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1 INTRODUCTION 

1.1 Background 

In 2007, the Midwest States Pooled Fund Program and the Midwest Roadside Safety 

Facility (MwRSF) began an effort to develop a guardrail stiffness transition between the 

Midwest Guardrail System (MGS) and thrie beam, bridge rail approach transitions. A stiffness 

transition had been developed for this situation, and it utilized multiple post sizes [1]. However, 

the members of the Midwest States Pooled Fund Program desired a stiffness transition utilizing 

“standard” steel posts at various spacing intervals to gradually increase the system’s lateral 

stiffness. It was also desired that the stiffness transition have the ability to attach to multiple thrie 

beam, bridge rail transitions, similar to the original steel-post system. With the rational that 

transitioning to a stiff system would be critical and allow for attachment to more flexible 

systems, the stiffest of the Federal Highway Administration’s (FHWA) accepted bridge rail 

approach transitions, identified as the transition to Missouri’s thrie beam and channel bridge rail, 

was selected for use as the downstream end of the stiffness transition [2].  

The final system design utilized “standard” W6x9 (W152x13.4) steel guardrail posts at 

various spacing intervals as well as a combination of W-beam, thrie beam, and a symmetrical W- 

to-thrie beam guardrail elements to connect the MGS to the stiff bridge rail approach transition 

[3]. A full-scale crash testing program showed the system satisfied Test Level 3 (TL-3) safety 

performance criteria presented in the American Association of State Highway and Transportation 

Officials (AASHTO) Manual for Assessing Safety Hardware (MASH) [4].  However, the 

Midwest States Pooled Fund Program also wanted to have a wood-post variation of this stiffness 

transition. Therefore, wood post equivalents were needed to replace the steel posts throughout 

the stiffness transition from MGS to rigid bridge rail. 
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1.2 Objective 

The objective of this project was to determine a wood-post MGS approach transition 

system that is equivalent to the steel-post MGS stiffness transition. The rail elements of the 

transition were to remain the same, and only the steel posts were to be altered. Recommendations 

were to be made regarding the attachment of the stiffness transition to other FWHA-accepted 

bridge rail transitions consisting of thrie beam guardrail mounted on wood posts. 

1.3 Research Approach 

The research objectives were met through a combination of historical data review, 

physical component testing, and computer simulation and analysis. First, a literature review was 

conducted on post-soil resistance for both W6x9 (W152x13.4) steel posts and 6-in. x 8-in. (152-

mm x 203-mm) wood posts. Conclusions were made regarding these standard post sizes. Next, 

dynamic component testing was conducted to determine the post-soil resistance characteristics of 

the larger W6x15 (W152x22.3) steel transition posts embedded 54 in. (1,372 mm) in soil as well 

as wood posts of multiple cross-sections and embedment depths. After determining equivalent 

wood posts for both steel post sizes used in the MGS approach transition, BARRIER VII 

computer simulations were conducted to compare the performance of the wood and steel post 

systems. The steel-post BARRIER VII model was validated against the full-scale crash testing of 

the steel-post transition system under MASH safety standards and served as the basis for 

comparison and evaluation of the wood-post transition system. After the wood-post transition 

system was determined to be an adequate alternative, the final design drawings were created. 

Finally, recommendations for the attachment of the stiffness transition to other FHWA accepted 

bridge rail transitions were specified based on the knowledge obtained during the project.  
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2 WOOD POST EQUIVALENT FOR THE 6-FOOT (1.8-METER) LONG W6x9 

(W152x13.4) POST 

For many years the roadside safety community has considered 6-in. x 8-in. (152-mm x 

203-mm) wood posts and W6x9 (W152x13.4) steel posts as interchangeable options for 6-ft 

(1.8-m) long guardrail posts. This philosophy was prominent with previous “standard” strong 

post W-beam guardrail systems as illustrated in system designator SGR-04a-b found in the 

Guide to Standardized Highway Barrier Hardware [5]. However, the posts in these older 

systems were embedded 43 in. (1,092 mm) to 44 in. (1,118 mm) in the soil, while MGS posts are 

embedded only 40 in. (1,016 mm). Blockout depth and splice location differences make the 

behavior of the MGS different from older W-beam systems. Therefore, a review of previous 

testing (both post-in-soil component testing and full-scale crash testing) was conducted to 

compare the performance of 6-in. x 8-in. (152-mm x 203-mm) wood posts and W6x9 

(W152x13.4) steel posts when used in the MGS. 

2.1 Dynamic Component Testing 

During the development of the MGS and its special applications, numerous dynamic 

component tests were conducted on guardrail posts to gain an understanding of the post-soil 

resistances [6-8]. Multiple tests utilized 6-ft (1.8-m) long W6x15 (W152x22.3) steel guardrail 

posts embedded 40 in. (1,016 mm) in AASHTO M147-65 Grade B soil, as recommended by 

NCHRP Report No. 350 and MASH. Only tests with targeted impact speeds of 20 mph (35 

km/h) were compared to control for load rate and inertial effects. Six tests on W6x9 

(W152x13.4) steel posts and four tests on 6-in. x 8-in. (152-mm x 203-mm) wood posts met this 

criterion. The average resistive forces were similar between the two post types, as shown in 

Table 1. The steel posts showed a slightly higher resistance of 6.8 percent and 11.5 percent at 

displacements of 15 in. and 20 in. (381 mm and 508 mm), respectively. 
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Table 1. Dynamic Test Results for Steel and Wood Posts in Moderately Compacted Soil 

Test No. Ref. Post Type 

Embedment 
Depth, 

 in.  
(mm) 

Impact 
Height, 

 in.  
(mm) 

Impact 
Velocity, 

mph  
(km/h) 

Average Force, 
 kips (kN) 

@ 15 in. 
(381 mm) 

@ 20 in. 
(508 mm) 

NPG-2 [6] W6x9 (W152x23.8) Steel 40  
(1,016) 

24⅞ 
(631.8) 

21.0  
(33.8) 

5.78  
(25.7) 

6.10 
 (27.1) 

NPG-4 [6] W6x9 (W152x23.8) Steel 40 
 (1,016) 

24⅞ 
(631.8) 

20.0  
(32.2) 

6.73 
 (29.9) 

6.66  
(29.6) 

NPG-9 [6] W6x9 (W152x23.8) Steel 40 
 (1,016) 

24⅞ 
(631.8) 

20.8  
(33.5) 

6.42 
 (28.6) 

6.43  
(28.6) 

NPG-10 [6] W6x9 (W152x23.8) Steel 40  
(1,016) 

24⅞ 
(631.8) 

21.5  
(34.6) 

6.99 
 (31.1) 

7.05 
 (31.4) 

MGS2-1B20 [7] W6x9 (W152x23.8) Steel 40 
 (1,016) 

24⅞ 
(631.8) 

19.3 
 (31.1) 

6.45  
(28.7) 

7.13 
 (31.7) 

MGS2-1B21 [7] W6x9 (W152x23.8) Steel 40 
 (1,016) 

24⅞ 
(631.8) 

19.8 
 (31.9) 

5.55  
(24.7) 

6.32  
(28.1) 

    Average (steel): 6.32  
(28.1) 

6.61  
(29.4) 

        

GWB-1 [8] 6 in. x 8 in. (152 mm x 203 mm) Wood 40  
(1,016) 

24⅞ 
(631.8) 

20.7 
 (33.3) 

5.18  
(23.0) 

5.20  
(23.1) 

GWB-2 [8] 6 in. x 8 in. (152 mm x 203 mm) Wood 40  
(1,016) 

24⅞ 
(631.8) 

19.8 
 (31.9) 

6.63  
(29.5) 

6.41  
(28.5) 

GWB-6 [8] 6 in. x 8 in. (152 mm x 203 mm) Wood 40  
(1,016) 

24⅞ 
(631.8) 

19.6  
(31.5) 

6.45  
(28.7) 

6.17 
 (27.4) 

GWB-7 [8] 6 in. x 8 in. (152 mm x 203 mm) Wood 40 
 (1,016) 

24⅞ 
(631.8) 

19.0  
(30.6) 

5.67  
(25.2) 

5.92 
 (26.3) 

 Average (wood): 5.98  
(26.6) 

5.93 
 (26.4) 
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With the adoption of MASH in 2009, test facilities are now required to follow soil 

strength guidelines for test article installation in soil in order to ensure consistency among the 

test facilities. MASH adheres to the general philosophy that testing longitudinal barriers in stiff 

soil results in higher impact and barrier loads, increased occupant risk values, and increased 

propensity for rail rupture, pocketing, and snag. Therefore, MASH has established a minimum 

post-soil resistance force standard to ensure that systems are installed in strong, stiff soil. To 

satisfy these requirements, MwRSF began to use a high energy, soil compaction method when 

installing system components (e.g., posts) for compliance testing. As expected, recent bogie 

testing has shown increased post-soil interaction forces. However, the stiffer soil has not changed 

the similarity between force vs. deflection curves for the standard MGS guardrail posts. In a 

recent dynamic testing study, two 6-in. x 8-in. (152-mm x 203-mm) wood posts and two W6x16 

(W152x23.8) steel posts were embedded 40 in. (1,016 mm) in a highly compacted soil and 

impacted at 20 mph (32 km/h) [8]. The W6x16 (W152x23.8) posts have the same flange width 

and overall depth as a W6x9 (W152x13.4) so the soil resistances for the two posts are the same. 

Wood and steel posts provided very similar resistances throughout the impact event, as shown by 

the force vs. deflection curves in Figure 1. 
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Figure 1. W6x16 (W152x23.8) Steel and 6-in. x 8-in. (152-mmx203-mm) Wood Posts in Highly 
Compacted Soil 

2.2 Full-Scale Testing 

Two full-scale crash tests were selected to compare the W6x9 (W152x13.4) steel-post 

and the 6 in. x 8 in. (152 mm x 203 mm) wood-post performance when installed in the MGS. 

Test no. 2214MG-2 utilized steel posts [1], while test no. MGSWP-1 utilized the wood posts 

[10]. Both 181-ft 3-in. (55.2-m) long test installations satisfied all MASH safety performance 

criteria of test designation no. 3-11. The two systems behaved similarly during the test in terms 

of maximum dynamic deflection, contact length, and exit conditions, as shown in Table 2. 

Further, the Occupant Impact Velocities (OIV) and Occupant Ridedown Accelerations (ORA) 

were very similar, thus suggesting the forces imparted to the vehicle were very similar.  
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Table 2. Comparison of Wood and Steel Post from Full-Scale Crash Testing 

 Test No.  
2214MG-2 [1] 

Test No.  
MGSWP-1 [10] 

System 181-ft 3-in. (55.2-m) long MGS 181-ft 3-in. (55.2-m) long MGS 
Posts W6x9 (W152x13.4) Steel Wood 6 in. x 8 in. (152 mm x 203 mm) 
Vehicle 2002 Dodge Ram 1500 Quad Cab 2003 Dodge Ram 1500 Quad Cab 

Impact Speed 62.8 mph (101.1 km/h) 63.8 mph (102.7 km/h) 

Impact Angle 25.5° 25.6° 

Exit Speed 39.6 mph (63.7 km/h) 39.6 mph (63.7 km/h) 

Exit Angle 13.5° 16.6° 

Contact Length 33 ft – 8 in. (10.3 m) 30 ft – 6 in. (9.3 m) 
Maximum 
Dynamic 
Deflection 

43.9 in. (1,115 mm) 46.3 in. (1,176 mm) 

System 
Permanent Set 31⅝ in. (803 mm) 33¾ in. (857 mm) 

Longitudinal OIV 15.32 ft/s (4.67 m/s) 15.27 ft/s (4.65 m/s) 
Lateral OIV 15.62 ft/s (4.76 m/s) 16.14 ft/s (4.92 m/s) 
Longitudinal 
ORA 8.23 g’s 8.25 g’s 

Lateral ORA 6.93 g’s 10.13 g’s 
 

2.3 Conclusions 

Similar performance between W6x9 (W152x13.4) steel and 6-in. x 8-in. (152-mm x 203-

mm) wood guardrail posts has been documented in both dynamic component testing and full-

scale testing. Therefore, 6-in. x 8-in. (152-mm x 203-mm) wood posts were selected as the 

alternative for the W6x9 (W152x13.4) steel posts found in the MGS to thrie beam stiffness 

transition. BARRIER VII simulations were used to verify the wood posts did not adversely affect 

the safety performance of the stiffness transition, as described in Chapter 5. 
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3 COMPONENT TEST CONDITIONS 

3.1 Purpose 

In previous research, MwRSF has conducted numerous dynamic component tests of 

W6x9 (W152x13.4) steel posts and 6-in. x 8-in. (152-mm x 203-mm) wood posts. However, no 

such tests have been conducted on either W6x15 (W152x22.3) steel posts or large cross section 

wood posts. Therefore, a series of dynamic component tests were conducted to determine the 

post-soil interaction force characteristics for these large post sizes in an effort to find an 

equivalent wood post for the W6x15 (W152x22.3) steel posts utilized in the steel-post MGS 

stiffness transition to thrie beam.  

3.2 Scope 

Twenty dynamic component tests were conducted on W6x15 (W152x22.3) steel posts 

and various wood-post sizes in soil. The target impact conditions for all tests were 20 mph (32 

km/h) at an angle of 0 degrees, creating a classical “head-on” or full-frontal impact and strong 

axis bending. The posts were impacted 24⅞ in. (632 mm) above the ground line. The dynamic 

component test matrix and the test setup are shown in Table 3 and Figure 2, respectively.  

A compacted, coarse, crushed limestone material, as recommended by NCHRP Report 

No. 350, was utilized for all tests. Soil specifications are shown in Appendix A. Although the 

soil gradations were similar, the compaction methods were different. Testing began with 

moderately compacted soil installation methods, but switched to a high-energy lift compaction 

method after the wood post tests indicated a propensity for post fracture. As previously 

mentioned, MASH adheres to the general philosophy that testing of longitudinal barriers in stiff 

soil is critical as it results in higher impact and barrier loads, increased occupant risk values, and 

increased propensity for rail rupture, vehicle pocketing, and wheel snag. Thus, using heavily 

compacted soils was justified by MASH. Therefore, test nos. MGSATB-1 through MGSATB-4 
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utilized moderately compacted soil, while the remainder of the tests utilized heavily compacted 

soil. 

Material specifications, mill certifications, and certificates of conformity for the steel post 

materials used in test nos. MGSATB-5 and MGSATB-6 are shown in Appendix C. The wood 

posts were southern yellow pine (SYP) sections. Cross-sectional dimensions, moisture content, 

weight, and ring density of the posts were recorded, as shown in Table 4. Cross-sectional 

measurements and moisture content were taken at both ends of the post and at ground line with a 

pin-type moisture meter [8]. Due to differences in moisture contents, densities, and dimensions, 

each wood post had a different recorded weight.  

3.3 Weather Conditions 

Test nos. MGSATB-1 through MGSATB-20 were conducted between October 4, 2007 

and October 1, 2010. The weather conditions as per the National Oceanic and Atmospheric 

Administration (station 14939/LNK) were reported as shown in Table 5. Note station 

14939/LNK is at the Lincoln Airport adjacent to MwRSF’s testing grounds. 

3.4 Equipment and Instrumentation 

Various types of equipment and instrumentation were utilized to conduct dynamic post 

tests and collect and record data. Included were a bogie vehicle, accelerometers, pressure tape 

switches, high-speed and standard-speed digital video cameras, and still cameras. 

3.4.1 Bogie 
 
A rigid frame bogie vehicle was used to impact the posts. A variable height, detachable 

impact head was used in the testing. The bogie head was constructed using 8-in. (203-mm) 

diameter, ½-in. (13-mm) thick standard steel pipe, with ¾-in. (19-mm) neoprene belting wrapped 

around the pipe. The neoprene material was used to prevent the impact head from causing local 

damage to the post and to prevent large spikes in acceleration. The impact head was bolted to the 
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bogie vehicle, creating a rigid frame with an impact height of 24⅞ in. (632 mm). The bogie and 

attached impact head are shown in Figure 3. The weight of the bogie with the addition of the 

mountable impact head varied for the tests. The bogie vehicle weight for each test is shown on 

the individual test summaries provided in Appendix C.  

For test nos. MGSATB-1 through MGSATB-16, a pickup truck with a reverse cable tow 

system was used to propel the bogie to the target impact speed. When the bogie reached the end 

of the guidance system, it was released from the tow cable, allowing it to be free rolling when it 

impacted the post. A remote braking system was installed on the bogie allowing it to be brought 

safely to rest after the test. This setup is shown in Figure 3. 

Test nos. MGSATB-17 through MGSATB-20 were conducted using a steel corrugated B-

beam guardrail to guide the right-side tires of the bogie as shown in Figure 4. The B-beam is also 

along the target impact angle. A pickup truck is used to push the bogie to the required impact 

velocity. As the bogie reaches the end of the guide track, the pickup truck releases and allows the 

bogie to be “free wheeling” as it exits the guide track and impacts the test article. A remote 

braking system was installed on the bogie allowing it to be brought safely to rest after the test. 

