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Abstract— This paper presents the design of an Analog-to-
Information spectral decomposition scheme suitable for parallel
low-power analog and mixed-signal VLSI implementation. The
novel scheme extracts sufficient information to achieve good back-
end signal detection and classification performance while using
less power than purely digital spectral techniques such as FFT.
Simulations of a prototype system in a mixed-signal 130 nm
CMOS process show a feasible solution space given an on-line
self-calibrating system.

I. INTRODUCTION

Wireless sensor systems rely on very low power operation
to extend service lifetimes. Transmission of sensor node data
is the largest portion of a node’s active-energy budget. Systems
reduce the required transmission bandwidth by performing a
portion of the processing on each node, only transmitting the
results instead of raw sampled sensor data.

On-node computation in the digital domain requires a
relatively high-rate ADC to first sample the sensed waveforms
for subsequent processing. If, however, the initial signal pro-
cessing is performed in the analog domain, the system ADC
can be moved later in the signal chain and operated at a lower
rate. Such processing operations serve to remove redundancy
in the signal and extract relevant information for back-end use.

Sensor systems for detection and classification typically use
spectral techniques to achieve good performance. Extraction of
spectral information typically uses the Discrete Fouriér Trans-
form (DFT) after sampling the sensed waveform. Calculating
the transform, even with the efficient Fast Fouriér Transform
(FFT) algorithm, uses the most system power next to data
transmission. Reported power measurements using Crossbow’s
Mica2 sensor node module in an acoustic vehicle classification
application show power usage of 23.9µW for a 512-point
FFT versus 0.28µW for the feature selection and classification
function using Support Vector Machines [1]. AdaBoost-based
classification is adapted to an analog front-end in [2].

Classification systems involving rotating machinery such
as moving vehicles or ball bearings use the periodic nature
of the signal source to select only the harmonically-related
spectral coefficients to build a harmonic model. Calculation
of the model parameters (fundamental frequency, and magni-
tude/phase of each harmonic) for the Harmonic Line Associ-

ation [3] technique requires narrow frequency spacing ≈ 1 Hz
to reliably resolve harmonic and non-harmonic components.
This requires both a long acquisition time and many-point FFT.
It is noted here that only a small fraction of the coefficients
are used in constructing the model parameters, the rest are
discarded.

Analog computation of a signal transform has the potential
to reduce overall power consumption by using less energy
itself and also by moving the system’s ADC to low-rate con-
version of the extracted spectral coefficients. Sampled analog
systems such as [4] implement the Cooley-Tukey “butterfly”
structure with tunable transconductors in a continuous-valued
calculation of the FFT. Another proposed approach generates
the DFT coefficients by spatially distributing a sampled wave-
form over one boundary of a passive L-C lattice and using
diffractive and refractive propagation effects to transform the
signal [5]. Analog to Information conversion with random
basis functions using Compressive Sensing (CS) theory has
also been proposed for analog systems [6].

Analog

Action??? Feature
Extraction

Feature
Extraction

ADC

ADC

InformationDigital

??? Action

Analog

Fig. 1. Top: Mixed analog/digital computation of signal features.
Bottom: Analog-to-Information’s direct feature extraction.

An Analog to Information (AtoI) spectral feature extraction
technique suited for extremely low-power parallel analog
implementation is presented in this work. Unlike the FFT,
this novel scheme calculates only the coefficients utilized in
subsequent processing, with large potential power savings.
This technique, like the analog schemes, also moves the
system ADC later in the signal chain. Unlike CS schemes,
the basis functions are not required to switch faster than the
signal’s Nyquist frequency and time- and/or frequency-domain
reconstruction is simply calculated (if required at all). The
top of Figure 1 shows a FFT-based system diagram while the
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bottom illustrates the proposed concept of directly extracting
spectral features (“information”) from the analog domain.

The rest of this paper is organized as follows. Section II
describes the AtoI scheme. Section III presents a hardware
architecture and an example design. Section IV discusses
simulated system performance in a military vehicle classifica-
tion application including estimated fabrication errors. Finally
Section V concludes the paper.

II. ANALOG TO INFORMATION SCHEME

Time-windowed and band-limited signals may be repre-
sented by their Fouriér Series (FS) coefficients given by

s(t) =
N∑

k=1

[ak cos(2πkf0t) + bk sin(2πkf0t)] with (1)

ak =

∫ tp

0

s(τ) · cos(2πkτ/tp)dτ, (2)

bk =

∫ tp

0

s(τ) · sin(2πkτ/tp)dτ, (3)

where tp is the analysis period and f0 = 1/tp.
Calculation of the FS coefficients is a continuous-time,

continuous-valued projection of the signal onto the orthogonal
set of sinusoids. Direct analog implementation requires gen-
eration of a phase-coherent set of quadrature sinusoids, four-
quadrant multiplication, and windowed integration. An analog
computer implementation in [7] requires accurate coefficient
tuning.

