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IDEA AND

PERSPECT IVE Inferring infection hazard in wildlife populations by linking

data across individual and population scales

Kim M. Pepin,1*† Shannon L.

Kay,1† Ben D. Golas,2

Susan S. Shriner,1 Amy T. Gilbert,1

Ryan S. Miller,3 Andrea L.

Graham,4 Steven Riley,5 Paul C.

Cross,6 Michael D. Samuel,7

Mevin B. Hooten,8 Jennifer A.

Hoeting,9 James O. Lloyd-Smith,10

Colleen T. Webb2 and Michael G.

Buhnerkempe10

Abstract

Our ability to infer unobservable disease-dynamic processes such as force of infection (infection
hazard for susceptible hosts) has transformed our understanding of disease transmission mecha-
nisms and capacity to predict disease dynamics. Conventional methods for inferring FOI estimate
a time-averaged value and are based on population-level processes. Because many pathogens exhi-
bit epidemic cycling and FOI is the result of processes acting across the scales of individuals and
populations, a flexible framework that extends to epidemic dynamics and links within-host
processes to FOI is needed. Specifically, within-host antibody kinetics in wildlife hosts can be
short-lived and produce patterns that are repeatable across individuals, suggesting individual-level
antibody concentrations could be used to infer time since infection and hence FOI. Using simula-
tions and case studies (influenza A in lesser snow geese and Yersinia pestis in coyotes), we argue
that with careful experimental and surveillance design, the population-level FOI signal can be
recovered from individual-level antibody kinetics, despite substantial individual-level variation. In
addition to improving inference, the cross-scale quantitative antibody approach we describe can
reveal insights into drivers of individual-based variation in disease response, and the role of poorly
understood processes such as secondary infections, in population-level dynamics of disease.

Keywords

Antibody, antibody kinetics, disease hazard, force of infection, incidence, individual-level
variation, influenza, serosurveillance, transmission, within-host.

Ecology Letters (2017)

INTRODUCTION

Wildlife species are a major source of emerging infectious dis-
ease (Jones et al. 2008) yet our understanding of disease
dynamics in wildlife host populations is limited (Lloyd-Smith
et al. 2009). Disease dynamics depend on processes within
and between individuals (Handel & Rohani 2015). Individual
hosts become infected, then infectious. Depending on contact
rates and susceptibility of other hosts, infectious hosts trans-
mit pathogens to susceptible hosts. Accordingly, recent work
addressing the role of within-host dynamics on between-host
transmission has revealed the importance of cross-scale
insights for understanding and predicting epidemiological out-
comes (Handel & Rohani 2015). Consideration of both scales

in the same framework has elucidated how pathogens can
circulate persistently under conditions where a single-scale
analysis would predict extinction (Kramer-Schadt et al. 2009).
Multiscale analyses have also improved understanding of
phenotypic trade-offs across scales and how they ultimately
determine the evolutionary ecology of pathogens (Alizon &
van Baalen 2005; Mideo et al. 2008; Handel et al. 2013);
understanding of the spread of drug-resistant (Handel et al.
2007) and viral immune escape mutations (Pepin et al. 2010;
Volkov et al. 2010; Park et al. 2013; Schreiber et al. 2016);
and prediction of how individual-level control methods (e.g.
drug regimens) impact epidemic dynamics (Pepin et al. 2013).
By incorporating individual-level heterogeneity into
population-level metrics of disease dynamics, uncertainty from
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individual-level processes can be explained to improve predic-
tion and provide a deeper understanding of the role of indi-
vidual-level processes in spatio-temporal patterns of pathogen
transmission. We propose a framework for incorporating indi-
vidual-level data into inference of disease dynamics using anti-
body data.
A key quantity describing disease dynamics is the force of

infection (FOI), the rate at which susceptible individuals
become infected, otherwise described as the infection hazard
for susceptible individuals in a population. Thus, FOI is one
of the most sought after quantities for understanding and pre-
dicting disease dynamics (Caley & Hone 2002; Heisey et al.
2006, 2010; Atkinson & Samuel 2010; Mueller et al. 2012;
Henaux et al. 2013; Samuel et al. 2015; Avril et al. 2016),
determining disease hazard (Gay 1996b; Rodriguez-Barraquer
et al. 2015), evaluating and planning interventions (Farrington
1992; Caley & Hone 2004), and calculating other key unob-
servable quantities such as the basic reproductive number
(Ferguson et al. 1999; Feng et al. 2014), or the critical vacci-
nation threshold (Whitaker & Farrington 2004). Correspond-
ingly, a long history of estimating FOI from disease
surveillance data exists (Hens et al. 2010), although most of
this work has been in human disease systems and most
methods have not considered individual-level processes in
estimation of FOI.
Another major gap is that conventional methods are

designed to estimate a time-averaged FOI which is relevant to
endemic disease dynamics but not appropriate for epidemic
patterns. Many pathogens exhibit seasonal and/or interannual
variation in disease transmission (Hosseini et al. 2004; Grassly
& Fraser 2006; Tamerius et al. 2011; Stoddard et al. 2014),
which result in recurrent epidemic peaks. Estimates showing
how FOI changes over time (Reiner et al. 2014; Pomeroy
et al. 2015) would reveal mechanistic insight into ecological
drivers of disease transmission, leading to improved disease
prevention and response strategies. We summarise and criti-
cally evaluate existing methods for estimating FOI and pro-
pose a general cross-scale framework that transcends many of
the limitations of other methods. For wildlife systems, our
proposed method overcomes the following limitations of
conventional methods: fine-scaled age data are not required,
time-varying FOI can be inferred from short time series of
serosurveillance data, rapidly decaying antibody levels are
acceptable and effects of individual-level processes in disease
dynamics can be examined. We demonstrate using simulations
that our individual-level approach can capture population-
level FOI well from cross-sectional serosurveillance data, even
when challenged by substantial individual-level variation and
differences in process behaviour, such as antibody decay rate.
We also demonstrate the value of individual-level inference in
advancing disease ecology practice by applying our approach
to a case study of influenza A data collected longitudinally in
captive mallards (Anas platyrhynchos), and cross-sectionally in
a population of lesser snow geese (Chen caerulescens). Last,
we illustrate how our framework can be applied to additional
host-pathogen systems, with complex ecological processes
such as variation in route of exposure (e.g. Yersinia pestis in
coyotes), and multiple exposures of individuals (e.g. influenza
A in mallards). We discuss how these and other

epidemiological complexities (listed in Table 1) could be
incorporated into our general framework to better understand
their contribution to FOI in a variety of host-pathogen sys-
tems.

