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Abstract

Context. Several studies have estimated cougar (Puma concolor) abundance using remote camera trapping in
conjunction with capture—-mark—recapture (CMR) type analyses. However, this methodology (photo-CMR) requires
that photo-captured individuals are individually recognisable (photo identification). Photo identification is generally
achieved using naturally occurring marks (e.g. stripes or spots) that are unique to each individual. Cougars, however, are
uniformly pelaged, and photo identification must be based on subtler attributes such as scars, ear nicks or body morphology.
There is some debate as to whether these types of features are sufficient for photo-CMR, but there is little research
directly evaluating its feasibility with cougars.

Aim. We aimed to examine researchers’ ability to reliably identify individual cougars in photographs taken from
a camera-trapping survey, in order to evaluate the appropriateness of photo-CMR for estimating cougar abundance or
CMR-derived parameters.

Methods. We collected cougar photo detections using a grid of 55 remote camera traps in north-west Wyoming,
USA. The photo detections were distributed to professional biologists working in cougar research, who independently
attempted to identify individuals in a pairwise matching process. We assessed the level to which their results agreed, using
simple percentage agreement and Fleiss’s kappa. We also generated and compared spatially explicit capture—recapture
(SECR) density estimates using their resultant detection histories.

Key results. There were no cases where participants were in full agreement on a cougar’s ID. Agreement in photo
identification among participants was low (n=7; simple agreement =46.7%; Fleiss’s kappa=0.183). The resultant SECR
density estimates ranged from 0.7 to 13.5 cougars per 100km* (n=4; s.d.=6.11).

Conclusion. We were unable to produce reliable estimates of cougar density using photo-CMR, due to our inability
to accurately photo-tag detected individuals. Abundance estimators that do not require complete photo-tagging (i.e.
mark-resight) were also infeasible, given the lack of agreement on any single cougar’s ID.

Implications. This research suggested that there are substantial problems with the application of photo-CMR to estimate
the size of cougar populations. Although improvements in camera technology or field methods may resolve these issues,

researchers attempting to use this method on cougars should be cautious.

Received 24 March 2017, accepted 30 March 2018, published online 20 June 2018

Introduction

The use of remote cameras to monitor animal populations has
increased dramatically in recent years due to improvements
in camera technology and cost-effectiveness. With this rapid
adoption, however, some important assumptions of camera
trapping methodology and analysis may not always be fully
considered (Burton ef al. 2015). One common application uses
camera trapping in conjunction with capture-mark-recapture
(CMR) analyses for estimating animal abundance or other
parameters. This can be a valuable tool when conventional
sighting or tagging methods are expensive or infeasible. Cougars
(Puma concolor) are a cryptic, low density and difficult-to-
capture species, and as such are an attractive candidate for
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this method. However, a fundamental assumption of CMR
is that individuals, once captured, can be reliably identified
in subsequent recaptures (Otis et al. 1978; Seber 1982). In
a conventional live-trapping scenario, this is achieved by
affixing a unique ID tag to the captured individual. Under the
non-invasive framework of camera trapping (photo-CMR), no
artificial tags are used; instead, individuals are identified
by some visible trait that is both individually distinct and
discernible in a photograph. Conspicuously striped or spotted
animals such as tigers (Panthera tigris) or jaguars (Panthera
onca) are thus ideal, given their individually unique markings
that serve, essentially, as innate ID tags (Karanth 1995; Silver
et al. 2004).
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Identifying cougars in remote camera images