3.4.2 Accelerometers 

For MGSATB-1 and MGSATB-2, three accelerometers were mounted on the bogie 

vehicle. For test nos. MGSATB-3 through MGSATB-7, MGSATB-9, MGSATB-10, and 

MGSATB-13 through MGSATB-20, two accelerometers were use. For test nos. MGSATB-8, 

MGSATB-11, and MGSATB-12, only one accelerometer was used. The accelerometers were 

mounted on the bogie vehicle near its center of gravity to measure the accelerations. The specific 

accelerometer systems used for each test are shown in Table 6. 

The first accelerometer system was a two-arm piezoresistive accelerometer system 

manufactured by Endevco of San Juan Capistrano, California. Three accelerometers were used to 
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measure each of the longitudinal, lateral, and vertical accelerations independently at a sample 

rate of 10,000 Hz. The accelerometers were configured and controlled using a system developed 

and manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. More 

specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-

16M. The SIM was configured with 16 MB SRAM memory and 8 sensor input channels with 

250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack 

was configured with isolated power/event/communications, 10BaseT Ethernet and RS232 

communication, and an internal backup battery. Both the SIM and module rack were 

crashworthy. The “DTS TDAS Control” computer software program and a customized Microsoft 

Excel worksheet were used to analyze and plot the accelerometer data. 

The second accelerometer was a triaxial piezoresistive accelerometer system, Model 

EDR-4 6DOF-500/1200, manufactured by Instrumented Sensor Technology (IST) of Okemos, 

Michigan and includes three differential channels as well as three single-ended channels. The 

EDR-4 6DOF-500/1200 was configured with 24 MB of RAM, a range of ±500 g’s, a sample rate 

of 10,000 Hz, and a 1,677 Hz anti-aliasing filter. The “EDR4COM” and “DynaMax Suite” 

computer software programs and a customized Microsoft Excel worksheet were used to analyze 

and plot the accelerometer data. 

The third accelerometer, Model EDR-3, was a triaxial piezoresistive accelerometer 

system developed by IST of Okemos, Michigan. The EDR-3 was configured with 256 kB of 

RAM, a range of ±200 g’s, a sample rate of 3,200 Hz, and a 1,120 Hz low-pass filter. The 

“DynaMax 1 (DM-1)” computer software program and a customized Microsoft Excel worksheet 

were used to analyze and plot the accelerometer data.  

MwRSF became ISO 17025 accredited in October, 2009 which predated test nos. 

MGSATB-18 through 20. At the time of these tests, the EDR-3 was not calibrated by an ISO 
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17025 approved laboratory due to the lack of an ISO 17025 calibration laboratory with the 

capabilities of calibrating the unit. However, the EDR-3 was calibrated by IST which provided 

the traceability for the calibration. Further, MwRSF recognizes that the EDR-3 transducer does 

not satisfy the minimum 10,000 Hz sample frequency recommended by MASH. Following 

numerous test comparisons, the EDR-3 has been shown to provide equivalent results to the DTS 

unit which does satisfy all MASH criteria and has ISO 17025 calibration traceability. Therefore, 

MwRSF has continued to use the EDR-3 during physical impact testing. The equivalency of the 

transducers is further explained and comparisons are shown in Appendix B. 

3.4.3 Pressure Tape Switches 
 
Three pressure tape switches, spaced at approximately 18-in. (457-mm) intervals and 

placed near the end of the bogie track, were used to determine the speed of the bogie before 

impact. As the front tire of the bogie passed over each tape switch, a strobe light was fired 

sending an electronic timing signal to the data acquisition system. The system recorded the 

signals and the time each occurred. The speed was then calculated using the spacing between the 

sensors and the time between the signals. Strobe lights and high-speed video analysis are used 

only as a backup in the event that vehicle speeds cannot be determined from the electronic data. 

3.4.4 Digital Cameras 
 
One AOS VITcam high-speed digital video camera and one JVC digital video camera 

were used to document each test. The AOS high-speed cameras had frame rates of 500 frames 

per second and the JVC digital video cameras had frame rates of 29.97 frames per second. All 

cameras were placed laterally from the post, with a view perpendicular to the bogie’s direction of 

travel. A Nikon D50 digital still camera was also used to document pre- and post-test conditions 

for all tests. 
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Table 3. Dynamic Component-Post Testing Matrix 

Test No. 

Post Embedment 
Depth  

In. 
(mm) 

Bending 
Axis Soil and Compaction 

Target 
Impact 

Velocity 
mph 

(km/h) 

Type 
(Species) 

Size 
in. x in. 

(mm x mm) 

Length 
ft 

(m) 

MGSATB-1 Steel W6x15 
(W152x22.3) 

7 
(2.13) 

54 
(1,372) Strong AASHTO Grade B 

Moderate Compaction 
20 

(32) 

MGSATB-2 Steel W6x15 
(W152x22.3) 

7 
(2.13) 

54 
(1,372) Strong AASHTO Grade B 

Moderate Compaction 
20 

(32) 

MGSATB-3 Wood  
(SYP) 

8 x 8 
(203 x 203) 

7 
(2.13) 

54 
(1,372) Strong AASHTO Grade B 

Moderate Compaction 
20 

(32) 

MGSATB-4 Wood  
(SYP) 

8 x 8 
(203 x 203) 

7 
(2.13) 

54 
(1,372) Strong AASHTO Grade B 

Moderate Compaction 
20 

(32) 

MGSATB-5 Steel W6x15 
(W152x22.3) 

7 
(2.13) 

54 
(1,372) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-6 Steel W6x15 
(W152x22.3) 

7 
(2.13) 

54 
(1,372) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-7 Wood  
(SYP) 

8 x 8 
(203 x 203) 

7 
(2.13) 

54 
(1,372) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-8 Wood  
(SYP) 

8 x 8 
(203 x 203) 

7 
(2.13) 

54 
(1,372) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-9 Wood  
(SYP) 

8 x 10 
(203 x 254) 

7 
(2.13) 

54 
(1,372) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-10 Wood  
(SYP) 

10 x 10 
(254 x 254) 

7 
(2.13) 

54 
(1,372) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-11 Wood  
(SYP) 

8 x 10 
(203 x 254) 

7 
(2.13) 

54 
(1,372) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-12 Wood  
(SYP) 

8 x 10 
(203 x 254) 

7 
(2.13) 

54 
(1,372) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-13 Wood  
(SYP) 

8 x 10 
(203 x 254) 

6.5 
(1.98) 

48 
(1,219) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-14 Wood  
(SYP) 

8 x 10 
(203 x 254) 

6.5 
(1.98) 

48 
(1,219) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-15 Wood  
(SYP) 

8 x 10 
(203 x 254) 

6.5 
(1.98) 

48 
(1,219) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-16 Wood  
(SYP) 

8 x 10 
(203 x 254) 

6.5 
(1.98) 

48 
(1,219) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-17 Wood  
(SYP) 

8 x 10 
(203 x 254) 

6.5 
(1.98) 

48 
(1,219) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-18 Wood  
(SYP) 

6 x 10 
(152 x 254) 

7 
(2.13) 

52 
(1,321) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-19 Wood  
(SYP) 

6 x 10 
(152 x 254) 

7 
(2.13) 

52 
(1,321) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 

MGSATB-20 Wood  
(SYP) 

6 x 10 
(152 x 254) 

7 
(2.13) 

52 
(1,321) Strong AASHTO Grade B 

Heavy Compaction 
20 

(32) 
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Figure 2. Bogie Testing Setup 
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Table 4.Wood Post Details 

Test No. 

Post Dimensions 
in. x in. (mm x mm) Length 

in. 
(mm) 

Weight 
lb 

(kg) 

Moisture Content (%) Ring Density 
rings/in. 

(rings/cm) At Top At Ground 
Line At Bottom Top Ground Line Bottom 

MGSATB-3 8 x 8 
(203 x 203) 

8 x 8 
(203 x 203) 

8 x 8 
(203 x 203) 

84 
(2,134) NA NA NA NA NA 

MGSATB-4 8 x 8 
(203 x 203) 

8 x 8 
(203 x 203) 

8 x 8 
(203 x 203) 

84 
(2,134) NA NA NA NA NA 

MGSATB-7 8 x 7⅞ 
(203 x 200) 

8 x 8 
(203 x 203) 

8⅛ x 8 
(206 x 203) 

84 
(2,134) 

168 
(76) 32 37 32 9 

(3.5) 

MGSATB-8 8 x 8 
(203 x 203) 

8 x 8 
(203 x 203) 

8 x 8⅛ 
(203 x 206) 

84 
(2,134) 

182 
(83) 32 34 44 7 

(2.8) 

MGSATB-9 8¼ x 10 
(210 x 254) 

8⅛ x 9⅞ 
(206 x 251) 

8⅛ x 9⅞ 
(206 x 251) 

84 
(2,134) 

152 
(69) 35 39 20 3 

(1.2) 

MGSATB-10 10 x 10 
(254 x 254) 

10 x 9⅞ 
(254 x 251) 

10 x 10⅛ 
(254 x 257) 

84 
(2,134) 

213 
(97) 11 16 16 11 

(4.3) 

MGSATB-11 8 x 9¾ 
(203 x 248) 

8 x 9⅞ 
(203 x 251) 

8 x 10 
(203 x 254) 

84⅛ 
(2,137) 

147 
(67) 16 15 16 8 

(3.1) 

MGSATB-12 8 x 10⅛ 
(203 x 257) 

8⅜ x 10⅛ 
(213 x 257) 

8¼ x 10¼ 
(210 x 260) 

84¼ 
(2,140) 

181 
(82) 15 17 20 4 

(1.6) 

MGSATB-13 8 x 9¾ 
(203 x 248) 

8 x 9⅞ 
(203 x 251) 

8 x 9⅞ 
(203 x 251) 

78⅛ 
(1,984) 

136 
(62) 14 15 15 8 

(3.1) 

MGSATB-14 8 x 10⅛ 
(203 x 257) 

8 x 10 
(203 x 254) 

8 x 10⅛ 
(203 x 257) 

78¼ 
(1,988) 

165 
(75) 19 16 29 4 

(1.6) 

MGSATB-15 8 x 9¾ 
(203 x 248) 

8 x 9⅞ 
(203 x 251) 

8 x 9⅞ 
(203 x 251) 

78⅛ 
(1,984) 

134 
(61) 11 11 12 8 

(3.1) 

MGSATB-16 8 x 10⅛ 
(203 x 258) 

8 x 10 
(203 x 254) 

8 x 10⅛ 
(203 x 258) 

78¼ 
(1,988) 

165 
(75) 11 14 NA 4 

(1.6) 

MGSATB-17 8⅛ x 10 
(206 x 254) 

8⅛ x 10 
(206 x 254) 

8⅛ x 10 
(206 x 254) 

78 
(1,981) 

148 
(67) 12 16 13 8 

(3.1) 

MGSATB-18 5⅞ x 9⅞ 
(149 x 251) 

5⅞ x 10 
(149 x 254) 

6 x 9⅞ 
(152 x 251) 

83⅞ 
(2,130) 

108 
(49) 10 10 10 6 

(2.4) 

MGSATB-19 6 x 9¾ 
(152 x 248) 

6 x 9⅞ 
(152 x 251) 

6 x 9⅞ 
(152 x 251) 

84⅛ 
(2,137) 

105 
(48) 8 9 8 NA 

MGSATB-20 6¼ x 10 
(159 x 254) 

6 x 9⅞ 
(152 x 251) 

6 x 10 
(152 x 254) 

84 
(2,134) 

96 
(44) 8 10 17 6 

(2.4) 
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Table 5. Weather Conditions, Test Nos. MGSATB-1 through MGSATB-20 

Test 
No. Date Temp. 

 (°F) 
Humidity 

(%) 

Wind 
Speed 
(mph) 

Sky 
Conditions 

Pavement 
Surface 

Previous 3-Day 
Precipitation 

(in.) 

Previous 7-Day 
Precipitation 

(in.) 
MGSATB-1 10/4/2007 75 74 7 Overcast Dry 0.66 1.1 
MGSATB-2 10/4/2007 75 74 7 Overcast Dry 0.66 1.1 
MGSATB-3 11/6/2007 43 37 11 Sunny Dry 0 0 
MGSATB-4 11/6/2007 43 37 11 Sunny Dry 0 0 
MGSATB-5 2/17/2009 35 82 15 Sunny Dry 0 0.36 
MGSATB-6 2/23/2009 41 35 15 Sunny Dry 0 0 
MGSATB-7 2/24/2009 48 39 11 Sunny Dry 0 0 
MGSATB-8 2/25/2009 61 38 9 Sunny Dry 0 0 
MGSATB-9 5/20/2009 80 29 25 Sunny Dry 0 0.28 
MGSATB-10 5/20/2009 80 29 25 Sunny Dry 0 0.28 
MGSATB-11 6/11/2009 70 61 14 Overcast Dry 0.05 2.33 
MGSATB-12 6/11/2009 70 61 14 Overcast Dry 0.05 2.33 
MGSATB-13 6/12/2009 67 84 5 Overcast Wet 0.04 2.33 
MGSATB-14 6/15/2009 80 58 9 Overcast Dry 0.41 0.46 
MGSATB-15 6/29/2009 84 31 10 Sunny Dry 0 0.83 
MGSATB-16 6/29/2009 84 31 10 Sunny Dry 0 0.83 
MGSATB-17 7/24/2009 80 54 8 Sunny Dry 0 0.5 
MGSATB-18 7/28/2010 81 74 11 Overcast Dry 0 0 
MGSATB-19 7/28/2010 82 74 10 Overcast Dry 0 0 
MGSATB-20 10/1/2010 78 31 7 Sunny Dry 0 0.33 
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Figure 3. Rigid Frame Bogie on Pipe Guide Track System 

 

Figure 4. Rigid Frame Bogie on B-beam Guide Track System 
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Table 6. Summary of Accelerometers Used in the Test Matrix 

Test No. DTS EDR-4 EDR-3 
MSGATB-1 X X X 
MSGATB-2 X X X 
MSGATB-3  X X 
MSGATB-4  X X 
MSGATB-5  X X 
MSGATB-6  X X 
MSGATB-7  X X 
MSGATB-8  X  
MSGATB-9  X X 

MSGATB-10  X X 
MSGATB-11   X 
MSGATB-12   X 
MSGATB-13  X X 
MSGATB-14  X X 
MSGATB-15  X X 
MSGATB-16  X X 
MSGATB-17 X  X 
MSGATB-18 X  X 
MSGATB-19 X  X 
MSGATB-20 X  X 

 

3.5 End of Test Determination 

When the impact head initially contacted the test article, the force exerted by the 

surrogate test vehicle was directly perpendicular. However, as the post rotates, the surrogate test 

vehicle’s orientation and path moves further from perpendicular. This introduces two sources of 

error: (1) the contact force between the impact head and the post has a vertical component and 

(2) the impact head slides upward along the test article. Therefore, only the initial portion of the 

accelerometer trace may be used since variations in the data become significant as the system 

rotates and the surrogate test vehicle overrides the system. For this reason, the end of the test 

needed to be defined. 
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Guidelines were established to define the end of test time using the high-speed digital 

video of the crash test. The first occurrence of any one of the following three events was used to 

determine the end of the test: (1) the test article fractures; (2) the surrogate vehicle 

overrides/losses contact with the test article; or (3) a maximum post rotation of 45 degrees 

occurs. 

3.6 Data Processing 

Initially, the electronic accelerometer data obtained in dynamic testing was filtered using 

the SAE Class 60 Butterworth filter conforming to the SAE J211/1 specifications [11]. The 

pertinent acceleration signal was extracted from the bulk of the data signals. The processed 

acceleration data was then multiplied by the mass of the bogie to get the impact force using 

Newton’s Second Law. Next, the acceleration trace was integrated to find the change in velocity 

versus time. Initial velocity of the bogie, calculated from the pressure switch data, was then used 

to determine the bogie velocity, and the calculated velocity trace was integrated to find the 

bogie’s deflection, which is also the deflection of the post. Combining the previous results, a 

force vs. deflection curve was plotted for each test. Finally, integration of the force vs. deflection 

curve provided the energy vs. deflection curve for each test. 
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4 COMPONENT TESTING RESULTS AND DISCUSSION 

4.1 Results 

The information desired from the component tests was the relation between the applied 

force and deflection of the post at the impact location. This data was then used to find total 

energy (the area under the force vs. deflection curve) dissipated during each test. 

Although the acceleration data was applied to the impact location, the data came from the 

center of gravity of the bogie. Error was added to the data since the bogie was not perfectly rigid 

and sustained vibrations. The bogie may have also rotated during impact, causing differences in 

accelerations between the bogie center of mass and the bogie impact head. While these issues 

may affect the data, the data was still valid. Filtering procedures were applied to the data to 

smooth out vibrations, and the rotations of the bogie during the tests were minor. Significant 

pitch angles did develop late in some tests as the bogie overrode the post; however, these 

occurred after the post-bogie interaction of interest. One useful aspect of using accelerometer 

data was that it included influences of the post inertia on the reaction force. This influence was 

important as the mass of the post would affect the barrier performance as well as test results. 

