177:NM (1) 1 1 0 1 0 0 1/1 (100) 0 0

O181:H49 (1) 0 1 1 0 0 0 1/1 (100) 0 0

Orough:H2 (1) 1 0 0 0 0 0 NA 0 0

Orough:H11 (2) 2 0 0 0 0 0 1/1 (100) 0 0

Orough:H18 (1) 1 1 1 0 0 0 NA 0 0

ONT:H25 (2) 2 1 1 0 0 0 NA 1 0

ONT:NM (1) 1 0 0 0 0 0 1/1 (100) 0 0

Total 58 55 47 7 1 3 43/63 (68) 15 32

NOTE. NA, symptoms not addressed for patients whose stool samples yielded these STEC.
a Data are no. reporting diarrhea/no. whose history addressed this symptom (%).
b Procedures performed on 7 patients in the E. coli O157:H7 group consisted of 1 appendectomy, 2 sigmoidoscopies, and 4 colo-

noscopies. Procedures performed on 8 patients in the non-O157:H7 STEC group consisted of 2 appendectomies (O26:H11 and ONT:
H25), 2 sigmoidoscopies (O28ac:H25 and O121:H19), 3 colonoscopies (O121:H19, O145:NM, and O165:H25), and 1 esophagogastro-
duodenoscopy and colonoscopy (O26:NM).

c Data are no. of patients whose cultures were submitted from an emergency department.

coveries of E. coli O157:H7 and non-O157:H7 STEC, respec-

tively, occurred between June and October, inclusive.

Patients whose stool cultures yielded O157:H7 STEC had a

tendency to report bloody diarrhea more frequently at presen-

tation ( ) and to have had their cultures obtained inP p .061

an emergency department ( ). Patients infected withP p .022

E. coli O157:H7 were older than those infected with non-O157:

H7 STEC (median age, 16.7 years [range 2.6–68 years] vs. 10.0

years [range, 0.6–87 years]; , Wilcoxon rank sum test).P p .19

Otherwise, the characteristics of patients whose stool sample

contained E. coli O157:H7 were similar to those whose stool

samples contained non-O157:H7 STEC (table 3).

stx alleles, E. coli O157:H7 vs. non-O157:H7 STEC. All E.

coli O157:H7 contained stx2-group genes. Twenty-seven (84%)

contained, in addition, stx1. Two E. coli O157:H7 contained stx2c

as their only stx2-group allele, and 2 contained stx2c in addition

to stx2. None of the stx2c genes in E. coli O157:H7 were determined

after subsequent analysis to be an stx2d-activatable variant.

Of the 50 non-O157:H7 STEC, 27 contained stx1 but not

stx2-group genes, 19 contained stx2-group genes but not stx1,

and 4 contained both stx1 and stx2-group genes. Four contained

stx2c on preliminary analysis, but after subsequent analysis, 3

of these isolates contained stx2d-activatable genes, 1 in combination

with an stx2c gene.

Non-stx alleles, E. coli O157:H7 vs. non-O157:H7 STEC.

Non-O157:H7 STEC contained iha, eae, and espA significantly

less frequently than the E. coli O157:H7 in this study, and none

of the 3 non-O157:H7 STEC with stx2d-activatable genes contained

eae or espA. Nonetheless, half or more of the non-O157:H7

STEC isolates in the present study did possess each non-stx

locus sought.

Genotypes and bloody versus nonbloody diarrhea. Of the

50 patients infected with non-O157:H7 STEC, 15 denied and 21

reported having had bloody diarrhea. Of these 36 patients for

whom the presence or absence of bloody diarrhea could be as-

sessed, non-O157:H7 STEC containing stx2 -group genes were

recovered from 7 of the 15 patients without bloody diarrhea and

from 12 of the 21 patients with bloody diarrhea ( ).P p .736
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Table 3. Comparison of clinical characteristics of patients in-
fected with Escherichia coli O157:H7 and non-O157:H7 Shiga
toxin–producing E. coli (STEC).