Cougars, however, are a uniformly pelaged species that
lack such markings, and there has been some debate on their
suitability for photo-CMR. Nevertheless, several studies have
estimated cougar abundance using photo-CMR, under the
assumption that individuals could be identified by traits such
as kinked tails, ear nicks, scars or body shape (e.g. Kelly et al.
2008; Paviolo et al. 2009; Negroes et al. 2010; Soria-Diaz et al.
2010; Avila-Néjera Maria et al. 2015; Quiroga et al. 2016). Kelly
et al. (2008) examined the feasibility of photo-tagging cougars
where the authors quantified the extent to which independent
investigators agreed with one another when assigning ID to
cougars in remote camera images. They found 72.9% average
agreement between three independent investigator teams
examining 3548 cougar detections from three study areas,
and determined that, with certain stipulations, cougar abundance
could be estimated using photo-CMR. Foster and Harmsen
(2012), however, provided two considerations that shed some
doubt on the accuracy of photo-tagging cougars: (1) traits such
as kinked tails and notched ears, while distinctive, may not be
individually unique, and with larger sample sizes the likelihood
of multiple cougars with the same trait would likely increase;
and (2) the apparent size and morphology of individuals
in photographs can be highly impacted by factors such as
ambient lighting, flash type, angle and/or distance to camera
and recent feeding history. Both analytical methods and field
techniques have been proposed to deal with this potential
issue. Rich er al. (2014) proposed mark-resight analyses
(Arnason et al. 1991), which required that only a subset of
detected individuals are assigned an ID. This method is
potentially ideal, assuming at least some subset of cougars in
a population has distinguishing features that allow for reliable
photo identification. McBride and Sensor (2015) suggested
the use of scent lures to encourage an individual to ‘linger’ at
a camera, in order to increase the number of photos per capture
event, and thus help in photo identification.

Ourreview of'the literature suggests potentially serious issues
with photo-identifying individual cougars in remote camera
images. Despite this, studies have continued to report photo-
CMR estimates of cougar abundance or density, and there has
been little research that directly addresses the method’s potential
problems or evaluates its proposed solutions. Our goals were to
(1) evaluate researcher ability to individually identify cougars
in remote camera images following the Kelly et al. (2008)
approach, (2) examine the effects that differing detection
histories may have on density estimates and (3) examine the
practicality of some proposed methods such as mark-resight
(Rich et al. 2014) and increasing photos per detection (McBride
and Sensor 2015).

Materials and methods
Study area

Camera trapping was performed in the Jackson Hole basin
in north-west Wyoming, USA (Fig. 1). The majority of this
area was administered by the USA Forest Service (Bridger-
Teton National Forest), or the National Park Service (Grand
Teton National Park). A small percentage (<2%) was privately
owned ranches or residential areas. Elevations ranged from
~2025 m to ~3420 m. Vegetation included cottonwood (Populus
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angustifolia) riparian zones interspersed by sagebrush (Artemisia
spp.) uplands at lower elevations. At higher elevations, aspen
(Populus tremuloides), Douglas-fir (Pseudotsuga menziesii),
Engelmann spruce (Picea engelmannii) and other conifers
(Pinus spp., Abies spp.) were the predominant forest cover
(Marston and Anderson 1991; Knight 1996).

Besides cougars, the study area included grizzly bears
(Ursus arctos), black bears (Ursus americanus) and grey
wolves (Canis Ilupus). Mesocarnivores included coyotes
(Canis latrans) and red foxes (Vulpes vulpes). Primary prey
species included mule deer (Odocoileus hemionus), elk
(Cervus elaphus), white-tailed deer (Odocoileus virginianus),
moose (Alces alces), bighorn sheep (Ovis canadensis) and
various small to medium-sized mammal and avian species.

Field methods

This research was performed in the context of a larger, multi-
year study on non-invasive survey methods for cougars
(Alexander 2016), and followed the code of practice outlined
by the Jackson Institutional Animal Care and Use Committee
(Protocol 027-10EGDBS-060210). Cougar images were
generated from 55 remote camera stations, active between
mid-June and mid-September of 2013. Camera stations were
spaced such that the typical home-range size of a female
cougar would encompass four camera sites (Rovero et al.
2013). The fine-scale locations of camera stations were
selected based on topographic or vegetative features typical of
cougar habitat or travel routes; these sites were generally
characterised by ridgelines, drainage bottoms or edge habitat
where cougars were either known (via GPS collar or natural
sign) or suspected to travel. The majority of the sites (n =43) used
two cameras, fixed to trees, ~50 to 80 cm off the ground and
10—15 m apart, with both cameras aimed in a manner to capture
two sides of an animal as it passed through the site. Between
the cameras, we suspended an open container of non-reward
lure (~3 L of blood waste from cattle abattoirs), >3.5 m off the
ground. We added sodium citrate to prevent coagulation and
thus retain odour (Haroldson and Anderson 1996). We also
suspended a repurposed compact disc to act as a visual
curiosity attractor. Below the lure, we planted an 80-cm high
stake, marked at 10-cm increments to help estimate animal
height and aid in individual identification (Fig. 2). The two
cameras were different models: a non-commercial white-flash
model designed by Panthera (Panthera Inc., New York); and a
commercially available infrared-flash model Reconyx PC800
(Reconyx, Inc., Holmen, WI). All camera models used a passive
infrared sensor for motion-triggered activation. The Panthera
model’s white flash produced high quality colour night-time
images, but was relatively slow to recharge (~15 s) and generally
produced fewer night-time images per detection event than the
Reconyx cameras. Additional camera sites (n=12) were set
up using conventional camera-trapping methods, with single
Panthera cameras placed along high-use trails (e.g. Karanth
1995; Negrdes et al. 2010). We placed <1 mL of scent —
‘Calvin Klein Obsession for Men’ (Calvin Klein Inc., New
York) and synthetic civet musk or catnip oil (Grawe’s Lures,
Wahpeton, ND) — on the ground, in front of the cameras. We
performed site visits every 2 weeks to monitor the stations