Age-seroprevalence methods

The conventional approach to inferring FOI from serological
data is based on ‘age-seroprevalence methods’. These methods
use age-stratified seroprevalence data (presence or absence of
antibody in the host) and assume lifelong immunity such that
the cumulative hazard of infection increases with age (Muench
1934, 1959; Farrington 1990; Hens et al. 2010) (Fig. 1a). Age-
seroprevalence methods are inappropriate in wildlife-host sys-
tems where the host is short-lived (not practical to distinguish
ages), where age data are coarse and imprecise (not enough
information to fit the age-seroprevalence curve), or where
antibodies decay quickly (no signature of increased seropreva-
lence with age). Also, age-seroprevalence methods assume a
constant FOI over time (Fig. 1a) and long temporal datasets
with large sample sizes are typically required to make infer-
ence about time-varying FOI (Grenfell & Anderson 1985; but
see Heisey et al. 2010 for an alternative). A flexible method
that relaxes these potentially problematic assumptions (i.e.
necessity for age data, reasonably long-lived hosts, slow anti-
body decay, serial surveillance sampling, or constant FOI over
time) remains to be developed and may improve inference of
disease dynamics in wildlife systems that often violate one or
more assumptions of conventional methods.
Age-seroprevalence methods utilise presence/absence data,

but the assays used to detect antibodies (e.g. enzyme-linked
immunosorbent assays, ELISA) typically produce quantita-
tive data. Thus, a threshold must be determined to classify
the quantitative antibody measurements as seropositive or
seronegative, introducing potential misclassification error (de
Melker et al. 2006; Bollaerts et al. 2012; Wu et al. 2014;
Vink et al. 2015; Borremans et al. 2016; Pothin et al. 2016)
that should be treated explicitly (Gay 1996a; Vyse et al.
2006), and neglecting the potentially valuable information
that can be gained from considering the quantitative anti-
body data (Bollaerts et al. 2012; Pothin et al. 2016). As anti-
body levels decay rapidly over time in many wildlife host-
pathogen systems (especially in non-mammalian hosts), there
is opportunity to learn about temporal disease dynamics in
a population by considering antibody levels in individual
hosts. Thus, ‘quantitative antibody methods’ circumvent
error associated with transforming antibody data to binary
values.

Quantitative antibody methods

A new field has emerged that uses quantitative antibody
assays to infer incidence (Teunis et al. 2002, 2012; de Melker
et al. 2006; Simonsen et al. 2009; Kretzschmar et al. 2010;
Borremans et al. 2016; Pothin et al. 2016). By considering the
underlying quantitative antibody information, the dependence
on age data and long-term antibody circulation for inference
of FOI can be relaxed. In effect, the historical perspective pro-
vided by age data can be replaced with antibody response

© 2017 John Wiley & Sons Ltd/CNRS
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curves because the decay from peak antibody levels becomes a
source of information rather than a nuisance. The main con-
cept is that pathogen-specific antibody kinetics exhibit robust,
reproducible patterns, as long as individual-level hetero-
geneities in antibody response are accounted for appropriately
(Simonsen et al. 2009; Teunis et al. 2012, 2013), and thus can
be used to infer the time since infection (TSI) for individuals
and population incidence (Teunis et al. 2002, 2012; de Melker
et al. 2006; Simonsen et al. 2009; Kretzschmar et al. 2010;

Borremans et al. 2016) or FOI (Fig. 1b). Quantitative
approaches to inferring incidence lend themselves naturally to
estimating time-varying FOI because historical epidemiologi-
cal status of sampled individuals can be determined. Quantita-
tive antibody approaches also necessarily consider within-host
immunity dynamics to infer population-level FOI, which
could lead to novel insights into wildlife disease ecology.
To date, quantitative antibody approaches have focused on

incidence (rate of new cases) rather than FOI, which considers

Table 1 Epidemiological complexities that present challenges for inference and prospects for addressing them

Challenge Experimental data needs Serosurveillance data needs Proposed model refinements

1) Disease-associated mortality Time between infection and death

for individuals that do not

survive; proportion that do not

survive

Samples from dead animals

(record estimated time of death;

test sample for target pathogen)

Incorporate censoring in within-host

model, g (d, h).
Use experimental infection data to

predict: (1) time between infection and

death, (2) time between infection and a

particular antibody titre, in a censoring

framework.

2) Assay detection and quantitation A. Sensitivity (false negative) and

specificity (false positive) rates

B. Titre variation from assay

error

A. Incorporate assay error through the

threshold of detection parameter (y*).
B. Incorporate antibody kinetics error (e
term in y = g (d/, h)+ e)

3) Biased sampling design Covariate data including

behaviour, social group, spatial

location or date (depending on

system knowledge)

Incorporate spatial/temporal

autocorrelation or other covariate

information into probability

determining state classification (as

susceptible or seropositive).

4) Endemic dynamics and/or high

individual-level variation

Measure effects of covariates on

titre variation (e.g. age, sex, time

of year, indicators of stress,

pathological signs distinguishing

route of exposure, other immune

factors, co-infections,

reproductive status,

etc. = COVARIATE DATA)

Relevant COVARIATE DATA, x

A. Repeated sampling over time

of randomly sampled individuals

B. Repeated sampling over time

of the same individuals (e.g.

Borremans et al. 2016) (Note: B

requires substantially more effort

than A)

A. Use model Supporting Information 4

(systematic sampling model); adapt

within-host model, g (d, h, x), to
include covariate data x such that some

variation in kinetics is parsed out by

the individual-level covariate data.

B. Incorporate individual-level

correlation, i.e. modify y2j model to

include a covariance matrix describing

all times individual j was sampled, y2j ~
N (g(dj, h, xj), ∑j, where ∑ accounts for

correlation among observations for

individual j

5) Anamnestic response Anamnestic responses for multiple

time points and COVARIATE

DATA concurrently

COVARIATE DATA

distinguishing titres in primary

infections from anamnestic

responses (see main text)

Similar to (4A): include different within-

host functions, g (d, h, x), for different
types of responses (primary infection vs.

anamnestic response).

6) Multiple strains (cross-immunity;

co-infection)

Antibody responses to multiple

strains in primary and cross-

infections (e.g. primary A and B,

B after A, A after B)

Strain-specific serosurveillance

data

Similar to (4A): different within-host

functions, g (d, h, x), for each strain

and cross-reaction.

