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EVALUATION OF THE INTERACTION OF  - ADRENERGIC AGONISTS 

SUPPLEMENTATION AND HEAT STRESS ON GROWTH PERFORMANCE AND 

CARCASS COMPOSITION IN FEEDER LAMBS 

Lauren Elisabeth Kett, M.S. 

University of Nebraska, 2018 

Advisor: Ty B. Schmidt 

Forty-nine crossbred feeder lambs (wethers, n = 49; 53.3 ± 3.7 kg BW) were 

utilized to evaluate the interaction of  - adrenergic agonist (AA) supplementation and 

heat stress on growth performance and carcass composition.  Utilizing and 3 x 2 factorial 

design, lambs were randomly assigned to one of three AA supplementation: 1) Control, 

CON, 2) Ractopamine Hydrochloride at 40 mg/hd/d, RHCL, and Zilpaterol 

Hydrochloride at 2.5 mg/hd/d, ZHCL for a period of 20 d and one of two environmental 

conditions (Thermal Neutral: TN and Heat Stress: HS).  The TN environment had a 

constant thermal heat index (THI) of 16.6°C.  Within the HS environment, a cyclic 

design was utilized to achieve a THI of 29.5ºC from 10:00 to 20:00 h and a THI of 

24.5ºC from 22:00 to 08:00 h.  Starting at 08:01 and continuing to 09:59 h, temperature 

and RH were gradually increased to achieve a THI of 29.5ºC at 10:00 h and reduction of 

temperature and RH from 20:01 to 21:59 h to achieve a THI of 24.5ºC at 22:00 h. 

Regardless of AA supplementation (P = ≥ 0.09), lambs exposed to the HS environment 

had reduced DMI (P < 0.001), ADG (P = 0.002), and final BW (P = 0.03).  In addition, 

exposure to the HS environment (regardless of AA supplementation; P = ≥ 0.07) 



 
 

 
 

decreased HCW (P < 0.001), percent change in LM area (P = 0.004) and percent change 

in LM depth (P = 0.005).  There was a AA x environment interaction associated with 

RHCL supplementation and heat stress (P = 0.003).  Lambs supplemented RHCL in the 

HS environment had reduced (P = 0.003) respiration rates, when compared to CON and 

ZHCL supplemented lambs.  Supplementation of ZHCL decreased adipose tissue (P = 

0.05) and increased percent fat free lean (P = 0.01), when compared to RHCL and CON 

lambs.  Within the current study, both heat stress and AA supplementation had an 

impact on growth performance and carcass composition.  However, the data does not 

indicate that there was any significant interaction between AA supplementation within a 

heat stress environment on growth performance or carcass composition in feeder lambs.  
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CHAPTER I 

INTRODUCTION 

To improve growth and efficiency of livestock different growth enhancement 

technologies are utilized, including the use of   − adrenergic agonists (AA).  Two AA 

approved for use in livestock are ractopamine hydrochloride (RHCL), a 1 – adrenergic 

agonist, and zilpaterol hydrochloride (ZHCL), a  - adrenergic agonist.   − adrenergic 

agonists are phenethanolamines, similar to the endogenous catecholamines epinephrine 

and norepinephrine that function as energy repartitioning agents (Pearson and Dutson, 

1991).  Supplementation of a AA increases final live weight, increases ADG, improves 

G:F, and increases HCW when supplemented to feedlot cattle (Lean et al., 2014).  

Additionally, supplementation of RHCL to finishing swine and supplementation of 

RHCL or ZHCL in lambs resulted in improved growth performance and feed efficiency 

(Garbossa et al., 2013; Lopez-Carlos et al., 2010).  With improvements in growth 

performance and carcass merit AA can serve as a valuable tool for the efficiency and 

sustainability of livestock production not only in the US, but worldwide. 

Heat stress is the result of an imbalance between heat load and heat dissipation of 

an object and its environment.  A homeostatic imbalance during heat stress causes heat 

load to be greater than the amount of heat loss (Mahesh Singh et al., 2016).  Decreases in 

performance due to heat stress include decreased feed intake to decrease metabolic heat 

production, which allows the animal to cope with the surrounding environmental heat 

(Mitlöhner et al., 2001).  Belasco et al. (2015) reported a 10% decrease in ADG and a 

9.9% increase in G:F as cattle spent more time within feedlots when temperatures were at 
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extremes. When exposed to heat stress, mortality rate in cattle within feedlots increased 

by 0.5% and cattle profits resulted in a $78/hd loss (Belasco et al., 2015).  In 1999, high 

heat and humidity in Nebraska resulted in more than 5,000 cattle deaths and a $21.5 to 

$35 million loss in cattle production (Hungerford et al., 2000).  Due to this negative 

economic impact it is important to find ways to monitor and alleviate heat stress to ensure 

there is a positive impact on growth and animal well-being.  Therefore, the following 

literature review evaluates the overall effects of AA supplementation and heat stress on 

performance and production. 
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CHAPTER II 

LITERATURE REVIEW 

I. Muscle Growth: 

 The rate and efficiency at which skeletal muscle grows is vital to ensure biological 

functionality within the living animal and the sustainable production of high-quality 

meat.  Skeletal muscle growth can be achieved through two distinct growth phases, 

hyperplasia and hypertrophy.  Muscle hyperplasia is the proliferation of muscle cells and 

occurs primarily during prenatal development (te Pas et al., 2004).  Prenatal hyperplasia 

ultimately determines the number of muscle fibers present at birth.  Muscle hypertrophy 

is the enlargement (length and circumference) of individual muscle fibers.  Being a 

postmitotic tissue, the majority of muscle growth postnatally is achieved via hypertrophy 

(te Pas et al., 2004).  Satellite cells are mitotically active cells that when activated 

proliferate and fuse to existing myofibres to cause an increase in muscle volume (Moss 

and LeBlond, 1971).  Muscle hypertrophy is also a result of alterations in protein 

accretion when the rate of protein synthesis exceeds the rate of protein degradation.  

During maturational hypertrophy, or hypertrophy in response to various stimuli, this 

change in protein accretion is controlled through changes in the circulating 

concentrations of anabolic hormones.   

 The rates of protein synthesis and protein degradation are important to the 

regulation of protein turnover (Demling, 2005).  Anabolic hormones are key hormones 

during energy and protein regulation.  Major regulation hormones include, but are not 

limited to, insulin, growth hormone, and insulin-like growth factor – I (Demling, 2005).  



4 

 
 

Insulin is produced by the  cells within the islets of Langerhans located within the 

pancreas (Swatland, 1994).  Insulin secretion is stimulated by an increased concentration 

of glucose in blood (Nelson and Cox, 2013).  While insulin receptors are located 

throughout the body, the primary target locations include the liver, muscle tissue, and 

adipose tissue (Norman and Henry, 2015).  When insulin binds to insulin receptors on 

muscle and liver this stimulates the uptake of glucose and increases production of 

glycogen (Nelson and Cox, 2013).  Binding of insulin to the insulin receptors on muscle 

tissue also stimulates the uptake and utilization of amino acids to stimulate protein 

synthesis (Swatland, 1994; Demling, 2005).    

 Growth hormone (GH) is a peptide hormone produced by somatotroph cells in the 

anterior pituitary that stimulate the production of insulin-like growth factor I (IGF-I) to 

stimulate satellite cell proliferation and increases lipolysis and protein synthesis (Norman 

and Henry, 2015; te Pas et al., 2004).  Insulin-like growth factor – I is a peptide hormone 

that causes proliferation and differentiation during prenatal development, and 

hypertrophy in postnatal development (te Pas et al., 2004).  Neural pathways control 

secretion of GH and are stimulated by growth hormone releasing hormone, and are 

inhibited by somatostatin (Norman and Henry, 2015).  When secreted into circulation, 

GH binds to growth hormone receptors (GHR) located on the membranes of tissues such 

as the liver, muscle, and adipose (Demling, 2005).  When GH binds to the liver, IGF – I 

is synthesized and secreted into circulation.  Approximately 98% of circulating IGF-I 

bind to IGF binding proteins causing a stimulation of amino acid uptake, increased 

protein synthesis and decreased protein degradation (Norman and Henry, 2015; Demling, 

2005; te Pas et al., 2004). 
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II. Adrenergic Receptors: 

For more than 50 years, growth enhancement technology has been investigated 

and utilized to repartition energy to improve growth in livestock.  Ahlquist (1948) was 

one of the first to introduce two classes of adrenergic receptors: the  - and -adrenergic 

receptors.  He suggested that the  − receptor associates with excitatory responses like 

vasoconstriction, while the  − receptor associates with inhibitory responses like 

vasodilation.  Thus, each adrenergic response is highly depended on the sub-type and 

location of the receptor (Beerman, 2002).  Adrenergic receptors are divided into two 

classes,  (AR) and  (AR).  α – adrenergic receptors consist of two subclasses, 1 and 

2, and AR consist of three subclasses,  , and  (Pearson and Dutson, 1991).   – 

adrenergic receptors are located on most mammalian cell plasma membranes; however, 

some tissues have a greater affinity for specific AR.   – adrenergic receptors are 

prominent in cardiac tissue, 2AR in bronchial, skeletal muscle, and adipose tissue, and 

AR in brown adipose (Mersmann, 1998). 

Adrenergic receptors are ubiquitous receptors belonging to the seven-

transmembrane receptor superfamily which signals through a heterotrimeric G-protein 

(Rasmussen et al, 2011).  The seven-transmembrane structure includes seven 

hydrophobic domains and exposed hydrophilic loops, composed of amino acids, which 

anchor into the cells plasma membrane (Norman and Henry, 2015).   G-proteins are 

heterotrimeric and consist of three subunits (  and ) that mediate cellular responses 

(Rasmussen et al., 2011).  Cellular responses are dependent on the specificity of the G-

protein: either Gs, the stimulatory response, or G, the inhibitory response.  These 



6 

 
 

specific G- proteins are responsible for the stimulation or inhibition of adenylate cyclase 

and the production of cyclic adenosine monophosphate (cAMP) from ATP (Norman and 

Henry, 2015).  