The accelerometer data for each test was processed in order to obtain acceleration, 

velocity, and deflection curves, as well as force vs. deflection and energy vs. deflection curves. 

The values described herein were calculated from the EDR-3 data curves unless otherwise noted. 

Although the transducers used produced similar results, the EDR-3 has historically provided 

accurate results, and was the only accelerometer used in all tests except one. Test results for all 

transducers are provided in Appendix A.  

In each of the following dynamic component tests, energy was absorbed by both the post 

and soil, but for convenience, this report presents the total absorbed energy as post-absorbed 

energy. 
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4.1.1 Test No. MGSATB-1 
 
During test no. MGSATB-1, the bogie impacted the post at a speed of 19.2 mph (30.9 

km/h). The post rotated through the soil to a maximum deflection of 19.5 in. (495 mm), at which 

point the bogie vehicle was brought to a stop and then rebounded backward. The post bent 

backward resulting in yielding and compression flange buckling approximately 6 in. (152 mm) 

below the ground line. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 5. Initially, inertial effects resulted in a force spike of 

13.6 kips (60.5 kN) over the first few inches of deflection. The post provided an average 

resistance force of 13.8 kips (61.4 kN) throughout the impact event, with a peak force of 20.1 

kips (89.5 kN). At maximum deflection, the post absorbed 268.5 kip-in. (30.3 kJ) of energy. 

Time-sequential photographs and post-impact photographs are shown in Figure 6. 

 
Figure 5. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-1 
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Figure 6. Time Sequential and Post-Impact Photographs, Test No. MGSATB-1 
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4.1.2 Test No. MGSATB-2 
 
During test no. MGSATB-2, the bogie impacted the post at a speed of 19.7 mph (31.7 

km/h). The post rotated through the soil to a maximum deflection of 19.3 in. (490 mm) at which 

point the bogie vehicle was brought to a stop and then rebounded backward. The post bent 

backward resulting in yielding and compression flange buckling approximately 6 in. (152 mm) 

below the ground line. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 7. Initially, inertial effects resulted in a peak force of 

14.2 kips (63.2 kN) over the first few inches of deflection. After a short drop in magnitude, the 

force increased and remained relatively constant near 19 kips (85 kN) between 10 in. and 18 in. 

(254 mm and 457 mm) of deflection. The peak force was 19.9 kips (88.5 kN). At the maximum 

deflection, the post absorbed 282.8 kip-in. (31.9 kJ) of energy. Time-sequential photographs and 

post-impact photographs are shown in Figure 8. 

 
Figure 7. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-2 

0

50

100

150

200

250

300

350

400

0

5

10

15

20

25

30

35

40

0 5 10 15 20

En
er
gy
 (k
ip
‐in

.)

Fo
rc
e 
(k
ip
s)

Deflection (in.)

MGSATB‐2

Force

Energy



 November 28, 2011 
MwRSF Report No. TRP-03-243-11  

24 

 
 IMPACT 

 
 0.050 sec 

 
 0.100 sec 

 
 0.150 sec 

 
 0.200 sec 

 
 0.250 sec 
 
Figure 8. Time Sequential and Post-Impact Photographs, Test No. MGSATB-2 
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4.1.3 Test No. MGSATB-3 
 
During test no. MGSATB-3, the bogie impacted the post at a speed of 18.2 mph (29.3 

km/h). The post fractured at a deflection of 10.9 in. (277 mm), and the bogie traveled over the 

broken post stub. The post fractured approximately 12 in. (305 mm) below the ground line. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 9. Initially, inertial effects resulted in a force spike of 

12.6 kips (56.0 kN) over the first few inches of deflection. The post began to fracture at a 

deflection of 8.3 in. (212 mm) and at a peak force of 14.7 kips (65.2 kN). At fracture, the post 

absorbed 94.6 kip-in. (10.7 kJ) of energy. Time-sequential photographs and post-impact 

photographs are shown in Figure 10. 

 

 
Figure 9. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-3 
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Figure 10. Time Sequential and Post-Impact Photographs, Test No. MGSATB-3 
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4.1.4 Test No. MGSATB-4 
 
During test no. MGSATB-4, the bogie impacted the post at a speed of 18.7 mph (30.1 

km/h). The post fractured at a deflection of 13.7 in. (348 mm), and the bogie traveled over the 

broken post stub. The post fractured approximately 12 in. (305 mm) below the ground line. 

Force vs. deflection and energy vs. deflection curves created from EDR-3 accelerometer 

data are shown in Figure 11. Initially, inertial effects resulted in a force spike of 14.4 kips (64.1 

kN) over the first few inches of deflection. The post began to fracture at a deflection of 12.7 in. 

(323 mm) and a peak force of around 25.4 kips (113 kN). At fracture, the post absorbed 183.7 

kip-in. (20.8 kJ) of energy. Time-sequential photographs and post-impact photographs are shown 

in Figure 12. 

 

 
Figure 11. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-4 

0

50

100

150

200

250

300

350

400

0

5

10

15

20

25

30

35

40

0 5 10 15 20

En
er
gy
 (k
ip
‐in

.)

Fo
rc
e 
(k
ip
s)

Deflection (in.)

MGSATB‐4

Force

Energy



 November 28, 2011 
MwRSF Report No. TRP-03-243-11  

28 

 
 IMPACT 

 
 0.050 sec 

 
 0.100 sec 

 
 0.150 sec 

 
 0.200 sec 

 
 0.250 sec 
 
Figure 12. Time Sequential and Post-Impact Photographs, Test No. MGSATB-4 
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4.1.5 Test No. MGSATB-5 
 
During test no. MGSATB-5, the bogie impacted the post at a speed of 21.9 mph (35.2 

km/h). The post rotated through the soil to a maximum deflection of 21.4 in. (545 mm) at which 

point, the bogie vehicle was brought to a stop and then rebounded backward. The post bent 

backward resulting in yielding approximately 12 in. (305 mm) below the ground line. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 13. A peak force of 22.4 kips (99.5 kN) was observed 

over the first few inches of deflection. The post provided a relatively constant resistance force of 

about 17 kips (76 kN) throughout the rest of the impact event. At the maximum deflection, the 

post absorbed 351.0 kip-in. (39.7 kJ) of energy. Time-sequential photographs and post-impact 

photographs are shown in Figure 14. 

 

 
Figure 13. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-5 
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Figure 14. Time Sequential and Post-Impact Photographs, Test No. MGSATB-5 
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4.1.6 Test No. MGSATB-6 
 
During test no. MGSATB-6, the bogie impacted the post at a speed of 21.7 mph (34.9 

km/h). As a result, the post rotated through the soil to a maximum deflection of 19.4 in. (493 

mm) at which point, the bogie vehicle was brought to a stop and then rebounded backward. The 

post bent backwards resulting in yielding approximately 12 in. (305 mm) below the ground line. 

Force vs. deflection and energy vs. deflection curves created from EDR-3 accelerometer 

data are shown in Figure 15. A peak force of 22.3 kips (99.3 kN) was observed over the first few 

inches of deflection. The post provided a relatively constant resistance force of around 18 kips 

(80 kN) throughout the rest of the impact event. At the maximum deflection, the post absorbed 

343.9 kip-in. (38.9 kJ) of energy. Time-sequential photographs and post-impact photographs are 

shown in Figure 16. 

 

 
Figure 15. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-6 
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Figure 16. Time Sequential and Post-Impact Photographs, Test No. MGSATB-6 
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4.1.7 Test No. MGSATB-7 
 
During test no. MGSATB-7, the bogie impacted the post at a speed of 21.4 mph (34.4 

km/h). As a result, the post fractured at a deflection of 7.9 in. (201 mm), and the bogie traveled 

over the post stub. The post fractured approximately 4 in. (102 mm) below the ground line. The 

upper portion of the post split into two pieces when a vertical crack originated at the fracture 

location and traveled up to the top of the post. This vertical cracking took place 14 msec after 

impact and at a deflection  around 5 in. (127 mm). 

Force vs. deflection and energy vs. deflection curves created from EDR-3 accelerometer 

data are shown in Figure 17. The three force spikes show a systematic fracture of the post 

throughout the impact event. The post began to fracture at a deflection of 2.0 in. (51 mm), and at 

a peak force of 17.3 kips (76.9 kN). At fracture, the post absorbed 73.0 kip-in. (8.3 kJ) of energy. 

Time-sequential photographs and post-impact photographs are shown in Figure 18. 

 

 
Figure 17. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-7 
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Figure 18. Time Sequential and Post-Impact Photographs, Test No. MGSATB-7 
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4.1.8 Test No. MGSATB-8 
 
During test no. MGSATB-8, the bogie impacted the post at a speed of 21.9 mph (35.2 

km/h). As a result, the post experienced a progressive fracture which concluded at a deflection of 

5.7 in. (145 mm) with the bogie traveling over the post stub. The post fractured approximately 8 

in. (203 mm) below the ground line. 

Force vs. deflection and energy vs. deflection curves created from EDR-4 accelerometer 

data are shown in Figure 19. The two force spikes show a systematic fracture of the post 

throughout the impact event. A peak force of 24.6 kips (109.3 kN) was observed over the first 

few inches of deflection. At fracture, the post absorbed 66.8 kip-in. (7.5 kJ) of energy at. Time-

sequential photographs and post-impact photographs are shown in Figure 20. 

 

 
Figure 19. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-8 
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Figure 20. Time Sequential and Post-Impact Photographs, Test No. MGSATB-8 
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4.1.9 Test No. MGSATB-9 
 
During test no. MGSATB-9, the bogie impacted the post at a speed of 19.9 mph (32.0 

km/h). As a result, the post fractured at a deflection of 4.8 in. (122 mm), and the bogie traveled 

over the post stub. The post fractured approximately 15 in. (381 mm) below the ground line. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 21. A peak force of 15.7 kips (69.8 kN) was observed 

over the first few inches of deflection. At fracture, the post absorbed 37.3 kip-in. (4.2 kJ) of 

energy. Time-sequential photographs and post-impact photographs are shown in Figure 22. 

 

 
Figure 21. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-9 
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Figure 22. Time Sequential and Post-Impact Photographs, Test No. MGSATB-9 
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4.1.10 Test No. MGSATB-10 
 
During test no. MGSATB-10, the bogie impacted the post at a speed of 20.5 mph (33.0 

km/h). As a result, the post rotated through the soil to a maximum deflection of 11.2 in. (284 

mm), at which point, the bogie vehicle was brought to a stop and then rebounded backward. The 

wood post remained undamaged. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 23. The forces quickly rose to a peak force of 36.7 kips 

(163.3 kN) over the first few inches of deflection. The post provided an average resistance force 

of 28 kips (120 kN) through 10 in. (254 mm) of deflection. The post absorbed 307.4 kip-in. (34.7 

kJ) of energy. Time-sequential photographs and post-impact photographs are shown in Figure 

24. 

 

 
Figure 23. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-10 
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Figure 24. Time Sequential and Post-Impact Photographs, Test No. MGSATB-10 



 November 28, 2011 
MwRSF Report No. TRP-03-243-11  

41 

4.1.11 Test No. MGSATB-11 
 
During test no. MGSATB-11, the bogie impacted the post at a speed of 20.6 mph (33.2 

km/h). As a result, the post rotated through the soil to a maximum deflection of 12.9 in. (328 

mm), at which point, the bogie vehicle was brought to a stop and then rebounded. The wood post 

remained undamaged. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 25. The force rapidly increased to a peak force of 30.9 

kips (137.4 kN) over the first few inches of deflection. The post provided an average resistance 

force of more than 25 kips (110 kN) through 10 in. (254 mm) of deflection. The post absorbed 

311.7 kip-in. (35.2 kJ) of energy. Time-sequential photographs and post-impact photographs are 

shown in Figure 26.  

 

 
Figure 25. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-11 
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Figure 26. Time Sequential and Post-Impact Photographs, Test No. MGSATB-11 
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4.1.12 Test No. MGSATB-12 
 
During test no. MGSATB-12, the bogie impacted the post at a speed of 19.4 mph 

(31.2km/h). As a result, the post rotated through the soil to a maximum deflection of 13.6 in. 

(345 mm), at which point, the bogie vehicle was brought to a stop and then rebounded backward. 

The wood post remained undamaged. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 27. Initially, the force rapidly increased to a peak force 

of 25.6 kips (113.7 kN) over the first few inches of deflection. The post provided an average 

resistance force over 20 kips (90 kN) through 11 in. (279 mm) of deflection. The post absorbed a 

275.5 kip-in. (31.1 kJ) of energy. Time-sequential photographs and post-impact photographs are 

shown in Figure 28. 

 

 
Figure 27. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-12 

0

50

100

150

200

250

300

350

400

0

5

10

15

20

25

30

35

40

0 5 10 15 20

En
er
gy
 (k
ip
‐in

.)

Fo
rc
e 
(k
ip
s)

Deflection (in.)

MGSATB‐12

Force

Energy



 November 28, 2011 
MwRSF Report No. TRP-03-243-11  

44 

 
 IMPACT 

 
 0.050 sec 

 
 0.100 sec 

 
 0.150 sec 

 
 0.200 sec 

 
 0.250 sec 
 
Figure 28. Time Sequential and Post-Impact Photographs, Test No. MGSATB-12 
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4.1.13 Test No. MGSATB-13 
 
During test no. MGSATB-13, the bogie impacted the post at a speed of 20.2 mph (32.6 

km/h). As a result, the post rotated through the soil to a maximum deflection of 20.5 in. (522 

mm), at which point, the bogie vehicle was brought to a stop and then rebounded backward. The 

wood post remained undamaged. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 29. Initially, inertial effects resulted in a peak force of 

19.1 kips (85.0 kN) at a deflection of 1.4 in. (37 mm). The post provided a relatively constant 

resistance force of around 15 kips (67 kN) through 17 in. (432 mm) of deflection. The post 

absorbed 298.8 kip-in. (33.8 kJ) of energy. Time-sequential photographs and post-impact 

photographs are shown in Figure 30. 

 

 
Figure 29. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-13 
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Figure 30. Time Sequential and Post-Impact Photographs, Test No. MGSATB-13 
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4.1.14 Test No. MGSATB-14 
 
During test no. MGSATB-14, the bogie impacted the post at a speed of 19.7 mph (31.7 

km/h). As a result, the post rotated through the soil to a maximum deflection of 17.0 in. (432 

mm), at which point, the bogie vehicle was brought to a stop and then rebounded backward. The 

wood post remained undamaged.  

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 31. Initially, the force rapidly increased to a peak force 

of 20.5 kips (91.2 kN). The post provided an average resistance force of around 19 kips (85 kN) 

through 11 in. (279 mm) of deflection. The post absorbed 283.5 kip-in. (32.0 kJ) of energy. 

Time-sequential photographs and post-impact photographs are shown in Figure 32. 

 

 
Figure 31. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-14 
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Figure 32. Time Sequential and Post-Impact Photographs, Test No. MGSATB-14 
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4.1.15 Test No. MGSATB-15 
 
During test no. MGSATB-15, the bogie impacted the post at a speed of 21.0 mph (33.8 

km/h). As a result, the post rotated through the soil to a maximum deflection of 16.8 in. (427 

mm), at which point, the bogie vehicle was brought to a stop and then rebounded backward. The 

post showed early signs of fracture as cracks were found on the tension side face of the post at 8 

in. (203 mm) below the ground line. The post was also bent downstream at this same location. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 33. Initially, the force rapidly increased to 35 kips (156 

kN) and remained at this magnitude until 9 in. (229 mm) of deflection. The load decrease beyond 

this deflection was attributed to the cracks that formed on the tension side face of the post. The 

post absorbed 325.6 kip-in. (36.8 kJ) of energy. Time-sequential photographs and post-impact 

photographs are shown in Figure 34. 

 
Figure 33. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-15 
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Figure 34. Time Sequential and Post-Impact Photographs, Test No. MGSATB-15 
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4.1.16 Test No. MGSATB-16 
 
During test no. MGSATB-16, the bogie impacted the post at a speed of 20.2 mph (32.5 

km/h). As a result, the post began to rotate through the soil but fractured at a displacement of 

10.4 in. (264 mm). The post fractured near ground line. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 35. The resistance force steadily increased until it 

reached a peak force of 30.7 kips (136.5 kN) at 6 in. (152 mm) of deflection, when. the post 

began to fracture. At fracture, the post absorbed 194.4 kip-in. (22.0 kJ) of energy. Time-

sequential photographs and post-impact photographs are shown in Figure 36. 