The AtoI scheme replaces the basis sinusoids with their
sign functions only, e.g. cos(2πkt/tp)→ sgn(cos(2πkt/tp)),
anti-podal waveforms of ±1. Fouriér Series coefficients may
be calculated from the modified projections through a simple
back-substitution as the matrix connecting the two coefficient
vectors is both sparse and unipotent [8]. However, [8] also
reported minimal classification performance degradation when
using the AtoI coefficients directly for vehicle and bearing
fault applications.

Characteristics of the AtoI scheme include:
• Reduction of the 4-quadrant multiplier to a double-pole

double-throw analog switch. The multiplier no longer sets
the noise and linearity performance of the system. Low
source and high load impedances reduce charge injection
effects and switch driving power is proportional to basis
frequency.

• Collapsing of the basis function waveform generation
requirements to timing information only. Synchronous
digital circuits are well-suited for this task.

• Moving most amplifiers except the input buffer to operate
as integrators or baseband low-pass filters allowing power
dissipation to be proportional to frequency resolution
instead of signal bandwidth.

• Allowing calculation of only the coefficients used for
back-end processing (possibly determined adaptively) in-
stead of calculating all coefficients and discarding irrel-
evant outputs. Each projection section shares only the

common input signal and timing information and may be
implemented as a parallel bank of identical channels.

• Moving the system ADC later in the signal path to
operate at reduced rate. Under the AtoI scheme, ADC
sample rate is approximately Ncoef/tp where Ncoef is the
number of coefficients used in back-end processing and
tp is the analysis period. Conversion immediately after
sensor conditioning, to use the FFT, requires a sample
rate double the entire signal bandwidth.

Sample rate reductions can be dramatic for small frequency
resolution and large signal bandwidths. For example, a system
measuring a harmonic signal with fundamental frequency of
100 Hz to the 10th harmonic at 1 Hz resolution would operate
at a sample rate of at least 2 kHz and use a 2048-point FFT.
An AtoI system would use 10, 1 Hz resolution (1 s integration
time) quadrature projection channels and sample the outputs
at an average rate of 20 Hz, yielding a two order-of-magnitude
reduction in ADC rate.

III. SYSTEM DESIGN AND IMPLEMENTATION

Figure 2 shows the projection system block diagram, il-
lustrating the parallel nature of the L channels. An input
buffer pre-conditions and distributes the sensor signal to L har-
monic projection channels. The Main Control block supervises
the system, sets input amplifier parameters, configures each
projection channel for basis frequency and operation mode,
controls integration timing, and performs channel calibration.
Output of the system is L-pairs of projection voltages in
rectangular form.
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Fig. 2. System Block Diagram

Each quadrature channel structure is shown in Figure 3.
Multipliers are transmission gates connected as a double-pole
double-throw switch to either pass-through or invert the differ-
ential signal. Basis waveforms for multiplier switch timing are
generated by a numerically-controlled oscillator (NCO). The
most-significant bit of the NCO’s 16-bit phase accumulator
(PA) is used as one waveform. Quadrature output is obtained
from adding a constant of 214 to the PA output, representing
a π/2 shift. Average frequency is controlled by setting the
PA’s 14-bit increment per clock cycle. Each channel’s digital
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Fig. 3. Projection channel architecture.
block also includes a serial register interface used by the main
control block to set mode, NCO, and OTA tuning values.

Integration is performed by an OTA-C amplifier. The ex-
ample vehicle classification application described in Section
IV uses integration times on the order of 500 ms, requiring
extremely long on-chip C/gm time constants. To allow prac-
tical on-chip integration capacitors on the order of tens of pF,
corresponding OTA transconductances are extremely low, on
the order of pS.

Deep sub-threshold transistor operation is then required for
the OTAs. Figure 4 shows the implemented OTA. It utilizes
a current divider approach to achieve low transconductance
[9]. Transistors Ma and Mb linearize the transconductance
for weak inversion operation of M1 and M2. Sub-threshold
operation also makes OTA power dissipation inversely propor-
tional to time constant and directly proportional to frequency
resolution.
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Fig. 4. Implemented current mirror OTA topology with linearization and
gain/offset tuning.