The three subtypes of AR work in a similar manner when bound to natural or 

synthetic substances to signal a response.   – adrenergic agonists enter the body through 

oral ingestion and travel through the circulatory system.  Once a AA binds to a AR of 

the target cell, guanosine diphosphate (GDP) releases and guanosine triphosphate (GTP) 

binds causing the α-subunit to dissociate from the β and γ subunits of the Gs-protein 

(Norris and Carr, 2013).  The dissociated Gsα subunit binds to the catalytic portion of the 

enzyme adenylyl cyclase to produce cAMP from ATP (Norris and Carr, 2013).  Cyclic 

adenosine monophosphate is a secondary messenger that initiates intracellular responses 

to amplify a signal from the first messenger at the receptor of the G-protein (Norris and 

Carr, 2013).  When concentrations of cAMP increase, protein kinase A is activated 

releasing different catalytic subunits to phosphorylate intracellular proteins to elicit cell 

responses (Mersmann, 1995; Mills, 2002; Norman and Henry, 2015).  Protein kinase A is 

a cytosolic enzyme that phosphorylates enzymes in the cell to activate enzymatic 

breakdown of glycogen to glucose-phosphate, along with activation of hormone-sensitive 

lipase in adipose cells.  This process provides energy for muscle cells and liver cells and 

production of non-esterified fatty acids from fat cells (Norris and Carr, 2013).  In 

livestock production this mode of action is to increase lean muscle mass through 

increased protein accretion and decrease adipose tissue through increased adipose 

degradation (Mersmann, 1998). 
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  - Adrenergic Agonists: 

 – adrenergic agonists are synthetic phenethanolamines similar to the 

neurotransmitter norepinephrine and adrenal medullary hormone epinephrine (Pearson 

and Dutson, 1991).  Norepinephrine is synthesized by sympathetic postganglionic fibers, 

while epinephrine is produced by the adrenal medulla.  Neuroendocrine cells in the 

adrenal gland, also known as chromaffin cells, produce 80% of circulating epinephrine, 

and 20% of circulating norepinephrine (Costanzo, 2015).  Once produced, chromaffin 

granules, storage vesicles located in sympathetic nerve endings, store epinephrine and 

norepinephrine until signaled for release (Sherwood et al., 2013).  Both epinephrine and 

norepinephrine are important during stress responses, for circulation control, and energy 

metabolism.  The affinity for epinephrine and norepinephrine to bind to adrenergic 

receptors depends on the type and location of the receptor.  Epinephrine binds to 

   and 2 receptors, while norepinephrine binds to  receptors, along with  and 

 receptors with greater affinity than epinephrine (Sherwood et al., 2013).  The binding 

of catecholamines increases vasoconstriction through -receptors, while epinephrine 

increases vasodilation through   – receptors (Sherwood et al., 2013).  Therefore, a 

cellular response is dependent on what substrate binds to a specific receptor on a target 

cell.  

Two AA have been identified and approved by the United States Food and Drug 

Administration (FaD) for use in livestock production, ractopamine hydrochloride 

(RHCL) and zilpaterol hydrochloride (ZHCL).  Ractopamine hydrochloride is a 1 AA 

approved for use in swine under the tradename Paylean®, and for cattle under the 
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tradename Optaflexx® (Elanco Animal Health, Greenfield, IN).  Ractopamine 

hydrochloride was first approved in 1999 for the use in finishing swine for 14 – 28 d at a 

rate of 4.5 – 9 g/ton of feed to improve feed efficiency, increase weight gain, and carcass 

leanness (FaD: NADA, 1999).  In 2003, RHCL was approved for the use in confinement 

fed cattle during the last 28 to 42 d at a rate of 8.2 – 24.6 g/ton of feed to improve feed 

efficiency, increase weight gain and improve carcass leanness (FaD: NADA, 2003).  

Zilpaterol hydrochloride is a AA approved for use in cattle under the tradename 

Zilmax® (Merck Animal Health, Madison, NJ).  In 2006, ZHCL was approved for the use 

in confinement fed cattle during the last 20 – 40 d at a rate of 6.8 g/ton of feed to improve 

feed efficiency, increase weight gain and carcass leanness in cattle (FaD: NADA, 2006).  

Currently RHCL is approved in 26 countries for use in swine and cattle; while ZHCL is 

approved in 16 countries (with eight in progress) for use in cattle (globalfarmernetwork. 

org 2012; zilmax.com). 

IV.  - Adrenergic Agonists Impact on Growth Performance and Carcass Composition: 

Extensive research has been done looking at the impact of both RHCL and ZHCL 

on performance and carcass merit in livestock.  With extensive amount of research, Lean 

et al. (2014) conducted a meta-analysis to evaluate the impact of AA supplementation 

on feedlot cattle utilizing data extracted from 47 trials for ZHCL, and 54 trials for RHCL.  

Results from the meta-analysis indicated that the average d of RHCL supplementation 

was 30.8 ± 5.3 d and 26.6 ± 9.0 d for ZHCL supplementation (Lean et al., 2014).  In 

regard to changes in performance when compared to control cattle, RHCL 

supplementation decreased DMI by 0.003 ± 0.001 kg/d, increased ADG by 0.19 ± 0.8 
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kg/d and G:F by 0.02 ± 0.02.  Zilpaterol hydrochloride supplementation, when compared 

to controls, decreased DMI by 0.12 ± 0.5 kg/hd/d, increased ADG by 0.15 ± 0.9 kg/d and 

improved G:F by 0.03 ± 0.02 kg/kg (Lean et al., 2014).   - adrenergic agonist 

supplementation increased final BW by 8 ± 0.4 kg for both RHCL and ZHCL, while 

HCW increased 6 and 15 ± 1.3 kg with RHCL and ZHCL, respectively.  When 

comparing the two types of AA and HCW, this data puts ZHCL to have a 9 kg increase 

in HCW when compared to RHCL. With an increase in final BW and HCW, RHCL 

increased dressing percentage by 0.3%, while ZHCL increased dressing percentage by 

1.7 ± 2.2 % (Lean et al., 2014).  Overall, the meta – analysis suggested that both AA 

(RHCL and ZHCL) improve feedlot performance, dressing percentage, and HCW; 

however, cattle supplemented ZHCL had larger longissimus muscle area (8.0 ± 2.3 cm2 

vs. 1.8 cm), and a larger decrease in 12th rib fat thickness (0.11 ± 0.7 cm vs 0.0003 cm) 

when compared to cattle supplemented RHCL (Lean et al., 2014).  Additional research 

has been conducted since the meta-analysis in 2014 to evaluate the effects of 

supplementation of RHCL and ZHCL on livestock performance and well-being.  More 

recent research continues to investigate the utilization of AA supplementation and 

reports similar results. 

Steers supplemented RHCL at concentrations of 200 – 400 mg/hd/d for 30 d 

resulted in an average of 0.23 kg increase in ADG, and a 0.02 increase in G:F when 

compared to control steers (Arp et al., 2014).  Within the same study steers supplemented 

ZHCL at a concentration of 7.5 mg/kg/d for 23 d with a three d withdrawal, increased 

ADG and G:F by 0.48 kg and 0.03, respectively, when compared to both control and 

RHCL steers (Arp et al., 2014).  When steers were supplemented ZHCL or RHCL there 
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was a tendency for DMI to decrease when compared to controls.  Supplementation of 

RHCL at 300 or 400 mg/kg/d when compared to controls increased HCW by 4 kg and 6.3 

kg, respectively.  Supplementation of ZHCL increased HCW by 11.1 kg and improved 

dressing percentage by 1.4% (Arp et al., 2014).  Arp et al. (2014) also reported that 

supplementation of RHCL and ZHCL improved LM area within steers by 1.4 cm2 and 6.7 

cm2, respectively.  Utilization of AA was reported to decrease marbling score, while 

improving yields of the round and loin sub-primal cuts.  Arp et al.’s (2014) summarized 

the utilization of AA to increase steer growth performance and carcass yield when 

compared to controls. 

Two studies in 2015 utilized the supplementation of ZHCL at 8.33 mg/kg DM to 

finishing steers.  Boyd et al. (2015) supplemented ZHCL for 21 d with a three d 

withdrawal in steers.  Van Bibber – Krueger et al. (2015) supplemented ZHCL for 23 d 

with a three d withdrawal.  Both studies reported improvement in HCW, dressing 

percentage, and LM area; while having no effect on ADG and G:F.  Van Bibber – 

Krueger et al. (2015) reported an 8% decrease in DMI of steers supplemented ZHCL 

when compared to controls.  Boyd et al. (2015) found no differences in DMI between 

supplement and control steers.  Hot carcass weight improved by 14 kg with a 2% increase 

in dressing percentage for steers supplemented ZHCL when compared to controls (Boyd 

et al., 2015; Van Bibber – Krueger et al., 2015).  Additionally, LM area increased by 16.4 

and 10.6 cm2 for ZHCL steers when compared to controls (Boyd et al., 2015; Van Bibber 

– Krueger et al., 2015).  Control steers had increased USDA yield grades; however, there 

were no differences between control steers and ZHCL steers for final live weight (Boyd 

et al., 2015; Van Bibber – Krueger et al., 2015).  Within the two studies it was concluded 
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that supplementation of AA improved the growth performance and carcass 

measurements in steers when compared to controls. 