Variable
E. coli

O157:H7 group
Non-O157:H7
STEC group Pa

Male 12/32 (38) 30/50 (58) .070

Headache 0/2 (0) 2/4 (50) .467

Fecal leukocytes 20/26 (77) 20/29 (69) .558

Procedure 7/32 (22)b 8/50 (16)b .565

Antibiotics 11/32 (34)c 20/50 (38)b .648

First site

Emergency department 18/32 (56) 15/50 (30) .022

Other ambulatory facility 14/32 (44) 35/50 (70)

Bloody diarrhea 22/27 (81) 21/36 (58) .061

Abdominal pain 24/27 (89) 33/40 (83) .728

Nausea 8/13 (62) 8/12 (67) 1.0

Vomiting 8/20 (40) 15/29 (52) .562

Fever (% of “yes”) 7/23 (30) 8/35 (26) .553

sx1 27/32 (84) 31/50 (62) .046

stx2-group alleles 32/32 (100) 23/50 (46) !.001

stx2 allele 29/32 (91) 18/50 (78) !.001

stx2callele 5/32 (16) 2/50 (8) .104

stx2c2 allele 0/32 (0) 1/50 (2) 1.0

stx2d-activatable allele 0/32 (0) 3/50 (6) .277

stx1 or stx2 group

stx1 only 0/32 (0) 27/50 (54) !.001

stx2- group only 5/32 (16) 19/50 (38) .046

stx1and stx2 group 27/32(84) 4/50 (8) !.001

eae 32/32 (100) 43/50 (86) .039

espA 32/32 (100) 43/50 (86) .039

ehxA 32/32 (100) 44/50 (88) .077

iha 32/32 (100) 25/50 (50) !.001

NOTE. For symptoms, data are no. of patients who mentioned that symp-
tom was present/no. who mentioned or denied symptom (%). For genotypes,
data are no. of isolates with specific genotypes/all isolates tested (%).

a Two-tailed P (Fisher’s exact test). Significant values are in bold type.
b Procedures performed on 7 patients in the E. coli O157:H7 group con-

sisted of 1 appendectomy, 2 sigmoidoscopies, and 4 colonoscopies. Pro-
cedures performed on 8 patients in the non-O157:H7 STEC group consisted
of 2 appendectomies (O26:H11 and ONT:H25), 2 sigmoidoscopies (O28ac:
H25 and O121:H19), 3 colonoscopies (O121:H19, O145:NM, and O165:H25),
and 1 esophagogastroduodenoscopy and colonoscopy (O26:NM).

c Antibiotics administered to patients in the E. coli O157:H7 group included
amoxicillin, cephalexin, ciprofloxacin, metronidazole, and trimethoprim-sulfa-
methoxazole. Antibiotics administered to patients in the non-O157:H7 STEC
group included ampicillin, ceftriaxone, ciprofloxacin, erythromycin-sulfisoxazole,
furazolidone, metronidazole, and trimethoprim-sulfamethoxazole.

Non-O157:H7 STEC containing stx1 were recovered from 10 and

9 of these patient groups, respectively ( ). Of interest, ofP p .192

the 12 patients whose stool samples yielded E. coli O26 (none

of which contained stx2 -group genes) and whose history ad-

dressed whether or not they had bloody diarrhea, 6 reported that

this symptom was present. One isolate from these 36 patients

(ONT:NM) contained stx1 and stx2, and that patient had bloody

diarrhea. Of the 22 patients infected with E. coli O157:H7 who

reported bloody diarrhea, 4 were infected with stx1
�/stx2-group+

E. coli O157:H7, and 18 were infected with stx1
+/ stx2-group+ E.

coli O157:H7. Each of the 5 patients infected with E. coli O157:

H7 who specifically denied bloody diarrhea was infected with

stx1
�/stx2-group+ E. coli O157:H7 ( ). Thus, there is noP p .56

statistically significant association between stx group and the pres-

ence or absence of bloody diarrhea.

