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Human transcriptome corresponding to human oocytes and use of 
said genes or the corresponding polypeptides to trans-differentiate 
somatic cells 
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Abstract 

The identification of 101 genes upregulated or differentially expressed by mature human oocytes is 
provided herein. These genes and the corresponding gene products will facilitate a greater understanding 
of oogenesis, folliculogenesis, fertilization, and embryonic development. In addition these genes and the 
corresponding gene products can be used to effect dedifferentiation and/or transdifferentiation of desired 
somatic cells. The resultant dedifferentiated cells and somatic cells derived therefrom can be used in cell 
therapies such as in the treatment of cancer, autoimmunity, and other diseases wherein specific types of 
cells such as hematopoietic cells may be depleted because of the underlying disease or the treatment of 
the disease. Also, a core group of 66 transcripts was identified by intersecting significantly up-regulated 
genes of the human oocyte with those from the mouse oocyte and from human and mouse embryonic 
stem cells. Within the up-regulated probe sets, the top overrepresented categories were related to RNA 
and protein metabolism, followed by DNA metabolism and chromatin modification. This invention 
therefore provides a comprehensive expression baseline of genes expressed in in vivo matured human 
oocytes. Further understanding of the biological role of these genes will also expand knowledge on 
meiotic cell cycle, fertilization, chromatin remodeling, lineage commitment, pluripotency, tissue 
regeneration, and morphogenesis. 
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Description 

HUMAN TRANSCRIPTOME CORRESPONDING TO HUMAN OOCYTES AND USE OF SAID GENES 
OR THE CORRESPONDING POLYPEPTIDES TO TRANS- DIFFERENTIATE SOMATIC CELLS 

RELATED APPLICATIONS 

[0001] This application claims priority to US provisional Serial No. 60/842,990 filed on September 8, 2006. 
This application is incorporated by reference in its entirety herein. 

FIELD OF THE INVENTION 

[0002] The present invention relates to the identification of a set of genes which are expressed by in vivo 
matured human oocytes ("transcriptome" of human oocytes ) and which are involved in oogenesis, 
folliculogenesis, fertilization, and embryonic development. These genes and the corresponding gene 
products are useful for dedifferentiation or transdifferentiation of somatic cells . Additionally, these genes 
are useful as markers of undifferentiated cell types and for assaying whether an ESC is capable of giving 
rise to an oocyte and for identifying pregnancy competent oocytes. 

[0003] The identification of genes and deduced pathways from the mature human oocyte will also 
facilitate a greater understanding of oogenesis, folliculogenesis, fertilization, and • embryonic 
development. As described in detail infra, the present human oocyte transcriptome was derived using 
human metaphase II oocytes within minutes after removal from the ovary, and its transcriptome was 
compared with a reference sample consisting of a mixture of total RNA from 10 different normal human 
tissues not including the ovary. RNA amplification was performed by using a unique protocol. A core 
group of 66 transcripts was identified by intersecting significantly up-regulated genes of the human oocyte 
with those from the mouse oocyte and from human and mouse embryonic stem cells. In addition 101 
human genes were identified as being differentially expressed by human oocytes that are potentially 
useful separately or in combination for effecting dedifferentiation of human somatic cells. Within the up-
regulated probe sets, the top overrepresented categories were related to RNA and protein metabolism, 
followed by DNA metabolism and chromatin modification. This invention therefore provides a 
comprehensive expression baseline of genes expressed in in vivo matured human oocytes. Further 
understanding of the biological role of these genes will further expand the understanding of meiotic cell 
cycle, fertilization, chromatin remodeling, lineage commitment, pluripotency, tissue regeneration, and 
morphogenesis. 
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BACKGROUND OF THE INVENTION 

[0004] The mammalian oocyte is responsible for a number of extraordinary biological processes. It has 
the ability to haploidize its DNA, to reprogram sperm chromatin into a functional pronucleus, to drive early 
embryonic development, and to give rise to pluripotent embryonic stem cells (ESCs). Identifying the 
genes in the oocyte that are essential for oogenesis, folliculogenesis, fertilization, and early embryonic 
development will provide a valuable genomic resource in reproductive and developmental biology. 
However, the oocyte transcriptome and its functional significance in the human are relatively unknown 
because of ethical and technical limitations. 

[0005] Although extensive genomic studies of oocytes and preimplantation embryos have been 
conducted in mouse oocytes (ref 1-6)), in human the accessibility of mature oocytes i.e., metaphase II 
(Mil) oocytes, has been a major barrier to studying oocyte genomics using microarrays. Attempts have 
been made to address this problem by using candidate gene approaches employing RT-PCR and 
differential display (refs 7-22). In addition, serial analysis of gene expression (SAGE) and cDNA libraries 
was generated from human oocytes, and SAGE tags and expressed sequence tags were sequenced for 
rapid gene discovery and expression profiling in the oocytes (see reviews in refs. 23 and 24). However, 
these molecular approaches resulted in a small number of genes analyzed in each sample. Recently, four 
reports described initial transcriptome analyses of human oocytes using microarrays (refs. 25-28). 
Although they provided valuable information, these studies did not present a comprehensive picture of the 
human oocyte transcriptome because of a number of biological and technical constraints. Among the 
biological impediments are the use of discarded human oocytes that have failed to fertilize (refs 25, 28), 
limited coverage of the microarrays (refs. 25, 27), in some cases lack of sufficient biological replications 
(refs 26,28), and technical issues (ref. 27). Among the technical shortcomings, the most important is the 
use of a potentially unfaithful RNA amplification protocol. Li et al. (ref. 27) seem to have synthesized the 
first-strand cDNA using only a simple oligo(dT) primer, which makes target amplification unfeasible (ref 
27); however, the actual procedure used for RNA amplification is unclear. Although we recognize this 
issue could have been a mistake on their described-published protocol, the actual procedure used for 
RNA amplification remains elusive. 

[0006] The shortcomings of the prior art are disadvantageous as the identification of genes and deduced 
pathways from the mature human oocyte can help us better understand oogenesis, folliculogenesis, 
fertilization, and embryonic development. 

BRIEF DESCRIPTION OF THE INVENTION AND EXEMPLARY EMBODIMENTS 

[0007] This invention relates to a novel transcriptome or set of genes which are differentially expressed 
and/or upregulated by human oocytes. 

[0008] This invention also relates to the identification of a discrete set of genes which are uipregulated by 
in vivo matured human oocytes and the use of these genes and the corresponding gene products for the 
dedifferentiation and transdifferentiation of somatic cells particular somatic cells derived from a subject 
that is to receive transplanted cells for treatment of a particular condition such as cancer or autoimmunity. 
The use of these genes and/or gene products produced using such donor transdifferentiated or 
dedifferentiated cells will allow for the production of desired immature and/or somatic cell types that are 
compatible for a desired donor and which therefore are suitable for human cell and gene therapy without 
the need for human nuclear transfer ("human therapeutic cloning") which has ethical concerns because 
such methods may result in the destruction of human embryos. 

[0009] In addition, the present invention relates to the use of these genes and the corresponding gene 
products as markers of dedifferentiated cells such as human adult embryonic stem cells. Because these 
genes are expressed by in vivo matured human oocytes, it is anticipated that some of these genes will be 
expressed by other human immature cell types such as adult stem cells and cancer stem line cells. 



[00010] Also, the invention relates to the use of these genes and gene products and probes specific 
thereto such as antibodies and oligonucleotides complementary thereto for the isolation and enrichment 
of such stem cells from heterogeneous cell samples such as by FACS, magnetic bead cell separations, 
and other cell separation methods. 

[00011] Also, the present invention relates to the production of mammalian oocytes wherein one or more 
of these genes or an ortholog thereof in the case of non-human oocytes are 

"knocked out" or expressed under regulatable conditions in order to study the effect of these genes on 
meiotic cell cycle, fertilization, chromatin remodeling, lineage commitment, pluripotency, tissue 
regeneration, morphogenesis, oogenesis, folliculogenesis, and embryonic development. 

[00012] Further, the invention relates to dedifferentiated or transdifferentiated somatic cells produced 
using one or more of the genes and gene products disclosed herein that are upregulated on in vivo 
matured human oocytes. 

[00013] ■ In addition, the invention provides novel and improved cell and gene therapies using the 
transdifferentiated and dedifferentiated somatic cells produced by introduction of one or more of the 
disclosed genes and gene products comprised in the human oocyte transcriptome which is disclosed 
herein. In addition, the invention relates to culture medium containing one or more of these gene products 
corresponding to the disclosed human oocyte transcriptome or their non-human orthologs and variants 
and the use thereof for dedifferentiation and/or transdifferentiation of desired somatic or embryonic cell 
types. 

[00014] Also, the invention relates to the use of these genes in order to establish a signature of normal 
human oocytes, i.e., human oocytes that are pregnancy competent and which when fertilized are capable 
of giving rise to a normal pregnancy. 

BRIEF DESCRIPTION OF THE FIGURES 

[00015] Fig. 1 : Summary of CRL RNA amplification protocol. (A) Flow Chart of the CRL amplification 
protocol. (B) Representative plot of gene intensities comparing the CRL and Ambion amplification 
methods using 20 ng and 1 μg of total RNA, respectively. [00016] Fig. 2. RT-PCR verification of the 
GeneChip array result. Loading orders of the gel were as following: M, 100 bp molecular weight 
standards with sizes as indicated on the left margin; OCT4, POU domain, class 5, transcription factor 1; 
STELLA, DPP A3, developmental pluripotency-associated 3; ESGl, embryonal stem cell-specific gene 1; 
VASAj DEAD box RNA helicase; GDF9, growth differentiation factor 9; ZPl, zona pellucida glycoprotein 1; 
HlFOO, Hl histone family, member O, oocyte-specific; CDH3, cadherin 3, type 1, P-cadherin (placental); 
TUBB4Q, β-tubulin; ACTB, β-actin; and negative control with no DNA template. [00017] Fig. 3. TGF-β 
signaling pathway. Genes shown in red are differentially up- regulated in human oocytes. 