 

 
Figure 35. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-16 
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Figure 36. Time Sequential and Post-Impact Photographs, Test No. MGSATB-16 
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4.1.17 Test No. MGSATB-17 
 
During test no. MGSATB-17, the bogie impacted the post at a speed of 19.6 mph (31.5 

km/h). As a result, the post rotated through the soil to a maximum deflection of 12.3 in. (312 

mm), at which point, the bogie vehicle was brought to a stop and then rebounded backward. The 

wood post remained undamaged. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 37. The resistance increased rapidly to a peak force of 

34.8 kips (154.8 kN) over the first few inches of deflection. The post provided an average 

resistance force of 27.5 kips (122.3kN) through 10 in. (25.4 mm) of deflection. The post 

absorbed 286.5 kip-in. (32.4 kJ) of energy. Time-sequential photographs and post-impact 

photographs are shown in Figure 38. 

 

 
Figure 37. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-17 
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Figure 38. Time Sequential and Post-Impact Photographs, Test No. MGSATB-17 



 November 28, 2011 
MwRSF Report No. TRP-03-243-11  

55 

4.1.18 Test No. MGSATB-18 
 
During test no. MGSATB-18, the bogie impacted the post at a speed of 21.0 mph (33.8 

km/h). As a result, the post rotated through the soil to a maximum deflection of 18.0 in. (457 

mm), at which point, the bogie vehicle was brought to a stop and then rebounded backward. The 

wood post remained undamaged. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 39. After the initial stiffness increase over the first few 

inches of deflection, the post provided a relatively constant resistance force of around 20 kips (90 

kN). A peak force of 21.8 kips (96.8 kN) was observed at 10 in. (25.4 mm) of deflection. The 

post absorbed 352.2 kip-in. (36.7 kJ) of energy. Time-sequential photographs and post-impact 

photographs are shown in Figure 40. 

 

 
Figure 39. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-18 
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Figure 40. Time Sequential and Post-Impact Photographs, Test No. MGSATB-18 
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4.1.19 Test No. MGSATB-19 
 
During test no. MGSATB-19, the bogie impacted the post at a speed of 19.7 mph (31.7 

km/h). As a result, the post fractured into three pieces, and the bogie traveled over the post stub. 

The upper portion of the post split in to two pieces through a preexisting vertical crack on the left 

side of the post. After splitting, the upper pieces fractured from the bottom portion of the post at 

approximately 8 in. (203 mm) below the ground line. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 41. Before fracture, the post provided a resistance force 

of around 15 kips (65 kN) with a peak force of 17.0 kips (75.8 kN) at a deflection of 6.7 in. (170 

mm). At fracture, the post absorbed 124.3 kip-in. (14.0 kJ) of energy. Time-sequential 

photographs and post-impact photographs are shown in Figure 42. 

 

 
Figure 41. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-19 
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Figure 42. Time Sequential and Post-Impact Photographs, Test No. MGSATB-19 
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4.1.20 Test No. MGSATB-20 
 
During test no. MGSATB-20, the bogie impacted the post at a speed of 24.5 mph (39.5 

km/h). As a result, the post fractured at a deflection of 4.2 in. (108 mm), and the bogie traveled 

over the post stub. The post fractured at approximately 8 in. (20 cm) below the ground line. 

Force vs. deflection and energy vs. deflection curves created from the EDR-3 

accelerometer data are shown in Figure 43. Due to early post failure, only a single force spike 

was recorded. The peak force was 13.9 kips (61.9 kN) at a deflection of 1.9 in. (48 kN). The post 

absorbed 28.5 kip-in. (3.2 kJ) of energy at the time of fracture. Time-sequential photographs and 

post-impact photographs are shown in Figure 44. 

 

 
Figure 43. Force vs. Deflection and Energy vs. Deflection, Test No. MGSATB-20 
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Figure 44. Time Sequential and Post-Impact Photographs, Test No. MGSATB-20 
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4.2 Discussion 

The results from the bogie testing matrix are summarized in Table 7. The bogie impact 

speed was relatively constant throughout the testing matrix with a target impact velocity of 20 

mph (32 km/h). Thus, the energy absorption variances were the result of the failure mechanism. 

Posts that rotated through the soil absorbed all of the kinetic energy of the impacting bogie. 

Alternatively, posts that fractured experienced a quick and abrupt end to the resistance force, 

absorbed much less energy, and allowed the bogie vehicle to travel past the impact location. 

Setting aside post strength and fracture, the variance in soil resistance forces was 

attributed to post dimensions and soil compaction. Wider posts and posts with greater 

embedment depths displace a greater amount of soil as they rotate, resulting in increased 

resistance forces. Although increasing the depth of the cross section greatly increases the 

bending strength of the post, it should have virtually no effect on the soil resistance.  

Resistance force differences between tests with identical post sizes can be explained by 

variances in soil compaction and strength. This was best illustrated by comparing the results 

from test nos. MGSATB-1 and MGSATB-2 with moderately compacted soil to the results from 

test nos. MSGATB-5 and MGSATB-6 with heavily compacted soil. All four tests were 

conducted on identical W6x15 (W152x22.3) steel posts. From this comparison, a force increase 

of roughly 30 percent was observed for the posts placed in heavily compacted soil. This noted 

increase in soil resistance along with a higher propensity for wood post fracture led the 

researchers to believe that heavily compacted soils were critical for wood posts. As a result, only 

the first four tests were conducted with moderately compacted soil while the rest were installed 

in heavily compacted soil.  
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Table 7. Dynamic Testing Results 

Test          
No. 

Post Type,  
in. x in.  

(mm x mm) 

Embed. 
Depth 

Bogie 
Speed  

Average Force Peak      
Force 

Max       
Disp. Failure Type 

Max       
Energy @ 5" @ 10" @ 15" 

in. 
(mm) 

mph 
(km/h) 

kip 
(kN) 

kip 
(kN) 

kip 
(kN) 

kip 
(kN) 

in. 
(mm) 

kip-in. 
(kJ) 

MGSATB-1 Steel  W6x15 
(W152x22.3) 

54 
(1,372) 

19.2 
(30.9) 

9.1 
(40.5) 

11.2 
(49.8) 

13.3 
(59.4) 

20.1 
(89.5) 

19.5 
(496) 

Post Yielding & 
Rotation in Soil  

268.5 
(30.3) 

MGSATB-2 Steel  W6x15 
(W152x22.3) 

54 
(1,372) 

19.7 
(31.7) 

9.3 
(41.2) 

10.6 
(47.2) 

13.4 
(59.7) 

19.9 
(88.7) 

19.3 
(490) 

Post Yielding & 
Rotation in Soil 

282.8 
(31.9) 

MGSATB-3 SYP  8x8 
(203 x 203) 

54 
(1,372) 

18.2 
(29.3) 

7.2 
(32.0) 

9.2* 
(41.0)* NA 14.7 

(65.2) 
10.9** 
(277) Post Fracture 94.6 

(10.7) 

MGSATB-4 SYP  8x8 
(203 x 203) 

54 
(1,372) 

18.7 
(30.1) 

7.3 
(32.4) 

10.6 
(47.0) 

11.9* 
(53.0)* 

25.4 
(112.9) 

13.7** 
(348) Post Fracture 180.9 

(20.4) 

MGSATB-5 Steel  W6x15 
(W152x22.3) 

54 
(1,372) 

21.9 
(35.2) 

15.4 
(68.6) 

16.9 
(75.3) 

16.9 
(75.3) 

22.4 
(99.5) 

21.4 
(545) 

Post Yielding & 
Rotation in Soil 

351.0 
(39.7) 

MGSATB-6 Steel  W6x15 
(W152x22.3) 

54 
(1,372) 

21.7 
(34.9) 

16.2 
(71.9) 

17.9 
(79.7) 

18.0 
(80.2) 

22.3 
(99.3) 

19.4 
(493) 

Post Yielding & 
Rotation in Soil 

343.9 
(38.9) 

MGSATB-7 SYP  8x8 
(203 x 203) 

54 
(1,372) 

21.4 
(34.4) 

10.9 
(48.4) 

7.5* 
(33.2)* NA 17.3 

(76.9) 
7.9** 
(201) Post Fracture 73.0 

(8.3) 

MGSATB-8 SYP  8x8 
(203 x 203) 

54 
(1,372) 

21.9 
(35.2) 

12.7 
(56.4) 

6.9* 
(30.5)* NA 24.6 

(109.4) 
5.7** 
(145) Post Fracture 66.8 

(7.5) 

MGSATB-9 SYP  8x10 
(203 x 254) 

54 
(1,372) 

19.9 
(32.0) 

7.5* 
(33.2)* NA NA 15.7 

(69.8) 
4.8** 
(122) Post Fracture 37.3 

(4.2) 

MGSATB-10 SYP  10x10 
(254 x 254) 

54 
(1,372) 

20.5 
(33.0) 

25.6 
(114.0) 

28.2 
(125.5) NA 36.7 

(163.3) 
11.2 
(284) Rotation in Soil 307.4 

(34.7) 

MGSATB-11 SYP  8x10 
(203 x 254) 

54 
(1,372) 

20.6 
(33.2) 

21.6 
(95.9) 

25.1 
(111.5) NA 30.9 

(137.4) 
12.9 
(328) Rotation in Soil 311.7 

(35.2) 
 * Fracture had already been initiated. 
 ** Displacement associated with the end of fracture. 
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Table 7 (continued). Dynamic Testing Results 
 

Test          
No. Post  Type 

Embed. 
Depth 

Bogie 
Speed  

Average Force Peak      
Force 

Max       
Disp. Failure Type 

Max       
Energy @ 5" @ 10" @ 15" 

in. 
(mm) 

mph 
(km/h) 

kip 
(kN) 

kip 
(kN) 

kip 
(kN) 

kip 
(kN) 

in. 
(mm) 

kip-in. 
(kJ) 

MGSATB-12 SYP  8x10 
(203 x 254) 

54 
(1,372) 

19.4 
(31.2) 

18.1 
(80.4) 

20.8 
(92.7) NA 25.6 

(113.7) 
13.6 
(345) Rotation in Soil 275.5 

(31.1) 

MGSATB-13 SYP  8x10 
(203 x 254) 

48 
(1,219) 

20.2 
(32.6) 

13.7 
(60.9) 

14.6 
(65.1) 

15.1 
(67.4) 

19.1 
(85.0) 

20.5 
(522) Rotation in Soil 298.8 

(33.8) 

MGSATB-14 SYP  8x10 
(203 x 254) 

48 
(1,219) 

19.7 
(31.7) 

15.6 
(69.3) 

17.2 
(76.7) 

17.1 
(75.9) 

20.5 
(91.2) 

17.0 
(432) Rotation in Soil 283.5 

(32.0) 

MGSATB-15 SYP  8x10 
(203 x 254) 

48 
(1,219) 

21.0 
(33.8) 

20.0 
(88.9) 

24.5 
(109.2) 

20.8 
(92.6) 

31.5 
(140.1) 

16.8 
(427) Rotation in Soil 324.5 

(36.7) 

MGSATB-16 SYP  8x10 
(203 x 254) 

48 
(1,219) 

20.2 
(32.5) 

20.1 
(89.3) 

19.3* 
(85.9)* NA 30.7 

(136.5) 
10.4** 
(264) Post Fracture 194.4 

(22.0) 

MGSATB-17 SYP  8x10 
(203 x 254) 

48 
(1,219) 

19.6 
(31.5) 

23.4 
(104.2) 

24.7 
(109.7) NA 32.1 

(142.8) 
12.3 
(312) Rotation in Soil 285.6 

(32.3) 

MGSATB-18 SYP  6x10 
(152  x 254) 

52 
(1,321) 

21.0 
(33.8) 

14.7 
(65.6) 

17.7 
(78.8) 

18.4 
(81.9) 

21.8 
(96.8) 

18.0 
(457) Rotation in Soil 352.2 

(36.7) 

MGSATB-19 SYP  6x10 
(152  x 254) 

52 
(1,321) 

19.7 
(31.7) 

11.8 
(52.6) 

11.5* 
(51.3)* NA 17.0 

(75.8) 
13.1** 
(333) Post Fracture 124.3 

(14.0) 

MGSATB-20 SYP  6x10 
(152  x 254) 

52 
(1,321) 

24.5 
(39.5) 

5.5* 
(24.6)* NA NA 13.9 

(61.9) 
4.2** 
(107) Post Fracture 28.5 

(3.2) 
* Fracture had already been initiated. 
** Displacement associated with the end of fracture. 
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4.2.1 W6x15 (W152x22.3) Steel Posts, 7 ft (2.1 m) Long 
 
Four tests were conducted on 7-ft (2.1-m) long W6x15 (W152x22.3) steel posts in order 

to establish the force deflection characteristics of the steel posts utilized in the MGS approach 

transition. As previously discussed, two posts were installed in moderately compacted soil, while 

two were installed in heavily compacted soil. After 10 in. (254 mm) of deflection, all posts 

provided similar loads with plastic bending occurring just below ground line, as shown in Figure 

45. However, the two posts in heavily compacted soil provided higher peak forces and more 

constant forces over the first 10 in. (254 mm) of deflection.  

Since these higher forces would increase the probability of fracture in an equivalent wood 

post, the heavily compacted soil was deemed critical. Therefore, results from test nos. 

MGSATB-5 and MGSATB-6 were averaged together to form a baseline, or target resistance 

force, for the equivalent wood post design. The average resistance force from these two tests was 

17.4 kips (77.5 kN) and 17.5 kips (77.7 kN) at deflections of 10 in. (254 mm) and 15 in. (381 

mm), respectively. The deflection magnitudes were based on BARRIER VII simulations 

conducted during the design and analysis of the steel post version of the MGS approach 

transition [3], which showed these larger transition posts deflected up to 15 in. (381 mm) during 

a TL-3 impact.  

The plastic deformation observed in all four steel posts was significant when searching 

for an equivalent wood post. Since wood posts lack this ductility, the wood posts should have a 

larger/stronger cross section to reduce the risk of fracture. Further, it was recognized that the 

embedment depth of an equivalent wood post may vary from that of the steel post due to changes 

in the post cross section. Therefore, multiple post sections and lengths were tested in an attempt 

to determine an equivalent wood post. 
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Figure 45. Force vs. Deflection Comparison, 7-ft (2.1-m) Long W6x15 (W152x22.3) Steel Posts 

4.2.2 8-in. x 8-in. (203 mm x 203 mm) Wood Posts, 7 ft (2.1 m) Long 
 
Four tests were conducted on 7-ft (2.1-m) long, 8-in. x 8-in. (203-mm x 203-mm) wood 

posts. Two posts were installed in moderately compacted soil, while the other two were installed 

in heavily compacted soil. Regardless of soil compaction, each test resulted in post fracture. 

Although the individual deflections at time of fracture varied, three out of four posts had 

fractured prior to 10 in. (254 mm) of deflection, thus restricting the total energy absorption of the 

post. As a result, the 8 in. x 8 in. (203 mm x 203 mm) cross section was determined to be too 

weak to provide equivalent resistance to the steel post when used as a 7-ft (2.1-m) long wood 

post. 
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Figure 46. Force vs. Deflection Comparison, 7-ft (2.1-m) Long 8-in. x 8-in. (203-mm x 203-mm) 
Wood Posts 

4.2.3 Wood 8-in. x 10-in. and 10-in. x 10-in. Posts, 7 ft Long 
 
Three 8-in. x 10-in. (203-mm x 254-mm) wood posts and one 10-in. x 10-in. (254-mm x 

254-mm) wood post were tested with embedment depths of 54 in. (1,372 mm). These two post 

sections were grouped together because the test results were similar. With the exception of one 

8-in. x 10-in. (203-mm x 254-mm) post that fractured prematurely, these posts recorded 

resistance forces well above the targeted 17.4 kips (77.5 kN) design load determined from the 

W6x15 (W152x22.3) steel posts. In fact, calculated average force loads over 10 inches (254 mm) 

of deflection for the 8-in. x 10-in. (203-mm x 254-mm) wood posts and the 10-in. x 10-in. (254-

mm x 254-mm) wood post were 23.0 kips (102.1 kN) and 28.2 kips (125.5 kN), respectively. 
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Thus, both of these post sizes exceeded the resistance of the 7-ft (2.1-m) long W6x15 

(W152x22.3) steel post.  

These 8-in. (203-mm) and 10-in. (254-mm) wide posts displaced more soil than the 

W6x15 (W152x22.3) steel post. This was the result of two main factors. First, the wood posts 

were wider than the steel posts, which meant more soil would be involved in the inertial 

resistance at the onset of post rotation. This created higher resistance forces at the beginning of 

the impact event. Second, the steel posts bent after impact which indicated the soil resistance to 

rotation was greater than the bending strength of the W6x15 (W152x22.3) cross section. Wood 

posts cannot yield in the same manner as steel posts; thus, the energy had to be absorbed by soil 

displacement. To minimize the amount of soil displacement/resistance, either the embedment 

depth or the post width had to be reduced. 
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Figure 47. Force vs. Deflection Comparison, 7-ft (2.1-m) 8-in. x 10-in (203-mm x 254-mm). and 
10-in. x 10-in. (254-mm x 254-mm) Wood Posts 

4.2.4 6-in. x 10-in. (152-mm x 254-mm) Wood Posts, 7 ft (2.1 m) Long  
 
Three tests were conducted on 6-in. x 10-in. (152-mm x 254-mm) wood posts with 52 in. 