276 Wildlife Research P. D. Alexander and E. M. Gese
4 A
A
- A
A A A A‘
¥ "
A
A A A
A
AAA A 4
A
~ A
A Aa
A
A
A
A A
A - A
A
A A A
A
A
A A A
A
A
MONTANA
0 s 10 20 Km
Wellovastone Mational Park
Grand Teton Nafifasl Par A Camera site
BT WYDMING
0 50 100 200
Km
Fig. 1. Locations of 55 remote camera stations used to survey cougars in north-west Wyoming,

USA. The minimum convex polygon encompassing the stations covered 1287 km?.

and download photos. We replenished the blood lure every
4 weeks, or as needed.

Identification process and survey

As with Kelly er al. (2008), we were unable to know with
certainty the actual IDs of photo-trapped individuals, and
our assessment was based on the level of agreement between
independent investigators assigning ID. An important limitation
to this method is that strong agreement between investigators
would not necessarily indicate accuracy of the assigned IDs.
High disagreement, however, would be a compelling indicator
that photo-identifying cougars is an unreliable tagging method,
which likely violates the assumptions of CMR and produces
poor estimates of abundance.

Photos were catalogued using Microsoft Access (Microsoft
Corporation, Redmond, WA). We organised photos into
detection events, with each event having at least one photo

of a single individual. Events at the same site were considered
separate if greater than 1 h elapsed between photos (Kelly ef al.
2008). If multiple cougars were simultaneously detected (e.g.
a family group or courting pair), the photos were duplicated
such that there was one event per individual cougar. We
designed an electronic form to accompany the database,
allowing a user to sort through photo-capture events and
assign ID. The form displayed events in pairs, with one event
shown on each side of the display. The form allowed users to
scan through the events, as well as their constituent images,
on each side of the screen independently (Fig. 2). This allowed
users to perform pairwise comparisons between all events, and
score each pairing as either being from the same individual or
two different individuals. The user could monitor the resultant
detection history, allowing them to verify and fix any
inconsistencies (i.e. contradictory matches). Also included
were spatial and temporal data for each event, with the spatial
and temporal separation between the paired events automatically
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Fig. 2. A screen capture from the identification process where two cougar detection events are displayed on each side of the screen, north-west Wyoming,

USA. Users could scroll through and examine all photos within a detection event, independently on each side of the screen. Users designated the two

detection events either as being the same, or as distinct, individuals.

calculated and displayed (e.g. ‘events A and B were 10.5 km and
51.3h apart’). We considered this information ‘fair game’,
because we believed these data would logically be included in
a real-world scenario, and should therefore be included in the
analysis. We evaluated all possible pairwise combinations
of events, resulting in (g) pairings, where n is the number of
events. We distributed the Access database to independent
participants. We considered only wildlife researchers who
had considerable experience with cougars for participation.
A segment of the participants included biologists who were
involved in the cougar research in the study area and were
familiar with some of the detected cougars.

Due to the combinatoric nature of the evaluation process, the
number of pairings (and the time required for evaluation)
increased exponentially with the number of detection events.
Given that the full set of detections produced 300 pairings (see
Results), we thus completed two types of surveys: (1) a full-set
survey, in which participants analysed all 300 pairings of all
cougar detection events; and (2) a subset survey, in which
participants analysed a subset of detection events, thereby
restricting the number of pairing evaluations and requiring
less time. In order to create the shorter subset survey,
we discarded detections with radio-collared cougars and
detections with poorer quality photos. We chose these events

for removal because this had the added benefit of reducing the
potential for participants to (1) identify an individual based on
their radio-collar, or (2) misidentify an individual due to a low
quality image as opposed the appearance of the animal itself.