Bittner et al. (2016) recommended that the ideal supplementation of RHCL to 

finishing steers is at 200 mg/hd/d for 28 d.  Utilizing a dosage gradient of 0 to 200 

mg/hd/d over a 28 – 42 d the study reported improvements in DMI, ADG, G:F, HCW, 

and LM area as dosage concentrations increased (Bittner et al., 2016).  Dry matter intake 

decreased slightly from 10.9 kg/d to 10.6 kg/d with increasing dosage of RHCL.  

Average daily gain improved with an increased dosage of RHCL from 100 and 200 

mg/hd/d by 3.4% and 10.7%, respectively.  Additionally, G:F improved by 5% for steers 

supplemented 100 mg RHCL/hd/d and 13% for steers supplemented 200 mg RHCL/hd/d 

when compared to control steers (Bittner et al., 2016).  Ractopamine hydrochloride 

supplementation has been reported to improve HCW, and when supplemented at 100 

mg/hd/d and 200 mg/hd/d improved HCW by 2.2 kg and 4.1 kg, with no effect on 

dressing percentage (Bittner et al., 2016).  In relation to the study by Arp et al. (2014), 

Bittner et al. (2016) reported an increase in LM are by 3.0 cm2 with a dosage of 200 mg 

RHCL/hd/d.  Marbling scores did decrease by 6 units with the 200 mg RHCL/hd/d; 

however other carcass characteristics like back fat and yield grade were not different 

between control steers and RHCL steers (Bittner et al., 2016).  As the studies continue, 

the results remain similar in a sense that supplementation of a AA improves most 

growth characteristics. 

Two main factors that can alter the way a AA affects cattle is through dosage 

concentration as well as supplementation time.  Bittner et al. (2017) analyzed the changes 

in growth and carcass characteristics in finish steers supplemented RHCL at 
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concentrations of 0 to 400 mg/hd/d during a period of 28 – 42 d.  Growth factors such as 

DMI, ADG, G:F, and final body weight differed dependent on dose and duration.  When 

steers were supplemented RHCL at 200 mg/hd/d or 400 mg/hd/d there was no effect on 

DMI; however, at a dose of 300 mg/hd/d DMI decreased by 3.3% (Bittner et al., 2017).  

Supplementation of 200 mg/hd/d for 28 d improved ADG by 10.7% and G:F by 11.6%; 

while a 300 mg RHCL/hd/d steer saw no improvements in ADG with a 5.7% 

improvement in G:F.  The effect of RHCL on final live weight has been reported to have 

no effect with AA supplementation, or has been reported to increase (Lean et al., 2014).  

Bittner et al. (2017) reported that RHCL increased final live weight from 7.5 kg to 13 kg, 

dependent on dosage and feeding duration.  The best combination for increased live 

weight was in steers supplemented 300 mg/hd/d for 35 d with a 12 kg increase in live 

weight when compared to controls (Bittner et al., 2017).  With a supplementation of 

RHCL at 400 mg/hd/d, Hagenmaier et al. (2017) reported improvements in ADG by 

21.2%, G:F by 20%, with a 7 kg increase in HCW and 4 cm2 increase in LM area.  

Additionally, HCW was increased between 7.1 kg and 10.7 kg when steers were 

supplemented 400 mg RHCL/hd/d, with no differences in other carcass characteristics 

such as dressing percentage, marbling, LM area, and 12th rib back fat (Bittner et al., 

2017).  These studies come to show that selecting the correct dosage and duration for 

feeding is important to both growth characteristics as well as carcass characteristics in 

finishing steers. 

While supplementation of AA is approved for the use in cattle and swine, it is 

not approved for utilization in sheep.  Yet, there is extensive research done that utilize 

sheep as a model for future cattle work.  Supplementation of RCHL to finishing male 
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lambs at 20 ppm for 32 d resulted in a 0.03 kg/d increase in live weight gain; however, 

there was no effect on final weight, G:F, or carcass characteristics when compared to 

controls (Robles – Estrada et al., 2009).  Lopez – Carlos et al. (2010) supplemented 

lambs different dosages of RHCL (0.35 to 1.05 mg/kg/d) for 42 d and reported a 4.5% 

increase in G:F, as well as a 7.1% increase in total weight gain when compared to 

controls.  There was no effect between supplement and control lambs on DMI; however, 

as dosage of RHCL increased DMI linearly decreased (Lopez – Carlos et al., 2010).  

When comparing the differences between RHCL and ZHCL on live and carcass 

performance, ZHCL has been reported to have stronger results (Lopez – Carlos et al., 

2010; Lopez – Carlos et al., 2011).  

Supplementation of ZHCL to lambs at doses between 0.1 and 0.3 mg/kg/d for 42 

d resulted in a 2 kg increase in HCW with a 5% improvement in dressing percentage 

when compared to controls (Lopez – Carlos et al., 2010).  Zilpaterol hydrochloride also 

decreased 12th rib fat thickness by 1.9% when compared to control lambs, which was 

larger than the 0.9% decrease from RHCL.  Lopez – Carlos et al. (2010) also reported 

that ZHCL supplementation improved carcass conformation in lambs leading to a 2 cm2 

increase in LM area.  Additionally, male lambs supplemented ZHCL at 6 mg/kg/d for 32 

d, G:F was improved by 20.5% (Robles – Estrada et al., 2009). When comparing ZHCL 

(6 mg/kg DM) to RHCL (20 mg/kg DM) supplemented lambs, ZHCL improved HCW by 

3.9%, DP by 3.8%, and reduced fat thickness by 20.6% (Lopez-Carlos et al., 2011).  Use 

of AA in sheep production results in increased feed efficiency and growth which leads 

to improvement in protein synthesis and decreased adipose deposition; similar to what is 
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reported in cattle (Robles – Estrada et al., 2009).  Researchers can thus utilize sheep as a 

small ruminant model for future cattle work.     

V. Stress and the Hypothalamic–Pituitary–Adrenal Axis: 

Stress is described in the literature as a condition caused by a combination of 

factors (stressors) that alters the balance of biological systems homeostasis.  Two 

categories of stress include eustress and distress.  Eustress is stress that is not ideally 

detrimental to biological systems thus does not affect homeostasis.  Distress is stress 

caused by a stressor that poses a threat to biological systems and becomes detrimental to 

homeostasis (Moberg and Mench, 2000).  Stressors are the units that cause the stress and 

can be classified as physical, chemical, social, physiological or psychological (Sherwood 

et al., 2013).  The response to a stressor depends on the degree of stress, which can be 

described as, but not limited to, acute or chronic stress (Sherwood et al., 2013).  Acute or 

short-term stress relies on the release of catecholamines to mobilize energy resources to 

respond to quick disturbances to bring the body back to homeostasis.  Chronic or long-

term stress increases synthesis of glucocorticoids to respond to and resist a stressor 

(Sherwood et al., 2013).  The “fight or flight” response is associated with the sympathetic 

nervous system and is activated when exposure to a stressful situation occurs.  Neural 

signals are sent from the brain to the adrenal medulla where endogenous catecholamines, 

epinephrine and norepinephrine, are released (Nelson and Cox, 2013).   

A key component during stress is the hypothalamic-pituitary-adrenal (HPA) axis.  

The HPA axis is responsible for regulating the secretion of different glucocorticoid 

hormones from the anterior pituitary gland (Moberg and Mench, 2000).  Cannon (1929) 

first introduced the regulation of the HPA axis as an important system to return the body 
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back to a state of homeostasis.  The hypothalamus receives a stress signal causing the 

release of corticotropin – releasing hormone (CRH) which acts on the anterior pituitary 

section of the pituitary gland.  Adrenocorticotropic hormone (ACTH) is then released 

which stimulates the adrenal gland complex to produce the glucocorticoid, cortisol 

(Sherwood et al, 2013).  Glucocorticoids are important for the conversion of glucose to 

energy, and concentrations are regulated in order to maintain homeostasis (Moberg and 

Mench, 2000).  Every animal reacts differently to stressors; however, the biological 

functions to react to the stimulus and elicit a cell response are similar (Salak-Johnson and 

McGlone, 2007; Everly and Lating, 2013).  As exposure to stressors continues 

throughout production, animals adapt which allows a quicker return to homeostasis.  Yet, 

if the stressor continues and exceeds threshold limits, signals are sent to trigger a stress 

response (Hahn et al., 2009).  

VI. Environmental Stress: 

Environmental conditions can have a significant impact on the health, 

performance, and well – being of livestock.  Environmental stress (heat stress or cold 

stress) alter the animals ability to maintain thermal regulation.  Cold stress is a result due 

to a hypothermic response, while heat stress is a result due to a hyperthermic response.  

Hypothermic responses occur when heat loss due to environmental temperatures exceeds 

heat production resulting in decreased body temperatures (Khounsy et al., 2012).  A 

hyperthermic response occurs when heat load exceeds heat loss, enabling the animal’s 

ability to dissipate heat, resulting in increased body temperature (Srikandakumar et al., 

2003).  Both occurrences can impact the heath, performance, and well-being of livestock.   
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Factors affecting heat stress include, but are not limited to, temperature, humidity, 

radiation, wind speed, species, and breed (Lara and Rostagno, 2013; Scharf et al., 2010).    

Cold stress is not as detrimental to cattle production due to the animal’s ability to use 

metabolic heat production to maintain body temperatures, while during heat stress the 

animal must dissipate heat in order to regulate body temperature.   In confinement fed 

cattle, heat stress occurs when external environmental conditions exceed the homeostatic 

tolerance range of individuals, resulting in the inability to cope and activation of a stress 

response (Gaughan et al., 2008). 