(1,321 mm) embedment. Test no. MGSATB-18 provided favorable results as the resistance force 

remained relatively constant ranging from 17 to 21 kips (76 to 93 kN) throughout the test, as 

shown in Figure 48. The average force over 15 in. (381 mm) of deflection was 18.4 kip (81.9 

kN), which closely resembled the average force for the W6x15 (W152x22.3) steel posts of 17.5 

kips (77.7 kN). However, the next two bogie tests resulted in post fracture. Therefore, the 6-in. x 

10-in. (152-mm x 254-mm) wood posts were determined to have inadequate bending strength to 

transfer the required forces. 
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Figure 48. Force vs. Deflection Comparison, 7-ft (2.1-m) Long 6-in. x 10-in. (152-mm x 254-
mm) Wood Posts 

4.2.5 8-in. x 10-in. (203-mm x 254-mm) Wood Posts, 6.5 ft (2.0 m) Long 
 
Five tests were conducted on 8-in. x 10-in. (203-mm x 254-mm) wood posts with 48 in. 

(1,219 mm) embedment. Only one post fractured, although another one showed the early stages 

of fracture and was slightly bent. Not including the results from test no. MGSATB-16 in which 

the post fractured, the average force over 15 in. (381 mm) of deflection 17.7 kips (78.6 kN). This 

value was very similar to the targeted design load of 17.5 kips (77.7 kN) over 15 in. (381 mm) of 

deflection. 
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Figure 49. Force vs. Deflection Comparison, 6.5-ft (2.0-m) Long 8-in. x 10-in. (203-mm x 254-
mm) Wood Posts 

4.3 Bogie Testing Conclusions 

The objective of the bogie testing program was to identify a wood post that provided 

similar force vs. deflection, or energy absorption, characteristics to the 7-ft (2.1-m) W6x15 

(W152x22.3) steel posts utilized in the original MGS approach transition system. Variability in 

wood strength proved to be a difficult hurdle as multiple posts of the same cross section, 

embedment depth, and wood grade would occasionally result in different failure mechanisms, 

i.e., rotation through the soil or post fracture. The majority of the posts that fractured were found 

to contain defects in the wood such as knots, checks, and splits. Although Grade 1 Southern 

Yellow Pine posts were utilized during all of the tests, wood defects are inevitable in timber 
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posts, especially with the larger cross sectional dimensions. Therefore, posts utilized in actual 

installations would be expected to have some natural defects that may lead to premature post 

fracture.  Thus, the possibility of post fracture had to be accounted for in the design process. 

Posts that fracture absorb far less energy and do not provide any resistance after fracture, 

typically within the first few inches of deflection. From a guardrail transition design perspective, 

this lack of resistance can have negative effects on the safety performance of the system in this 

sensitive region of the barrier. In a study conducted by Jowza [12], transitions with missing posts 

were shown to have increased propensity for both vehicle snag and vehicle instabilities due to 

pocketing. Similar performance results are expected for a transition system in which a post 

fractured prematurely. Therefore, posts that showed a propensity for fracture before rotating 

were removed from consideration as equivalent posts to the W6x15 (W152x22.3) steel posts. 

Post fracture was prevalent in tests conducted on 7-ft (2.1-m) long versions of 8-in. x 8-

in. (203 mm x 203 mm) and 6-in. x 10-in. (152 mm x 254 mm) wood posts. As a result, these 

posts were not recommended for use in the MGS approach transition. However, this does not 

mean that these post sizes should not be used in any guardrail transition. Previous approach 

transition systems have been designed using posts with these or similar dimensions, and full-

scale crash testing has verified the safety performance of these systems with no signs of post 

fracture. The success of these full-scale tests and the lack of post fracture suggest that posts 

deflecting in close proximity to one another in a barrier system distribute the load and reduce the 

stress on individual posts, thus reducing the likelihood of fracture. However, without the luxury 

of a full-scale crash test to verify the performance of these posts when functioning in the MGS 

approach transition system, the design recommendations had to be based on the bogie test 

results. 
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The individual test results for each post size were averaged together in order to compare 

the various posts. The 6.5-ft (2.0-m) long 8-in. x 10-in. (203-mm x 254-mm) wood posts provide 

average force characteristics that best match those of W6x15 (W152x22.3) steel posts when the 

soil was heavily compacted, as shown in Table 8. At 15 in. (381 mm) of deflection, the 8-in. x 

10-in. (203-mm x 254-mm) wood posts averaged 17.7 kips (78.8 kN), only 1.1 percent higher 

than the steel posts. Although the average force of 8-in. x 10-in. (203-mm x 254-mm) wood 

posts showed an increase of 15.5 percent over the steel post at 10 in. (254 mm) of deflection, the 

average forces were relatively close. Further, the researchers would rather error conservatively 

toward stiff as opposed to being too soft and opening up the probability of snagging on the 

bridge rail. Therefore, at the conclusion of the bogie testing program, the 8-in. x 10-in. (203-mm 

x 254-mm) wood post with an embedment depth of 48 in. (1,219 mm) best resembled the 

performance of the W6x15 (W152x22.3) steel transition post and was recommended for further 

analysis in the MGS approach transition. 
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Table 8. Bogie Test Result Comparison by Post Size  

Post        
Type 

Length   
ft       

(m) 

Soil         
Compaction

Fracture 
Occurrence

Average  Force % Change From 
W6x15           

(Equivalent Soil) @ 10" @ 15" 

kip       
(kN) 

kip        
(kN) @ 10" @ 15" 

Steel 
W6x15 

7       
(2.1) Moderate NA 10.9      

(48.5) 
13.4      

(59.5) - - 

SYP 8"x8" 7       
(2.1) Moderate 2 / 2 9.9       

(44.0) 
11.8       

(62.7) -9.2% -11.9% 

Steel 
W6x15 

7       
(2.1) Heavy NA 17.4      

(77.5) 
17.5       

(77.7) - - 

SYP 8"x8" 7       
(2.1) Heavy 2 / 2 7.2       

(31.8) NA -58.6% NA 

SYP  
8"x10" 

7       
(2.1) Heavy 1 / 3 23.0      

(102.1) NA 32.2% NA 

SYP  
10"x10" 

7       
(2.1) Heavy 0 / 1 28.2      

(125.5) NA 62.1% NA 

SYP  
6"x10" 

7       
(2.1) Heavy 2 / 3 14.6      

(65.0) 
18.4       

(81.9) -16.1% 5.1% 

SYP  
8"x10" 

6.5      
(2.0) Heavy 1 / 5 20.1      

(89.3) 
17.7       

(78.6) 15.5% 1.1% 
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5 BARRIER VII ANALYSIS OF WOOD POST SYSTEM 

As detailed in the previous chapter, wood posts were selected to provide similar 

resistance characteristics to that of the steel posts utilized in the original steel-post stiffness 

transition system. To verify the post change would not adversely affect the safety performance of 

the stiffness transition, BARRIER VII computer simulation analysis was undertaken. The 

evaluation began with the calibration of the steel-post stiffness transition model against previous 

full-scale crash test results. Next, the steel-post model was subjected to MASH TL-3 impact 

conditions with the 2270P vehicle throughout the length of the stiffness transition. The wood 

post characteristics were implemented into the BARRIER VII model, and the wood-post system 

was subjected to the same TL-3 impacts along the system length. Finally, the results from 

identical impacts into the steel- and wood-post stiffness transitions were compared and 

conclusions were made regarding the wood-post system. 

5.1 Calibration of Steel Post Transition Model 

During the development of the steel-post MGS stiffness transition, a BARRIER VII 

model was created and utilized to predict the safety performance of the system. This existing 

model was subjected to the documented impact conditions of test no. MWTSP-2 [3] and the 

results of the simulation were compared to those of the full-scale crash test. After a few minor 

changes to the BARRIER VII input deck (i.e., the coefficient of friction and the initial stiffness 

of the posts), the simulation results and the full-scale crash test results were found to be very 

similar, as shown in Table 9. Therefore, the calibrated steel-post transition model was deemed to 

provide accurate performance results regarding the behavior of both the 2270P vehicle and the 

stiffness transition system. The BARRIER VII input deck and a layout drawing of the barrier 

system are shown in Appendix E. 
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Table 9. Comparison of Test No. MWTSP-2 and BARRIER VII Simulation Results 

 Test No. MWTSP-2 BARRIER VII      
Simulation 

% Change 
From Tested 

Values 
Maximum Deflection     

Deflection 30.7 in. 31.6 in. 3.1% 
Location in Model Post 10 Post 10 - 

    
Vehicle Parallel Heading    

Time  0.246 sec 0.257 sec 4.5% 
Speed  41.5 mph 38.1 mph -8.2% 

    
Vehicle Exit    

Time 0.506 sec 0.525 sec 3.8% 
Speed 37.3 mph 36.6 mph -1.9% 

Exit Angle 22 deg 18.4 deg -16.4% 
    

Maximum Pocketing    
Pocket Angle 29.6 deg 28.9 deg -2.4% 

Location in Model Post 12 – Post 13 Post 12 – Post 13 - 
 

5.2 Wood-Post Transition Model 

The wood-post stiffness transition model was developed from the steel-post transition 

model. The only difference was the individual post resistances were modified as described in the 

following sections. The wood-post transition BARRIER VII model is shown in Appendix E. 

5.2.1 6-in. x 8-in. (152-mm x 203-mm) Wood Post, 6 ft (1.8 m) Long 
 
The strong axis resistance (lateral direction) for the 6-in. x 8-in. (152-mm x 203-mm) 

wood posts was based on the results of bogie test nos. GWB-14 and GWB-15, as discussed in 

Section 2.1. The average resistance force through 16 in. (406 mm) of deflection during these two 

tests was 10.8 kips (48.2 kN). Thus, with a height to the impact point, or center of rail, of 24⅞ in. 

(632 mm), the plastic rotation moment was set to 270.0 kip-in. (30.5 kN-m). The initial stiffness, 
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also taken from an average of these two bogie tests, was calculated to be 7.5 kip/in. (13.1 

kN/cm).  

Since post movement in the longitudinal direction would involve the 8-in. (203-mm) face 

of the post, the longitudinal resistance was based on the results of the 8-in. x 10-in. (203-mm x 

254-mm) wood posts documented in Chapter 4. The average forces from these tests were then 

extrapolated to represent an embedment depth of 40 in. (1,016 mm), as shown below.  

 
 8 in. x 10 in. post embedded 48 in. (test nos. MGSATB-13 through MGSATB-17) 
  Average force: F48 = 20.1 kips 
  F40 = F48 * (EMB40/EMB48)2 = 20.1 * (40/48)2 

F40 = 13.96 kips 
 
 8 in. x 10 in. post embedded 54 in. (test nos. MGSATB-11 and MGSATB-12) 
  Average force: F54 = 23.0 kips 
  F40 = F54 * (EMB40/EMB54)2 = 23.0 * (40/54)2 

F40 = 12.62 kips 
 
 Average of both values 
  F40 = 13.3 kips 

 

Using the average force of 13.3 kips (59.2 kN), the plastic rotation moment was set to 

331 kip-in. (37.4 kN-m).  

5.2.2 8 in. x 10 in. (203-mm x 254-mm) Wood Post, 6.5 (2.0 m) ft Long 
 
The strong axis resistance (lateral direction) for the 6.5-ft (2.0-m) long 8-in. x 10-in. 

(152-mm x 203-mm) wood posts was based on the results of bogie test nos. MGSATB-13 

through MGSATB-17. The average resistance force through 15 in. (381 mm) of deflection was 

calculated to be 17.7 kips (78.8 kN). Note, the posts that fractured prior to 15 in. (381 mm) of 

deflection were not included in the average resistance force. Similar to W-beam rail, the center 

of the thrie beam rail was 24⅞ in. (632 mm) high, and the plastic rotation moment was set to 440 

kip-in. (49.7 kN-m). 
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Since post movement in the longitudinal direction would involve the 10-in. (254-mm) 

face of the post, the longitudinal resistance was based on the results of the 10-in. x 10-in. (254-

mm x 254-mm) wood post evaluated in test no. MGSATB-10. Similar to the process shown in 

the previous section, the average resistance force was extrapolated to represent an embedment of 

48 in. (1,219 mm), as shown below. 

 
 10 in. x 10 in. post embedded 54 in. (test no. MGSATB-10) 
  Average force: F54 = 28.2 kips 
  F48 = F54 * (EMB48/EMB54)2 = 22.8 * (48/54)2 

F48 = 22.3 kips 
 

Using the average force of 22.3 kips (99.2 kN), the plastic rotation moment was set to 

555 kip-in. (62.7 kN-m). The initial stiffness in each direction was approximated from the bogie 

tests. 

5.2.3 General Comments 
 
The BARRIER VII resistance forces of the 6-in. x 8-in. (152-mm x 203-mm) wood posts 

were calculated to be significantly higher than the original W6x9 (W152x13.4) steel posts. The 

increase in the lateral direction is due to the torsional capacity of the post. Steel posts in a barrier 

system tend to twist due to the axial rail loads. As a result, the posts bend at loads lower than the 

maximum plastic moment due to a mechanism similar to lateral torsional buckling. This 

phenomenon was accounted for in the steel-post system by introducing a 13 percent reduction in 

strength to posts in the BARRIER VII model. On the contrary, the solid cross section of the 

wood posts greatly increases the twist resistance of the post. Thus, the reduction factor was not 

applied to the 6-in. x 8-in. (152-mm x 203-mm) wood posts. A solid wood post has more 

bending strength in the longitudinal direction than the weak axis of a wide-flange section.  
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Similarly, the larger wood transition posts located adjacent to the bridge rail have higher 

resistance values than the steel counterparts. The 8-in. x 10-in. (203-mm x 254-mm) wood posts 

were conservatively selected to meet/exceed the resistance of the W6x15 (W152x22.3) steel 

posts while minimizing the risk of post fracture. 

5.3 Evaluation Criteria 

Since the wood-post MGS stiffness transition would not be evaluated through full-scale 

crash testing, but with computer simulations, the evaluation criteria were conservatively 

established. At a minimum, the wood-post transition system was required to perform as well as 

the steel-post transition system for the following three criteria: (1) maximum deflection, (2) 

maximum pocketing angle, and (3) vehicle snag on posts. These performance characteristics 

were the same ones used to compare the various configurations during the development of the 

original steel-post stiffness transition. Thus, the wood-post transition system was evaluated in the 

same manner. 

5.4 BARRIER VII Analysis and Results 

The steel- and wood-post MGS stiffness transition models were subjected to the same 

impact matrix consisting of 45 individual impacts each for a total of 90 simulations. The 

individual impact points were spaced 9⅜ in. (238 mm) apart and ranged from 150 in. (3,810 mm) 

upstream of the stiffness transition to 75 in. (1,905 mm) upstream of the bridge rail. The impacts 

were spaced throughout the MGS stiffness transition to provide an evaluation of the entire 

system. All simulated impacts complied to MASH test designation no. 3-61 with a 5,000 lb 

(2,270 kg) pickup truck impacting at 62 mph (100 km/h) and an angle of 25 degrees. The results 

from all 90 BARRIER VII simulations are summarized in Table 10 with more detailed results 

shown in Appendix F. 
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Table 10. Summary of BARRIER VII Simulation Results 

 
 

Node  
No.

Distance U.S. 
of Bridge Rail  

(in.)

Posts      
By         

Location

Steel      
(in.)

Wood     
(in.)

Change    
From 
Steel

Steel      
(deg.)

Wood     
(deg.)

Change    
From 
Steel

Steel      
(in.)

Wood     
(in.)