Density estimates and agreement analysis

For each of the full-set survey results, we calculated the density
estimate using spatially explicit capture-recapture (SECR) with
the R package secr (Efford 2015). SECR works by combining
an observation model based on the spatially explicit capture
history, and a state model describing the distribution of
potential home range centres across the landscape, represented
by a ‘habitat mask’ of points in secr. For the habitat mask,
we used a layer of homogenous points, spaced at 1km and
delineated by a 6-km buffer around the camera station
minimum convex polygon. The capture history was divided
into eight 10-day occasions. Only the null model was run.

For the subset survey, we calculated participant agreement
using the R package irr (Gamer et al. 2014). We calculated
two types of agreement: (1) simple percentage agreement,
similar to the metric used in Kelly et al. (2008); and (2)
Fleiss’s kappa (Fleiss 1971), a more statistically rigorous
measure of agreement (Gwet 2010). A kappa statistic ranges
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from 0 to 1, with 1 indicating perfect agreement, and 0
indicating a level of agreement consistent with completely
random scorings by participants. We also examined the
relationship between the strength of the blood scent at camera
sites and the capture event length (McBride and Sensor 2015)
and regressed the time length of cougar detection events
against the ‘freshness’ of the non-reward blood lure. We
defined the visitation length as the time between the first and
last photo taken, in seconds. Freshness was determined by the
latency in days since the non-reward blood lure was placed.
Finally, to examine the relationship between ID success and the
number of photos per event, we ran a generalised linear model
with a Poisson distribution, using the count of participants in
agreement for each event pairing as the response variable and
the total number of photos in the detection event pairing as the
predictor variable.

Results

The minimum convex polygon encompassing all camera stations
was 1287 km?. The camera array was active for a total of 3993
sampling days. The mean trap spacing for the 55 camera stations

Detection count

JUNm_iil

0O 2 4 6 8 10 12 14 16 18 20 22 24

Time of day (hours)

Fig. 3. Detection activity of cougars by time of day, based on remote
camera data, north-west Wyoming, USA.

Table 1.

P. D. Alexander and E. M. Gese

was 2759 m. We collected a total of 308 photos of cougars, which
comprised 25 separate cougar detection events. Detections
were generally at night or during crepuscular hours (Fig. 3),
with the majority of those photos being black and white infrared
images. The average number of photos per detection event
was 12.32 (49.78 s.d., minimum = 1, maximum =32 photos).
The average event time length of the blood-lure detections was
57.44's (£60.20 s.d., minimum = 1, maximum =214 s).

Seven participants completed the subset survey, with four
of those participants also finishing the full-set survey. For the
full-set survey of all 25 events (300 combinations of event
pairs), results were highly varied: the number of individuals
identified ranged by a 100% difference (minimum=S§,
maximum=24), and the SECR density estimates ranged by
a 180% difference (minimum=0.70 cougars per 100km?,
maximum 13.47 cougars per 100 km?; Table 1).

For the subset survey, we removed events with radio-
collared cougars (n=35) or poor quality photos (n=5). This
resulted in a subset of 15 events, or 105 combinations of
event pairs. The number of individuals identified by those
seven participants ranged from 4 to 13 (106% difference). We
calculated a 46.7% simple agreement between participants.
Fleiss’s kappa was 0.183 (P<0.001). Although interpretation
of kappa values is somewhat subjective (Gwet 2010), this value
would be categorised as ‘slight’ (Landis and Koch 1977) or
‘poor’ agreement (Fleiss et al. 1981). There were no cases
when all seven participants ascribed a pairing to the same
individual. Out of the 105 event pairings, there were only six
with >50% of participants scoring them as ‘same’. The mean
spatial distance between events with >50% of participants
differentiating individuals was 18.1 km (£+8.4s.d., n=99), and
the mean distance between pairings with >50% of participants
ascribing ‘same’ status was 1.3 km (£3.1s.d., n=6). Of the six
pairings with >50% ‘same’ agreement, four were from event
pairs occurring at the same camera station.