[00018] Fig.4. Venn diagrams showing the intersection between differentially up- regulated genes in the 
human (HU OC) and mouse oocytes (MO OC) (1,587 transcripts were found to be in common in both 
species) (A); HU OC and hESCs (388 transcripts were found to be common in both cell types) (B); MO 
OC and mESCs (591 transcripts were found to be common in both cell types) (Q; and HU OC/hESC and 
MO OC/mESC (78 transcripts were found to be common in all four cell types (D). 

[00019] Fig. 5. Estrogen receptor signaling pathway. Genes shown in red are differentially up-regulated in 
the human and mouse oocytes. 

[00020] Fig. 6. Digital RNA gel-like image showing the size distribution of the total RNA sample isolated 
from eight matured human oocytes run three times. The 28S and 18S ribosomal RNA bands are clearly 
visible in the intact RNA samples from the mature oocytes. L indicates the RNA 6000 ladder. 



[00021] Fig. 7A-C. This Figure contains selected overrepresented Gene Ontology (GO) biological 
processes in oocytes identified by Expression Analysis Systematic Explorer (EASE) (EASE score less 
than 0.05). 

[00022] Fig. 8. This Figure contains a listing of 101 upregulated genes expressed by human oocytes. The 
figure identifies these genes by gene nomenclature, gene symbol, NCBI Accession Number and further 
contains the nucleic acid sequence corresponding to each of the 101 genes. '■ 

DETAILED DESCRIPTION OF THE INVENTION 

[00023] Prior to discussing the invention in more detail, the following definitions are provided. Otherwise 
all words and phrases in this application are to be construed by their ordinary meaning, as they would be 
interpreted by an ordinary skilled artisan within the context of the invention. 

"Transcriptome" refers to a set of genes expressed by a specific cell such as an oocyte or a somatic cell 
type. [00024] "Human Oocyte Transcriptome" herein refers to a set of genes upregulated by human 
oocytes that include genes that encode polypeptides that induce the transdifferentiation or 
dedifferentiation of somatic cells, preferably human somatic cells from a donor or recipient that is to 
undergo cell therapy. 

[00025] "Pluripotent cell" refers to a cell that is capable of giving rise to all 3 cell lineages, i.e., ectoderm, 
endoderm and mesoderm cells. 

[00026] "Multipotent" refers to a cell that is capable of giving rise to more than 1 cell lineage. 

[00027] "Totipotent cell" is an undifferentiated cell such as embryonic cell such as an oocyte that is 
capable of giving rise to a viable offspring under appropriate conditions. [00028] "Embryonic Stem Cell or 
ESC" is a cell that is capable of giving rise to all 3 lineages. ESCs may be derived from early stage 
embryos, umbilical cord and other embryo tissue material as well as from nuclear transfer derived 
embryos. 

[00029] "Adult stem cell" is a cell capable of giving rise to different somatic cells of a specific lineage, e.g., 
immune stem cells, hematopoietic stem cells, . neural stem cells, pancreatic stem cells and the like which 
cells are present in very few numbers in adult tissues and which cells unlike other adult somatic cells may 
be isolated and induced to differentiate resulting in the production of specific somatic cell lineages such 
as neural cells if the adult sten cell is a neural stem cell.. 

[00030] "Pregnancy-competent oocytes": refers to a female gamete or egg that when fertilized by natural 
or artificial means is capable of yielding a viable pregnancy when it is comprised in a suitable uterine 
environment. 

[00031] "Viable-pregnancy": refers to the development of a fertilized oocyte when contained in a suitable 
uterine environment and its development into a viable fetus, which in turn develops into a viable offspring 
absent a procedure or event that terminates said pregnancy. "Cumulus cell" refers to a cell comprised in a 
mass of cells that surrounds an oocyte. These cells are believed to be involved in providing an oocyte 
nutritional and or other requirements that are necessary to yield an oocyte which upon fertilization is 
"pregnancy competent". [00032] "Differential gene expression" refer to genes the expression of which 
varies within a tissue of interest; herein preferably an oocyte. [00033] "Real Time RT-PCR": refers to a 
method or device used therein that allows for the simultaneous amplification and quantification of specific 
RNA transcripts in a sample. [00034] "SAGE" is an acronym for "Serial Analysis of Gene Expression". 

"Microarray analysis": refers to the quantification of the expression levels of specific geiies in a particular 
sample, e.g., tissue or cell sample. 



[00035] "Pregnancy signature": refers to a phrase coined by the inventors which refers to the 
characteristics levels of expression of a set of one or more genes, preferably at least 5, more preferably 
at least 10 to 20 genes, and still more preferably, at least 50 to 100 genes, that are expressed at 
characteristic levels in oocytes or oocyte associated cells, preferably cumulus cells, that surround 
"pregnancy competent" oocytes. This is intended to encompass the level at which the gene is expressed 
and the distribution of gene expression within cells analyzed. [00036] "Pregnancy signature gene": refers 
to a gene which is expressed at characteristic levels by a cell, e.g., cumulus cell, on a "pregnancy 
competent" oocyte. [00037] "IVF": refers to in vitro fertilization. 

"Zona pellucida" refers to the outermost region of an oocyte. 

[00038] "Method for detecting differential expressed genes" encompasses any known method for 
evaluating differential gene expression. Examples include indexing differential display reverse 
transcription polymerase chain reaction (DDRT-PCR); subtractive mRNA hybridization , the use of nucleic 
acid arrays or microarrays; SAGE (Serial Analysis of Gene Expression. (SAGE) and real time PCR (RT-
PCR). For example, differential levels of a transcribed gene in an oocyte cell can be detected by use of 
Northern blotting, and/or RT-PCR. CRL amplification protocol refers to the novel total RNA amplification 
protocol that combines template-switching PCR and T7 based amplification methods. This protocol is well 
suited for samples wherein only a few cells or limited total RNA is available. 

[00039] "EASE" is a gene ontology protocol that from a list of genes forms subgroups based on functional 
categories assigned to each gene based on the probability of seeing the number of subgroup genes 
within a category given the frequency of genes from that category appearing on the microarray. 

[00040] "Dedifferentiated or transdifferentiated or reprogrammed somatic cell" refers to a somatic cell 
which is converted into a less mature cell, e.g., a stem or stem-like cell or a rejuvenated cell that has a 
longer lifespan than the parent somatic cell or is converted into a different somatic cell lineage. This is 
effected by incorporating into the cell one or more of the 101 genes disclosed herein that are differentially 
expressed by mature human oocytes, preferably expressed under the control of a regulatable promoter, 
or by contacting the cell or the nucleus or chromatin mass derived therefrom with a medium containing at 
least one gene product encoded by the 101 genes disclosed herein or a non-human ortholog thereof. In 
these methods the somatic cell, e.g., from a donor with a disease treatable by cell therapy is introduced 
(e.g., via electroporation, injection, infection) one or more human genes or a vector(s) containing, wherein 
said gene or genes are expressed by a mature human oocyte or said somatic cell or the nucleus thereof 
is cultured in a medium containing one or more gene products expressed by mature human oocytes that 
results in said somatic cell converting into a less differentiated cell, e.g., a stem cell or into a cell with an 
increased lifespan as evidenced by an increased telomere length or increased cell doublings or which 
somatic cell converts into a different somatic cell type. Dedifferentiation can be detected by screening for 
markers characteristic of pluripotent cell types, altered telomere length, increased number of cell 
doublings until senescence or by detecting for telomerase which is only expressed by pluripotent or 
immortal cells such as ESCs and cancer cells. 

[00041] "Nuclear transfer embryo" refers to an embryo created by fusing or inserting a somatic cell or the 
nucleus or chromosomes thereof with an oocyte or other embryonic cell that is enucleated before, during 
or after fusion or insertion. 

[00042] "Parthenogenic embryo" refers to an embryo that is produced using only male or female gametes. 
Typically, these parthenogenic embryos are incapable of giving rise to viable offspring. 

[00043] "Gene Contained in Human Oocyte Transcriptome or an ortholog or variant thereof refers to one 
or more of the human oocyte expressed genes disclosed herein, i.e., the genes contained in Figure 8, or 
their non-human mammalian orthologs such as corresponding non-human primate and rodent genes or 
variants thereof which encode polypeptides possessing the same biological activity. Typically such 
variants will encode polypeptides at least 90% identical to polypeptides encoded by the genes contained 



in Figure 8 or their orthologs. [00044] This invention provides a set of 101 genes which are differentially 
expressed and/or upregulated by normal mature human oocytes (transcriptome). These genes and the 
sequences which are contained in Figure 8 comprise a set of human genes that were identified as being 
differentially expressed or upregulated by in vivo matured human oocytes, according to the specific 
methods disclosed herein. 