Change    
From 
Steel

81 487 1/2 6"x8" 32.4 26.3 ‐18.9% 22.7 21.0 ‐7.6% 7.84 5.80 ‐26.0%
82 478 1/8 32.6 25.9 ‐20.4% 22.7 21.1 ‐6.8% 7.78 6.66 ‐14.4%
83 468 3/4 32.7 26.2 ‐20.0% 22.6 21.5 ‐4.7% 7.96 6.64 ‐16.6%
84 459 3/8 32.7 26.0 ‐20.5% 22.1 21.5 ‐2.9% 7.88 5.99 ‐24.0%
85 450 32.3 23.8 ‐26.2% 21.4 19.7 ‐8.0% 7.57 5.67 ‐25.1%
86 440 5/8 29.1 23.8 ‐18.4% 19.6 19.0 ‐3.0% 7.13 5.68 ‐20.3%
87 431 1/4 29.4 23.6 ‐19.7% 19.9 18.8 ‐5.6% 6.86 5.66 ‐17.5%
88 421 7/8 29.4 23.4 ‐20.3% 20.5 18.9 ‐8.2% 7.41 5.87 ‐20.8%
89 412 1/2 6"x8" 29.8 23.3 ‐21.6% 21.8 18.7 ‐14.5% 7.65 5.84 ‐23.7%
90 403 1/8 29.7 23.4 ‐21.4% 22.3 18.5 ‐17.0% 7.65 5.96 ‐22.1%
91 393 3/4 29.9 23.3 ‐22.1% 23.5 18.7 ‐20.4% 7.24 5.82 ‐19.6%
92 384 3/8 29.6 22.8 ‐22.9% 24.3 18.6 ‐23.5% 7.07 5.66 ‐19.9%
93 375 29.2 21.2 ‐27.4% 24.2 17.1 ‐29.5% 6.83 5.29 ‐22.5%
94 365 5/8 26.8 21.3 ‐20.6% 22.6 18.0 ‐20.6% 6.33 4.87 ‐23.1%
95 356 1/4 26.7 20.3 ‐24.1% 22.8 18.0 ‐21.1% 6.10 4.74 ‐22.3%
96 346 7/8 26.0 19.0 ‐26.8% 22.8 17.0 ‐25.7% 5.77 4.51 ‐21.8%
97 337 1/2 6"x8" 24.5 18.7 ‐23.5% 21.6 17.3 ‐19.8% 5.33 4.40 ‐17.4%
98 328 1/8 23.8 18.0 ‐24.4% 21.5 17.4 ‐19.0% 5.14 3.99 ‐22.4%
99 318 3/4 23.1 17.1 ‐25.8% 21.3 16.8 ‐21.0% 5.55 3.70 ‐33.3%
100 309 3/8 23.0 16.8 ‐26.9% 21.5 17.2 ‐20.2% 5.47 3.98 ‐27.2%
101 300 6"x8" 22.4 16.7 ‐25.1% 21.0 16.8 ‐20.2% 5.31 4.12 ‐22.4%
102 290 5/8 21.7 15.6 ‐28.1% 20.0 16.0 ‐19.7% 5.58 4.30 ‐22.9%
103 281 1/4 21.3 15.4 ‐27.7% 19.2 15.9 ‐17.0% 5.40 4.59 ‐15.0%
104 271 7/8 20.5 15.1 ‐26.2% 18.2 15.5 ‐15.1% 5.89 4.90 ‐16.8%
105 262 1/2 6"x8" 20.0 14.6 ‐27.0% 18.2 14.9 ‐18.3% 7.19 4.72 ‐34.4%
106 253 1/8 19.9 14.0 ‐29.7% 17.8 14.0 ‐21.4% 7.50 4.92 ‐34.4%
107 243 3/4 18.5 13.1 ‐29.2% 15.9 13.6 ‐14.3% 7.67 6.51 ‐15.1%
108 234 3/8 18.1 13.0 ‐28.0% 14.7 12.8 ‐12.9% 7.53 6.94 ‐7.8%
109 225 6"x8" 16.8 12.7 ‐24.7% 13.9 12.4 ‐10.9% 7.65 7.19 ‐6.0%
110 215 5/8 15.2 11.9 ‐21.8% 12.7 11.7 ‐8.2% 7.63 7.32 ‐4.1%
111 206 1/4 14.5 11.3 ‐21.6% 11.5 10.7 ‐7.1% 7.46 7.32 ‐1.9%
112 196 7/8 13.8 10.7 ‐22.5% 10.9 9.8 ‐9.7% 7.01 7.11 1.4%
113 187 1/2 6"x8" 12.9 10.0 ‐22.2% 10.1 8.7 ‐14.0% 6.68 6.45 ‐3.4%
114 178 1/8 12.7 9.8 ‐23.1% 9.9 8.6 ‐12.9% 6.79 6.54 ‐3.7%
115 168 3/4 6"x8" 12.5 9.5 ‐23.5% 10.2 8.8 ‐13.5% 6.71 6.74 0.4%
116 159 3/8 12.3 9.6 ‐21.7% 11.5 8.7 ‐24.6% 6.27 6.47 3.2%
117 150 6"x8" 12.1 9.6 ‐20.8% 13.8 9.1 ‐34.0% 6.48 6.26 ‐3.4%
118 140 5/8 12.4 10.0 ‐19.2% 16.1 11.7 ‐27.1% 6.67 6.53 ‐2.1%
119 131 1/4 6"x8" 12.6 10.6 ‐15.5% 17.3 14.2 ‐18.3% 6.90 6.71 ‐2.8%
120 121 7/8 12.5 10.9 ‐13.4% 17.7 15.2 ‐14.4% 6.78 6.63 ‐2.2%
121 112 1/2 8"x10" 12.6 10.6 ‐15.7% 17.4 19.9 14.3% 6.33 6.47 2.2%
122 103 1/8 12.7 11.2 ‐11.9% 16.9 14.7 ‐13.1% 5.53 5.69 2.9%
123 93 3/4 12.2 11.1 ‐8.9% 15.9 14.1 ‐11.4% 4.46 4.53 1.6%
124 84 3/8 11.5 10.2 ‐11.4% 14.7 12.7 ‐13.4% 2.94 3.25 10.5%
125 75 8"x10" 10.2 9.2 ‐9.3% 13.0 11.5 ‐11.2% 1.20 1.46 21.7%

Maximum Pocket AngleMaximum Deflection Worst Case SnagImpact Location



 November 28, 2011 
MwRSF Report No. TRP-03-243-11  

80 

The wood-post MGS stiffness transition outperformed the original steel-post transition 

system in all three of the evaluation criteria. The maximum deflections for the wood-post system 

were consistently 15 to 30 percent lower than the original steel-post system. This deflection 

reduction was the result of the wood posts having a higher stiffness and resistance to rotation 

than their steel counterparts. The wood-post system also consistently showed a 5 to 25 percent 

reduction in the maximum pocketing angle. Thus, the wood post system is expected to reduce the 

risk of vehicle instability. Finally, the propensity for wheel snag was found to be lower for the 

wood-post system. The reduction in system deflection significantly reduced the estimated wheel 

snag for the 6-in. x 8-in. (152-mm x 203-mm) wood post. However, the wheel snag estimations 

for the larger 8-in. x 10-in. (203-mm x 254-mm) wood transition posts were found to be closer to 

(or slightly higher) the estimations for the steel W6x15 (W152x22.3) steel posts. Thus, the 

potential benefits (as far wheel snag are concerned) a deflection reduction were offset by the 

reduction in embedment depth. Although a slight increase in potential wheel snag was predicted 

at a limited number of locations, the increases in magnitude were minimal as they never 

exceeded 0.31 in. (7.9 mm). Therefore, the potential for wheel snag was not considered a major 

concern and the wood-post MGS stiffness transition system was expected to perform 

satisfactorily for all safety criteria. 
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6 DESIGN DRAWINGS 

The design drawings for the wood post MGS stiffness transition are shown in Figures 50 

through 55. Note the post numbers in these drawings begin at 5 and end at 18 in order to match 

the post numbering scheme contained in the steel post MGS stiffness transition design details 

[3]. The steel post system drawings included the upstream anchorage posts as they were part of 

the full-scale testing installations. These upstream posts were deemed unnecessary to detail the 

wood post version of the system. However, the numbering scheme of the transition posts was 

held constant so that posts from both systems could be compared on a number to number basis. 

The wood post MGS stiffness transition consisted of only two different types of guardrail 

posts. Post nos. 5 through 15 (along with all MGS line posts upstream of this location) were 6-ft 

(1.8-m) long 6-in. x 8-in. (152-mm x 203-mm) wood posts. These posts were all embedded 40 

in. (1,016 mm) into the soil and utilized 12-in. (305-mm) deep blockouts. However, the spacing 

between the posts decreased from 75 in. (1,903 mm) at the upstream end of the system to 37½ in. 

(953 mm) and 18¾ in. (476 mm) at the downstream end, as shown in Figure 50. Post nos. 16 

through 18 were 6.5-ft (2.0-m) long 8-in. x 10-in. (203-mm x 254-mm) wood posts. These posts 

had an embedment depth of 48 in. (1,219 mm), a 37½ in. (953 mm) center to center spacing, and 

utilized 8-in. (203-mm) deep blockouts. 

The rail elements utilized in the wood post MGS stiffness transition remained unchanged 

from the steel post version of the system. Standard 12 gauge (2.66-mm thick) W-beam guardrail 

was used upstream of post no. 9. A 75-in. (1,903-mm) long, 10 gauge (3.42-mm thick) 

asymmetrical W-beam to thrie beam transition element spanned between post nos. 9 and 11. A 

75-in. (1,903-mm) long, 12 gauge (2.66-mm thick) section of thrie beam spanned between post 

nos. 11 and 14. Finally, nested 12 gauge (2.66-mm thick) thrie beam was utilized between post 

no 14 and the bridge rail. 
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Figure 50. Design Details, Wood Post MGS Stiffness Transition System Layout  
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Figure 51. Post Nos. 3 through 15 Rail Attachment Details  
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Figure 52. Post Nos. 16 through 18 Design Details  
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Figure 53. Post Nos. 3-15 Design Details  
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Figure 54. Rail Sections Details  
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Figure 55. Bill of Materials 
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7 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The objective of this study was to identify a wood-post MGS approach transition system 

that is equivalent to the steel-post MGS stiffness transition. A literature study on previous bogie 

testing and comparisons between wood and steel guardrail posts suggested that 6-ft (1.8-m) long, 

6-in. x 8-in. (152-mm x 203-mm) wood posts and W6x9 (W152x13.4) steel posts have similar 

force vs. displacement characteristics. However, very little component testing had been 

previously conducted on larger transition posts. Thus, a bogie testing program was undertaken to 

determine the behavior of W6x15 (W152x22.3) steel posts and wood posts of various cross 

sections and embedment depths. Early in this bogie-testing program, the propensity for wood-

post fracture in stiff soil was observed. As a result, the wood-post replacements were 

conservatively selected such that the cross section had excess strength capacity to minimize the 

risk of post fracture. Ultimately, 6.5 ft (2.0 m) long 8-in. x 10-in. (203-mm x 254-mm) wood 

posts provide similar resistance to rotation and were selected as the replacement for the 7-ft (2.1-

m) long W6x15 (W152x22.3) steel transition posts. 

BARRIER VII computer simulations were utilized to evaluate the behavior of the wood-

post transition system. First, a steel-post BARRIER VII transition model was calibrated against 

the results of full-scale crash test no. MWTSP-2. Next, the characteristics of the 6-in. x 8-in. 

(152-mm x 203-mm) and 8-in. x 10-in. (203-mm x 254-mm) wood posts replaced the steel-posts 

to create a wood-post transition system model. Both the steel- and wood-post versions of the 

model were then subjected to simulated MASH TL-3 impacts at 45 different impact points 

throughout the length of the MGS stiffness transition. The results of this BARRIER VII analysis 

showed that the proposed wood-post transition system consistently provided reductions in 

maximum deflection, vehicle pocketing angle, and propensity for wheel snag. Thus, the 
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introduction of wood posts to the MGS stiffness transition did not adversely affect the safety 

performance of the MGS stiffness transition system.  

The steel-post MGS stiffness transition was found to satisfy all of the TL-3 safety 

performance criteria of MASH through a full-scale crash testing program. Since the BARRIER 

VII analysis showed the wood-post transition system behaved similarly and without increases in 

deflections, pocketing, or snag, it is believed that the wood-post transition system would also 

satisfy the TL-3 performance criteria of MASH. Therefore, the wood-post MGS stiffness 

transition was recommended for use as a TL-3 safety barrier.  

The original steel post system was developed utilizing a very stiff thrie beam transition 

which represented a worst-case, critical scenario. Upon satisfying all MASH criteria and being 

deemed crashworthy, the steel-post system was also recommended for attachment to various 

thrie beam transition systems which were less stiff and less critical. Similar to the steel post 

stiffness transition, the upstream stiffness transition of the wood-post stiffness transition 

developed herein should be applicable to most other thrie beam approach guardrail transition 

designs. Details for attaching the upstream stiffness transition to other thrie beam transition 

systems are presented in Chapter 8. 

The wood posts utilized in the bogie testing program presented herein and the posts 

contained in the literature review were Southern Yellow Pine. Thus, the development of the 

wood-post transition system was based upon the material strength of Southern Yellow Pine 

timber. As a result, the posts used in wood-post MGS stiffness transition should be fabricated 

from Southern Yellow Pine or another species that provides equal or greater strength.  

Placement of the upstream end anchorage too close to the stiffness transition may 

negatively affect system performance and result in excessive barrier deflections, vehicle 

pocketing, wheel snagging on posts, vehicle-to-barrier override, or other vehicle instabilities. 
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Therefore, the following implementation guidelines should be followed. Note these guidelines 

were the same for the steel-post MGS stiffness transition. 

1. A recommended minimum length of 12 ft – 6 in. (3.8 m) for standard MGS is to 
be installed between the upstream end of the asymmetrical W-beam to thrie beam 
transition section and the interior end of an acceptable TL-3 guardrail end 
terminal. This segment includes one half-post spacing for Design K and three 
half-post spacings for Design L. 
 

2. A recommended minimum barrier length of 46 ft – 10½ in. (14.3 m) is to be 
installed beyond the upstream end of the asymmetrical W-beam to thrie beam 
transition section, which includes standard MGS, a crashworthy guardrail end 
terminal, and an acceptable anchorage system. This segment includes one half-
post spacing for Design K and three half-post spacings for Design L. 
 

3. For flared guardrail applications, a minimum length of 25 ft (7.6 m) is 
recommended between the upstream end of the asymmetrical W-beam to thrie 
beam transition section and the start of the flared section (i.e. bend between flare 
and tangent sections). This segment includes one half-post spacing for Design K 
and three half-post spacings for Design L. 
 

It is unknown as to whether a non-blocked version of the MGS will perform in an 

acceptable manner when installed adjacent to the new stiffness transition. The safety 

performance of the non-blocked MGS in conjunction with the new stiffness transition can only 

be verified through the use of full-scale crash testing. As such, it is recommended that a 

minimum of 25 ft (7.6 m) of standard MGS with spacer blocks be placed adjacent to the new 

stiffness transition prior to transitioning to other non-blocked, 31-in. (787-mm) tall, W-beam 

guardrail systems. 

The new stiffness transition was developed and evaluated for use with a thrie beam 

approach guardrail transition where all posts were installed on level terrain. Therefore, this 

stiffness transition should be implemented with a minimum of 2 ft (0.61 m) of level or gently-

sloped fill placed behind the posts, unless special design provisions are made to account for 

decreased post-soil resistance. 

 



 November 28, 2011 
MwRSF Report No. TRP-03-243-11  

 

91 

8 STIFFNESS TRANSITION ADAPTATION RECOMMENDATIONS 

The upstream stiffness transition within this study was developed while attached to a very 

stiff thrie beam approach guardrail transition. However, it is believed that this stiffness transition 

can be adapted to other wood-post, thrie beam approach guardrail transitions to mitigate 

concerns for vehicle pocketing and vehicle instabilities. Several examples of adapting the new 

stiffness transition to other approach guardrail transitions are provided below. The original 

approach guardrail transitions should only be used in conjunction with the bridge rail types for 

which they were designed, tested, or approved. 

8.1 Adaptation for Transition to TL-4 Glulam Bridge Rail 

The approach transition to TL-4 glulam bridge rail, the newly developed wood-post 

stiffness transition evaluated herein, and the adaptation of these two systems connected together 

are shown in Figure 56. The original approach guardrail transition was 19 ft – 6¼ in. (6.0 m) 

long [13-16], while the adapted stiffness transition system is configured to be 28 ft – 10¾ in. (8.8 

m) long, as measured from the centerline of the first post at half-post spacing to the upstream end 

of the glulam bridge rail. For the adapted system, an additional 6-ft 3-in. (1.9-m) long segment of 

12-gauge (2.66-mm thick) thrie beam was placed downstream of the W-to-Thrie transition 

element. The three furthest upstream 8-in. x 8-in. (203-mm x 203-mm) wood posts from the 

original transition were removed. Four, 6-ft (1.8-m) long, 6-in. x 8-in. (152-mm x 203-mm) 

wood posts were placed at quarter post spacing and adjacent to the remaining 8-in. x 8-in. (203-

mm x 203-mm) wood posts. Upstream from these posts, four, 6-ft (1.8-m) long, 6-in. x 8-in. 