Additionally, we found that agreement increased as the
number of investigators decreased: we reran our calculations
for simple percentage agreement using all possible combinations
and subsets of the participant pool. The mean percentage
agreement for any subset of three investigators increased to
71.4% (£13.5s.d.) and ranged from 54.3% to 91.4% (Fig. 4).

We found evidence that scent increased the length of
a cougar detection event (thereby increasing the number of
photos per event). There was a negative correlation between
length of a cougar’s visit (in seconds) and the latency since the
non-reward blood lure was placed (B=-2.134, s.e.=1.036,

Spatially explicit capture-recapture (SECR) results, based on independent observers building photo-detection histories from the same set

of camera trap photos from North-west Wyoming, USA
The second column is the number of unique individuals that were identified by the observers. The discrepant detection histories resulted in varying density
results, estimates of detection probability (gy) and the detection function scaling parameter ¢ (reported in metres). Estimates are reported with 95%
confidence intervals (LCL =lower, UCL =upper). Inf, infinity

N animals ~ Density (per 100km?)  95% LCL  95% UCL 20 95% LCL  95% UCL c 95% LCL  95% UCL
Obs 1 12 0.70 0.39 1.34 0.04 0.02 0.08 5540 3910 7852
Obs 2 8 0.39 0.19 0.78 0.04 0.02 0.07 8989 6525 12385
Obs 3 24 13.47 1.99 90.95 <0.01 <0.01 <0.01 8.68 x 10° 0 Inf
Obs 4 22 4.04 1.44 11.36 <0.01 <0.01 0.02 7182 3990 12929
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Fig. 4. Simple percentage agreement for any subset of the seven
participating investigators independently assigning ID to photo-detected
cougars in north-west Wyoming, USA. Bars represent standard deviation
for all possibly subsets (there is no variance when all seven participants
were included).
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Fig. 5. Length of time a cougar spends at a camera station in relation to
the age of the non-reward blood lure, north-west Wyoming, USA. Likely,
a stronger smelling lure provoked a cougar to linger, thus increasing the
number of photos taken.

P=0.058; Fig. 5). However, we found no significant correlation
between the number of photos per event and simple percentage
agreement (f=-0.009, s.e.=0.008, P=0.24). We also used
a spatiotemporal measure of the minimum speed required for
an individual cougar to be present at both events in a matching.
We used the natural log-transformation to normalise the value
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and found a significant negative correlation (fp=-0.21,
s.e.=0.03, P<0.001) between higher minimum speed and
count of ‘same’ designations, suggesting that distance and
time between detections were important in participants’
assessments.

Discussion

Agreement among participants assigning ID was low, and
there were no cases of complete agreement on any single
ID. The 46.7% simple agreement was completely driven by
agreement on differentiated cougars (i.e. in 46.7% of the
event pairings, all seven participants agreed that the two
events detected different cougars). These results highlight
the difficulty of individually identifying cougars in camera
trap images, and suggest that photo-identification based
detection histories may be overly prone to misidentification
errors. These results correspond with the high photo-
identification error rates found for other uniformly pelaged
species such as lowland tapirs (ZTapirus terrestris; Oliveira-
Santos et al. 2010) and red foxes (Vulpes vulpes; Giithlin et al.
2014). Other studies have shown that such misidentification
errors, and their resultant capture histories, can create large
variances in abundance estimates (Creel et al. 2003; Yoshizaki
et al. 2009). This concern is upheld by our four full-survey
SECR densities, which varied widely (Table 1). SECR can be
prone to other sources of bias, notably trap array size and
spacing (Sollmann et al. 2012; Sun et al. 2014). However,
these factors should not have biased our results, because our
trap array was larger than individual cougar movements
(Sollmann er al. 2012). Although the full-survey SECR
parameter estimates were biased by the misidentification
errors, we note that three of the four estimates of ¢ were
greater than half the trap spacing, and consistent with trap
spacing recommendations by Sollmann et a/. (2012) and Sun
et al. (2014).