[00045] Particularly, these genes were identified using human metaphase II oocytes assayed within 
minutes after removal from the ovary, and its transcriptome was compared with a reference sample 
consisting of a mixture of total RNA from 10 different normal human tissues not including the ovary. RNA 
amplification was performed by using a unique protocol disclosed herein. Affymetrix Human Genome Ul 
33 Plus 2.0 GeneChip arrays were used for hybridizations. Compared with reference samples, there were 
5,331 transcripts significantly up- regulated and 7,074 transcripts significantly down-regulated in the 
oocyte. Of the oocyte up- regulated probe sets, 1,430 have unknown function. A core group of 66 
transcripts was identified by intersecting significantly up-regulated genes of the human oocyte with those 
from the mouse oocyte and from human and mouse embryonic stem cells. GeneChip array results were 
validated using RT-PCR in a selected set of oocyte-specific genes. Within the up-regulated probe sets, 
the top overrepresented categories were related to RNA and protein metabolism, followed by DNA 
metabolism and chromatin modification. This invention therefore provides a comprehensive expression 
baseline of genes expressed in in vivo matured human oocytes. [00046J In addition, the present 
transcriptome was identified using young oocytes, as opposed to aged and fertilized ones, which could 
have quite significantly different expression profiles. Also, the inventors used the most comprehensive 
human microarray platform; and took advantage of publicly available gene expression databases to 
interpret our own data in a more meaningful way. Thus, the present invention was conducted using 
materials and methods that were designed to identify the gene transcripts present in young, untreated Mil 
oocytes within minutes after isolation from the ovary in three independent replicates and to compare 
these genes with a reference RNA (a mixture of total RNA from 10 different normal human tissues not 
including the ovary) by using Affymetrix GeneChip technology. 

[00047] More specifically, to achieve this goal, a protocol that combined template- switching PCR and T7-
based amplification methods was developed for the analysis of gene expression in samples of small 
quantity. The inventors amplified RNA from the oocyte and reference samples. Results were later 
compared with available transcriptome databases of mouse oocytes, and human ESCs (hESCs) and 
mouse ESCs (mESCs). W 

[00048] Using these methods, the inventors provide herein the transcript profile of in vivo matured human 
Mil oocytes using the most recent Affymetrix human GeneChip array, interrogating >47,000 transcripts 
including 38,500 well characterized human genes. [00049] This invention particularly provides a 
transcriptome of 101 genes expressed by human oocytes. These genes and the orthologs of these genes 
are involved in the differentiation based on their specific expression in oocytes. Therefore, the 
introduction of one or more of these genes or the corresponding gene products should result in the 
transdifferentiation or dedifferentiation of a desired somatic cell into another cell type and/or lengthen the 
lifespan of said cell. 

[00050] Particularly the introduction of at least one of said genes or gene products will result in the partial 
or complete dedifferentiation of a desired somatic pell into a pluripotent or multipotent cell., e.g., an adult 
stem cell or an embryonic cell type. Cells which transdifferentiate or dedifferentiate may be detected by 
screening by at least one marker that is specific for the particular cell type. For example, it is known that 
embryonic stem cells express certain genes such as Oct4, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 and 
alkaline phosphatase. Also, dedifferentiated cells or cells having enhanced lifespan may be detected 
based on an analysis of telomerase expression or telomere length. Cells having longer telomeres relative 
to stating somatic cells correlate to an enhanced cell lifespan. 

[00051] These transdifferentiated cells may be used e.g., for cell therapy or for study of the differentiation 
process. Diseases treatable by cell therapy include by way of example cancer, autoimmunity, allergy, 
inflammatory conditions, infection. Cancers treatable by use of cell therapy include solid and non-solid 



tumor associated cancers and include by way of example hematological cancers such as myeloma, 
lymphoma, leukemia; sarcomas, melanomas, lung cancers, pancreatic, neurological cancers such as 
neuroblastomas, stomach, colon, liver, gall bladder, esophageal, tracheal, head and neck, cancers of the 
tongue and lip, ovarian, breast, cervical, prostate, testicular, bone and other cancers. In addition cell 
therapy is useful in alleviating the effects of specific treatments such as radiation and chemotherapy 
which may deplete specific cells such as bone marrow. Further the subject cell therapy may be used for 
treating infectious disease such as viral or bacterial or parasite associated diseases such as HIV. Also the 
subject cell therapy may be used in treating autoimmune conditions wherein the host W 

autoimmune reaction may result in killing or depletion of host cells such as immune cells or other 
essential cell. 

[00052] Reprogrammed or dedifferentiated or transdifferentiated cells generated from these methods may 
be used to replace cells in a mammal in need of a particular cell type. These methods may be used to 
either directly produce cells of the desired cell type or to produce undifferentiated cells which may be 
subsequently differentiated into the desired cell type. For example, stem cells may be differentiated in 
vitro by culturing them under the appropriate conditions or differentiated in vivo after administration to an 
appropriate region in a mammal. To optimize phenotypic and functional changes, reprogrammed cells 
can be transplanted into the organ (e.g., a heart) where they are intended to function in an animal model 
or in human patients shortly after dedifferentiation or transdifferentiation (e.g., after 1, 2, 3, 5, 7, or more 
days). The resultant cells implanted in an organ may be reprogrammed to a greater extent than cells 
grown in culture prior to transplantation. Cells implanted in an animal organ may be removed from the 
organ and transplanted into a recipient mammal such as a human, or the animal organ may be 
transplanted into the recipient. 

[00053] To increase the length of time the cell, nuclei, or chromatin mass may be reprogrammed in vitro 
prior to administration to a mammal for the treatment of disease, the donor cell may be optionally 
modified by the transient transfection of a plasmid containing an oncogene flanked by loxP sites for the 
Cre recombinase and containing a nucleic acid encoding the Cre recombinase under the control of an 
inducible promoter (Cheng et al., Nucleic Acids Res. 28(24):E108, 2000). The insertion of this plasmid 
results in the controlled immortalization of the cell. After the cell is reprogrammed into the desired cell -
type and is ready to be administered to a mammal, the loxP-oncogene-loxP cassette may be removed 
from the plasmid by the induction of the Cre recombinase which causes site-specific recombination and 
loss of the cassette from the plasmid. Due to the removal of the cassette containing the oncogene, the 
cell is no longer immortalized and may be administered to the mammal without causing the formation of a 
cancerous tumor. 

[00054] Examples of medical applications for these cells include the administration of neuronal cells to an 
appropriate area in the human nervous system to treat, prevent, or stabilize a neurological disease such 
as Alzheimer's disease, Parkinson's disease, Huntington's disease, or ALS; or a spinal cord injury. In 
particular, degenerating or injured neuronal cells may be replaced by the corresponding cells from a 
mammal. This transplantation method may also be used to treat, prevent, or stabilize autoimmune 
diseases including, but not limited to, insulin dependent diabetes mellitus, rheumatoid arthritis, pemphigus 
vulgaris, multiple sclerosis, and myasthenia gravis. In these procedures, the cells that are attacked by the 
recipient's own immune system may be replaced by transplanted cells. In particular, insulin-producing 
cells may be administered to the mammal for the treatment or prevention of diabetes, or oligodendroglial 
precursor cells may be transplanted for the treatment or prevention of multiple sclerosis. For the treatment 
or prevention of endocrine conditions, reprogrammed cells that produce a hormone, such as a growth 
factor, thyroid hormone, thyroid-stimulating hormone, parathyroid hormone, . steroid, serotonin, 
epinephrine, or norepinephrine may be administered to a mammal. Additionally, reprogrammed epithelial 
cells may be administered to repair damage to the lining of a body cavity or organ, such as a lung, gut, 
exocrine gland, or urogenital tract. It is also contemplated that reprogrammed cells may be administered 
to a mammal to treat damage or deficiency of cells in an organ, muscle, or other body structure or to form 
an organ, muscle, or other body structure. Desirable organs include the bladder, brain, nervous tissue, 
esophagus, fallopian tube, heart, pancreas, intestines, gallbladder, kidney, liver, lung, ovaries, prostate, 



spinal cord, spleen, stomach, testes, thymus, thyroid, trachea, ureter, urethra, and uterus. Also, these 
cells may also be combined with a matrix to form a tissue or organ in vitro or in vivo that may be used to 
repair or replace a tissue or organ in a recipient mammal. For example, reprogrammed cells may be 
cultured in vitro in the presence of a matrix to produce a tissue or organ of the urogenital system, such as 
the bladder, clitoris, corpus cavermosum, kidney, testis, ureter, uretal valve, or urethra, which may then 
be transplanted into a mammal (Atala, Curr. Opin. Urol. 9(6):517-526, 1999). In another transplant 
application, synthetic blood vessels are formed in vitro by culturing reprogrammed cells in the presence of 
an appropriate matrix, and then the vessels are transplanted into a mammal for the treatment or 
prevention of a cardiovascular or circulatory condition. For the generation of donor cartilage or bone 
tissue, reprogrammed cells such as chondrocytes or osteocytes are cultured in vitro in the presence of a 
matrix under conditions that allow the formation of cartilage or bone, and then the matrix containing the 
donor tissue is administered to a mammal. Alternatively, a mixture of the cells and a matrix may be 
administered to a mammal for the formation of the desired tissue in vivo. Preferably, the cells are 
attached to the surface of the matrix or encapsulated by the matrix. Examples of matrices that may be 
used for the formation of donor tissues or organs include collagen matrices, carbon fibers, polyvinyl 
alcohol sponges, acrylateamide sponges, fib'rin- thrombin gels, hyaluronic acid-based polymers, and 
synthetic polymer matrices containing polyanhydride, polyorthoester, polyglycolic acid, or a combination 
thereof (see, for example, U.S. Pat. Nos. 4,846,835; 4,642,120; 5,786,217; and 5,041,138). 