The temperature humidity index (THI) is a standard tool utilized by production 

managers to evaluate thermal environments based upon ambient temperature and relative 

humidity (Hahn et al., 2009; Mader et al., 2006).  The Livestock Weather Safety Index 

applies the THI to classify heat stress categories as:  74 units, normal; 74 – 79 units, 

alert; 79 – 84 units; danger; and > 84 units, emergency (Mader et al, 2006).  When 

exposed to heat stress physiological and behavioral changes in cattle occur resulting in 

increased mortality and a decrease in overall production (Belasco et al., 2015).  Decreases 

in performance are largely due to decreased feed intake in order to decrease metabolic 

heat production to cope with the surrounding environmental heat (Mitlöhner et al., 2001).   

VII. Impact of Heat Stress on Performance: 

When exposed to heat stress, mortality rates of cattle within feedlots increased by 

0.5% and cattle profits resulted in a $78/hd loss (Belasco et al., 2015).  Production factors 

including health, feed efficiency, growth, and milk production are negatively affected as 

exposure to heat stress increases.  Changes in DMI are strong indicators of stress when 

exposed to heat.  O’Brien et al. (2010) reported that heat stressed cattle in environmental 
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conditions between 29°C and 40°C decreased DMI by 12% with an increase in water 

intake by 2.85 L/d.  Cattle exposed to increased temperatures (20.3°C to 29.3°C) 

decreased feed performance by 11% in DMI, 15% in ADG, and 6% in feed to gain (F:G; 

Morrison and Lofgreen, 1979).  Mitlöhner et al. (2001) also reported decreases in DMI 

by 7%, resulting in a 27 kg/hd loss in final body weight and a 16 kg loss in HCW.  Dairy 

cattle in heat stress condition between 29.7 and 39.2°C decreased DMI by 35% which 

resulted in a 35% decrease in milk production (Rhoads et al., 2008).  When the ability to 

dissipate heat decreases, due to increased environmental heat conditions, production 

decreases leading to decreased overall profit for producers.  Thus, recognition of heat 

stressed animals and utilization of different methods to mitigate stress is important.   

Animal affected by heat stress alter physiological responses such as respiration 

rate, body temperature, and heart rate to adjust to heat stress.  Gaughan et al. (2008) 

reported that when environmental temperatures reached > 25°C respiration rates 

increased, based upon noticeable and subjective increased panting scores.  In order to 

cope with heat stress, physiological functions increase in order to dissipate heat load as a 

means of returning the body back to homeostasis (Lowe et al., 2002).  Both increased 

respiration rate and increased rectal temperature correlate with an increase in the THI 

(Lowe et al., 2002).  Cattle can alter respiration rates as a biological mechanism to 

maintain a core body temperature.  Ruminants are homoeothermic animals, leading to a 

constant core temperature, and need to balance heat from metabolism with heat lost to 

heat gained from the environment (NRC, 1981; Singh et al., 2016).  In addition to 

physiological functions, factors such as genetics, coat color, current health, and the ability 
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for coping with the environment are influential in the response an animal has to heat 

stress (Gaughan et al., 2008). 

Production systems can utilize different methods to alleviate the effects of heat 

stress, like shade and misting, to improve cattle performance (Mitlöhner et al., 2001).  

Heifers exposed to misting decreased rectal temperatures by 0.8°C and respiration rate by 

nine breaths/min, while shade decreased respiration rates by 13 breaths/min (Mitlöhner et 

al., 2001).  Heat stress as a result of increased temperatures and humidity elicits a stress 

response once above threshold which in turn decreases production performance and 

health (Mader et al., 2006).  For every animal that is affected from heat stress, either 

through death or severe injury leads to a $5,000 loss in production (Mader, 2003).  

Extreme environmental conditions are a concern for producers due to decreased 

production and animal health, which could lead to decreased income as well as increased 

chances of death. 

VIII. Conclusion: 

By utilizing technologies to manage growth as well as environmental influences, 

producers can continue to increase production during times of stress.  A possible way to 

alleviate effects of heat stress is the use of AA.  Supplementation of AA results in 

vasodilation, increasing the amount of nutrient flow to the body, skeletal muscle, and 

adipose tissue (Mersmann, 1998).   Administration of ZHCL decreases body temperature 

in steers, and vaginal temperatures in heifers (Boyd et al., 2015; Buntyn et al., 2016).  

Boyd et al. (2015) also reported increased respiration rate associated with ZHCL 

supplementation, which is consistent with the FDA feed label for ZHCL.  Combinations 

of increased respiration rates and decreased temperatures due to supplementation of a 
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AA could result in increased heat loss during heat stress, although there is no direct 

evidence reported in literature.  During severe heat stress ewe lambs supplemented 10 mg 

ZHCL/ewe/d resulted in 2.3 kg increase in HCW, 2.1 increase in CCW, 7.8% 

improvement in DP, and an increased LM area by 3.4 cm2 when compared to controls 

(Macias-Cruz et al., 2010).  Previous research demonstrated that the use of AA 

alleviates symptoms of stress as well as being able to improve performance during times 

of stress.  However, a recent study suggested that there is an association between 

supplementation of AA and heat stress events that resulted in increased mortality rates 

in feedlot cattle (Loneragen et al., 2014).  Therefore, the objective for this study is to 

evaluate the impact and or interaction of βAA supplementation on growth performance 

and carcass composition of feeder lambs exposed to a heat stress challenge.  
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CHAPTER III 

THE EFFECT ON PRODUCTION PERFORMANCE AND CARCASS 

COMPOSITION OF LAMBS SUPPLEMENTATED BETA – ADRENERGIC 

AGONISTS WITHIN A CONTROLED HEAT STRESS CHALLENGE 

ABSTRACT 

Forty-nine crossbred feeder lambs (wethers, n = 49; 53.3 ± 3.7 kg BW) were 

utilized to evaluate the interaction of  - adrenergic agonist (AA) supplementation and 

heat stress on growth performance and carcass composition.  Utilizing and 3 x 2 factorial 

design, lambs were randomly assigned to one of three AA supplementation: 1) Control, 

CON, 2) Ractopamine Hydrochloride at 40 mg/hd/d, RHCL, and Zilpaterol 

Hydrochloride at 2.5 mg/hd/d, ZHCL for a period of 20 d and one of two environmental 

conditions (Thermal Neutral: TN and Heat Stress: HS).  The TN environment had a 

constant thermal heat index (THI) of 16.6°C.  Within the HS environment, a cyclic 

design was utilized to achieve a THI of 29.5ºC from 10:00 to 20:00 h and a THI of 

24.5ºC from 22:00 to 08:00 h.  Starting at 08:01 and continuing to 09:59 h, temperature 

and RH were gradually increased to achieve a THI of 29.5ºC at 10:00 h and reduction of 

temperature and RH from 20:01 to 21:59 h to achieve a THI of 24.5ºC at 22:00 h. 

Regardless of AA supplementation (P = ≥ 0.09), lambs exposed to the HS environment 

had reduced DMI (P < 0.001), ADG (P = 0.002), and final BW (P = 0.03).  In addition, 

exposure to the HS environment (regardless of AA supplementation; P = ≥ 0.07) 

decreased HCW (P < 0.001), percent change in LM area (P = 0.004) and percent change 

in LM depth (P = 0.005).  There was a AA x environment interaction associated with 
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RHCL supplementation and heat stress (P = 0.003).  Lambs supplemented RHCL in the 

HS environment had reduced (P = 0.003) respiration rates, when compared to CON and 

ZHCL supplemented lambs.  Supplementation of ZHCL decreased adipose tissue (P = 

0.05) and increased percent fat free lean (P = 0.01), when compared to RHCL and CON 

lambs.  Within the current study, both heat stress and AA supplementation had an 

impact on growth performance and carcass composition.  However, the data does not 

indicate that there was any significant interaction between AA supplementation within a 

heat stress environment on growth performance or carcass composition in feeder lambs.  

 

Keywords: β – agonist, heat stress, growth performance, carcass composition 
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INTRODUCTION 

A major concern at times of elevated heat and relative humidity is the onset of the 

negative impact/danger of heat stress.  Heat stress is an environmental stressor that results 

in the heat load exceeding heat loss, and can be influenced by factors such as 

temperature, humidity, radiation, wind speed, species, and breed (Lara and Rostagno, 

2013; Scharf et al., 2010; Srikandakumar et al., 2003).  Due to increased heat loads and a 

reduction in the ability to dissipate heat, heat stress negatively alters homeostasis which 

affects performance characteristics, economical value, and animal well – being.  St. 

Pierre et al. (2003) reported an estimated economic loss of $1.7 billion to the livestock 

industry due to increased mortality and decreased growth performance.  Heat stress has a 

significant impact on ruminants, Ruminants are susceptible to heat stress, Dixon et al., 

(1999) reported a 9% decrease in dry matter intake (DMI) and reduced body weight (25 

g/d) (Dixon et al., 1999).  Mitlöhner et al., (2001) reported that cattle exposure to heat 

stress resulted in 7% reduction in DMI and a 27 kg/hd reduction in body weight.  .   

 The Livestock Weather Safety Index (LWSI) serves as the guidelines for 

estimating the danger presented to livestock. The LWSI calculations are based upon 

ambient temperature and relative humidity (Mader et al., 2006) and applies the THI to 

classify heat load into four categories: No Stress = ≤ 74°F (≤ 23.3°C), Alert = 74 – 79°F 

(23.3 – 25.6°C), Danger = 79 – 84°F (26.1 – 28.3°C) and Emergency = ≥ 84°F (≥ 28.9°C; 

Figure 1; LCI, 1970; Mader et al, 2006).  As the THI exceeds 26.1°C, categories Danger 

into Emergency, traits such as growth performance and carcass composition begin to 

decrease, with increased rates of mortality (Morrison and Lofgreen, 1979; Rhoads et al., 

2008; O’Brien et al., 2010).   
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In the state of Nebraska alone during times of increased environmental 

temperatures and increased relative humidity, heat stress was detrimental to producers in 

the years of 1999, 2009, and 2013.  In total during these three heat events producers lost 

around 13,000 hd. of cattle which could estimate an economic loss of around $22 million 

dollars (Hungerford et al., 2000; Lincoln Journal Star, 2009; Brown-Brandl, 2013).  A 

current example in Nebraska includes a 3 d heat event (June 27 – June 30, 2018).  