Current sources I1 and I2 are independently variable and
implemented as a current-steering DAC for post-fabrication
calibration and offset cancellation by the main control block.
The 12-bit DAC value is partitioned into a 4-bit bias level kg
and 8-bit signed bias skew ko to fine-tune transconductance
and offset, respectively. The two branch currents are then
represented as

I1,2 =

(
1 +

kg
16
± ko

128

)
iref, (4)

Figure 5 shows simulations of the integrator output for

the first harmonic channel with an integration time of 2
fundamental periods. The top row is the projection with an
input sinusoid at the harmonic frequency. Next rows are the
projections with input sinusoids at 2× and 3× the fundamental
frequency, respectively. The figure shows characteristic 1/n
response to input frequencies at odd multiples of the basis
frequency, matching the expected response.
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Fig. 5. Simulated channel outputs in response to input frequencies at
multiples of the basis frequency.

Fig. 6. Chip layout floorplan.

A prototype VLSI chip in a 130 nm mixed-signal CMOS
technology was designed and includes 48 projection channels,
shown in Figure 6. Main control functions are provided by an
on-die custom microcontroller core, timers, and I/O hardware
designed by the authors. Earlier projects have verified the
processor macro in 0.35µm and 0.18µm technologies [10].
Sensor pre-conditioning and the ADC were not included on-
chip. Table I gives some relevant specifications obtained from
simulations of the chip.

TABLE I
CIRCUIT SPECIFICATIONS.

Process: 130 nm

Channel, µC core, Total Area: 0.087mm2, 1.77mm2, 16mm2

Supply Voltages: 2.5Vanalog / 1.2Vdigital

Analog Power Consumption: 200 nW/channel, 5µW total



IV. VEHICLE CLASSIFICATION APPLICATION

A. System classification performance

Acoustic recordings of 9 vehicles passing two fixed sensor
stations were used to evaluate the feasibility of the AtoI
approach for a peace-keeping military vehicle classification
application [8]. Recorded signals were partitioned into 400 ms-
long events and sent to a signal energy detector to determine
the presence of a vehicle. Detected events were transformed
with the AtoI scheme with f0 = 5 Hz and 50 harmonics.
Each 50-element harmonic magnitude vector was presented
to a 3-layer neural network with 9 outputs corresponding to
the vehicle types.

Neural network training used 1/3 of the vehicle-present
events with the remaining used for testing. Average single-
event correct classification rate for this scheme was 87.7%.
The time-domain harmonic amplitude (TDHA) technique [8]
achieved a better average rate of 92.1%. Previously published
results using the data set achieved 89.0% classification [11].
Both TDHA and the other approach include fundamental
frequency estimation techniques and substantial digital com-
putation complexity while AtoI assumes a fixed fundamental,
is simply implemented, and performs comparably.

B. Classification including PVT errors

The range of circuit-induced errors which maintain ac-
ceptable classification performance was determined using the
simulation model of Figure 7 to account for noise, offset,
and nonlinearity effects on the projected values. Random
signals noisei and noiseh have spectral density simulated
from transistor-level simulations. The memoryless nonlinearity
function was directly extracted from the simulated OTA iout
vs. vin curve. Aggregation of all other PVT errors are simply
modelled as Gaussian random variables gainL and offsetL
with means 1 and 0 V respectively.

Classification performance was found to be insensitive
to inter-channel Gm variations up through σgain = 25%.
To maintain classification rates above 75% integrated offset
standard deviation must be < 4 mV and 10 mV at input
SNRs of 10 dB and 20 dB respectively. Maximum output
voltages of ±1.2 V for the system therefore impose severe
offset requirements of σos ≈ 3%.

Statistical modelling of the implemented design using
foundry-provided mismatch models was performed to estimate
the hardware calibration performance. Figure 8 plots pre- and
post-calibration output-referred voltage offset from a typical
Monte Carlo run with N = 100. The designed tuning DAC
was sized for small gate area and all transistor models were set

T∫
0

dt

T∫
0

dt

yIQ,1

yIQ,L

noiseh gain1 offset1

gainL offsetL
x(t)

noisei

noiseh

Fig. 7. Circuit error modelling in system-level simulation.

for maximum mismatch (non-adjacent layout) to pessimisti-
cally estimate offset.

Un-tuned offset was 40.9 mV and would result in unaccept-
able classification. However, after simulated post-fabrication
calibration, the resulting offset standard deviation is reduced to
< 1 mV. This easily exceeds the requirement of σos < 4 mV
and therefore the system is expected to achieve classification
rates better than 75%.
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Fig. 8. Monte Carlo histogram comparing pre- and post-calibration output-
referred offset in mV. Note the difference in horizontal scales.

V. CONCLUSION

An Analog to Information spectral decomposition scheme
targeted for low-power parallel mixed-signal implementation
has been presented. System architecture targeted for sub-
micron technologies was described. Prototype design in a
130 nm CMOS technology was summarized. The chip is
currently in fabrication, with measurements available for the
presentation.
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