[00055] Additionally, these dedifferentiated somatic cells may be used to produce artificial tissues and 
organs by culturing said dedifferentiated cells in vitro e.g., in cell culture apparatus that are designed to 
facilitate the formation of desired cell structure and morphology. Additionally, these cells may be 
introduced into non-human animals as xenografted cells for example by injecting the dedifferentiated into 
desired organs. For example, dedifferentiated cells may be used to study the effect of dedifferentiated 
cardiac cells on damaged heart tissue to determine whether these cells promote the healing or 
regeneration process. Alternatively, dedifferentiated immune cells may be introduced into 
irnmunodeficient animals to assess whether this results in restoration of immune function. 

[00056] in addition probes specific to the subject human genes or gene products may be used to identify 
dedifferentiated cells in a mixed cell population. For example, these probes such as labeled antibodies or 
oligos specific to the subject human genes or gene products differentially expressed by mature human 
oocytes may be used to identify and/or isolate adult stem cells contained in adipocyte tissue (fat) or other 
tissue that may contain adult stem cells. [00057] Also, these probes may be used to assess the viability 
and/or pregnancy competency of oocytes from donors that may have oocyte related pregnancy problems 
e.g., as a result of disease, genetics, age, or environmental insult. Since the subject transcriptome was 
derived from oocytes from young apparently healthy donors the expressed genes should include those 
which are required for the oocyte to be pregnancy competent upon natural or in vitro fertilization. 

[00058] In order to describe the invention in greater detail the following experimental examples and 
results are provided below. 

EXPERIMENTAL EXAMPLES [00059] The Materials and Methods below were used to derive the human 
transcriptome or set of genes upregulated by in vivo matured metaphase II human oocytes. 

MATERIALS AND METHODS 

[00060] Oocyte Collection Total RNA Extraction, and Reference RNA. 

[00061] Human oocytes were obtained from three patients undergoing an assisted reproductive treatment 
(ART) at the Unit of Reproductive Medicine of Clinica Las Condes, Santiago, Chile. It is important to 
emphasize that the routine in vitro fertilization protocol at Clinica Las Condes calls for fertilizing only those 
oocytes that will be transferred into the uterus of the patient. Therefore, there is always a surplus of 
oocytes. We then had the opportunity to use specific criteria to select donors as follows: (i) <35 years old, 
(U) reproductively healthy with regular ovulatory cycles, («i) male factor as the only cause of infertility, and 



(zv) considerable number of developing follicles that assured spared oocytes. The experimental protocol 
was reviewed and approved by a local independent Ethics Review Board. All donors signed informed 
consent. At the time this manuscript was submitted, all three donors had already conceived; two of them 
got pregnant during the ART cycle in which our samples were collected, and the third one got pregnant 
after a spontaneous cycle with artificial insemination using donated sperm. Ovarian stimulation, oocyte 
retrieval, and cell lysis were performed as described in Supporting Materials and Methods, which is 
published as supporting information (See Ref. 50). [00062] Three groups of 10 oocytes each were used. 
Total RNA was isolated following the guanidium thiocyanate method (Ref.45) by using the PicoPure RNA 
isolation kit (Arcturus, Sunnyvale, CA) following the manufacturer's instructions. However, only 6.5 μl of 
elution buffer (Arcturus) was used, and the elution was repeated at least three times by using the first 
eluate. All RNA samples within the purification column were treated with the RNase-Free'DNase (Qiagen, 
Valencia, CA). Extracted RNA was stored at -800C until used as template for cDNA synthesis. The quality 
and quantity of extracted total RNA from 8 matured oocytes (independent from the 30 oocytes used in 
this study) was evaluated on the Agilent 2100 bioanalyzer (Agilent Technologies, Palo Alto, CA). Each 
mature oocyte was found to have ~330 pg of total RNA when the Arcturus RNA isolation kit was used. 
The quality of RNA was intact as shown in Fig. 6, which is published as supporting information on the 
PNAS web site. Reference RNA (100 μg) was prepared by mixing 10 μg of total RNA from each of 10 
different normal human tissues, including skeletal muscle, kidney, lung, colon, liver, spleen, breast, brain, 
heart, and stomach (Ambion). 

First Strand cDNA Synthesis and cDNA Purification 

[00063] The following reagents were added to each 0.5 ml of RNase-free tube: 5 μl total 

RNA (i.e., 3 ng for the reference and ~3 ng for the oocyte samples) and 300 ng of an anchored T7-
01igo(dT)24V promoter primer (Ambion). The reaction tubes were incubated in a preheated PCR machine 
at 700C for 2 min and transferred to ice. After denaturation, the following reagents were added to each 
reaction tube: 1.4 μl of SMART II A oligonucleotide (5'- 
AAGCAGTGGTATCAACGCAGAGTACGCGrGrGr-3') (Clontech), 4 μl of 5x first-strand buffer, 2 μl of 20 
mM DTT, 0.6 μl of 5 mg/ml T4 Gene 32 Protein (Roche, Indianapolis, IN), 2 μl of 10 mM dNTPs, 20 units 
of RNase inhibitor (Ambion), and 1 μl of PowerScript Reverse Transcriptase (Clontech). The final first-
strand reaction volume was 20 μl for all experiments. After gently mixing, reaction tubes were incubated 
at 42°C for 60 min in a hot-lid thermal cycler. The reaction was terminated by heating at 700C for 15 min 
and purified by NucleoSpin Extraction Kit (Clontech) following the manufacturer's instructions. 

Double Stranded cDNA Synthesis by L.omg-Distance PCR and cDNA Purification PCR [00064] 
Advantage 2 mix (9 μl) was prepared as follows: 5 μl of 10* PCR Advantage buffer (Clontech), 1 μl of 10 
mM dNTPs, 100 ng of 5f SMART upper primer (S'- AAGCAGTGGTATCAACGCAGAGTA-3'), 100 ng of 3' 
SMART lower primer (5'- CGGTAATACGACTC ACTATAGGGAGAA-3'), and 1 μl of Polymerase Mix 
Advantage 2 (Clontech). This mix was added to 41 μl of the first-strand cDNA synthesis reaction product, 
and thermal cycling was carried out in the following conditions: 95°C for 1 min, followed by 15 cycles, 
each consisting of denaturation at 94°C for 30 s, annealing at 62°C for 30 s, and extension at 680C for 10 
min. The cDNA was purified by the NucleoSpin Extraction Kit (Clontech). 

[00065J For in vitro transcription, biotin-labeled aRNA purification and aRNA fragmentation, hybridization, 
washing, staining and imaging, and RT-PCR analysis, see Supporting Materials and Methods. Microarray 
Analysis 

[00066] Transcriptional profile of each sample was probed by using Affymetrix Human 

Genome Ul 33 Plus 2.0 GeneChips. The raw data obtained after scanning the arrays were analyzed by 
dChip (ref. 46). A smoothing spline normalization method was applied before obtaining model-based 
gene expression indices, also known as signal values. There were no outliers identified by dChip so all 
samples were carried on for subsequent analysis. [00067] When comparing two groups of samples to 



identify genes enriched in a given group, we used the lower confidence bound (LCB) of the fold change 
(FC) between the two groups as the cut-off criteria. If 90% LCB of FC between the two groups was >2, 
the corresponding gene was considered to be differentially expressed (DE). LCB is a stringent estimate of 
the FC and has been shown to be the better ranking statistic (Ref 46). Recently, dChip's LCB method for 
assessing DE genes has been shown to be superior to other commonly used approaches, such as MAS 
5.0 and Robust Multiarray Average-based methods (Refs. 47 and 48). 

[00068] Pathways analysis was performed by using Ingenuity Software Knowledge Base 

(Redwood City, CA), which is a manually created database of previously published findings on 
mammalian biology from the public literature. We used the network analysis, using the knowledge base to 
identify interactions of input genes within the context of known biological pathways. 

Gene Ontology Analysis 

[00069] Gene Ontology was performed by using the EASE software package). Given a list of genes, 
EASE forms subgroups based on the functional categories assigned to each gene. EASE assigns a 
significance level (EASE score) to the functional category based on the probability of seeing the number 
of subgroup genes within a category given the frequency of genes from that category appearing on the 
microarray (Ref 29). 

Comparison with External Data Sets. 

[00070] Mouse Mil oocyte transcriptome data were obtained from Su et al. (Ref 33), who used custom 
designed Affymetrix chips to obtain gene expression profiles of oocytes and 60 other mouse tissue types. 
Using their expression database, we identified 3,617 differentially up- regulated transcripts in the mouse 
oocyte using the median expression value of the remaining 60 samples as the baseline (see Data Set 8, 
which is available in Ref 50. We selected transcripts with an expression value in oocyte samples that are 
2-fold higher than the baseline. [00071] Human ESC data were derived from the work of Sato et al. (Ref 
44), who profiled human stem cells and their differentiated counterparts using Affymetrix HG-Ul 33 A 
representing -22,000 transcripts. 

[00072] We analyzed the raw data using dChip and identified 1,626 hESC genes by selecting transcripts 
significantly up-regulated in human stem cells compared with their differentiated counterparts (see Data 
Set 9, which is available in Ref 50). [00073] Finally, for mESCs, we used a list of 1 ,687 differentially up-
regulated mESC genes published by Fortunel et al. (49), which were identified by comparing mESCs to 
differentiated cells by using Affymetrix MG-U74Av2 chips representing «12,000 transcripts (see Data Set 
10, which is available in Ref 50). We used commercially available Affymetrϊx's NetAffx tool) for mapping 
genes across organisms and platforms used in the respective studies. 