Environmental temperature and relative humidity reached a high of 34°C and 40% RH, 

resulting in a temperature humidity index (THI) of 29.4°C, in the Emergency category 

(Table 1). 

In a meta-analysis of feedlot mortality conducted by Loneragen et al. (2014) there 

was a suggested association between increased rates of mortality in feedlot cattle and 

supplemented a  − adrenergic agonists (AA) during heat stress events.  A survey done 

in 2015 reported that within the United States cattle industry approximately 85% of 

producers used a type of AA in cattle finishing diets (Samuelson et al., 2016). With 

approximately 85% of finishing cattle supplemented a type of AA it is important to 

understand the possible interaction between AA and heat stress.   − adrenergic agonists 

act as energy repartitioning agents to improve growth and carcass composition in 

livestock (Etherton, 2009).  Once a AA bind to  − adrenergic receptors (AR) a 

cascade of events occurs causing phosphorylation of intracellular proteins.  This cascade 

of events leads to increased protein synthesis with decreased protein degradation in 

muscle, as well as increased lipolysis with decreased lipogenesis in adipose tissue 

(Mersmann, 1998).  Two approved AA for use in livestock are a 1AA, ractopamine 

hydrochloride (RHCL), and a 2AA, zilpaterol hydrochloride (ZHCL). Ractopamine 
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hydrochloride and ZHCL improve growth performance and carcass composition in 

finishing cattle, resulting in increased profit for producers (Lean et al., 2014).  While 

there is literature related to the separate impact of  and heat stress on the growth 

performance and carcass composition of livestock, there is limited data regarding the 

interaction between  and heat stress.  Therefore, the objective of this study was to 

evaluate the impact of different AA, heat stress, and the interaction of AA and heat 

stress on the growth performance and carcass composition of feeder lambs. 

MATERIALS AND METHODS 

Animal and Experimental Design 

All experimental procedures were in compliance with the Guide for the Care and 

Use of Agricultural Animals in Research and Teaching and approved by the University of 

Nebraska – Lincoln’s Institutional Animal and Care and Use Committee (IACUC #1300).   

Forty-nine crossbred feeder lambs (wethers, 53.3 ± 3.7 kg) were sourced and 

transported to the University of Nebraska – Lincoln’s Animal Science Complex.  Upon 

arrival, lambs were weighed, rectal temperatures recorded, ear tagged with individual 

ID’s, metaphylacticaly treated [Ivomec®; 10 mL/hd (Merial, Duluth, GA) and Draxxin®; 

1 mL/hd (Zoetis, Parsippany, NJ)].  Based upon initial BW, lambs were assigned to one 

of two blocks (block one, 39.99 ± 1.92 kg, n = 24; block two, 37.35 ± 1.92 kg, n = 25).  

Lambs were then placed into four group pens (two groups/block) with ad libitum access 

to water.  Upon receiving lambs were received a receiving ration and then transitioned to 

a 90% diet, which the lambs were fed for the remainder of the study (block 1 lambs were 

transitioned over a period of 81 d and block 2 lambs were transitioned over a period of 

109 d; Table 2).   
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 For each block, lambs were randomly allocated into one of six treatments groups: 

Control / Thermal Neutral (CON/TN; n = 9), Ractopamine Hydrochloride / Thermal 

Neutral (RHCL/TN; n = 8), Zilpaterol Hydrochloride / Thermal Neutral (ZHCL/TN; n = 

8), Control / Heat Stress (CON/HS; n = 8), Ractopamine Hydrochloride / Heat Stress 

(RHCL/HS; n = 8), and Zilpaterol Hydrochloride / Heat Stress (ZHCL/HS; n = 8).   

Six d prior to the start of the trial, lambs were moved into the assigned environments.  

Within the TN environment, lambs were placed into individual stalls (1.829 m x 0.914 

m), each equipped with an individual feed bunk and waterer.  For the HS environment, 

lambs were placed into individual stalls (1.524 m x 0.914 m) within the thermal chamber, 

and each stall was equipped with an individual feed bunk and waterer.  For both 

environments, lights were controlled through a light/dark cycle of 16 h of light starting at 

0630 h followed by 8 h of dark.    

 Utilizing the Livestock Weather Safety Index (LCI, 1970, Mader et al. 2006), a 

constant THI of 18.3°C was targeted for the TN environment.  For the HS environment, a 

cyclic temperature design was utilized to achieve a day time THI of 30°C (LCI, 1970; 

Mader et al. 2006; NOAA Heat Index of 55°C) from 1000 – 2000 h, and a night time THI 

of 23.9°C (LCI, 1970; Mader et al. 2006; NOAA Heat Index of 32°C) from 2200 – 0800 

h.  The cyclic design incorporated a 2 h heat up period from 08:01 – 09:59 h and a 2 h 

cool down period from 20:01 – 21:59 h. The THI (°F) was calculated using ambient 

temperature (T, °C) and relative humidity (RH, %) in the Temperature – Humidity Index 

equation reported by the LCI (1970) and Mader et al. (2006; {(8.0 𝑥 𝑇) +

[(
% 𝑅𝐻

100
) 𝑥(𝑇 − 14.4)] + 46.4} =  THI (°F).  The THI was then converted to °C.  For 

environments, ambient temperature and relative humidity was monitored by Hobo® 
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Temp/RH 3.5% Data Logger (Model UX100 – 003; Onset Computer Corporation, 

Bourne, MA).  Hobos were programed to record ambient temperature and relative 

humidity in 15 min intervals. 

 Ractopamine hydrochloride was supplemented at 40 mg/hd/d and ZHCL was 

supplemented at 2.5 mg/hd/d.  Proper dosage for use of AA in sheep was calculated to 

mimic the supplementation dose for cattle at 200 mg/hd/d of RHCL and 6 mg/hd/d of 

ZHCL.  For both AA treatment groups, AA was supplemented via a ground corn 

carrier incorporated into the daily offering of feed.  Lambs within the CON treatment 

groups received 200 g of fine ground corn with no addition of AA, RHCL lambs 

received 199.96 g of fine ground corn with 0.04 g of RHCL, and ZHCL lambs received 

199.9975 g of fine ground corn with 0.0025 g of ZHCL.  Daily orts, feed left over from 

the day before, were recorded at 0730 h and utilized to determine adjustment to daily 

allotment.  Orts collection began six days before supplementation began.  Beginning on d 

1, the 200 g sample of AA supplements were hand mixed into 0.91 kg of feed and 

offered at 0800 h to ensure consumption of supplementation.  The remaining allotment of 

feed was provided at 1400 h.   

Each d at 0800, 1400, and 2000 h, water disappearance, rate of respiration, and 

rectal temperature were recorded.  Water disappearance was determined utilizing an 18.9 

L bucket with a graduated scale in 1 L increments.  Amount of water in each bucket was 

recorded and then filled to 14 L to determine disappearance.  Respiration rate was 

determined via one visual observation of respiration for a period of 15 sec ever check, 

then multiplied by 4 to determine respirations/min.  Rectal temperatures were measured 

once every time point, using a ReliOn 8 second thermometer (Bentonville, AR). 
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Ultrasound Analysis 

Real-time ultrasound images were collected to evaluate the loin eye area, loin eye 

depth, back fat thickness of the 12th/13th rib, and body wall thickness.  Ultrasound was 

conducted by a trained ultrasound technician who was certified through the National 

Sheep Improvement Program from June 2010 to June 2014.  Longitudinal ultrasonic 

scans were taken by placing the transducer head in the center of the last costae. A Classic 

scanner 200 (Classic Medical Co., Tequesta, FL) equipped with a 3.5 – Mhz, 18 cm 

linear array transducer was used to collect images.  Real-time images were captured and 

evaluated to record measurements on d 1, 10 and 21. Ultrasound measurements and 

prediction equations were utilized to calculate predicted values of fat free carcass lean 

(FFL, kg), % FFL, total dissected carcass lean (TDL, kg), and % TDL (Berg et al. 1996).    

Harvest and Fabrication 

On d 21, lambs were relocated to the University of Nebraska – Lincoln Loeffel 

Meat Lab facility for harvest.  Harvest order was determined by randomly assigning 

lambs within treatment.  Live weight (prior to harvest) and hot carcass weights were 

collected and then carcasses were chilled (2°C) for 48 h.  After a 48 h chill, carcasses 

were ribbed between the 12th/13th rib, separated into the fore-saddle, hind-saddle, and 

medially separated into left and right sides.  Following fabrication, the left side of each 

carcass was fabricated into major and minor primal cuts according the USDA 

Institutional Meat Purchasing Specifications (IMPS): Square Cut Shoulder (IMPS 207), 

Rack (IMPS 204), Loin (IMPS 232), Leg (IMPS 233), breast (209) and plate/flank/fore-

shank.  Major and minor primal cuts were trimmed to an external fat thickness of 3.1 mm 

weighed and dissected to obtain lean muscle, adipose tissue, and bone.  Carcass were 
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dissected in the same order harvested to determine lean muscle mass, adipose tissue, and 

bone were weighed and recorded for the fore-saddle and hind-saddle.  At the conclusion 

of the trial, all products/by-products were retained and incinerated.  