(152-mm x 203-mm) wood posts were placed at half-post spacing. The first post at half-post 

spacing was located 37½ in. (953 mm) upstream of the centerline of the splice between the MGS 

and the asymmetrical stiffness transition element. 
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8.2 Adaptation for Iowa Transition to New Jersey Safety Shape Concrete Parapet 

The Iowa approach guardrail transition to New Jersey safety shape concrete parapet, the 

newly developed stiffness transition evaluated herein, and the adaptation of the two systems 

connected together are shown in Figure 57. The original approach guardrail transition was 18 ft – 

9 in. (5.7 m) long [17-20], while the adapted stiffness transition system is configured to be 28 ft 

– 1½ in. (8.6 m) long, as measured from the centerline of the first post at half-post spacing to the 

centerline of the splice between the thrie beam and the concrete parapet. In the adapted system, 

an additional 6-ft 3-in. (1.9-m) long segment of 12-gauge (2.66-mm thick) thrie beam was placed 

downstream of the W-to-Thrie transition element. Four 6-ft (1.8-m) long, 6-in. x 8-in. (152-mm 

x 203-mm) wood posts were placed at a quarter-post spacing and upstream from the 7-ft (2.1-m) 

long, 6-in. x 8-in. (152-mm x 203-mm) wood posts. Upstream from these posts, four 6-ft (1.8-m) 

long, 6-in. x 8-in. (152-mm x 203-mm) wood posts were placed at half-post spacing. The first 

post at half-post spacing was located 37½ in. (953 mm) upstream of the centerline of the splice 

between the MGS and the asymmetrical stiffness transition element. 

8.3 Adaptations to Other Thrie Beam Transitions 

Although not specifically shown, the new wood post stiffness transition described herein 

can be adapted to other thrie beam approach guardrail transitions. Small adjustments in rail 

height for the upstream stiffness transition may be necessary to match previously-approved 

approach guardrail transitions, such as those with heights of 31⅝ in. (803 mm). 
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Figure 56. Approach Transition to TL-4 Glulam Bridge Rail [13-16]  
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Figure 57. Approach Iowa Transition to NJ Shape Concrete Parapet [17-20] 
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Appendix A. Soil Batch Sieve Analyses 

 
Figure A-1. Sieve Analysis for MGSATB-1 through MGSATB-4 

 
Figure A-2. Sieve Analysis for MGSATB-5 through MGSATB-8 
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Figure A-3. Sieve Analysis for MGSATB-9 Through MGSATB-17. 

 
Figure A-4. Sieve Analysis for MGSATB-18 Through MGSATB-20. 
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Appendix B. EDR-3 Equivalency to Approved Transducer 

At the time of testing, only the manufacturer, IST, had the capabilities to calibrate the 

EDR-3 unit because it is a self contained transducer utilizing IST software. Since IST is not an 

ISO 17025 accredited laboratory, the EDR-3 was not viewed as a transducer calibrated to ISO 

17025. Additionally, both MASH and SAE J211-1 recommend a minimum sampling rate of at 

least 10 times the Channel Frequency Class (CFC). With the recommended CFC 1000 pre-

sampling filter to prevent aliasing errors in the sampling process, the minimum sampling rate 

was recommended to be 10,000 Hz. The EDR-3 does not satisfy this limit as it records data at 

3,200 Hz.  

Although the EDR-3 has a lower than recommended sampling frequency and was not 

ISO 17025 calibrated, it has historically provided accurate and precise data when compared to 

MASH compliant transducers that have been ISO 17025 calibrated and high-speed video 

analysis results of physical testing. Thus, MwRSF has viewed the EDR-3 as an equivalent 

transducer and has continued using it during physical impact testing. Appendix B of SAE J211-1 

entitled “Transducer Equivalency” states that to establish equivalence, tests must be performed 

to ensure that the transducer under consideration yields similar results for the application of 

interest. Further, transducers may be placed side-by-side in actual test conditions as the basis of 

comparison. Consequently, MwRSF has compared the EDR-3 to the ISO 17025 calibrated and 

MASH compliant DTS unit to establish equivalency. 

The DTS was calibrated on July 10, 2010 by a laboratory in the process of becoming ISO 

17025 accredited and was able to provide reverse traceability. The EDR-3 was directly compared 

to the DTS unit utilizing impact testing at the MwRSF test site that occurred after the calibration. 

Comparisons with the results from two bogie impact tests, test nos. MGSATB-18 and OCF-6, 

and one full-scale crash test, test no. DB-1 are shown in this appendix. During these tests, the 
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EDR-3 and DTS transducers were placed next to each other on the impacting vehicle, allowing 

for a direct comparison. Only the longitudinal accelerometer traces were analyzed from the full-

scale test since only longitudinal accelerations were used during the project contained herein. 

According to MwRSF procedure, the accelerometers would be considered equivalent if 

the following criteria were met. 

(1) The acceleration traces were similar in shape and magnitude, e.g., major peaks and 

valleys match throughout the impact event on an acceleration vs. time plot. 

(2) The total change in velocity (area under the acceleration vs. time curves) should differ 

by less than 10 percent over the entire impact event. 

The two criteria were satisfied in the noted impact tests, as shown in the following 

figures. Therefore, the EDR-3 was deemed equivalent to the DTS and approved for use. 
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Figure B-1. EDR-3 and DTS Equivalency Comparisons, Test No. MGSATB-18 
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Figure B-2. EDR-3 and DTS Equivalency Comparisons, Test No. DB-1 
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Figure B-3. EDR-3 and DTS Equivalency Comparisons, Test No. OCF-6 
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Appendix C. Material Specifications 

 
Figure C-1. Material Test Report for W6x15 (W152x22.3) Steel Posts used in MGSATB-5 and MGSATB-6 
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Appendix D. Bogie Test Results 

The results of the recorded data from each accelerometer used during the dynamic bogie 

test are provided in the summary sheets found in this appendix. Summary sheets include 

acceleration, velocity, and displacement versus time plots as well as force and energy versus 

displacement plots. 
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Figure D-1. Results of Test No. MGSATB-1 (EDR-3)
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Figure D-2. Results of Test No. MGSATB-1 (EDR-4) 
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Figure D-3. Results of Test No. MGSATB-1 (DTS) 
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Figure D-4. Results of Test No. MGSATB-2 (EDR-3) 



 November 28, 2011 
MwRSF Report No. TRP-03-243-11  

112 

 
 

Figure D-5. Results of Test No. MGSATB-2 (EDR-4) 
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Figure D-6. Results of Test No. MGSATB-2 (DTS) 
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Figure D-7. Results of Test No. MGSATB-3 (EDR-3) 
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Figure D-8. Results of Test No. MGSATB-3 (EDR-4) 
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Figure D-9. Results of Test No. MGSATB-4 (EDR-3) 
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Figure D-10. Results of Test No. MGSATB-4 (EDR-4) 
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Figure D-11. Results of Test No. MGSATB-5 (EDR-3) 
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Figure D-12. Results of Test No. MGSATB-6 (EDR-3) 
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Figure D-13. Results of Test No. MGSATB-6 (EDR-4) 
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Figure D-14. Results of Test No. MGSATB-7 (EDR-3) 
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Figure D-15. Results of Test No. MGSATB-7 (EDR-4) 
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Figure D-16. Results of Test No. MGSATB-8 (EDR-4) 
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Figure D-17. Results of Test No. MGSATB-9 (EDR-3) 
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Figure D-18. Results of Test No. MGSATB-9 (EDR-4) 
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Figure D-19. Results of Test No. MGSATB-10 (EDR-3) 
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Figure D-20. Results of Test No. MGSATB-10 (EDR-4) 
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Figure D-21. Results of Test No. MGSATB-11 (EDR-3) 
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Figure D-22. Results of Test No. MGSATB-12 (EDR-3) 
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Figure D-23. Results of Test No. MGSATB-13 (EDR-3) 
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Figure D-24. Results of Test No. MGSATB-13 (EDR-4) 
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Figure D-25. Results of Test No. MGSATB-14 (EDR-3) 



 November 28, 2011 
MwRSF Report No. TRP-03-243-11  

133 

 
 

Figure D-26. Results of Test No. MGSATB-14 (EDR-4) 
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Figure D-27. Results of Test No. MGSATB-15 (EDR-3) 
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Figure D-28. Results of Test No. MGSATB-15 (EDR-4) 
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Figure D-29. Results of Test No. MGSATB-16 (EDR-3) 
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Figure D-30. Results of Test No. MGSATB-16 (EDR-4) 
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Figure D-31. Results of Test No. MGSATB-17 (EDR-3) 
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Figure D-32. Results of Test No. MGSATB-17 (DTS) 
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Figure D-33. Results of Test No. MGSATB-18 (EDR-3) 

Test Results Summary
Test Number: MGSATB-18 Max. Deflection: 18.0  in.
Test Date: 28-Jul-2010 Peak Force: 21.8  k
Failure Type: Soil Rotation Initial Linear Stiffness: 6.7  k/in.

Total Energy: 325.2  k-in.

Post Type: SYP Wood
Post Size: 6 in x 10 in. 150 mm x 250 mm
Post Length: 84 in. 213.4 cm
Embedment Depth: 52 in. 132.1 cm
Orientation: Strong Axis

Gradation: AASHTO M147 Grade B (5-5-2010)
Moisture Content: 4.30%
Compaction Method: Pneumatic Tamper - H.E. 8
Soil Density, γd: NA

Impact Velocity: 20.98 mph  (30.8 fps) 9.38 m/s
Impact Height: 24.875 in. 63.2 cm
Bogie Mass: 1835 lbs 832.3 kg

Acceleration Data: EDR-3
Camera Data: AOS-6 Perpendicular - 13 ft
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Figure D-34. Results of Test No. MGSATB-18 (DTS) 

Test Results Summary
Test Number: MGSATB-18 Max. Deflection: 18.6  in.
Test Date: 28-Jul-2010 Peak Force: 21.2  k
Failure Type: Soil Rotation Initial Linear Stiffness: 9.9  k/in.

Total Energy: 324.4  k-in.

Post Type: SYP Wood
Post Size: 6 in. x 10 in. 150 mm x 250 mm
Post Length: 84 in. 213.4 cm
Embedment Depth: 52 in. 132.1 cm
Orientation: Strong Axis

Gradation: AASHTO M147 Grade B (5-5-2010)
Moisture Content: 4.30%
Compaction Method: Pnuematic Tamper - H.E. 8
Soil Density, γd: NA

Impact Velocity: 20.98 mph  (30.8 fps) 9.38 m/s
Impact Height: 24.875 in. 63.2 cm
Bogie Mass: 1835 lbs 832.3 kg

Acceleration Data: DTS
Camera Data: AOS-6 Perpendicular - 13 ft
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Figure D-35. Results of Test No. MGSATB-19 (EDR-3) 

Test Results Summary
Test Number: MGSATB-19 Max. Deflection: 12.1  in.
Test Date: 28-Jul-2010 Peak Force: 17.0  k
Failure Type: Post Fracture Initial Linear Stiffness: 9.6  k/in.

Total Energy: 124.3  k-in.

Post Type: SYP Wood
Post Size: 6 in. x 10 in. 150 mm x 250 mm
Post Length: 84 in. 213.4 cm
Embedment Depth: 52 in. 132.1 cm
Orientation: Strong Axis

Gradation: AASHTO M147 Grade B (5-5-2010)
Moisture Content: 3.70%
Compaction Method: Pneumatic Tamper - H.E. 8
Soil Density, γd: NA

Impact Velocity: 19.73 mph  (28.9 fps) 8.82 m/s
Impact Height: 24.875 in. 63.2 cm
Bogie Mass: 1835 lbs 832.3 kg

Acceleration Data: EDR-3
Camera Data: AOS-6 Perpendicular - 13 ft
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Figure D-36. Results of Test No. MGSATB-19 (DTS) 

Test Results Summary
Test Number: MGSATB-19 Max. Deflection: 11.7  in.
Test Date: 28-Jul-2010 Peak Force: 15.7  k
Failure Type: Post Fracture Initial Linear Stiffness: 10.1  k/in.

Total Energy: 87.5  k-in.

Post Type: SYP Wood
Post Size: 6 in. x 10 in. 150 mm x 250 mm
Post Length: 84 in. 213.4 cm
Embedment Depth: 52 in. 132.1 cm
Orientation: Strong Axis

Gradation: AASHTO M147 Grade B (5-5-2010)
Moisture Content: 3.70%
Compaction Method: Pneumatic Tamper - H.E. 8
Soil Density, γd: NA

Impact Velocity: 19.73 mph  (28.9 fps) 8.82 m/s
Impact Height: 24.875 in. 63.2 cm
Bogie Mass: 1835 lbs 832.3 kg

Acceleration Data: DTS
Camera Data: AOS-6  Perpendicular - 13 ft
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Figure D-37. Results of Test No. MGSATB-20 (EDR-3) 

Test Results Summary
Test Number: MGSATB-20 Max. Deflection: 4.2  in.
Test Date: 1-Oct-2010 Peak Force: 13.9  k
Failure Type: Post Fracture Initial Linear Stiffness: 7.4  k/in.

Total Energy: 28.5  k-in.

Post Type: Wood - SYP
Post Size:  6" x 10" 152 mm x 254 mm
Post Length: 84 in. 213.4 cm
Embedment Depth: 52 in. 132.1 cm
Orientation: Strong Axis - Centered On Post

Gradation: AASHTO M-147 Grade-B
Moisture Content: 0.0397
Compaction Method: Pnuematic Tamper - HE-8
Soil Density, γd: NA

Impact Velocity: 24.52 mph  (36 fps) 10.96 m/s
Impact Height: 24.875 in. 63.2 cm
Bogie Mass: 1730 lbs 784.7 kg

Acceleration Data: EDR-3
Camera Data: AOS-5 Perpendicular - 17'
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Figure D-38. Results of Test No. MGSATB-20 (DTS) 

 

Test Results Summary
Test Number: MGSATB-20 Max. Deflection: 3.7  in.
Test Date: 1-Oct-2010 Peak Force: 14.8  k
Failure Type: Post Fracture Initial Linear Stiffness: 7.8  k/in.

Total Energy: 27.5  k-in.

Post Type: Wood - SYP
Post Size:  6" x 10" 152 mm x 254 mm
Post Length: 84 in. 213.4 cm
Embedment Depth: 52 in. 132.1 cm
Orientation: Strong Axis - Centered On Post

Gradation: AASHTO M-147 Grade-B
Moisture Content: 3.97%
Compaction Method: Pnuematic Tamper - HE-8
Soil Density, γd: NA

Impact Velocity: 24.52 mph  (36 fps) 10.96 m/s
Impact Height: 24.875 in. 63.2 cm
Bogie Mass: 1730 lbs 784.7 kg

Acceleration Data: DTS
Camera Data: AOS-5 Perpendicular - 17'
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Appendix E. BARRIER VII Input Decks 