Ovarian Stimulation, Oocyte Retrieval, and Cell Lysis 

[00074] Ovarian stimulation was performed under Gn-RH analog suppression [leuprolide acetate 
(Lupron); Abbott, Abbott Park, IL] in a daily s.c. dose of 0.5 mg. Recombinant FSH (rFSH, Gonal-f-Serono 
or Puregon; Organon, Roseland, NJ) was administered in daily doses that ranged between 200 and 300 
units, starting the second day of the mense. Follicular growth and estradiol levels were monitored every 2 
to 3 days until follicles had a mean diameter between 18 and 20 mm. Oocyte maturation was achieved by 
an injection of 10,000 units of hCG (Pregnyl; Organon). Oocytes were retrieved from the ovary by 
aspiration using guided transvaginal ultrasound 36 h after hCG administration. Three hours after retrieval, 
oocytes were denuded from surrounding corona and cumulus cells by a brief incubation (10-30 s) in 80 
units/ml hyaluronidase solution (LifeGlobal, Guilford, CT) and subsequent pipetting to completely 
eliminate other cells. Oocytes were then observed at high magnification to confirm maturity (metaphase II 
stage) and to confirm the absence of other cells. Each oocyte was rinsed in sterile PBS and lysed in 100 
μl of extraction buffer (XB, Arcturus, Mountain View, CA) in an RNase/DNase/Pyro gen-free 0.5 -ml 



microcentrifuge tube. Each sample was incubated for 30 min at 420C, centrifuged at 3,000 x g for 2 min, 
and stored in liquid nitrogen until use. 

In Vitro 

Transcription (IVT), Biotin-Labeled Amplified RNA (aRNA) Purification, and aRNA 

Fragmentation. 

[00075] The purified double-stranded cDNA containing the T7 promoter sequence was used as a 
template for IVT-labeling assays in the presence of biotin-labeled ribonucleotides, using the BioArray 
High Yield RNA Transcript Labeling kit with T7 RNA polymerase (ENZO, 

Farmingdale, NY) as described by the manufacturer. The biotin-labeled aRNA was purified using RNeasy 
mini columns (RNeasy Mini Kit; Qiagen, Valencia, CA). In vitro transcription of the cDNA for each 
replicate yielded 70-90 μg of biotinylated aRNA, and 15 μg of the labeled aRNA was fragmented at 940C 
for 35 min in Ix fragmentation buffer (40 mM Tris-acetate, pH 

8.1/100 mM KOAc/30 mM MgOAc). 

Hybridization, Washing, Staining, and Imaging. 

[00076] The Affymetrix GeneChip system was used for hybridization, staining, and imaging of the arrays. 
Hybridization cocktails of 300 μl containing 15 μg of fragmented biotin- labeled aRNA and biotinylated 
exogenous hybridization controls (50 pM control Oligo B2, Eukaryotic hybridization controls) (BioB at 1.5 
pM, BioC at 5 pM, BioD at 25 pM, and CreX at 100 pM), herring sperm DNA (0.1 mg/ml), BSA (0.5 mg/ml) 
in buffer (100 mM Mes/1M NaCl/20 mM EDTA/0.01% Tween 20) were hybridized to the GeneChip 
Human Genome Ul 33 plus 2.0 array (Affymetrix, Santa Clara, CA). Hybridizations were performed 
automatically, and each array was prehybridized with all components except the fragmented biotin-
labeled aRNA in a chamber at 45°C for 15 min with rotation at 60 rpm. The prehybridized array was then 
hybridized with the aRNA mixture for 16 h under the prehybridization conditions. After hybridization, the 
mixture was removed from chip, and the array was filled with nonstringent wash buffer (6x SSPE and 
0.01% Tween 20). The arrays were washed according to Affymetrix protocol on a Fluidics station using 
nonstringent and stringent (100 mM Mes/0.1 M NaCl/0.01% Tween 20) wash buffers. For the detection of 
hybridized fragments, the array was stained using SAPE (streptavidin-linked to phycoerythrin) stain and 
antibody solutions. SAPE stain solution (600 μl) contained 2 mg/ml BSA, 10 μg/rnl streptavidin 
phycoerythrin (SAPE) in 100 mM Mes, IM NaCl, and 0.05% Tween 20. The antibody solution (600 μl) also 
contained 2 mg/ml BSA, 0.1 mg/ml goat IgG, 3 μg/ml biotinylated anti-streptavidin antibodies in 100 mM 
Mes, IM NaCl, and 0.05% Tween 20. The order of staining is SAPE, antibody, and second SAPE. [00077] 
The arrays were scanned using Affymetrix's high density GeneArray Scanner 

3000 and imaged using Affymetrix GeneChip Operating Software (GCOS). The GCOS expression data 
report was generated for each sample and was used to judge the quality of sample preparation and 
hybridization. The report included information about noise, background, and percentage of probe sets 
called present based on the manufacturer threshold and software settings. Information about 
performance of exogenously added prokaryotic hybridization control genes such as BioB, BioC, and BioD 
of the Escherichia coli biotin synthesis pathway and the ratio of intensities of 3' probes to 5' probes for 
housekeeping genes such as GAPDH and β-actin were also included in the expression report file (for 
independent oocyte and reference samples, see Expression Report Files 1-6 , which are available at 
www.canr.msu.edu/dep t/ans/community/people/cibelli_jose.html). 

RT-PCR 



[00078] . Equal amounts of the remaining long-distance PCR reactions diluted 1 : 1 with sterile H2O were 
amplified by gene-specific primers (Table 4, which is published as supporting information on the PNAS 
web site). After an initial incubation at 94°C for 3 min, the RT-PCR was carried out at 94°C for 45 s, 600C 
for 30 s, 72°C for 40 s for 30 cycles. Upon the completion of PCR, the reaction was incubated at 72°C for 
an additional 10 min. RT-PCR products were electrophoresed on a 1.5% agarose gel and documented 
with a Gel Documentation System (Bio- Rad, Hercules, CA). 

EXAMPLE 1: Validation of Amplification Fidelity (Amplified vs. Nonamplified RNA) [00079] A critical step 
in the analysis of gene expression on small samples is the faithful amplification of mRNA molecules 
present in the sample. We have designed a PCR-based amplification system using the combination of 
SMART II A oligonucleotide (Clontech, Mountain View, CA) and T7-Oligo(dT) promoter primers (CRL 
RNA amplification protocol) (Fig. 14). We isolated total RNA from a human cell line and 20, 3, and 1.5 ng 
input total RNA was amplified using the CRL amplification protocol. For each experiment, 15 μg of 
fragmented amplified RNA (aRNA) was hybridized to a single Affymetrix Human Genome U133 Plus 2.0 
array. Nonamplified RNA from the same original sample (1 μg) was run in' parallel by using the 
MessageAmp II aRNA Kit (Ambion, Austin, TX). Gene expression results from both amplified vs. 
nonamplified RNA samples were compared, and the correlation coefficients were found to be 0.94 (Fig. 
IB). 0.93, and 0.91 for 20 ng, 3 ng, and 1.5 ng of total input RNA, respectively. The CRL Amplification 
protocol was repeated two times with 20 ng of initial total RNA from the same cell type, and the 
correlation between the two experiments was 0.99. These results show that our RNA amplification 
strategy faithfully and consistently amplifies small amounts of RNA to quantities required to perform 
microarray experiments. The CRL amplification protocol provides a practical approach to facilitate the 
analysis of gene expression in samples of small quantity while maintaining the relative gene expression 
profile throughout reactions. 

EXAMPLE 2: Validation of Microarray Data 

[00080] A selected list of genes was used to validate the microarray results by RT-PCR 

(Fig. 2). These genes were found to be present in the oocyte sample and absent in the reference RNA. 
Figure 2, contains RT-PCR verification of the GeneChip array result. Loading orders of the gel were as 
following: M, 100 bp molecular weight standards with sizes as indicated on the left margin; OCT4, POU 
domain, class 5, transcription factor 1; STELLA, DPP A3, developmental pluripotency-associated 3; 
ESGl, embryonal stem cell-specific gene 1; VASA, DEAD box RNA helicase; GDF9, growth differentiation 
factor 9; ZPl, zona pellucida glycoprotein 1; HlFOO, Hl histone family, member O, oocyte-specific; CDH3, 
cadherin 3, type 1, P-cadherin (placental); TUBB4Q, β-tubulin; ACTB, β-actin; and negative control with 
no DNA template. 

EXAMPLE 3: Differentially Up-Regulated Genes in the Human Oocyte [00081] We generated a database 
of the human oocyte transcriptome by comparing the transcripts in the oocyte with the reference samples, 
which contain mRNA from several somatic tissues. A complete list of up- and down-regulated genes and 
functional, comparative, and correlation analyses are available (see Data Sets 1 and 2 in Ref. 50. In 
addition although the oocytes were thoroughly denuded manually from their surrounding cells, we were 
concerned over the risk for potential contamination of RNA belonging to cumulus cells. We then 
specifically checked for the levels of expression of cumulus cell-specific genes, such as GREMl, PTGS2 
and PTX3, and found them absent or down-regulated in the oocyte RNA samples. 