Statistical Analysis 

 Data were analyzed as a completely randomized block design using the 

GLIMMIX procedure of SAS (SAS Inst. Inc., Cary, NC USA).  The fixed effects were 

defined as supplementation of AA, environment conditions, and the interaction of AA 

x environment conditions.  Block was utilized as a random effect and the experimental 

unit was defined as individual lamb.  Analysis of block as a random variable indicated 

there was no block effect, and random statement was removed from the analysis.  When 

main effects or interaction of the main effects were significant (P ≤ 0.05), specific 

treatment comparisons were made using PDIFF SAS. Data is reported as the LSMeans ± 

SD.  

RESULTS 

Lambs within in the TN environment were exposed to a constant to LWSI 

category of No Stress (THI of 16.6°C; Table 3).  Within the HS environment, from 10:00 

– 20:00 h, lambs were exposed to a LWSI category of Emergency (THI of 29.5°C) and a 

LWSI category of Alert (THI of 24.5°C (Table 3). 

Physiological Response 

There was an effect of environment (P < 0.001) on water disappearance and rectal 

temperature (Table 4).  There was no interaction of AA x environment (P ≥ 0.08), or an 

effect of AA supplementation (P ≥ 0.39).  Regardless of AA supplementation, lambs 
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within the HS environment had greater water disappearance (0.72 L), when compared to 

lambs within the TN environment (1.98 ± 0.89 and 1.27 ± 0.56 L).  There was a similar 

response in regard to increased rectal temperature in HS environment lambs by 0.65°C 

when compared to TN environment (39.78 ± 1.04 and 39.13 ± 0.61 °C).  An interaction 

of AA x environment was observed (P = 0.003) for respiration rate (Figure 2).  Within 

the TN environment there was no effect due to supplementation treatments (P = 0.75), 

however, within the HS environment, respiration rate decreased for lambs supplemented 

RHCL (140.2 ± 46.6 breaths/min) when compared to lambs supplemented ZHCL (P = 

0.007; 160.7 ± 48.7 breaths/min) and non-supplemented CON lambs (P = 0.02; 158.7 ± 

50.5 breaths/min). 

Growth Performance 

There was an effect of environment (P ≤ 0.002) for DMI and ADG; however, 

there was no interaction of AA x environment (P ≥ 0.48), or an effect of AA 

supplementation (P ≥ 0.13; Table 4).  Dry matter intake decreased by 0.29 kg (P < 0.001) 

in HS environment lambs (1.10 ± 0.16 kg) compared to TN environment (1.39 ± 0.22 

kg).  Average daily gain was decreased 0.08 kg/d (P = 0.002) in HS environment lambs 

(0.14 ± 0.06 kg/d) compared to TN environment (0.18 ± 0.09 kg/d).  There was no 

interaction of AA x environment (P = 0.63), or an effect of environment (P = 0.15), or 

AA supplementation (P = 0.09) for G:F.  

 For initial live BW measured on d 1, there was no interaction of AA x 

environment (P = 0.97), or an effect for environment (P = 0.25; Table 4), or AA 

supplementation (P = 0.33).  At the end of the trial, there was an effect of environment (P 

= 0.01) on final live BW (d 20), however, there was no interaction of AA x environment 
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(P = 0.91), or an effect for AA supplementation (P = 0.70).  Final live BW decreased 

2.71 kg (P = 0.01) in HS environment lambs (51.77 ± 2.97 kg) compared to TN 

environment (54.48 ± 3.03 kg).  Due to the changes in live BW over time the percent 

change in BW was determined for the overall study.  For percent change in live BW 

overall, there was an effect for environment (P = 0.003), with no interaction of AA x 

environment (P = 0.45), or an effect of AA supplementation (P = 0.11).  Percent change 

in live BW overall was decreased by 3.45% in HS environment lambs (P = 0.003; 6.12 ± 

4.52%) compared to TN environment (9.62 ± 4.52%) 

Pre-harvest body composition predicted by ultrasound measurements  

Ultrasound measurements were taken during the study to evaluate 12th/13th rib BF 

thickness, LM area, LM depth, and body wall thickness over 20 d.  For all measurements 

on d 1 there was no interaction of AA x environment (P ≥ 0.07), or an effect of 

environment (P ≥ 0.13), or AA supplementation (P ≥ 0.27).  However, on d 20 there 

was an effect for AA supplementation (P = 0.04) on 12th/13th rib BF thickness, as well 

as an effect of environment (P < 0.001) on LM area, and LM depth (Table 5).  There was 

no interaction of AA x environment (P = 0.90) on body wall thickness, or an effect 

associated with environment (P = 0.21), or AA supplementation (P = 0.67).   

For 12th/13th rib BF thickness, there was an effect for AA supplementation (P = 

0.04), but there was no interaction of AA x environment (P = 0.31), or an effect of 

environment (P = 0.11).  Supplementation of ZHCL within the TN environment 

increased 12th/13th rib BF thickness when compared to supplementation of non-

supplemented CON lambs on d 21 (0.54 ± 0.18 and 0.36 ± 0.09 cm).  For LM area and 
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LM depth, there was an effect of environment (P < 0.001), however, there was no 

interaction of AA x environment (P ≥ 0.16), or an effect for AA supplementation (P ≥ 

0.25).  Loin muscle area decreased in size with HS environment lambs when compared to 

TN environment (16.94 ± 0.34 and 18.58 ± 0.28 cm2).  Loin muscle depth decreased in 

size with HS environment lambs when compared to TN environment (2.94 ± 0.12 vs. 

3.18 ± 0.07 cm).  For percent change overall, form initial measurements on d1 to the final 

measurement on d21, there was no interaction of AA x environment (P ≥ 0.25), or an 

effect of AA supplementation (P ≥ 0.07) for any ultrasound measurement.  There was 

an environmental effect resulting in decreased LM area (P = 0.03) and LM depth (P = 

0.005) in HS environment lambs when compared to TN environments (9.39 ± 10.02 and 

15.52 ± 9.97 cm2 with 4.62 ± 5.35 and 9.42 ± 5.14 cm, respectively). 

Predicted values of total dissected lean (TDL) and fat free lean (FFL), there was 

an effect for environment (P = 0.02), however, there was no interaction of the AA x 

environment (P ≥ 0.93), or an effect of AA supplementation (P ≥ 0.85; Table 6).  

Weight of TDL decreased in HS environment lambs (12.48 ± 0.82 kg) when compared to 

lambs within the TN environment (12.98 ± 0.89 kg).  Similarly, predicted weight of FFL 

decreased in HS environment lambs (11.68 ± 0.79 kg) when compared to TN 

environment (12.15 ± 0.86 kg). For predicted percent of TDL and FFL, there was an 

effect of AA supplementation (P = 0.04); however, there was no interaction of AA x 

environment (P ≥ 0.62), or an effect of environment (P ≥ 0.06).  Lambs supplemented 

ZHCL (52.02 ± 0.74%) resulted in decreased percent TDL compared to non-

supplemented CON lambs (P = 0.01; 52.46 ± 0.55%).  Additionally, lambs supplemented 
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ZHCL (48.60 ± 0.72%) resulted in decreased percent FFL compared to non-

supplemented CON lambs (P = 0.01; 49.04 ± 0.47%).   

Post-harvest carcass characteristics and composition 

 There was an effect of environment (P < 0.001) on HCW and left side carcass 

weight, while there was no interaction of AA x environment (P ≥ 0.69), or an effect of 

AA supplementation (P ≥ 0.39; Table 4; Table 7).  Hot carcass weight decreased 2.08 

kg in HS environment lambs (27.64 ± 1.90 kg) when compared to lambs within TN 

environment (29.72 ± 1.49 kg).  Similarly, left side carcass weights decreased 1.08 kg in 

HS environment carcasses compared to TN environment (13.43 ± 1.07 and 14.51 ± 0.87 

kg).  The percent fore-saddle and percent hind-saddle of the carcass resulted in no 

interaction of AA x environment (P ≥ 0.28), and no effect for environment (P ≥ 0.35), 

or AA supplementation (P ≥ 0.66).   

When evaluating carcass composition there was an effect for AA 

supplementation (P ≤ 0.05) on percentage of adipose tissue and lean muscle, however, 

there was no interaction of AA x environment (P ≥ 0.18), or an effect of environment (P 

≥ 0.16; Table 7).  Adipose tissue percentage was decreased with supplementation of 

ZHCL in comparison to supplementation of RHCL (23.94 ± 3.12 and 26.83 ± 4.50%).  

Additionally, lean muscle mass was increased with supplementation of ZHCL (53.62 ± 

2.95%), in comparison to non-supplementation CON (P = 0.03; 51.52 ± 2.02%) and 

RHCL lambs (P = 0.003; 50.63 ± 3.17%).  For percentage of bone, there was no 

interaction of AA x environment (P = 0.71), and no effect for environment (P = 0.09), 

or AA supplementation (P = 0.47).  
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DISCUSSION 

The Livestock Weather Safety Index (LWSI) utilizes the THI to classify weather 

stress categories (°C) as No Stress: THI ≤ 23.3, Alert: 23.3 – 25.6, Danger: 26.1 – 28.3, 

and Emergency: ≥ 28.9.  Based upon the LWSI, lambs within the HS environment were 

exposed to an Emergency heat stress THI (THI = 29.5°) from 10:00 – 20:00 h and an 

Alert heat stress (THI 24.5°C) from 22:00 – 08:00 h.  Lambs within the TN environment 

were exposed to a constant No Stress THI (THI = 16.6°C). As a THI increases between 

26.1 – 28.3°C (category Danger) researchers have reported growth performance in 

ruminants as THI increases reaches the LSWI category of Emergency (THI = 28.9°C) 

feedlot cattle mortality rate increased (Hahn and Mader, 1997).  For the current trial, the 

environment within the HS remained within the Emergency category from 10:00 h thru 

20:00 h and within the Alert category from 22:00 h – 08:00 h.  To combat the challenge 

of heat stress, ruminants must divert energy for maintenance and growth toward 

physiological means of dissipating excessive heat load gained from the environment. 