7) Contact structure Population-level data describing

host contact structure (e.g.

average number of individuals

making contact)

Modify contact structure function in

FOI derivation (currently proportional:

newly infected/susceptibles) to reflect

the true relationship of the number of

susceptibles contacting newly infected

hosts.

8) Complex antibody response

(i.e. chronic or acute disease;

recurrent antibody production

due to latent infections)

Long-term antibody titres and

covariate data quantifying

pathological signs, immune

factors, external stressors or

pathogen loads that distinguish

chronic from acute infections, or

initial infection from later stages

COVARIATE DATA as

determined in experimental

infections

If different stages/types of antibody

responses can be informed by covariate

data, modify model as in 4A: g (d, h,
x), to include covariate data x

Incorporate appropriate antibody

response function by modifying g in g

(d, h, x)

Shading indicates effort: low (white), medium (light grey), high (dark grey). Data needs are in addition to current data needs (antibody kinetics in experi-

mental studies and cross-sectional serosurveillance data).

© 2017 John Wiley & Sons Ltd/CNRS
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the number of susceptible individuals and provides a more
direct understanding of infection hazard or potential behaviour
of an epidemic. Also, these approaches estimate average inci-
dence in the population rather than allowing change in inci-
dence over time (de Melker et al. 2006; Simonsen et al. 2009;
Kretzschmar et al. 2010; Teunis et al. 2012; Teunis 2015). A
recent advance showed that quantitative longitudinal antibody
data (repeat samples from the same individual over time) could
be used to estimate time-varying incidence accurately under
complex endemic dynamics (Borremans et al. 2016). However,
because it is rare for wildlife surveillance to collect repeat sam-
ples from individuals, an approach that works with cross-sec-
tional serosurveillance data is valuable as well.
We argue that quantitative antibody methods are a promis-

ing avenue for studying the mechanisms underlying epidemic
patterns. These methods inherently account for individual-
level processes contributing to FOI and reveal time-varying
FOI. Using a hierarchical Bayesian model, variability from
multiple epidemiological processes can be accounted for
explicitly and described by data, which in turn can improve
our mechanistic understanding of heterogeneities driving dis-
ease dynamics and improve inference. Also, because age data
are not required, quantitative antibody methods have broader
application in wildlife populations relative to conventional
methods. Similarly, quantitative antibody methods make use
of information from waning antibody levels, which can lead
to misclassification by conventional methods.
For quantitative antibody methods to reach their full poten-

tial in revealing underlying drivers of FOI, incorporating a

mechanistic model of within-host antibody kinetics is valu-
able, because it allows for explicit description of individual-
level processes with biologically interpretable parameters
(Simonsen et al. 2009; Teunis et al. 2012; de Graaf et al.
2014). In what follows, we present a general quantitative anti-
body framework based on a mechanistic model of antibody
kinetics and explicit representation of individual-level varia-
tion, and demonstrate its ability to infer FOI accurately in
many circumstances. We show how quantitative antibody data
(i.e. concentration of antibody within individuals) from longi-
tudinal studies within hosts (experimental data) can enable
estimation of time since infection (TSI) for hosts sampled
cross-sectionally in a population (serosurveillance data). From
the individual-level TSI, we derive the history of epidemiologi-
cal status (newly infected, susceptible or seropositive) for all
hosts sampled in a population, and consequently FOI. The
approach we outline addresses many of the challenges faced
by current methods: epidemic dynamics, coarse age data,
rapidly waning immunity, cross-sectional serosurveillance
data, complex antibody kinetics, and individual-level variation
in antibody responses. We demonstrate how our proposed
cross-scale framework can be used in a variety of host-patho-
gen systems to infer epidemic dynamics and understand the
role of different ecological processes.

APPROACH

The premise of our quantitative antibody method (Box 1) is
that observed antibody data from both longitudinal antibody-

(a) (b)Age-based methods Titre-based method
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Figure 1 Approaches to estimating disease transmission from serosurveillance data. (a) Age-based methods: Seroprevalence methods based on antibody

detection and age class can estimate FOI as a function of age. (b) Titre-based methods: Quantitative antibody methods use pathogen-specific longitudinal

antibody kinetic data from laboratory experiments along with quantitative antibody titres from the field-collected serosurveillance studies, to estimate

individual TSI (middle plot, red circles are time of exposure, black are sampling times) for each individual in the serosurveillance sample and derive FOI as

a function of time and/or age for the population.
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kinetics experiments in captive animals (y1), and cross-sec-
tional serosurveillance in a wild population (y2), ideally from
the same or immunologically similar species, can be combined

to provide estimates of the FOI and several other key epi-
demic quantities. We modelled observed antibody data using
a mechanistic function (g) of antibody kinetics that was

(a)

(d)

(b) (c)

Process 
parameters

Antibody kinetic 
data

Serosurveillance
data

Within-host 
antibody 
kinetic model

Derived population-level quantities

Model specification Directed acyclic graph

Serosurveillance dataAntibody kinetic data

Observed quantities

–1
–1

y1i Antibody quantity for individual i in 
experimental dataset

δ1i Observed time since infection (TSI) 
in experimental data for individual i

y2j Antibody quantity for individuals 
j = 1,…m in serosurveillance dataset

y* Fixed threshold value for 
determining whether individual in 
serosurveillance data was recently 
infected

Parameter definitions

δ

δ

Box 1 General framework for inferring FOI from quantitative antibody data

Let y1i denotes the vector of antibody quantity for individual i = 1,. . ., n in the antibody kinetic experiment, and let y2j denote
the antibody quantity for individuals j = 1,. . ., m from the serosurveillance study. In addition, let d = t�s be the time since infec-
tion (TSI), where s is the day of infection and t is the sampling day. Furthermore, assume antibody responses for infected indi-
viduals are observed with error and are normally distributed around some mean curve, g(d, h) (e.g. eqn 1), with variance r2. The
model specification is given above, where y∗ is a fixed threshold value indicating whether individual j has been recently infected,
d2j is the TSI for individual j, distributed as a Poisson random variable with global mean TSI, k, for recently infected individuals.
The prior for k was distributed as Gamma with fixed shape and scale parameters of 10 and 1, respectively, while the prior for r2

was distributed as inverse-gamma with shape and scale parameters both equal to 2. From each seropositive (y > y*) individual’s
estimated TSI and sampling day, we get time of infection which we use to determine the number of newly infected individuals (new
E) for each calendar day of interest in the past. For each calendar day, we also record the number of susceptible individuals (S) as
the number that were seronegative (y ≤ y*) on day t. Then, FOI for day t is derived as: new Et/St-1.