[00082] Compared with reference samples, there were 5,331 transcripts significantly up-regulated and 
7,07 '4 transcripts significantly down-regulated in the oocyte. Genes up-regulated in oocyte samples 
included most of the well-known germ cell-specific genes, such as FIGLA, STELLA, VASA, DAZL5 GDF9, 
ZPl5 ZP25MOS, OCT4, NPM2, and HlFOO. Using Ingenuity Software Knowledge Base (Redwood City, 
CA), we confirmed the presence of pathways previously described in the mouse, in particular the TGF-β 
pathway (See Figure 3 which shows theTGF-β signaling pathway. Genes shown in red are differentially 
up-regulated in human oocytes). The number of genes expressed in young Mil human oocytes was 7,560 
in our study (based on Unigene build 189; see Data Set 3, which is available in Ref 50) whereas the only 



other study employing the same microarray Ref 28)) reported the gene number as 5,633 in aged human 
oocytes. As the complete list of genes is not available, a direct comparison of these data sets is not 
feasible. Although there is overlap between the two data sets, the difference in the number of genes 
detected could be because the oocytes assayed in the two studies were not equivalent to each other 
(young Mil oocytes vs. unfertilized and aged oocytes) or the effect of different RNA amplification protocols 
used. 

EXAMPLE 4: Functional Annotation of Genes Overexpressed in the Human Oocyte [00083] To examine 
the biological processes performed by the oocyte, we implemented Expression Analysis Systematic 
Explorer (EASE) (Ref 29), contrasting the genes overexpressed in the oocyte with all of the genes 
present in the Affymetrix chip (Table 1, which is published as supporting information on the PNAS web 
site). One of the top overrepresented categories found in oocytes was related to RNA metabolism. This 
finding is in agreement with the fact that oocytes store RNA to support the events of fertilization and early 
embryonic development until the embryonic genome is activated (Ref 30, 31)). DNA metabolism and 
chromatin modification were also overrepresented categories, in agreement with the need of the oocyte to 
remodel the sperm chromatin upon fertilization. Detection of gametogenesis and reproduction as 
overrepresented categories further suggests the accuracy of this transcriptional profiling. An important 
category highly represented in the oocyte was related to nucleic acid metabolism and regulation of 
transcription. Although transcriptionally silent at the Mil stage, the oocyte is very active in transcription 
and translation throughout its growth phase and must be prepared to initiate transcription during 
embryonic genome activation at the four- to eight-cell stage in human (32). Many of the genes in this 
category represent Zinc-finger proteins that are not yet fully characterized, providing an opportunity to 
discover new transcriptional regulatory networks that operate during embryonic genome activation. 

[00084] Chromatin remodeling genes are also represented in the human oocyte. Genes in this category 
included the following: DNA methyltransferases (DNMTl, DNMT3A and DNMT3B), histone 
acetyltransferases (NCOAl and -3, SRCAP, GCN5L2, and TADA2L), histone deacetylases (HDAC3, 
HDAC9, and SIRT7), methyl-CpG-binding proteins (MBD2 and MBD4), histone methyltransferases 
(EHMTl and SET8), ATP-dependent remodeling complexes (SMARCAl, SMARCA5, SMARCADl, 
SMARCC2, and SMARCDl), and other chromatin- modifying genes (ESRl, NCOA6, HMGB3, HMGNl, and 
HMGAl). These Gene Ontology results not only validate our transcriptome analysis when compared with 
candidate gene analysis already reported in other species but more importantly, shed new light into a 
large number of biological processes that take place in the human oocyte. 

EXAMPLE 5: Intersection Between Human Oocyte and Mouse Oocyte Transcriptome [00085] Mouse has 
been the best model for genetic studies, and several groups have already reported the transcriptome 
analysis of mouse oocytes (Ref 4, 6). In an effort to find differences and similarities between the human 
and mouse oocyte, we compared our human oocyte transcriptome results with that of mouse oocyte 
transcriptome derived from data of Su et al. (33). We intersected differentially up-regulated genes in the 
human and the mouse oocyte transcriptome and found a set of 1,587 genes to be in common, indicating 
genes of conserved function in mammalian oocytes (Figure 4A) and Data Set 4, which is available in Ref 
50. The functional characterization of 15 of the top 100 intersected genes that have their functions 
described in mouse oocytes is summarized in Table 1, which is published as supporting information on 
the PNAS web site. Many of these genes relate to oocyte maturation, from the first meiotic division to Mil 
arrest, encompassing various controls of cell cycle checkpoints and cellular machinery for DNA 
segregation and cell division. It was surprising to find at the intersection of these data sets the up-
regulation of the estrogen receptor (ER) signaling pathway (Fig. 5, which is published as supporting 
information on the PNAS web site). Genes significantly up-regulated in this pathway were CTBP2, ESRl, 
GTF2H1, GTF2H2, MAP2K1, NCOAl, NCOA3, PCQAP, PHB2, POLR2C, POLR2J, RBM9, TAF3, TAF4 
and 4B, TAF5, TAF6, TAFl 2, and TBP. Recent studies in knockout models for aromatase have shown 
that estrogen is not required for the generation of preimplantation embryos (Ref 34); our study, however, 
in agreement with previous reports Ref 35, 36) suggests that some genes associated with the ER 
pathways are indeed transcribed in the oocyte, perhaps in response to hormonal stimulation during 
folliculogenesis and oocyte maturation. It remains to be determined whether the ER pathway has a role 
during preimplantation development in human embryos. Considering the high degree of similarity in early 



embryonic development between mouse and human, these 1,587 common genes deserve particular 
attention and must be considered for future candidate gene-approach studies related to fertility disorders, 
developmental defects, and assisted reproductive technologies. Furthermore, with the inherent ethical 
and technical difficulties of studying human oogenesis in the laboratory, the mouse model will continue to 
provide a platform for the functional characterization of other highly conserved genes that may bear 
significance in understanding human germ cell formation and maturation. Figure 4 contains Venn 
diagrams showing the intersection between differentially up-regulated genes in the human (HU OC) and 
mouse oocytes (MO OC) (1,587 transcripts were found to be in common in both species) (A); HU OC and 
hESCs (388 transcripts were found to be common in both cell types) (B); MO OC and mESCs (591 
transcripts were found to be common in both cell types) (Q; and HU OC/hESC and MO OC/mESC (78 
transcripts were found to be common in all four cell types (D). 

EXAMPLE 7: Intersection Between Oocytes and ESC Transcriptomes [00086] The oocyte is derived from 
germ cell precursors believed to have segregated from pluripotent precursors before somatic tissue 
differentiation (Ref 37). Primordial germ cells (PGCs) undergo mitotic proliferation followed by meiosis. By 
the time the oocyte reaches the Mil stage, it is already a highly specialized cell capable of remodeling the 
sperm nucleus and restoring totipotency to the diploid zygote. In addition, somatic cell nuclear transfer 
(SCNT) into enucleated oocytes has shown that, when challenged with a somatic nucleus, the oocyte 
cytosol will attempt to completely erase the somatic epigenetic phenotype and transform the nucleus to a 
totipotent state. Although failures in this epigenetic reprogramming have been reported elsewhere, there 
are reported cases in which animals produced by SCNT have developed normally (Ref 38). Reinforcing 
the notion that, when SCNT is performed under ideal circumstances (yet to be described), the oocyte 
cytosol can turn a somatic nucleus into a totipotent one. Recent somatic cell-ESC fusion experiments 
suggest that ESCs retain similar as yet undefined components that can initiate the reprogramming of 
introduced somatic nucleus to confer pluripotency to the somatic nuclei (as measured by phenotypic and 
by transcriptional analyses). In this respect, the cytoplasmic environment of both ESCs and oocytes 
shares the capacity to reprogram a somatic nucleus (Ref 39-41). Furthermore, recent work suggests that 
mESCs can give rise to PGCs that can differentiate into cells similar to oocytes and sperm in a period 
significantly shorter when compared with in vivo gametogenesis (Ref 42,43). Taken together, this 
evidence indicates that there is a common set of genes between oocytes and ESCs responsible for 
reprogramming somatic cells. To identify these genes, differentially up-regulated transcripts in the oocyte 
were compared and intersected with recently published data for genes that are expressed preferentially in 
ESCs (Ref 44). Our analysis of the Sato et al.(Ref 44) data revealed 1,626 hESC differentially up- 
regulated genes. When these hESC genes were intersected with our human differentially up- regulated 
oocyte transcripts, we found an overlap of 388 transcripts (See Figure 4b) and Data Set 5, which is 
available in Ref 50). Our final intersection was drawn between these 388 human transcripts and a list of 
591 genes common to mouse oocyte and mESCs (See Figure 4C) and Data Set 6, which is available in 
Ref 50). A final list of 66 unique genes (78 transcripts) common amongst mouse oocyte, mESCs, human 
oocyte, and hESCs was obtained; five of these genes have unknown functions (See Figure 4D); Table 3, 
which is published as supporting information in Ref 50 on the PNAS web site.. Among these 66 unique 
genes, there is a high abundance of chromatin and DNA modifying genes, suggesting that the genomes 
of both the ESCs and oocytes are maintained in a responsive or primitive-naive state, potentially primed 
for the activation of a whole repertoire of genes leading the generation of all tissue lineages. Whether any 
of these genes are involved in the ability to reprogram somatic nuclei should be further explored. 