(Baumgard and Rhoads, 2012). 

Supplementation of AA has drawn recent scrutiny with regards of concerns of 

animal well-being concerns.  Thomson et al. (2015) reported a potential link between the 

supplementation of ZHCL and lameness of cattle at the time of harvest.  In addition, 

Lonergan et al. (2015) utilized a meta-analysis of feedlot close-out summaries to evaluate 

possible interaction between AA supplementation and changes in feedlot mortality 

rates.  Results of this meta-analysis suggested a potential association between the AA 

supplementation and environmental conditions.  To date there has been no controlled 

environmental trials to investigate this potential association of AA and heat stress. To 
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the authors knowledge, there has been no reported controlled studies conducted that 

directly evaluated this potential interaction.  Within our controlled study, no interaction 

between AA supplementation and exposure to the HS environment.  There was however 

and intriguing physiological response related to lambs’ supplementation RHCL within 

the HS environment. Lambs supplemented RHCL respiration rates within the HS 

environment were 13% less than those of both the lambs within the CON and ZHCL.  

This change in respiration may be associated with the physiological action of AA in 

regard to vasodilator.  When AA’s bind to the AR on smooth muscle cells the response 

is to initiate a relaxation of muscle and associated tissue to allow for increased blood flow 

(Mersmann, 1998; Alquist, 1948).  Supplementation of a AA (RHCL) in the present 

study, could relate to improvements of respiration rate due to increased blood and 

subsequence increased air capacity/respiration.  In times of heat stress improved 

respiration rate may be seen as beneficial in preventing hyperthermia due to alterations in 

moisture levels within the respiratory tract (da Silva et al., 2017).   

The attempt to maintain homeostasis during increased heat loads in cattle and 

sheep impact factors such as water intake and rectal temperatures (El – Tarabany et al., 

2017; O’Brien et al., 2010; Shirley, 1985).  Within the current trial, lambs in the HS 

environment had increased water disappearance levels and had increased rectal 

temperatures when exposed to the HS environment.  Lowe et al. (2002) reported a 1°C 

increase in rectal temperature in lambs exposed to a heat stress environment.  When 

rectal temperature rises even 1°C, livestock performance can be negatively affected, 

which was observed in the present study (Kadzere et al., 2002).  Overall, results of the 

current study indicated a similar heat stress response related to physiological responses 
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where lambs within the HS environment had a 0.72 L increase in water disappearance 

and a 1.2ºC increase in body temperature when compared to the lambs within the TN 

environment.  

 Numerous research trials have reported an improvement in feed efficiency and 

carcass composition in both cattle and lambs supplemented a AA (Lean et al., 2014; 

Lopez – Carlos et al., 2010).  In the current trial, supplementation of AA did not result 

in significant changes in feed efficiency.  Additionally, there were no differences in G:F, 

body wall thickness, percent foresaddle, percent hindsaddle, and percent bone in regard 

to the environment or supplementation of AA. 

Heat stress leads to a compromised feed intake and feed efficiency in cattle and 

sheep (Hagenmaier et al., 2016; Barnesa et al., 2004).  A decrease in DMI thus negatively 

affects growth performance and carcass composition (Macias – Cruz et al., 2010; O’Brien 

et al., 2010; Morrison and Lofgreen, 1979).  Similarly, during the current 20 d heat stress 

challenge there was a negative impact due on DMI and ADG, and growth performance, 

final live weight and HCW.  During times of heat stress sheep reduced DMI by 13%, 

while cattle had decreased DMI 7 – 12% and ADG around 11 – 15% (O’Brien et al., 

2010; Mitlöhner et al., 2001; Shafie et al., 1994; Morrison and Lofgreen1979).  Mitlöhner 

et al. (2001) reported a 27 kg loss in final body weight and 16 kg loss in HCW in heat 

stressed cattle when compared to cattle not exposed to heat stress.  Lambs within the HS 

environment consumed less feed, which could be a cause for the decreased weight 

performance throughout the study. 

Heat stress events limit performance due to redistribution of energy toward 

physiological alterations to reduce heat load, thus limiting energy for maintenance and 
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growth (Gowane et al., 2017; Belhadj Slimen et la., 2015).  Mitlöhner et al. (2001) 

reported that cattle carcasses exposed to heat stress resulted in an 8.31% decrease in fat 

thickness measurements.  In the current study, ultrasound measurements showed similar 

results for decreased growth of the LM area and LM depth in HS environment lambs.  

However, HS environment appear to affect fat thicknesses when compared to TN 

environment lambs.  The greater the length of exposure to a heat stress environment did 

not affect the LM area of lambs, however, it did results in a linear decrease in dressing 

percentages up to 7.83% with 8 h of exposure (Rana et al., 2014).  Using the ultrasound 

measurements and prediction equations from Berg et al. (1996) there was an observed 

decrease in predicted weight values of TDL and FFL for lambs exposed to a HS 

environment.  Decreased TDL and FFL values continue to follow suit with decreased 

production performance due to a decrease in feed intake and nutrient utilization. 

 − adrenergic agonist supplementation positively impacted carcass composition 

of lambs in the current study.  Supplementation of ZHCL resulted in increased 

percentages of FFL when compared to RHCL and non-supplemented CON lambs.  

Zilpaterol hydrochloride also decreased percentages of adipose tissue compared to RHCL 

lambs.  Lopez – Carlos et al. (2010) reported similar observations of alterations in carcass 

characteristics through the utilization of both RHCL and ZHCL supplementation in 

feeder lambs.  Within the current study, supplementation of ZHCL also had a greater 

dressing percentage and muscle area, with decreased fat thicknesses when compared to 

RHCL lambs (Lopez – Carlos et al., 2010).  Cattle supplemented 200 mg RHCL had a 

linear decrease in yield grade when compared to cattle supplemented 0 mg (Bittner et al., 
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2016).  Through the supplementation of AA, skeletal muscle mass increases while body 

fat decreases due to the shift in energy utilization (Mersmann, 1998). 

CONCLUSION 

 Data from the current study would indicate that heat stress has a negative effect 

on the growth performance of feeder lambs.  Similar data is reported in other studies that 

utilize sheep exposed to increased environmental temperatures having a negative impact 

on physiological responses and growth performance (Dixon et al., 1999; Marai et al., 

2007).  With decreased feed intake and efficiency characteristics like weight gain and 

HCW are also negatively affected.  In addition to the effect of heat stress, 

supplementation of AA, specifically ZHCL, improved carcass composition of feeder 

lambs with increased percentages of lean muscle, and decreased percentages of adipose 

tissue.  Supplementation of AA in times of climate change has been reported to have an 

association with increased mortality rates in cattle (Loneragen et al., 2014).  However, 

within the current controlled heat stress challenge there was no interaction observed 

between supplementation of AA and heat stress that would affect growth performance 

or carcass composition.  A lack of an interaction in the controlled study concludes that 

there are no detrimental effects on production and animal well-being though the 

utilization of AA supplementation during heat stress events. 
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Table 1.  Environmental summary of a 4 d heat event (June 27 – June 30, 2018) around 

Lincoln, NE, and the association of heat and humidity on the Temperature Humidity 

Index (THI) stress category 

 °C %RH THI1 Stress Category 

        

27-Jun 32 51 81 Danger 

28-Jun 34 60 85 Emergency 

29-Jun 37 40 85 Emergency 

30-Jun 32 70 84 Emergency 

            

Temperature – humidity index (THI, °F) = {0.8 x T + [(% RH/ 100) x (ambient 

temperature – 14.4)] + 46.4} (Temperature (T; °C) and relative humidity (RH; %); LCI, 

1970; Mader et al., 2006) 
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Table 2.  Composition of diets fed to control (CON), ractopamine hydrochloride (RHCL), or zilpaterol hydrochloride (ZHCL) 

treatment groups as a percent of DM basis during a 20 d controlled heat stress challenge 

 

 

 

 

 

 

1 For both blocks the receiving diet was fed for 12 d, followed by the 10% for 10 d for block 1 and 33 d for block 2.  Block 1 

continued with a step-up schedule of 20% for 5 d, 40% for 60 d, and the 80% for 8 d.  The 90% concentrate was fed in block 1 for 

33 d.  After being held on 10% for 33 d fed at 2.2% of body weight per group pen, block 2 followed the same step up schedule. 
2  Lambs received RHCL and ZHCL for a 20-d period accounting for 0.8 % of diet.  The CON contained only fine ground corn.  

Ractopamine hydrochloride supplementation contained 40 mg/hd/d Type A medication and was fed at 0.04 g with fine ground corn.  

Zilpaterol hydrochloride supplementation contained 2.5 mg/hd/d Type A medication and was fed at 0.0025 g with fine ground corn. 
3  Mineral supplements were comprised of 2.1% limestone, 2% Producers Pride General Purpose Mineral, and 20 g/ton of Rumensin. 