Each of the 2 patients with stx2c
+ non-O157:H7 STEC re-

ported having bloody diarrhea, as did each of the 4 patients

whose stool samples contained stx2c
+ E. coli O157:H7. Of in-

terest, 4 of the 8 patients in this study whose infecting STEC

contained variant stx2 alleles (stx2c, stx2d-activatable, or both) un-

derwent invasive procedures, compared with only 11 of 74

patients infected with STEC without these alleles ( ).P p .033

We next assessed the relationship between each of the genes

sought and the presence or absence of bloody diarrhea, using

logistic regression analysis and restricting analysis only to the

patients whose stool samples yielded non-O157:H7 STEC.

Bloody diarrhea (“yes” vs. “no”) was the response variable, and

the explanatory variable was whether the test was positive or

negative for a certain characteristic. The last column of table

4 shows the P value of the test for the addition of the respective

characteristic to the logistic model.

Novel Stx sequence. Primers GK3 and GK4 produce from

E. coli O28ab:H28 a 270-bp amplicon that was cleaved by nei-

ther FokI nor HaeIII [36]. The gene encoding this B subunit

is the same length as the genes encoding the B subunits in stx2

and stx2c and is 6 bp longer than the genes encoding the B

subunits in stx2d, stx2e, and stx2f (figure 1). Within the overlap

region, this gene’s sequence differs from stx2, stx2c, stx2d, stx2e,

and stx2f at 16, 10, 21, 51, and 64 sites, respectively. Each of

the 10 polymorphic sites, compared with stx2c, the most similar

allele in the database, is in the 3′ two-thirds of the gene, which

suggests intragenic recombination in its evolution. However,

only 1 of these sites resulted in a change in an amino acid,

compared with Stx2c. We have designated this E. coli O28ab:

H28 stx allele stx2c2 (GenBank accession no. AY095209).

DISCUSSION

This population-based, prospective study demonstrates that

non-O157:H7 STEC are less likely to be isolated from patients

with bloody diarrhea than are E. coli O157:H7. We speculated

previously that the higher frequency of bloody diarrhea among

patients infected with E. coli O157:H7 could be attributed to

the higher frequency of stx2 in this group of organisms [13,

30], especially in consideration of animal and in vitro studies

that demonstrate that Stx2 is the more toxic of the 2 Stxs [38,

39]. However, we did not confirm this association among the

non-O157:H7 STEC in this study, largely because one-third of
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Table 4. Logistic regression analysis using bloody diarrhea (“yes” or “no”) as the response
variable among the 36 patients whose stool samples contained non-O157:H7 Shiga toxin–
producing Escherichia coli (STEC), whose histories specifically addressed this symptom, and
the genotype of the recovered STEC.

Characteristic
Group without bloody

diarrhea (n p 15)
Group with bloody
diarrhea (n p 21)

P for logistic
regression

eae 14 (93) 19 (91) .461

espA 14 (93) 19 (91) .461

ehxA 13 (87) 19 (91) .722

iha 6 (40) 11 (52) .462

stx1 9 (60) 10 (48) .462

stx2 group (all alleles) 7 (47) 12 (57) .535

stx2 allele 6 (40) 8 (38) .908

stx2c allele 0 (0) 2 (10) .135

stx2c2 allele 1 (7) 0 (0) .181

stx2d-activatable allele 0 (0) 3 (21) .064

NOTE. Data are no. (%) of patients whose isolate had each genotype.

the patients whose stool cultures yielded non-O157:H7 STEC

containing stx1, but not stx2-group genes, reported observing

bloody diarrhea. Therefore, factors other than the stx genotype

are likely to be responsible for the bloody diarrhea observed

during STEC infections, a restatement of the conclusion

reached by Welinder-Olsson et al. [11]. This relationship is

obviously complex, and further elucidation awaits a more com-

plete enumeration of virulence loci and their allelic variants in

non-O157:H7 STEC.

Our findings are noteworthy for several additional reasons.

First, E. coli O121:H19 was isolated from an unexpectedly large

number of cases and was recovered nearly as frequently as E.

coli O26:H11. E. coli O121:H19 was associated with an epidemic

in Connecticut [40], but its causative role in that report was

based mainly on serologic testing and not on isolate recovery.