ASSUMPTIONS OF CURRENT MODEL

1 Individual-level variation in antibody kinetics is the same for experimental and serosurveillance data.
2 Individuals sampled as susceptible (y < y*) are classified as susceptible for all previous time steps.
3 Ratio of newly exposed to susceptible individuals in samples mirrors true population ratios (unbiased random sampling).
4 No disease-induced mortality.
5 Homogenously mixing population: all susceptible individuals have equal probability of contacting infectious individuals. This
only applies to deriving FOI, not estimating incidence.
6 All newly infected hosts become infectious. This only applies to deriving FOI, not estimating incidence.

© 2017 John Wiley & Sons Ltd/CNRS
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adapted from (Simonsen et al. 2009; example shape in Fig. 2).
The deterministic function g depends on both a vector of
parameters that describes antibody kinetics (h, unknown) and
TSI (d, known for the laboratory experiment data but
unknown for the serosurveillance data). The antibody kinetics
parameter vector h includes six parameters (eqn 1): baseline
antibody level prior to exposure (X1), initial lag between
exposure and antibody production (A), antibody production
rate (r), period of antibody production in response to infec-
tion (B), antibody decay rate (d) and baseline antibody levels
following antibody decay (X2). We assume that both the
kinetic and serosurveillance data are measured with error and
subject to the same amount of individual-level variation (r2).
To represent antibody quantities we used signal to noise (S:
N) ratios – the output of ELISAs, a commonly used antibody
detection assay. We transformed the data by taking the
inverse followed by the base 10 logarithm [log10(1/S:N ratio)],
prior to analysis. The transformation yielded the characteris-
tic rise and fall of antibody levels (raw S/N ratios fall and
then rise) and negative values, which could be modelled with
a normal distribution. For an observed antibody quantity y
(either y1 or y2) collected at time t; y ¼ gðd; hÞ + e where
e�Nð0;r2Þ and
g
�
d;hÞ¼
X1 if d\A

X1þX2

�
d�A
B

�þdþrd
�
B�

�
d�A

��
Br2

�dþrdB
Br2

e�r
�
d�A

�
ifA�d\AþB

X1þX2þ derB�d�rdB
Br2

e�r
�
d�A

�
if d�AþB

8>>><
>>>:

ð1Þ
For each serosurveillance sample (y2j) above the threshold

of antibody detection (y*), the measured antibody quantity
can be used to estimate TSI for the jth individual (d2j)
through the g function. Using the estimated TSIs for each
individual in the serosurveillance data, a disease status his-
tory (susceptible, newly exposed or antibody positive) over
time can be determined for each individual. Then, we
derived incidence as the number of newly infected individu-
als on day t (i.e. transitions from S to E, Fig. 2) divided by

the total sample size on day t. Similarly, we derived FOI
for each day t by dividing the number of newly infected
individuals on day t (i.e. transitions from S to E, Fig. 2) by
the number of susceptible individuals on day t�1 (Box 1).
We estimated TSI using Bayesian methods (Supporting
Information 1).
To evaluate performance of our quantitative antibody

approach, we developed a stochastic population-level disease
transmission model that could produce known trajectories
of incidence and FOI while tracking antibody quantities
within individuals (Supporting Information 2, Fig. 2). We
simulated serosurveillance data (y2) by sampling the simu-
lated population according to a pattern that matched the
sampling of snow goose populations, which involved sam-
pling 200 individuals without replacement (10% of the sim-
ulated population) each day for 1 week. We simulated
experimental data (y1) using the antibody kinetic model
(enq 1) to generate known antibody trajectories for 30
hypothetical individuals.

ANTIBODY DECAY RATE

Intuitively, one might expect that longer decay rates would
increase uncertainty in inference of FOI because individual-
level variation in antibody concentrations is typically highest
during the decay phase, leading to more uncertainty in TSI.
We tested this hypothesis by simulating antibody kinetic and
serosurveillance data based on different mean antibody
longevities (time between start of antibody rise and decay to
baseline): 100 days (similar to influenza A in mallards – see
below), 300 days and 600 days (Fig. 3a, Supporting Informa-
tion 2 and 3). As expected, uncertainty in inferred quantities
(seroprevalence, incidence, FOI) increased as antibody longev-
ity increased (i.e. with decreased antibody decay rate; Fig. 3b–
d). With antibody longevities < 600 days, the model captured
the magnitude and timing of peak FOI well with low uncer-
tainty (Fig. 3d). With an antibody longevity of 600 days (al-
most 2 years), the model tended to overestimate FOI but still
captured timing of the peak well with a level of uncertainty
that gave a clear epidemic signal (Fig. 3d). Under conditions
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of rapid antibody decay (100 days), the model tended to
produce larger misclassification errors (rising vs. decaying
phases), generating a second peak that was not present in
the true (simulated) dynamics (Fig. 3d, left). Misclassifica-
tion was less of a problem for slower decay rates, because
individuals spend proportionately more time in the decay vs.
rising phase.

TIMING OF SAMPLING RELATIVE TO EPIDEMIC

CURVE

Our simulations used a cross-sectional sampling design of
serosurveillance data where individuals were sampled over a
1-week period without replacement to match the snow geese
data. As this sampling window is narrow, we explored how
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timing of the sampling pulse relative to the main FOI curve
could impact inference. We used antibody kinetic parameters
that were estimated by fitting eqn 1 to the experimental mal-
lard data (mean antibody longevity = 100 days, low level of
individual variation, only 30 individuals; Fig. 4a). When sam-
ples were collected immediately following the main epidemic
peak, the model inferred magnitude and timing of the main
FOI curve well (Fig. 4d, middle). However, as the time since
the epidemic peak increased relative to the time of sampling,
the model estimated a later peak FOI relative to the truth and
showed increased misclassification of individuals in the rising
vs. decaying phase of antibody response (Fig. 4d, right). Simi-
lar patterns were observed for incidence (Fig. 4c). In terms of
FOI, the mismatch in timing occurred because the model esti-
mated a later onset of susceptible depletion and increased
seroprevalence (Fig. 4b). If there is prior information about

the timing of the epidemic peak in question, this could be
incorporated into the prior distribution for the TSI parameter,
thus improving precision.
The timing of sampling relative to the main epidemic curve