RESULTS 

[00087] Table 1. Selected representations of genes common between human oocyte and mouse oocyte 
with homologues functionally characterized in the mouse oocyte (15 selected genes out of the top 100) 
Gene title Gene Reported function(s) in murine oocytes Reference symbol 

Developmental DPPA3 Maternal effect gene required for oocyte (51) pluripotency development 
associated 3 



Zona pellucida ZPi, ZP: Required for successful fertilization in (52) glycoprotein 1 which the sperm must 
bind and penetrate 

(sperm receptor); the ZP; prevention of further sperm entry zona pellucida following fertilization; and 
prevents glycoprotein 3 blastocyst adherence to oviduct wall as it 

(sperm receptor) travels down the uterus 

v-mos Moloney MOS Activation of MAPK cascade that enables (53) murine sarcoma viral progression 
through oocyte maturation, oncogene homolog and subsequent maintenance of meiotic metaphase II 
arrest 

Growth GDF9 Essential for ovarian follicular growth and (54) differentiation factor function (55) 

9 

Centromere protein CENPA, A component of meiotic kinetochores (56) 

A, 17 kDa; CENPE required for meiosis I (57) centromere protein 

E, 312 kDa 

BUBl budding BUBlB Contribute to meiotic metaphase II arrest (58) uninhibited by independent of spindle 
checkpoint benzimidazoles 1 activation homolog β (yeast) Maternal embryonic MELK May play a role in 
regulatory signal (59) leucine zipper kinase transduction pathways in oocyte 

BCL2-like 10 BCL2L10 A component of the Bcl2 protein family (60) 

(apoptosis facilitator) important for the activation of a proapoptotic signaling pathway in ageing oocytes 

Cyclin Bl CCNBI l Interacts with the cdc2 protein kinase to (61) form the maturation promoting factor 
essential of oocyte maturation and arrest 

Cyclin A2 CCNA2 Distinct roles in both mitosis and meiosis (62) based on expression and localization 
changes in oocytes from embryonic stages to postnatal and adult ovaries 

Aurora kinase B; AURKB, Meiotic prophase I reactivation via the (63) aurora kinase C AURKC 
polyadenylation of specific transcripts such as Mos serine/threonine kinase 

DNA (cytosine-5-)- DNMT 1 , Maintenance methylation of imprinted (64) methyltransferase 1; DNMT3b* 
alleles in oocyte and preimplantation (65) DNA (cytosine-5-)- embryos (66) methyltransferase 3 β 

♦DNMT3b is ranked within the top 200 genes. 

[00088] Table 2. List of 66 unique genes in common among human oocytes (hOoc), mouse oocytes, 
human embryonic stem cells (hESCs), and mouse ESCs (mESCs) 

Gene Fold Fold symbol Gene title change change (hOoc) (hESC) 

PDKl Pyruvate dehydrogenase kinase, isoenzyme 1 65.81 6.96 

POU5F1 POU domain, class 5, transcription factor 1 6.75 5.67 



JARID2 Jumonji, AT rich interactive domain 2 48.31 5.05 

MSH2 mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli) 44.93 3.93 

DNMT3B DNA (cytosine-5-)-methyltransferase 3 β 42.64 3.45 

PTTGl Pituitary tumor-transforming 1 127.7 3.33 

CDTl DNA replication factor 5.87 3.24 

KJF2C Kinesin family member 2C 10.53 3.15 

BUB 1 budding uninhibited by benzimidazoles 1 homolog BUBl (yeast) 39.85 3.05 

ORClL Origin recognition complex, subunit 1-like (yeast) 37.76 2.99 

BIRC5 Baculoviral IAP repeat-containing 5 (survivin) 3.09 2.92 

UNG Uracil-DNA glycosylase 20.81 2.88 

CCNA2 Cyclin A2 224.87 2.77 

STK6 Serine/threonine kinase 6 188.96 2.76 

NASP Nuclear autoantigenic sperm protein (histone-binding) 7.4 2.68 

CCNBl Cyclin Bl 138.32 2.66 

MCM7 minichromosome maintenance deficient 7 (Saccharomyces MCM7 cerevisiae) 5.13 2.63 CHKl 
checkpoint homolog (Schizosaccharomyces 

CHEKl pombe) 48.59 2.52 

CENPA Centromere protein A, 17 kDa 527.02 2.48 

PRUVΪ2A Primase, polypeptide 2 A, 58 kDa 8.9 2.42 

C10orf86 Chromosome 10 open reading frame 86 21.37 2.31 

EXOSC7 Exosome component 7 15.45 2.26 

AKAPl A kinase (PRKA) anchor protein 1 34.31 2.25 

CSPG6 Chondroitin sulfate proteoglycan 6 (bamacan) 25.77 2.22 

MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast) 30.33 2.2 

CCNB2 Cyclin B2 204.76 2.19 

USPlO Ubiquitin-specific peptidase 10 3.26 2.1 



PIAS2 Protein inhibitor of activated STAT5 2 5.2 2.09 

Asp (abnormal spindle)-like, microcephaly-associated 

ASPM (Drosophila) 836.86 2.08 

POLE2 Polymerase (DNA directed), ε 2 (ρ59 subunit) 31.24 2.07 

TTK TTK protein kinase 194.33 2.07 

DNA2L DNA2 DNA replication helicase 2-like (yeast) 18.76 2.01 

ECT2 Epithelial cell-transforming sequence 2 oncogene 43.1 2 

MCM2 minichromosome maintenance deficient 2, mitotin (S. 

MCM2 cerevisiae) 71.22 1.98 

SNRPDl Small nuclear ribonucleoprotein Dl polypeptide 16 kDa 5.2 1.97 MCMlO minichromosome 
maintenance deficient 10 (S. 

MCMlO cerevisiae) 9.91 1.96 

NUPS8 Nucleoporin 88 kDa 9.41 1.96 

NUP54 Nucleoporin 54 kDa 7.51 1.91 

CKS IB CDC28 protein kinase regulatory subunit IB 27.18 1.88 

SAP30 sin3-associated polypeptide, 30 kDa 9.71 1.87 

FLJ20364 Hypothetical protein FLJ20364 25.52 1.82 

SART3 Squamous cell carcinoma antigen recognized by T cells 3 15.78 1.82 

HSPA14 Heat shock 70 kDa protein 14 13.69 1.82 

HMGB2 High-mobility group box 2 6.08 1.81 

DCLRElA DNA cross-link repair IA (PSO2 homolog, S. cerevisiae) 41.63 1.75 

TCLlA T cell leukemia/lymphoma IA 118.95 1.75 

RRM2 Ribonucleotide reductase M2 polypeptide 73.43 1.75 

ASFlA ASFl anti-silencing function 1 homolog A (S. cerevisiae) 56.65 1.75 

C 14orf94 Chromosome 14 open reading frame 94 27.15 1.75 

GMNN Geminin, DNA replication inhibitor 14.18 1.74 



PLKl Polo-like kinase 1 (Drosophila) 9.03 1.73 

FLJl 1305 Hypothetical protein FLJl 1305 25.08 1.71 

BLM Bloom syndrome 12.51 1.68 

SMNl Survival of motor neuron 1, telomeric 7.99 1.66 CDCA3 Cell division cycle associated 3 27.59 1.65 

NUP93 Nucleoporin 93 kDa 11.92 1.63 

TRIP 13 Thyroid hormone receptor interactor 13 43.14 1.55 

ORC6L Origin recognition complex, subunit 6 homolog-like (yeast) 59.73 1.52 

NXIP 107 Nucleoporin 107 kDa 19.41 1.52 

TCOFl Treacher Collins-Franceschetti syndrome 1 21.64 1.51 

TCERGl Transcription elongation regulator 1 3.71 1.51 

MCM4 minichromosome maintenance deficient 4 (S. MCM4 cerevisiae) 6.14 1.5 

NAPlLl Nucleosome assembly protein 1-like 1 3.18 1.48 

MRPLl 8 Mitochondrial ribosomal protein Ll 8 8.8 1.46 

DHFR Dihydrofolate reductase 85.24 1.45 

MAPKAPK5 Mitogen-activated protein kinase-activated protein kinase 5 3.43 1.45 

[00089] 

Table 3. Information of the primers and their sequences used for the validation of the microarray 
experiment by RT-PCR 

Gene Accession no. Sequence Product size, bp 

OCT4 NM 002701 S'-GAGTGAGAGGCAACCTGGAG-S' 274 

5I-GTGAAGTGAGGGCTCCCATA-3I 

STELLA AY317075 5 385 

'-CTCAAATCTCCTCCGAGACG-S' I-TGAAGTGGCTTGGTGTCTTG-3I 

ESGl NM 001025290 5'-AGAGGTGTTCC AGGTCC AGA-31 341 

S'-GCTCTGGCCACAACCTAATC-S' 

VASA AY004154 5'-TGGGACATTCAATTCGACAA-S' 364 



5•-GAGAACTGGCCAACTTGGAG-3I 

GDF9 NM 005260 5•-CTGCCTATCCTGTGGGAGAA-3I 301 

S'-ACTGGAGAGCCATACCGATG-S' 

ZPl NM 207341 5'-GGCTTCTGCAGAGGACAGAC-S' 344 

5'-TCGTCGCTGTCTTGTAGTGC-3' 

HlFOO NM 153833 S'-AGTCGGGAGAGGCTAGGAAG-S' 306 

5'-GTACCACCTTGGACCCACTG-3I 

CDH3 NM 001793 5'-GCTACCGCATCCTGAGAGAC-3' 376 

5'-TCACCTTCCTCGTTGACCTC-S' 

TUBB4Q U8311O 5'-CTGGTGTCTGCTACCGTGAG-3' 356 

S'-GGGAGCCAGTCAGCAAAGTA-S' 

ACTB NM 001101 5 496 

•-GGCATCCTCACCCTGAAGTA-3' 

-CCATCTCTTGCTCGAAGTCC-S1 [0090] The Tables referenced in the Examples are set forth supra. Li 
addition Figure 7 contains a compilation of selected overrepresented gene Ontology (GO) biological 
processes in oocytes identified by Expression Analysis Systematic Explorer (EASE) (EASE score less 
than 0.05). Figure 8 contains a listing of 101 genes identified according to the invention as being 
upregulated by in vivo matured human oocytes. As noted supra, these genes and the corresponding gene 
products are useful markers of undifferentiated cells and are useful in effecting the transdifferentiation 
and/or dedifferentiation of somatic cells e.g., into pluripotent or multipotent cells. These cells may be used 
in cell therapy and for the study of cell differentiation and embryogenesis. 