None of the cases we report here were clustered in time or

space, and their multicentric occurrence confounded attempts

at source linkage. The high frequency of this serotype in this

study contrasts with its rarity of isolation from patients in 2

recent large European series [4, 41].

Second, none of the serogroup O26 STEC isolated during

the present study harbored an stx2 gene, which is typically pre-

sent in an STEC O26 clonal subgroup that recently emerged

as a pathogen in Germany [42]. This result suggests that this

new O26 STEC subgroup has not yet spread to the North

American region covered by our study.

Third, we demonstrated that some alleles designated stx2c in

the detection protocol actually encoded a mucus-activatable

toxin [43] on the basis of restriction fragment analysis. Thus,

the stx2d-activatable allele may be more prevalent in human STEC

than previously realized. It should also be emphasized that stx2d

variants, as defined by the analytical PCR conditions of Pierard

et al. [44] and which were not found in this study, are distinct

from the genes encoding the protein designated as the Stx2d-

activatable toxin.

Fourth, we provide data suggesting that E. coli containing stx2c

and stx2d-activatable alleles are associated with more-severe gastro-

intestinal disease in the human host (as manifested by higher

frequencies of associated procedures), compared with patients

whose infected STEC harbors other stx alleles. stx2c was originally

identified as a variant toxin in E. coli O157:NM [45], but in vitro

and mouse lethality testing failed to demonstrate enhanced viru-

lence of Stx2c, compared with other Stx2 alleles [46]. Compared

with Stx, Stx2c binds to a distinct, but overlapping, epitope on

globotriaosylceramide, the glycosphingolipid receptor for Stxs on

eukaryotic cells [47]. Furthermore, parenterally administered

VT2c, which is identical to Stx2c, preferentially binds to gut tissue,

especially cecal tissue, in rabbits and causes severe hemorrhagic

diarrhea [48], but it is probable that human gut has a different

distribution of Stx receptors. Although the inference that E. coli

containing stx2c are more virulent for humans than those with

other stx2 alleles requires confirmation, it is worth noting that

stx2c was the only stx2 variant identified in STEC from patients

with HUS in a recent German study [4].

Fifth, surveillance efforts for non-O157:H7 STEC probably

should include points of care other than emergency depart-

ments. In a recent study based largely on data gathered in an

emergency department, E. coli O157:H7 were recovered more

frequently than were non-O157:H7 STEC [13]. This discrep-

ancy probably is attributable to the more common occurrence

of bloody diarrhea in patients infected with E. coli O157:H7,

a symptom that conceivably precipitates urgent medical eval-

uation, and to the overall less-severe illnesses associated with

non-O157:H7 STEC. However, the possibility exists that non-

microbiologic factors, such as access to care and geographic
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Figure 1. Comparison of stx2 B subunit allele nucleotide sequences currently available in the National Center for Biotechnology Information Database
(available at: http://www.ncbi.nlm.nih.gov) with new stx2c2 B subunit allele from Escherichia coli O28ab:H28. GenBank accession nos. of respective B
subunits are provided in parentheses. Shaded nucleotides represent designated endonuclease sites in reference strains.

patient catchment patterns, influence the sites of presentation

to care of these Montana residents.

Finally, we identified a new allele, stx2c2, which most closely

resembles stx2c. Designation of Stx2c2 as a bona fide and novel

Stx2 variant awaits biologic studies that differentiate it from

Stx2c [49]. However, although the DNA sequence suggests the

novelty of this allele, Stx2c2 differs from Stx2c by only a single

amino acid.