is important and surveillance sampling design can vary widely
across systems, thus, we extended the model to accommodate
sampling (cross-sectionally) more consistently across time
(Fig. 5; ‘Systematic Sampling Model’ Supporting Information
4). The main changes to the model included: 1) using a sliding
window defining separate sampling periods over which FOI
was calculated, and 2) including a temporal smoothing pro-
cess on mean TSI to account for temporal autocorrelation
due to the epidemic curve (Supporting Information 4). The
autoregressive process on mean TSI allows the TSI parameter
to learn from other samples collected at approximately the
same time, which improves our ability to correctly classify
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antibody quantities into the rising or decaying phase of the
antibody response curve, hence improving estimation of TSI.
Using the same parameters as Fig. 4, but sampling more con-
sistently across time (20 individuals of 2000 per week for
1 year), resulted in very good inference of true FOI and no
secondary peak artefacts (Fig. 5). Thus, increasing the length
of the sampling period and number of sampling occasions can
provide more reliable inference of the timing of an epidemic
curve.

APPLICATION TO INFLUENZA A IN SNOW GEESE

Understanding the ecology of avian influenza A transmission
dynamics in wild bird populations is complicated because
serosurveillance data are often temporally constrained to a

relatively brief cross-sectional sampling frame, making it diffi-
cult to understand drivers of disease dynamics over time.
However, as we have demonstrated, by considering the quan-
titative antibody information in individuals together with the
dynamic nature of immune responses, we can infer transmis-
sion dynamics over a longer period in the past, thus providing
insights about mechanisms of transmission in populations at
particular sites.
We demonstrate the value of this approach using a case

study of influenza A in snow geese sampled cross-sectionally
(y2) during the summer of 1995 at Banks Island, Canada
(Fig. 7 top left, see Supporting Information 5 for field sam-
pling details). To inform the individual-level antibody kinetics
(y1), we used experimental antibody kinetic data from six
snow geese and 30 mallards (Fig. 6 top right, Supporting
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Information 5), which had a known time of infection. We
compared using mallard and geese data together, or the geese
data separately with simulated curves to increase the sample
size from 6 to 36 (Fig. 6, top right; Supporting Information
5). We also compared results using two separate distributions
of TSI: Poisson as in Box 1, and negative binomial to allow
more flexibility in TSI. The two approaches predicted the
same timing of peak FOI, but the geese experimental data
predicted FOI with lower precision and the mallard/geese
experimental data predicted a slower rise to peak FOI under
the negative binomial distribution of mean TSI (Fig. 6, bot-
tom). We estimated peak seroprevalence in the snow goose
population to be c. 0.65 (Fig. 6). Peak daily incidence was
estimated to be c. 0.05–0.18 and peak daily FOI c. 0.09–0.25
(depending on assumptions about the distribution of TSI –
Poisson vs. negative binomial, Fig. 6), which is consistent with
seroconversion rates estimated with the same dataset (Samuel
et al. 2015). The fact that the shape of the epidemic curve dif-
fered substantially depending on assumptions about the error
structure of the TSI distribution (Poisson vs. negative bino-
mial), suggests future theoretical work may be helpful for
refining the general framework we present here. Nonetheless,
regardless of the assumption about the error structure

underlying the TSI distribution, a similar time of peak FOI
was estimated.
The quantitative antibody approach suggests an initial rise

in FOI towards the end of the nesting period, with peak
FOI occuring at the end of the hatching period. The pres-
ence of a rise in FOI to an epidemic peak most new off-
spring are available is consistent with previous studies
showing that avian influenza A viruses overwinter on water-
fowl breeding grounds in northern latitudes, leading to viral
transmission during the breeding season (Ito et al. 1995;
Farnsworth et al. 2012; Hill et al. 2016). Furthermore, snow
geese are highly gregarious colony nesting birds, which may
promote the transmission and maintenance of density-depen-
dent pathogens (Samuel et al. 2015) such as influenza A
viruses and Pasteurella bacteria (Samuel et al. 1999). Rather
than providing a single snapshot of seroprevalence, the quan-
titative antibody approach infers transmission dynamics
throughout the nesting, hatching, and early raising of young
phases of the breeding season, demonstrating how quantita-
tive antibody approaches can be applied to advance our
understanding of breeding-season transmission dynamics.
Furthermore, if additional data explaining potential sources
of individual-level variation are available, this type of
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quantitative antibody framework can be used to quantify the
relative role of various abiotic and biotic conditions on
determining dynamics of FOI.

INDIVIDUAL-LEVEL VARIATION

Individual-level variation in host antibody responses can be due
to intrinsic factors of the pathogen such as genetic variation or
immune evasion tactics (Alcami & Koszinowski 2000; Finlay &
McFadden 2006); or due to extrinsic factors such as host physi-
ological status, dose (Turmelle et al. 2010), or route of exposure
(Baeten et al. 2013). The existence of a multitude of factors
affecting individual-level variation presents potential challenges
in extracting FOI from quantitative serosurveillance data (Gil-
bert et al. 2013). To investigate this potential challenge, we gen-
erated antibody kinetic and serosurveillance data under
different levels of variation in decay rates (Supporting Informa-
tion 2, and 6). We compared cases where antibody kinetic data
had either low, medium or high individual response variation
while holding individual variation in serosurveillance data con-
stant at low, medium or high levels and vice versa to produce
all combinations of variation for both data types (Supporting
Information 6). In our analysis, plots along the diagonal match
the model assumption that individual-level variation is similar
in both data streams while plots outside the diagonal do not
match this assumption. In general, the model performed better

under equal levels of variation for both data streams (Fig. 7),
but this was not consistent (e.g. low variation in antibody
kinetic data and medium variation in serosurveillance data per-
formed equally well as matching levels of variation; Fig. 7, top
middle). Violation of the equal variation assumption biased
results when one of the data streams had high individual-level
variation (Fig. 7, bottom row and right column). In addition,
even when the assumption of equal variation was satisfied, high
individual-level variation underestimated the timing of peak
FOI, although the magnitude was still captured well (Fig. 7,
bottom right). When individual-level variation in the antibody
kinetic data was higher than that in serosurveillance data, the
model overestimated the timing and magnitude of peak FOI
substantially (Fig. 7 bottom, left and middle). Alternatively,
when variation in serosurveillance data was substantially higher
than that of antibody kinetic data, the timing of peak FOI was
underestimated substantially (Fig. 7, right top and right
middle).
Overall, our results show that extreme levels of individual-

level variation can lead to poor performance of the model as
formulated; especially if the assumption of equal variation
between the data streams is not satisfied. Nonetheless, the
model performed very well under medium levels of variation
that were similar to those quantified in the mallard data, sug-
gesting it is capable of recovering the epidemic signal under
realistic conditions. Also, if the model assumption of equal
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Figure 8 Impacts of variation from route of infection and anamnestic responses. Inferred time-varying FOI using the systematic sampling model
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Top: Variation in within-host kinetics is similar to plague in coyotes inoculated intradermally (low response) or orally (high response) (Baeten et al. 2013;