CONCLUSIONS AND APPLICATIONS OF THE PRESENT INVENTION 

[0091] This invention provides a comprehensive expression baseline of gene transcripts present in in vivo 
matured human Mil oocytes. Using the most recent Affymetrix Human GeneChip, we have identified 
5,331 transcripts highly expressed in human oocytes, including well known genes such as FIGLA, 
STELLA, VASA, DAZL, GDF9, ZPl, ZP2, MOS, OCT4, NPM2, NALP5/MATER, ZARl, and HlFOO. More 
importantly, 1,430 of these up-regulated genes have unknown functions, arguing for the need for further 
studies aimed to elucidate the functional role of these genes in the human oocyte. 

[0092] We have also identified a significant number of genes common between hESCs and MII oocytes. 
Such genes may provide the missing link between ESCs and Mil oocytes and may serve as genetic 
resources to identify ESCs that have full potential for differentiation into an oocyte. [0093] The results of 
the invention will facilitate a greater understanding as to the biological role of these genes and will expand 
enhance the understanding of the meiotic cell cycle, fertilization, chromatin remodeling, lineage 
commitment, pluripotency, tissue regeneration, and morphogenesis. The practical implications of 
compiling gene expression information on human gametes and embryos is enormous and will also bolster 
efforts to solve problems from infertility to degenerative diseases. 



[0094] This invention in particular provides a transcriptome of 101 genes expressed by human oocytes. 
These genes and the orthologs of these genes are involved in the differentiation based on their specific 
expression in oocytes. Therefore, the introduction of one or more of these genes or the corresponding 
gene products should result in the transdifferentiation of a desired somatic cell into another cell type 
and/or lengthen the lifespan of said cell. 

10095] Particularly the introduction of at least one of said genes or incubation of a somatic cell or the 
nucleus or chromatin mass derived therefrom with a medium containing at least one of said gene 
products will result in the partial or complete dedifferentiation or reprogramming of a desired somatic cell 
into a pluripotent or multipotent cell., e.g., an adult stem cell or an embryonic cell type. Cells which 
transdifferentiate or dedifferentiate may be detected by screening by at least one marker that is specific 
for the particular cell type. For example, it is known that embryonic stem cells express certain genes such 
as Oct4, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 and alkaline phosphatase. Also, dedifferentiated cells or 
cells having enhanced lifespan may be detected based on an analysis of telomerase expression or 
telomere length. (Dedifferentiated cells will possess longer telomeres relative to parent differentiated cell). 
The subject methods may also be combined with the reprogramming procedures disclosed 
inUS2005014258 published January 20, 2005 and US Patent No. 7,253,334, issued on August 7, 2007, 
both of which are incorporated by reference in their entirety herein. In the present invention the cells or 
the nucleus or chromatin mass derived therefrom with initially be contacted with a cocktail containing a 
significant number of the subject human oocyte specific gene products, e.g. 50, 40, 30, 20, 10 or more, 
and the cocktails which result in dedifferentiation will then be modified by removal of different gene 
products one at a time in order to determine the gene products which are essential for dedifferentiation or 
reprogramming, as well as the cocktail of constituents that achieves optimal results, i.e., production of cell 
with a stem cell phenotype. The optimal ratios and concentrations of these constituents and incubation 
time for the desired dedifferentiation will also be determined. [0096] These transdifferentiated or 
dedifferentiated cells may be used e.g., for cell therapy or for study of the differentiation process. 
Additionally, these cells may be used to produce artificial tissues and organs by culturing said 
dedifferentiated cells in vitro e.g., in cell culture apparatus that are designed to facilitate the formation of 
desired cell structure and morphology. Additionally, these cells may be introduced into non-human 
animals as xenografted cells for example by injecting the dedifferentiated into desired organs. For 
example, dedifferentiated cells may be used to study the effect of dedifferentiated cardiac cells on 
damaged heart tissue to determine whether these cells promote the healing or regeneration process. 
Alternatively, dedifferentiated immune cells may be introduced into immunodefϊcient animals to assess 
whether this results in restoration of immune function. 
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Claims 

CLAIMSWe claim: 
1. A transcriptome comprising a set of genes expressed by a normal mature human oocyte, wherein said 
transcriptome comprises at least 10 of the 101 genes contained in the sequence listing herein or their 
non-human mammalian orthologs.. 
2. The transcriptome of claim 1 which comprises at least 20 genes. 
3. The transcriptome of claim 1 which comprises from 20-50 of said 101 genes. 
4. The transcriptome of claim 1 which comprises from 50-75 of said 101 genes. 
5. The transcriptome of claim 1 which comprises from 75-101 of said 101 genes. 
6. A human or non-human mammalian oocyte which has been genetically modified such that it does not 
express at least one of the genes contained in Figure 8 or an ortholog thereof. 
7. A human or non-human mammalian oocyte which has been genetically modified such that it expresses 
at least one of the genes contained in Figure 8 or an ortholog thereof under the control of a heterologous 
regulatable promoter. 
8. A method of dedifferentiating or transdifferentiating a somatic cell comprising introducing into a desired 
somatic cell or into a media which is in contact with said somatic cell at least one of the 101 genes or the 
polypeptides expressed thereby which are contained in Figure 8 or an ortholog thereof. 



9. The method of claim 8 wherein at least 3 of said genes or the corresponding are introduced into said 
somatic cell or into a culture medium that contains said somatic cell.. 
10. The method of claim 8 wherein said method results in the dedifferentiation of said somatic cell. 
11. The method of claim 8 wherein said method increases the lifespan of said cell. 
12. The method of claim 11 wherein said method results in the conversion of said somatic cell into a 
pluripotent or multipotent cell. 
13. The method of claim 8 wherein the cells are screened for pluripotency based on the expression of at 
least one gene that is selectively expressed by pluripotent cells. 
14. The method of claim 13 wherein said polypeptide is selected from Oct4, telomerase and SSEA-3, 
SSEA-4, TRA- 1-60, TRA- 1-81 and alkaline phosphatase. 
15. The method of claim 14 wherein said expression is detected using an antibody or other ligand that 
specifically binds to one of said polypeptides. 
16. The method of claim 8 wherein the somatic cell is a human cell. 
17. The method of claim 14 wherein said somatic cell is selected from a fibroblast, lymphocyte, 
endothelial cell, keratinocyte, bone cell, neural cell, heart cell, kidney cell, tooth cell, lung cell, skin cell, 
immune cell, stomach cell, esophageal cell, tracheal cell, liver cell, gall bladder cell, ovarian cell, urethral 
cell, testicular cell, red blood cell, diaphragm cell, muscle cell, a sensory cell involved in sight, hearing, 
taste, smell, or touch, and a pancreatic cell. 
18. The method of claim 8 which converts said cell into an embryonic or adult stem cell type. 
19. The method of claim 8 which converts said cell into an embryonic-like stem cell. 
20. The method of claim 8 wherein the resultant transdifferentiated cell is itself suitable for cell therapy or 
is used to derive somatic cells which are suitable for cell therapy. 
21. The method of claim 8 wherein said somatic cell is contained in a xenograft contained in a non-human 
mammal. 
22. The method of claim 8 wherein said cells are contained in a plurality of microtiter wells which are each 
transfected or contacted with a different set of genes or a composition comprising polypeptides encoded 
thereby corresponding to the set of 101 genes contained in Figure 8. 
23. The method of claim 22 wherein each of said microtiter wells containing a particular somatic cell is 
screened for the expression of at least one marker characteristic of a dedifferentiated cell type. 
24. The method of claim 23 wherein said dedifferentiated cell type is a pluripotent or multipotent cell. 
25. The method of claim 24 wherein said pluripotent or multipotent cell type is an embryonic stem cell or 
adult stem cell type. 
26. The method of claim 22 wherein the somatic cells are selected from a fibroblast, endothelial cell, 
keratinocyte, bone cell, neural cell, heart cell, kidney cell, tooth cell, lung cell, skin cell, immune cell, 
stomach cell, liver cell, ovarian cell, urethral cell, testicular cell, red blood cell, diaphragm cell, muscle cell, 
sensory cell, and pancreatic cell. 
27. A method of identifying, enriching or purifying dedifferentiated human cells from differentiated cells in 
a mixed cell sample comprising the use of a probe that specifically binds to one of the genes or gene 
products contained in Figure 8. 
28. The method of claim 27 wherein the probe is an antibody or labeled oligonucleotide that specifically 
binds to one of said genes or the corresponding gene products. 
29. The method of claim 27 which comprises a FACS or magnetic bead cell separation procedure. 
30. A method of treating a subject that involves the introduction or transplantation of cells wherein the 
treatment method comprises introducing dedifferentiated or transdifferentiated cells produced according 
to claim 8. 
31. The method of claim 30 wherein the somatic cells used for dedifferentiation or transdifferentiation are 
obtained from the treated subject or a genetically compatible donor. 
32. The method of claim 30 which is used to treat a condition selected from cancer, autoimmunity, 
infection, inflammation disorder, and an allergic condition. 
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