 

 

 

 

 

 Dietary Rations1 

       90% 

Ingredients Receiving 10% 20% 40% 60% 80% Con RHCL2 ZHCL2 

          

SweetBran®, % 54.8 54.3 53.8 52.8 51.8 50.8    49.0     49.0       49.0 

Dry – Rolled Corn, % -   3.8 7.5 15.1 22.7 30.2    37.8     37.8       37.8 

Chopped Alfalfa, % 41.1 97.8 34.5 27.9 21.4 14.9      8.3       8.3         8.3 

Mineral Supplement3, %   4.1   4.1   4.1   4.1   4.1   4.1      4.1       4.1         4.1 

Treatment Suppl., g2 - - - - - - 200.0 200.0 200.0 
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Table 3.  Environmental analysis of the average ambient temperature, relative humidity, 

Temperature Humidity Index (THI), and Heat Index (HI) of feeder lambs supplemented 0 

mg (CON), 40 mg ractopamine hydrochloride (RHCL), or 2.5 mg zilpaterol 

hydrochloride (ZHCL) during a 20 d controlled heat stress challenge 

 Thermal Neutral Heat Stress 

 °C %RH THI2 °C %RH THI 
             

10:01 – 20:00 h 18.18 28.75 16.67 40.10 25.51 29.47 

20:01 – 22:00 h 18.19 28.25 16.66 34.12 38.44 27.35 

22:01 – 08:00 h 18.14 25.53 16.58 29.12 42.64 24.46 

08:01 – 10:00 h 18.16 31.43 16.72 34.83 34.20 27.22 

       
1 Temperature (T, °C) and relative humidity (%) were measured every 15 min. 
2 Temperature Humidity Index (THI, °F) = {0.8 x T + [(% RH / 100) x (ambient 

temperature – 14.4)] + 46.4} (LCI, 1970; Mader et al., 2006) 
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Table 4.  Growth performance of feeder lambs supplemented 0 mg (CON), 40 mg ractopamine hydrochloride (RHCL), or 2.5 mg 

zilpaterol hydrochloride (ZHCL) during a 20 d controlled heat stress challenge 

  AA Supplementation  
 Environment    P-value 

Variable CON RHCL ZHCL SD  TN HS SD  AA Enviro. Interaction 

             
Water Disappearance (L)1 1.61 1.66 1.59 0.84  1.27a 1.98b 0.56  0.94 < 0.001 0.88 

Respiration (breaths/min) 109.68 109.82 112.13 49.24  69.14a 153.24b 26.94  0.75 < 0.001 0.003 

Rectal Temperature (°C) 102.91 102.99 103.13 0.96  102.43a 103.61b 0.61  0.39 < 0.001 0.08 

             

DMI (kg) 1.25 1.24 1.25 0.22  1.39a 1.10b 0.22  0.97 < 0.001 0.49 

ADG (kg/d) 0.22 0.15 0.18 0.07  0.23a 0.14b 0.07  0.13 0.002 0.48 

G:F 0.19 0.13 0.16 0.06  0.18 0.15 0.06  0.09 0.15 0.63 

             

Initial live weight, kg 48.42 49.62 49.92 2.95  49.84 48.80 2.97  0.33 0.25 0.97 

Final live weight, kg 52.97 52.67 53.72 3.67  54.48a 51.77b 3.13  0.70 0.01 0.91 

%  Overall2 9.38 6.54 7.60 2.99  9.57a 6.12b 2.99  0.10 0.003 0.45 

HCW, kg 28.45 28.43 29.17 0.60  29.73a 27.64b 1.49  0.39 < 0.001 0.81 

                          
1 Water disappearance is the amount of water consumed over a certain period of time 
2 Percent  Overall is the difference in initial live weight and final live weight [(Initial live weight – Final live weight)/Initial live weight] 
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Table 5.  Ultrasonic measurement analysis of feeder lambs supplemented 0 mg (CON), 40 mg ractopamine hydrochloride (RHCL), or 

2.5 mg zilpaterol hydrochloride (ZHCL) during a 20 d controlled heat stress challenge 

  AA Supplementation  
 Environment    P-value 

Variable CON RHCL ZHCL SD  TN HS SD  AA Enviro.  x E 

          
   

Back Fat, cm          
   

d 1   0.28   0.34   0.33   0.09    0.33   0.31   0.11  0.27    0.57 0.72 

d 20   0.37a   0.41ab   0.48b   0.09    0.45   0.39   0.10  0.04    0.11 0.31 

Overall % 1 34.67 32.46 46.05 25.42  41.45 33.70 28.43  0.44    0.38 0.57 

Loin Eye Area, cm²          
   

d 1 15.73 16.26 15.67   1.63  16.10 15.67   1.60  0.54    0.38 0.07 

d 20 17.36 17.64 18.28   1.59  18.58a 16.94b   1.38  0.25 < 0.001 0.16 

Overall %  10.83   9.39 17.14   8.89  15.52a   9.39b   9.97  0.07    0.03 0.25 

Loin Eye Depth, cm          
   

d 1   2.84   2.82   2.85   0.14    2.91   2.83   0.15  0.41    0.13 0.29 

d 20   3.02   3.09   3.08   0.18    3.18a   2.94b   0.14  0.46 < 0.001 0.51 

Overall %     6.39   6.49   8.17   5.40    9.42a   4.62b   5.14  0.60    0.005 0.27 

Body Wall, cm          
   

d 1   1.57   1.69   1.66   0.18    1.64   1.64   0.26  0.46    0.93 0.92 

d 20   1.94   2.02   2.03   0.20    2.05   1.94   0.26  0.67    0.21 0.90 

   Overall %  25.64 20.32 23.39 11.54  26.64 19.60 15.72  0.70    0.17 0.82 

                          
1  Overall %  was calculated as the difference in initial d 1 ultrasound body measurements and final d 20 ultrasound body measurements: [(d1 

value – d 20 value) / d 1 value]
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Table 6.  Predicted carcass composition1 based upon ultrasound measurements collected prior to harvest of feeder lambs supplemented 

0 mg (CON), 40 mg ractopamine hydrochloride (RHCL), or 2.5 mg zilpaterol hydrochloride (ZHCL) during a 20 d controlled heat 

stress challenge 

  AA Supplementation  
 Environment    P-value 

Variable CON RHCL ZHCL SD  TN HS SD  AA Enviro.  x E 

             

Predicted TDL, kg1 12.67 12.70 12.87 0.89  12.98a 12.48b 0.82  0.85 0.02 0.94 

Predicted TDL, % 52.46a 52.23ab 52.02b 0.55  52.10 52.37 0.58  0.04 0.06 0.67 

Predicted FFL, kg2 11.87 11.89 11.99 0.86  12.15a 11.68b 0.79  0.87 0.02 0.93 

Predicted FFL, % 49.04a 48.80ab 48.60b 0.47  48.92 48.71 0.55  0.04 0.13 0.62 

                          
1 Predictions equations of Total Dissectible Lean (TDL) = 0.694 + (0.213 x Live Weight (LW)) – (0.789 x Back Fat (BF)) + (1.12 x 

Loin Muscle depth (LM)); % TDL = 58.22 – (0.095 x LW) – (11.1 x BF) + (0.349 x LM depth) 
2 Fat free carcass lean weight (FFL) = 0.422 + (0.207 x LW) – (1.24 x BF) + (1.05 x LM depth); % FFL = 53.23 – (0.054 x LW) – 

(12.01 x BF) + (0.0341 x LM depth)
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Table 7.  Carcass composition analysis of feeder lambs supplemented 0 mg (CON), 40 mg ractopamine hydrochloride (RHCL), or 2.5 

mg zilpaterol hydrochloride (ZHCL) during a 20 d controlled heat stress challenge 
 

1 Fore-saddle % is the percent of the left side of the carcass that makes up the fore-saddle section 
2 Hind-saddle % is the percent of the left side of the carcass that makes up the hind-saddle section 
3Fat Free Lean (FFL) % is the percent of fat free lean tissue obtained from the left side of the carcass 
4 Adipose % is the percent of adipose tissue obtained from the left side of the carcass 
5 Bone % is the percent of bone obtained from the left side of the carcass

  AA Supplementation  
 Environment    P-value 

Variable CON RHCL ZHCL SD  TN HS SD  AA Enviro.  x E 

          
   

Left Side Wt., kg 13.88 13.84 14.19 1.06  14.51a 13.43b 0.87  0.56 0.001 0.69 

Foresaddle, %1 46.92 46.94 46.68 0.94  46.48 47.21 2.60  0.95 0.35 0.28 

Hindsaddle, %2 44.37 43.98 44.80 0.88  44.50 44.23 2.22  0.66 0.73 0.94 

             

FFL, %3 51.52a 50.63a 53.62b 2.02  52.48 51.36 2.31  0.01 0.16 0.36 

Adipose, %4 24.88ab 26.83a 23.94b 2.07  25.40 25.04 2.43  0.05 0.71 0.18 

Bone, %5 23.60 22.54 22.45 1.62  22.12 23.60 2.32  0.47 0.09 0.71 
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Figure 1.  Environmental stress categories based upon the Livestock Weather Safety 

Index Temperature Humidity1 Index utilized in a 20 d controlled heat stress 

challenge with feeder lambs supplemented 0 mg (CON), 40 mg ractopamine 

hydrochloride (RHCL), or 2.5 mg zilpaterol hydrochloride (ZHCL). 

1 White cells THI value classification of “No Stress”, Yellow cells THI value 

classification of “Alert”, Orange cells THI value classification of “Danger”, and Red 

cells THI value classification of “Emergency” 
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Figure 2. Interaction of  - adrenergic agonist supplementation during a controlled heat 

stress challenge on respiration rate of feeder lambs supplemented 0 mg (CON), 40 mg 

ractopamine hydrochloride (RHCL), or 2.5 mg zilpaterol hydrochloride (ZHCL)  

 

 
Treatment Groups: Control / Thermal Neutral (CON TN); Control / Heat Stress 

(CON HS); Ractopamine Hydrochloride / TN (RHCL TN); Ractopamine 

Hydrochloride / Heat Stress (RHCL HS); Zilpaterol Hydrochloride / Thermal 

Neutral (ZHCL TN); Zilpaterol Hydrochloride / Heat Stress (ZHCL HS) 
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