Supporting Information 7-Table 4, Figure S5). Bottom: Variation in within-host response is due to primary vs. secondary infections of influenza A

(Supporting Information 7-Table 4, Figure S5; Supporting Information 5-Figure S2, bottom left).
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variation in experimental and serosurveillance data is satisfied,
bias from high levels of variation is not as severe. If the model
is re-specified based on improved knowledge of potential dif-
ferences in individual-level variation between experimental
and serosurveillance data, bias from unbalanced individual-
level variation could be decreased.
Given the flexibility of our approach, there is potential for

individual-level variation to be further informed by data
(Table 1; Borremans et al. 2016). Factors such as age, sex
(Borremans et al. 2016), environmental conditions, pathologi-
cal signs, additional immunological factors or reproductive
status can be incorporated as covariates predicting a narrower
range of responses for individuals with specific characteristics.
For example, antinuclear antibodies (ANA) may distinguish
inherent differences in immune responsiveness among individ-
uals (Graham et al. 2010). Thus, experimental data of ANA
titres (or other general indices of antibody responsiveness, e.g.
total IgG concentration) sampled temporally alongside anti-
body responses, could improve inference in systems with high
individual-level variation when combined with serosurveillance
data, where these factors are also collected. By explicit incor-
poration of factors determining individual-level variation,
inference could be improved and mechanistic knowledge about
the role of the additional factors on dynamics of FOI would
be revealed, hence improving our understanding of disease
ecology.
To demonstrate how data on drivers of individual-level vari-

ation could improve inference, we extended our model to
examine how high individual-level variation from route of
exposure of Yersinia pestis (agent of plague) in coyotes
affected inference of FOI. We simulated scenarios where two
different antibody kinetic responses were possible in individual
hosts depending on route of exposure (Supporting Informa-
tion 7). We adapted the systematic surveillance model (Sup-
porting Information 4) to incorporate a mixture of antibody
kinetic models, each with their own parameters (Supporting
Information 7). We chose parameters for eqn 1 that mimicked
antibody kinetics of Yersinia pestis in coyotes, where the oral
route of transmission results is a much stronger response than
the intradermal route of infection (Baeten et al. 2013). We
assumed that there were covariate data such as pathological
signs that may help distinguish the route of exposure (i.e.
choice of antibody response distribution) and no misclassifica-
tion of the response due to oral vs. intradermal infection.
When we used our original model that did not account for

multiple distributions of antibody responses, the timing of
peak FOI was biased late (Fig. 8, top left). Using the mixture
model, we captured the timing of peak FOI accurately,
although the curve was slightly lower and wider than pre-
dicted (Fig. 8, top right). In general, accounting for the
sources of individual-level variation greatly improved infer-
ence and captured the timing and general behaviour of FOI
well. Of course, our study provides a simplified version of
how drivers of individual-level variation could be modelled
explicitly. If there are more than two different modes of anti-
body kinetics and measurable predictive factors, then covari-
ate data can be used to predict individual-level response
curves with the appropriate level of uncertainty (Table 1).
Note that although the framework we propose can be

improved by age data, the age data can be coarse (2–3 age
classes), unlike in conventional age-seroprevalence methods
which require fine-scaled age data.

ANAMNESTIC RESPONSES

In many systems, infection history can influence antibody
responses because secondary exposures activate memory cells
leading to sharp increases in antibody titre (Table 1). Influ-
enza A in mallards highlights this issue – anamnestic
responses produce higher antibody titres and achieve peak
levels earlier relative to primary infections (Supporting Infor-
mation 5 and 7). The contribution of anamnestic responses to
FOI, or their effect on inference, is not well understood and
few studies have attempted to apply a quantitative antibody
method while considering anamnestic responses (Pothin et al.
2016). Without explicit consideration, anamnestic responses
may be confused with primary infections, adding uncertainty
to estimates of TSI and FOI. Currently, FOI for time periods
with frequent anamnestic responses may be biased if there is
no information for the model to distinguish the two processes.
To explore the idea that our framework could capture FOI

in systems with anamnestic responses, we simulated disease
transmission under conditions where hosts were allowed to be
re-infected. Re-infection could occur only after immunity had
waned to twice the baseline level, and it generated an
anamnestic response which generally arose faster and decayed
faster than primary infections (Supporting Information 5 and
7). Hosts with secondary, etc. infections did not become infec-
tious in our example. We fit a similar mixture model as with
the Yersinaia pestis example, where there were two separate
functions describing antibody responses for primary infections
vs. anamnestic responses. We assumed that classification of
serosurveillance data into primary infections or anamnestic
responses was perfect, and that covariate data such as age,
sex or time of year could be used to inform classification of
infection history. This type of model could be further devel-
oped to estimate the classification group with informed prior
distributions. When we used our original model that did not
account for multiple distributions of antibody responses, the
timing of peak FOI was biased early (Fig. 8, bottom, left).
Using the mixture model, we captured the timing of peak FOI
accurately (Fig. 8, bottom right), indicating that appropriate
data for distinguishing primary infections from anamnestic
responses (secondary or more) may allow for accurate infer-
ence of FOI. In addition to age, sex and time of the year, data
such as IgG:IgM ratios could be collected and used in the
inference framework to predict antibody response distribu-
tions for individuals based on their covariate data (i.e. moving
beyond a two-component mixture model to multiple distribu-
tions of antibody response curves). Modelling anamnestic
responses directly will not only improve inference of FOI but
will also lead to a better understanding of the contribution of
secondary infections in FOI dynamics.

DISCUSSION OF ADDITIONAL COMPLEXITIES

Our simulation and case study results demonstrate how quan-
titative antibody methods can capture the timing, magnitude
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and width of epidemic curves under multiple sets of condi-
tions, showing that quantitative antibody methods can be
used to infer time-varying FOI for epidemic dynamics in a
variety of host-pathogen systems. However, there are several
other epidemiological factors driving variation in serosurveil-
lance data. Each of these factors can increase individual-level
variation in antibody responses and bias or increase uncer-
tainty in FOI. In Table 1 and below, we list many of these
complexities and describe how they could be accounted for
explicitly by adapting our approach for use in other host-
pathogen systems.