The only other study we are aware of that attempted to
measure the level of agreement between independent
observers identifying cougars in camera trapping photos was
Kelly et al. (2008). Importantly, that study did not use our
technique of measuring agreement over all possible pairwise
matches, so their measure of agreement does not necessarily
compare to ours. Nevertheless, our interpretations differed
markedly in terms of our assessments of photo-CMR and its
appropriateness for cougars. One possible reason is that Kelly
et al. (2008) identified cougars in tropical regions, where
botfly (family Oestridae) scars may have aided in correct
identification (e.g. Negrdes et al. 2010; Harmsen et al. 2010).
Depending on the longevity of botfly scars, pervasiveness of
botfly parasites in the cougar population and length of survey,
these marks could potentially be as distinctive as conspicuously
pelaged species (e.g. tigers, jaguars). If this is indeed the
case, then our findings may not necessarily call into question
the cougar abundance estimates from photo-CMR studies
performed in tropical regions. Alternatively, the fewer number
of independent investigators used by Kelly ez al. (2008) may
have increased the probability of chance agreement. This is
supported by our finding that subsampling combinations of
participants resulted in increased mean agreement level.
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Given that participants had a binary choice (i.e. ‘same’ or
‘different’) for the event matchings, reducing the number of
participants likely increased the probability of random
agreement.

Two general strategies have been proposed in the literature
to deal with these high misidentification rates: (1) techniques
that allow for greater ID success; and (2) alternative analysis
methods to reduce model bias from misidentification. In terms
of the first strategy, we explicitly examined the use of scent
lures to improve ID success (McBride and Sensor 2015). We
did find evidence that scent can encourage a cougar to linger
at a camera site, thereby increasing the number of photos
per detection. Surprisingly, however, increasing the number
of photos per event matching did not correlate with any
improvement in agreement level. We also incorporated the
use of measurement posts at camera sites to aid in size
estimation; however, the level of effectiveness was unclear
due to the lack of agreement between participants. While
outside the scope of our study, we note that improvements in
camera trap technology, methodology or image analyses could
improve ID success. Camera technology that increases photo
quality and image resolution could increase observers’ abilities
to identify distinct features. Computer-aided identification
methods (i.e. biometrics or pattern recognition; see Kiihl and
Burghardt 2013) could also improve identification success.
Generally, these computer aided processes still require
conspicuous markings or patterns (Kiihl and Burghardt 2013),
and the photo detections from our research may still not be
suitable. However, novel camera trapping methods that
standardise the angle or position of the animal, or consistently
capture some finer-scale feature may allow for these types of
analyses. Examples include camera trapping methods that
target ventral markings of wolverines (Gulo gulo; Magoun
et al. 2011) or American martens (Martes americana; Sirén
et al. 2016). A feature more applicable to cougars may be
whisker spot patterns, which have been used to individually
identify African lions (Panthera leo; Pennycuick and Rudnai
1970) and polar bears (Ursus martimus; Anderson et al. 2007).
In the latter study, photographs of bears were taken
with handheld cameras with high-quality telephoto lenses; it
is conceivable that novel camera trapping technologies or
methodologies could duplicate that approach with cougars.

The second strategy uses alternative modelling, such as
mark-resight models that do not require all detected animals
to be tagged (Rich et al. 2014). As implemented by Rich et al.
(2014), only those detections for which independent observers
fully agreed on ID would be categorised as marked. Critically,
we had no cases of complete agreement on any single assigned
ID, thus precluding mark-resight analysis. We note that there
also exist models that attempt to account for misidentification
bias (Yoshizaki et al. 2009). However, these were likely
inappropriate for our data, due to the possibility of both false
mismatches and false matches, as well as the low detection
probabilities (Table 1).

Cougars have been proposed as a focal species (Lambeck
1997) in conservation efforts, due to their roles as flagship
and umbrella species (Beier 2009), as well as their potential
keystone functions as multi-trophic regulators (Ripple and
Beschta 2006; Beier 2009). Yet, cougar populations have
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undergone large range contractions over the past century
due to habitat loss, habitat fragmentation and direct human
persecution (Ripple et al. 2014). Accurate population monitoring
tools are thus needed, for both the implementation and
evaluation of management and conservation efforts. Although
photo-CMR is, ostensibly, an appealing solution to the
difficulties in monitoring cougar populations, our results
highlight important concerns with the method. Likely, these
issues extend to other uniformly pelaged species, and the
implications of our work do not apply strictly to cougar
research. Researchers should carefully consider their ability
to accurately identify their study animals when using remote
camera traps. In cases when photo identification may not be
reliable, alternative techniques such as non-invasive genetic
sampling may be a more practical method.
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