Despite the geographically and temporally well-defined pop-

ulation investigated, our study has several limitations. First, we

relied on a retrospective analysis of charts to ascertain symp-

toms; such a data set is less complete than one collected pro-

spectively. We do not know whether nonmention of symptoms

reflects nonseverity, or the extent to which the conclusions

would have been different had data collection been prospective

and more complete. Second, the study structure did not permit

an assessment of the rate of development of HUS, because of

the lack of standardized follow-up. We were also unable to

examine the effect of antibiotics, which were administered to

large subsets of patients in both groups, on outcome. Third,

the possibility exists that STEC that were present were not

recovered. The shipment of stool samples to a central laboratory

might have diminished STEC viability while in transport. In

addition, our protocol of evaluating only sorbitol-fermenting

colonies for the ability to produce Stx if a serologic test for

colonies that did not express the O157 antigen was negative

would have overlooked unusual non-O157:H7 STEC that fail

to ferment sorbitol, such as E. coli O104:H21 [50]. Furthermore,

the study is biased toward the detection of STEC that produce

Stx that are detected in the EIA identification employed. How-

ever, this methodology might not have detected all Stx1 [41]

and Stx2 [4] variants, which are produced more frequently by

non-O157:H7 STEC than by E. coli O157:H7. Reduced Stx

expression in vitro and antigenic variation in Stx structure

could conceivably compromise the sensitivity of EIA. Vero cell

assays, or nucleic acid detection methodologies, might more

sensitively identify STEC that produce variant Stxs. Fourth,

because stool samples were not uniformly plated initially on

SMAC agar for E. coli O157:H7, some patients infected with

this serotype might have gone undetected, because EIA is less

sensitive than SMAC agar screening for the detection of this

pathogenic serotype [13]. Fifth, it is possible that some of these

cases represented undetected clustering of illnesses and that the

strain and trait distributions are skewed by duplicate analyses

of what is, in reality, the same organism. Sixth, because of the

heterogeneity of virulence factors among non-O157:H7 STEC,

it is important to note that the profiles of the illnesses associated

with these organisms might not apply to all populations, where

the distribution of causative serotypes might be different from

the one we observed in Montana during the study period.

Seventh, this heterogeneity also needs to be taken into account

when considering non-O157:H7 infections as a group, in com-

parison to E. coli O157:H7 infections. Although multiple studies

have demonstrated that, in aggregate, non-O157:H7 STEC are

associated with diminished frequency of bloody diarrhea and
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of HUS, compared with E. coli O157:H7, a subset of non-O157:

H7 STEC are probably as virulent as E. coli O157:H7.

A final limitation of this study is that we cannot state with

certainty that the non-O157:H7 STEC identified were the etio-

logic agents of the diarrhea, although we eliminated from analy-

sis patients whose stool samples yielded another bacterial en-

teric pathogen. The patients whose stool samples contained

non-O157:H7 STEC were plausibly made ill by them, but we

cannot assign a categorically pathogenic role to these organisms,

without control subjects. In this regard, it is noteworthy that,

in several studies that attempted to address the pathogenicity

of non-O157:H7 STEC, control subjects without diarrhea had

the same frequency of fecal excretion of non-O157:H7 STEC

as did patients with diarrhea [51–55]. Non-O157:H7 STEC are

quite common in food [56, 57], in contrast to the comparative

rarity of O157:H7 STEC [58]. Thus, human contact with non-

O157:H7 STEC is probably frequent, and it is possible that, in

some patients, the recovery of non-O157:H7 STEC in the stool

reflects innocuous gastrointestinal pass-though and not infec-

tion. Nonetheless, some of the many non-O157:H7 STEC with

which humans come in contact can cause epidemics [50,

59–61], and selected serotypes have well-substantiated associ-

ations with HUS [60, 62–64]. Furthermore, most of the non-

O157:H7 STEC in this study contained auxiliary, and probably

critical, virulence genes, such as eae, belong to serotypes that

have been associated with HUS and epidemics, and were in

comparatively high abundance among the patients’ aerobic co-

liform flora. It is, therefore, likely that most of the non-O157:

H7 identified in this study did, indeed, cause the enteric illnesses

in the patients from whom they were isolated. Clearly, a de-

finitive assessment and enumeration of the traits that are

needed to cause disease will facilitate the identification of which

of the many non-O157:H7 STEC are truly pathogens.
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