Disease-associated mortality

In systems with disease-associated mortality (Table 1), our
current model underestimates the number of newly infected
individuals (Heisey et al. 2006) because those that die before
eliciting an immune response do not provide any antibody
information. When disease-associated mortality is relatively
high (e.g. rabies), our method can be adapted to accommo-
date data from samples of carcasses, which include an esti-
mate of host ‘day of death,’ for improved inference (Table 1).
If the distribution of time to death has been measured experi-
mentally, the experimental data can be used similarly in our
model to infer TSI based on surveillance data of ‘time of
death.’ In cases with less than 100% disease-associated mor-
tality, the model can be adjusted to accommodate both
streams of surveillance data, whereas, if mortality is 100%,
the antibody portion of the model can be excluded.

Detection

In most serosurveillance systems, there are at least two impor-
tant sources of detection-based uncertainty that should be
considered: (1) measurement error when quantifying antibod-
ies, and (2) sampling error when choosing a subset of individ-
uals from the population to sample (Table 1). Imperfect
serological assays can be a major source of measurement
error, especially in wildlife disease systems (Gilbert et al.
2013) or when there is substantial pathogen diversity and/or
cross-reactivity in a diagnostic system (Mansfield et al. 2011).
In these cases, selection of the antigen employed in serological
tests is not trivial and impacts quantitative results (Troyer
et al. 2005), suggesting it may be useful to consider suites of
antigenic markers for estimating TSI to reduce uncertainty.
For animal systems, experimental infections conducted in the
target host species are extremely valuable for quantifying
assay sensitivity and specificity (Bean et al. 2013) and develop-
ing epidemiological models that inform disease ecology and
surveillance design (e.g. reviewed in Plowright et al. 2016).
Previous work has shown that experimental information on
assay sensitivity and specificity can be incorporated into mod-
els of serosurveillance data, decreasing bias in estimates of
prevalence (McClintock et al. 2010). Likewise, the modelling
framework we present is amenable for incorporation of this
source of error by modelling it explicitly as a factor affecting
the threshold of detection (y*) and/or parameters of the anti-
body kinetic function, depending on the type of error pro-
duced by the assay (Table 1).

Epidemiologists studying human diseases have long recog-
nised the importance of accounting for sampling error, often
referred to as ‘underreporting’ or variation in reporting rates
(CDC 1996). Likewise, mechanistic descriptions of sampling
error have been deemed important for inference of wildlife dis-
ease parameters such as prevalence (McClintock et al. 2010;
Bailey et al. 2014) or FOI (Conn et al. 2012), which were moti-
vated by ecological work accounting for sampling error to pro-
vide better inference for unobserved ecological quantities
(Williams et al. 2002; Hooten et al. 2007; Royle & Dorazio
2008; Hobbs & Hooten 2015). Recent work also emphasises
that, in addition to sample size and independence between sam-
pled individuals, sampling design should consider underlying
seasonality in demographic and disease dynamics to obtain the
most accurate estimates of disease transmission parameters
(Vinh & Boni 2015). In systems with seasonality in disease
transmission, it is useful to collect the surveillance data over a
time scale that captures cycling and make inference over sys-
tem-specific time intervals (i.e. interval no larger than longevity
of antibody response) to decipher temporal heterogeneity in the
FOI (Simonsen et al. 2009; Vinh & Boni 2015). Provided that
surveillance is conducted at intervals that capture epidemic
cycling and at least some individuals with antibody titres are
found, issues from small sample sizes can be attenuated by
aggregating data from several sampling events (Blackwood
et al. 2013). In addition, because each sample generates an indi-
vidual’s epidemiological status (susceptible, newly infected,
seropositive for each day of interest in the past), more data can
be used for calculating FOI at previous time steps as the sam-
pling period increases, which could increase accuracy of the esti-
mates (e.g. temporal quantitative antibody model we present in
Supporting Information 4).

Endemic dynamics

We considered the situation where a pathogen invades a com-
pletely susceptible population, generating a single epidemic
peak. Combined with a brief period of sampling, this led to
the assumption that expected TSI has the same mean for all
individuals, which is inappropriate when there are multiple
epidemic peaks or more complicated dynamics occurring
within the time frame of the analysis. In the systematic sam-
pling model (Fig. 5, Supporting Information 4), we relax the
equal-mean assumption by allowing mean TSI to vary over
time depending on recent antibody levels, which improves
inference for samples collected over longer time periods and is
important for adapting this framework for systems with ende-
mic dynamics. One important application of our method
could be to better understand transmission dynamics in wild-
life species, where disease may be inapparent but where
knowledge of FOI could inform spillover hazard to other
hosts (e.g. Middle East respiratory syndrome coronavirus in
dromedary camels). Using our framework, inference of time-
varying FOI can be made using relatively short-term cross-
sectional sampling allowing for a more rapid understanding
(relative to conventional methods that require long-term sam-
pling to infer time-varying FOI) of the link between recent
changes in FOI and spillover hazard. In ongoing work, we are
investigating the ability of the model to infer FOI beyond a
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single epidemic curve to further evaluate the breadth of epi-
demiological behaviour for which this approach is appropri-
ate. Preliminary findings suggest that allowing more flexibility
in the distribution of TSI and/or incorporating longitudinal
serosurveillance data may be important for modelling endemic
dynamics (Table 1; Borremans et al. 2016).

Multiple strains

Several pathogens have complex strain structure and cause
multiple infections over longer periods of time. The dynamics
of these systems are necessarily driven by induced cross-immu-
nity responses that can elicit significant antibody responses
(Smith et al. 2004; Horton et al. 2010; Mansfield et al. 2011).
The importance of multiple strains and cross-reaction has
been recognised in the study of human influenza A for many
years as original antigenic sin (Francis 1960), the observation
that after a vaccination or natural infection during later life,
an individual’s antibody boost against their first infection may
be as strong or stronger than the boost to the current strain.
This concept has been revised as antigenic seniority to indicate
that second and subsequent early infections may also be
important (Lessler et al. 2012), and incorporated into a life
course model of antibody responses to multiple infections in
which the number and timing of infections can be inferred
(Kucharski et al. 2015). To account for cross-immunity issues
in quantitative antibody methods, it will be important to
experimentally measure antibody kinetics for multiple target
strains in particular host-pathogen systems, which is a sub-
stantial investment of time and money. However, if such data
were available, separate antibody kinetic functions for pri-
mary and cross-reactive antibody kinetics could be incorpo-
rated in our framework for improved inference (Table 1),
which would also improve understanding of the impacts of
particular strains on driving FOI.

Contact structure

In the derivation of FOI, we assume that the host population
mixes homogenously, such that all susceptible hosts have
equal probability of contact with newly infected hosts. While
this may be an appropriate approximation in the case of gre-
garious goose populations congregating at breeding sites, most
populations involve some degree of heterogeneity in host con-
tact structure. In general, heterogeneity decreases population-
level FOI because not all susceptible individuals are in contact
with all infectious individuals (as with homogenous mixing).
Thus, when applying our framework to populations with
heterogeneous contact structure, estimates of FOI could be
biased depending on how the population is sampled relative
to its contact structure. For example, if only high-degree
nodes are sampled, our model may have low bias because this
situation is similar to homogenous mixing. Alternatively, if
only low degree nodes are sampled our model would underes-
timate FOI because we would overestimate the number of sus-
ceptible individuals that are available for contact with newly
infected hosts. Note that bias from contact structure would
not affect estimates of incidence in our model because inci-
dence does not rely on estimates of the number of susceptible

individuals. Thus, it is safest to infer incidence rather than
FOI in highly structured populations where contact structure
is unknown. However, if data on contact structure exist, our
calculation of FOI could be adapted to incorporate an appro-
priate relationship between susceptible and newly infected
individuals (currently assumed to be directly proportional:
Newly infecteds/susceptibles; Table 1).

Complex antibody responses

In our simulated examples, we adapted a fairly complex func-
tion for antibody responses, which included both rising and
decaying phases. Our results showed that in some situations,
misclassification of these phases could lead to predicting an
additional epidemic peak, suggesting that systems with com-
plex antibody dynamics may benefit from incorporating addi-
tional data. For example, differentiating between the rising
and declining phases of the antibody response (and possibly
between primary and anamnestic responses) is possible using
data from multiple types of antibodies (e.g. Immunoglobulin
(Ig) M and G) because of their different kinetics and timing
post-infection (Simonsen et al. 2009; Teunis et al. 2012). Thus,
if data distinguishing phases of antibody responses were col-
lected by surveillance programmes, it may be possible to
improve inference by providing more information for the
model to distinguishing phases of antibody response.
In general, quantitative antibody methods rely on strong

knowledge of the immunology of the focal system for optimal
inference. This makes them currently inaccessible for diseases
with poorly understood or unpredictable immunological
dynamics (see Table 1 for options), but on the positive side,
quantitative antibody approaches provide a framework for bet-
ter understanding the role of complex immunology in wildlife
disease dynamics when appropriate experimental studies are
conducted. Also, in systems where antibody response is too
complex to be explained with a mechanistic function, a non-
parametric, spline-based model of antibody kinetics (e.g. Borre-
mans et al. 2016) can be used to infer FOI if the research ques-
tion does not require inference about within-host processes.

CONCLUSIONS

Serosurveillance data are often summarised as seroprevalence,
neglecting information that could help reveal the timing and
magnitude of epidemic peaks. Conventional methods of esti-
mating FOI are inappropriate in wildlife disease systems
where the host is short-lived (not practical to determine ages),
where age data are coarse and imprecise (not enough informa-
tion to fit the age-seroprevalence curve), where long sero-
surveillance time series are infeasible, or where antibodies
decay quickly (no signature of increased seroprevalence with
age). Recent theoretical advances, extended by the framework
presented here, highlight that time-varying estimates of disease
incidence or FOI can be obtained by relaxing these require-
ments, thus providing an inferential tool for epidemic dynam-
ics and other epidemiological situations where conventional
methods (i.e. age-seroprevalence methods) are inappropriate.
In addition to FOI, quantitative antibody methods can esti-
mate other important quantities of interest, such as the
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proportion of susceptible hosts, proportion of seropositive
hosts and incidence. The framework we propose is inherently
flexible for incorporating a variety of antibody response
curves and sources of individual-level variation, making it
applicable to a number of host-pathogen systems as well as
providing a platform for investigating the role of individual-
level processes in dynamics of FOI.
Our findings indicate that quantitative antibody methods

have the potential to be broadly applicable, but additional
experimental studies will broaden their scope further and high-
light additional data that may improve estimation of key met-
rics of wildlife disease dynamics. As emphasised above, a key
ingredient of quantitative antibody methods is antibody kinetic
data. For animal-host systems, challenge studies with experi-
mental animals can provide detailed antibody kinetic data for
identifying the appropriate antibody response functions (Tur-
melle et al. 2010; Andraud et al. 2012; Baeten et al. 2013; Sun
et al. 2015). We found that 30 experimental mallards infected
with influenza A captured individual-level heterogeneity ade-
quately. Depending on the host response, experimental animals
need to be monitored regularly for a potentially long duration
(3 months or more) to capture the long-term antibody
response profile, which can be expensive and difficult for
pathogens that require high level biosecurity. However, a sin-
gle well-designed experimental study can be used for inference
with many serosurveillance datasets and thus is a worthwhile
investment. Such studies are specific to the particular host-
pathogen system being modelled, thus, for quantitative anti-
body methods to be broadly applicable, experimental datasets
need to be available for a range of host-pathogen systems. An
informal survey of the literature revealed that these datasets
have been collected in some systems, but the data are rarely
presented in a manner that could be used by our model, high-
lighting a gap for future research. In addition, measuring
covariate data alongside antibody responses (Table 1), as well
as antibody responses in hosts with different infection histories
(i.e. previous infections with the same or different strains/
pathogens), will be important for broadening application of
quantitative antibody methods.
We predict that using quantitative antibody data to infer

FOI will be most successful in situations with epidemic
dynamics, where the signal from temporal changes in anti-
body levels is strongest, but future research to extend these
methods to endemic systems would broaden their application
to additional wildlife disease systems. Future experimental
research to quantify antibody kinetics (empirical) and under-
stand the behaviour of quantitative antibody methods under a
range of serosurveillance designs and epidemiological condi-
tions (simulation and field studies), will reveal the full poten-
tial of quantitative antibody methods in understanding and
predicting disease dynamics.
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