The following pages contain a BARRIER VII input data file for both the calibrated steel 

post model and the wood post model. To aid in visualizing the system, a layout drawing for the 

stiffness transition was included in this appendix following the sample input decks. 
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CALIBRATED STEEL POST MODEL INPUT FILE 
MGS Approach Transition - standard steel posts 
  165    2    1    1  190   20    2    0 
    0.0001    0.0001     0.750 3000    0       1.0    1 
   10   10   50   50   10  500   10 
    1      0.00       0.0 
  165   1537.50       0.0 
    1  165  163    1       0.0 
    1  165      0.23 
  165  164  163  162  161  160  159  158  157  156 
  155  154  153  152  151  150  149  148  147  146 
  145  144  143  142  141  140  139  138  137  136 
  135  134  133  132  131  130  129  128  127  126 
  125  124  123  122  121  120  119  118  117  116 
  115  114  113  112  111  110  109  108  107  106 
  105  104  103  102  101  100   99   98   97   96 
   95   94   93   92   91   90   89   88   87   86 
   85   84   83   82   81   80   79   78   77   76 
   75   74   73   72   71   70   69   68   67   66 
   65   64   63   62   61   60   59   58   57   56 
   55   54   53   52   51   50   49   48   47   46 
   45   44   43   42   41   40   39   38   37   36 
   35   34   33   32   31   30   29   28   27   26 
   25   24   23   22   21   20   19   18   17   16 
   15   14   13   12   11   10    9    8    7    6 
    5    4    3    2    1 
  100   12 
    1      2.29      1.99     9.375   30000.0      6.92      99.5      68.5 0.05    12-GAUGE W-BEAM 
    2      1.00      1.00     9.375   30000.0     1.000     1.000     1.000 0.05    END SECTION - NOTHING 
    3     3.114     2.650     9.375   30000.0     9.216     132.5     91.25 0.05    10-GAUGE W-TO-THRIE BEAM 
    4     3.341     2.830     9.375   30000.0     9.847     141.5     97.75 0.05    10-GAUGE W-TO-THRIE BEAM 
    5     3.569     3.010     9.375   30000.0    10.478     150.5    104.25 0.05    10-GAUGE W-TO-THRIE BEAM 
    6     3.796     3.190     9.375   30000.0    11.109     159.5    110.75 0.05    10-GAUGE W-TO-THRIE BEAM 
    7     4.024     3.370     9.375   30000.0    11.741     168.5    117.25 0.05    10-GAUGE W-TO-THRIE BEAM 
    8     4.251     3.550     9.375   30000.0    12.372     177.5    123.75 0.05    10-GAUGE W-TO-THRIE BEAM 
    9     4.479     3.730     9.375   30000.0    13.003     186.5    130.25 0.05    10-GAUGE W-TO-THRIE BEAM 
   10     4.706     3.910     9.375   30000.0    13.634     195.5    136.75 0.05    10-GAUGE W-TO-THRIE BEAM 
   11      3.76      3.10     9.375   30000.0     10.81     155.0     109.5 0.05    12-GAUGE THRIE BEAM 
   12      7.52      6.20     9.375   30000.0     21.62     310.0     219.0 0.05    12-GAUGE NEST THRIE BEAM 
  300    5 
    1    24.875      0.00       6.0       6.0     100.0     675.0     675.0 0.05    Sim. Strong Anchor Post 
     100.0     100.0      15.0      15.0 
    2    24.875      0.00       3.0       3.0     100.0     150.0    225.00 0.05    Second BCT Post 
      50.0      50.0      15.0      15.0 
    3    24.875       0.0      3.00      2.60      54.0     92.88    201.00 0.05    W6x9 BY 6-FT STEEL POST  
       6.0      15.0      16.0      16.0 
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    4    24.875       0.0      3.40      5.14     105.0    171.00    384.00 0.05    W6x15 BY 7-FT STEEL POST  
      15.0      35.0      18.0      18.0 
    5    24.875       0.0     129.0     200.0     612.5    362.90    804.60 0.05    W6x20 STEEL BRIDGE POST 
      20.0      45.0       6.0       6.0 
    1    1    2  100    1  101       0.0       0.0       0.0 
  101  101  102         1  103       0.0       0.0       0.0 
  102  102  103         1  104       0.0       0.0       0.0 
  103  103  104         1  105       0.0       0.0       0.0 
  104  104  105         1  106       0.0       0.0       0.0 
  105  105  106         1  107       0.0       0.0       0.0 
  106  106  107         1  108       0.0       0.0       0.0 
  107  107  108         1  109       0.0       0.0       0.0 
  108  108  109         1  110       0.0       0.0       0.0 
  109  109  110  116    1  111       0.0       0.0       0.0 
  117  117  118  132    1  112       0.0       0.0       0.0 
  133  133  134  148    1  111       0.0       0.0       0.0 
  149  149  150  164    1  102       0.0       0.0       0.0 
  165    1                 301       0.0       0.0       0.0       0.0       0.0 
  166    9                 302       0.0       0.0       0.0       0.0       0.0 
  167   17       176    8  303       0.0       0.0       0.0       0.0       0.0 
  177   97       180    4  303       0.0       0.0       0.0       0.0       0.0 
  181  113       184    2  303       0.0       0.0       0.0       0.0       0.0 
  185  121       187    4  304       0.0       0.0       0.0       0.0       0.0 
  188  133       190    8  305       0.0       0.0       0.0       0.0       0.0 
    5000.0   58310.0   20    6    4    0   25 
    1     0.055      0.12      6.00      17.0 
    2     0.057      0.15      7.00      18.0 
    3     0.062      0.18     10.00      12.0 
    4     0.110      0.35     12.00       6.0 
    5      0.35      0.45      6.00       5.0 
    6      1.45      1.50     15.00       1.0 
    1    102.50    15.875    1      12.0    1    1    0    0 
    2    102.50    27.875    1      12.0    1    1    0    0 
    3    102.50    39.000    2      12.0    1    1    0    0 
    4     88.75    39.000    2      12.0    1    1    0    0 
    5     76.75    39.000    2      12.0    1    1    0    0 
    6     64.75    39.000    2      12.0    1    1    0    0 
    7     52.75    39.000    2      12.0    1    1    0    0 
    8     40.75    39.000    2      12.0    1    1    0    0 
    9     28.75    39.000    2      12.0    1    1    0    0 
   10     16.75    39.000    2      12.0    1    1    0    0 
   11    -13.25    39.000    3      12.0    1    1    0    0 
   12    -33.25    39.000    3      12.0    1    1    0    0 
   13    -53.25    39.000    3      12.0    1    1    0    0 
   14    -73.25    39.000    3      12.0    1    1    0    0 
   15    -93.25    39.000    3      12.0    1    1    0    0 
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   16   -125.35    39.000    4      12.0    1    1    0    0 
   17   -125.35   -39.000    4      12.0    0    0    0    0 
   18    102.50   -39.000    1      12.0    0    0    0    0 
   19     62.40     33.90    5       1.0    1    1    0    0 
   20    -77.85     33.90    6       1.0    1    1    0    0 
    1     62.40     33.90       0.0      608. 
    2     62.40    -33.90       0.0      608. 
    3    -77.85     33.90       0.0      492. 
    4    -77.85    -33.90       0.0      492. 
    1    102.50     39.00 
    2   -125.35     39.00 
    3   -125.35    -39.00 
    4    102.50    -39.00 
    5      5.00      2.50 
    6      5.00     -2.50 
    7     -5.00     -2.50 
    8     -5.00      2.50 
    9     78.03     39.12 
   10     78.03     28.69 
   11     46.78     28.69 
   12     46.78     39.12 
   13     78.03    -28.69 
   14     78.03    -39.12 
   15     46.78    -39.12 
   16     46.78    -28.69 
   17    -62.22     39.12 
   18    -62.22     28.69 
   19    -93.47     28.69 
   20    -93.47     39.12 
   21    -62.22    -28.69 
   22    -62.22    -39.12 
   23    -93.47    -39.12 
   24    -93.47    -28.69 
   25      0.00      0.00 
    3   750.000       0.0     25.00     62.14       0.0       0.0       1.0 
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EQUIVALENT WOOD POST MODEL INPUT FILE 
MGS Approach Transition - Wood Posts: No Fracture 
  165    2    1    1  190   20    2    0 
    0.0001    0.0001     0.750 3000    0       1.0    1 
   10   10   50   50   10  500   10 
    1      0.00       0.0 
  165   1537.50       0.0 
    1  165  163    1       0.0 
    1  165      0.23 
  165  164  163  162  161  160  159  158  157  156 
  155  154  153  152  151  150  149  148  147  146 
  145  144  143  142  141  140  139  138  137  136 
  135  134  133  132  131  130  129  128  127  126 
  125  124  123  122  121  120  119  118  117  116 
  115  114  113  112  111  110  109  108  107  106 
  105  104  103  102  101  100   99   98   97   96 
   95   94   93   92   91   90   89   88   87   86 
   85   84   83   82   81   80   79   78   77   76 
   75   74   73   72   71   70   69   68   67   66 
   65   64   63   62   61   60   59   58   57   56 
   55   54   53   52   51   50   49   48   47   46 
   45   44   43   42   41   40   39   38   37   36 
   35   34   33   32   31   30   29   28   27   26 
   25   24   23   22   21   20   19   18   17   16 
   15   14   13   12   11   10    9    8    7    6 
    5    4    3    2    1 
  100   12 
    1      2.29      1.99     9.375   30000.0      6.92      99.5      68.5 0.05    12-GAUGE W-BEAM 
    2      1.00      1.00     9.375   30000.0     1.000     1.000     1.000 0.05    END SECTION - NOTHING 
    3     3.114     2.650     9.375   30000.0     9.216     132.5     91.25 0.05    10-GAUGE W-TO-THRIE BEAM 
    4     3.341     2.830     9.375   30000.0     9.847     141.5     97.75 0.05    10-GAUGE W-TO-THRIE BEAM 
    5     3.569     3.010     9.375   30000.0    10.478     150.5    104.25 0.05    10-GAUGE W-TO-THRIE BEAM 
    6     3.796     3.190     9.375   30000.0    11.109     159.5    110.75 0.05    10-GAUGE W-TO-THRIE BEAM 
    7     4.024     3.370     9.375   30000.0    11.741     168.5    117.25 0.05    10-GAUGE W-TO-THRIE BEAM 
    8     4.251     3.550     9.375   30000.0    12.372     177.5    123.75 0.05    10-GAUGE W-TO-THRIE BEAM 
    9     4.479     3.730     9.375   30000.0    13.003     186.5    130.25 0.05    10-GAUGE W-TO-THRIE BEAM 
   10     4.706     3.910     9.375   30000.0    13.634     195.5    136.75 0.05    10-GAUGE W-TO-THRIE BEAM 
   11      3.76      3.10     9.375   30000.0     10.81     155.0     109.5 0.05    12-GAUGE THRIE BEAM 
   12      7.52      6.20     9.375   30000.0     21.62     310.0     219.0 0.05    12-GAUGE NESTD THRIE BEAM 
  300    6 
    1    24.875      0.00       6.0       6.0     100.0     675.0     675.0 0.05    Sim. Strong Anchor Post 
     100.0     100.0      15.0      15.0 
    2    24.875      0.00       3.0       3.0     100.0     150.0    225.00 0.05    Second BCT Post 
      50.0      50.0      15.0      15.0 
    3    24.875       0.0       4.0      7.50      54.0    331.00    270.00 0.05    6"x8" BY 6-FT WOOD POST  
      15.0      15.0      15.0      15.0 



 

 

 N
ovem

ber 28, 2011 
M

w
R

SF R
eport N

o. TR
P-03-243-11

151

    4    24.875       0.0      15.0      12.0     105.0    555.00    440.00 0.05    8"x10" BY 6.5’ WOOD POST  
      35.0      35.0      18.0      18.0 
    5    24.875       0.0     129.0     200.0     612.5    362.90    804.60 0.05    W6x20 STEEL BRIDGE POST 
      20.0      45.0      10.0      10.0 
    6    24.875       0.0       4.0      7.50      54.0    130.00    270.00 0.05    6"x8" WOOD POST (U.S.) 
      15.0      15.0      15.0      15.0 
    1    1    2  100    1  101       0.0       0.0       0.0 
  101  101  102         1  103       0.0       0.0       0.0 
  102  102  103         1  104       0.0       0.0       0.0 
  103  103  104         1  105       0.0       0.0       0.0 
  104  104  105         1  106       0.0       0.0       0.0 
  105  105  106         1  107       0.0       0.0       0.0 
  106  106  107         1  108       0.0       0.0       0.0 
  107  107  108         1  109       0.0       0.0       0.0 
  108  108  109         1  110       0.0       0.0       0.0 
  109  109  110  116    1  111       0.0       0.0       0.0 
  117  117  118  132    1  112       0.0       0.0       0.0 
  133  133  134  148    1  111       0.0       0.0       0.0 
  149  149  150  164    1  102       0.0       0.0       0.0 
  165    1                 301       0.0       0.0       0.0       0.0       0.0 
  166    9                 302       0.0       0.0       0.0       0.0       0.0 
  167   17       176    8  306       0.0       0.0       0.0       0.0       0.0 
  177   97       180    4  303       0.0       0.0       0.0       0.0       0.0 
  181  113       184    2  303       0.0       0.0       0.0       0.0       0.0 
  185  121       187    4  304       0.0       0.0       0.0       0.0       0.0 
  188  133       190    8  305       0.0       0.0       0.0       0.0       0.0 
    5000.0   58310.0   20    6    4    0   25 
    1     0.055      0.12      6.00      17.0 
    2     0.057      0.15      7.00      18.0 
    3     0.062      0.18     10.00      12.0 
    4     0.110      0.35     12.00       6.0 
    5      0.35      0.45      6.00       5.0 
    6      1.45      1.50     15.00       1.0 
    1    102.50    15.875    1      12.0    1    1    0    0 
    2    102.50    27.875    1      12.0    1    1    0    0 
    3    102.50    39.000    2      12.0    1    1    0    0 
    4     88.75    39.000    2      12.0    1    1    0    0 
    5     76.75    39.000    2      12.0    1    1    0    0 
    6     64.75    39.000    2      12.0    1    1    0    0 
    7     52.75    39.000    2      12.0    1    1    0    0 
    8     40.75    39.000    2      12.0    1    1    0    0 
    9     28.75    39.000    2      12.0    1    1    0    0 
   10     16.75    39.000    2      12.0    1    1    0    0 
   11    -13.25    39.000    3      12.0    1    1    0    0 
   12    -33.25    39.000    3      12.0    1    1    0    0 
   13    -53.25    39.000    3      12.0    1    1    0    0 
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   14    -73.25    39.000    3      12.0    1    1    0    0 
   15    -93.25    39.000    3      12.0    1    1    0    0 
   16   -125.35    39.000    4      12.0    1    1    0    0 
   17   -125.35   -39.000    4      12.0    0    0    0    0 
   18    102.50   -39.000    1      12.0    0    0    0    0 
   19     62.40     33.90    5       1.0    1    1    0    0 
   20    -77.85     33.90    6       1.0    1    1    0    0 
    1     62.40     33.90       0.0      608. 
    2     62.40    -33.90       0.0      608. 
    3    -77.85     33.90       0.0      492. 
    4    -77.85    -33.90       0.0      492. 
    1    102.50     39.00 
    2   -125.35     39.00 
    3   -125.35    -39.00 
    4    102.50    -39.00 
    5      5.00      2.50 
    6      5.00     -2.50 
    7     -5.00     -2.50 
    8     -5.00      2.50 
    9     78.03     39.12 
   10     78.03     28.69 
   11     46.78     28.69 
   12     46.78     39.12 
   13     78.03    -28.69 
   14     78.03    -39.12 
   15     46.78    -39.12 
   16     46.78    -28.69 
   17    -62.22     39.12 
   18    -62.22     28.69 
   19    -93.47     28.69 
   20    -93.47     39.12 
   21    -62.22    -28.69 
   22    -62.22    -39.12 
   23    -93.47    -39.12 
   24    -93.47    -28.69 
   25      0.00      0.00 
    3   750.000       0.0     25.00     62.14       0.0       0.0       1.0 
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Figure E-1. System Layout Drawing of BARRIER VII Model 
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Figure D-1. System Layout Drawing of BARRIER VII Model (Continued) 



 November 28, 2011 
MwRSF Report No. TRP-03-243-11  

155 

Appendix F. Tabulated BARRIER VII Simulation Results 
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Table F-1. BARRIER VII Results for Calibrated Steel Post Transition Model 

 

Parallel 
Time

Node    
No.

Dist. U.S. of 
Impact  (in.) (deg.) @ Node (in.) @ Node Post # Snag (in) Post # Snag (in) (sec)

81 487.5 22.7 97 32.41 96 97 7.84 - - 0.258
82 478.125 22.7 97 32.57 96 97 7.78 - - 0.259
83 468.75 22.6 97 32.68 97 101 7.96 - - 0.260
84 459.375 22.1 97 32.65 98 101 7.88 - - 0.259
85 450 21.4 97 32.27 99 101 7.57 - - 0.258
86 440.625 19.6 106 29.14 100 101 7.13 - - 0.250
87 431.25 19.9 106 29.41 101 101 6.86 - - 0.251
88 421.875 20.5 110 29.41 101 105 7.41 - - 0.253
89 412.5 21.8 110 29.77 103 105 7.65 - - 0.254
90 403.125 22.3 111 29.74 104 105 7.65 - - 0.254
91 393.75 23.5 111 29.85 104 105 7.24 - - 0.252
92 384.375 24.3 112 29.56 105 109 7.07 - - 0.250
93 375 24.2 111 29.24 106 109 6.83 - - 0.248
94 365.625 22.6 112 26.78 106 109 6.33 - - 0.240
95 356.25 22.8 112 26.74 107 109 6.10 - - 0.238
96 346.875 22.8 113 25.99 107 113 5.77 - - 0.235
97 337.5 21.6 113 24.46 108 113 5.33 - - 0.230
98 328.125 21.5 113 23.84 109 113 5.14 - - 0.228
99 318.75 21.3 113 23.10 110 113 5.55 - - 0.227
100 309.375 21.5 113 23.01 111 113 5.47 - - 0.226
101 300 21.0 113 22.35 112 115 5.31 121 2.48 0.224
102 290.625 20.0 113 21.67 112 115 5.58 121 4.14 0.224
103 281.25 19.2 114 21.25 114 117 5.34 121 5.40 0.224
104 271.875 18.2 117 20.50 114 117 5.31 121 5.89 0.222
105 262.5 18.2 117 19.95 116 117 5.65 121 7.19 0.223
106 253.125 17.8 117 19.94 116 117 5.36 121 7.50 0.223
107 243.75 15.9 117 18.45 116 119 5.02 121 7.67 0.219
108 234.375 14.7 117 18.08 117 119 4.62 121 7.53 0.216
109 225 13.9 117 16.79 118 119 4.21 121 7.65 0.214
110 215.625 12.7 117 15.24 118 119 3.68 121 7.63 0.212
111 206.25 11.5 117 14.46 119 119 3.00 121 7.46 0.212
112 196.875 10.9 122 13.84 120 119 2.18 121 7.01 0.211
113 187.5 10.1 123 12.87 122 119 0.92 125 6.68 0.207
114 178.125 9.9 124 12.70 122 - - 125 6.79 0.205
115 168.75 10.2 126 12.47 123 - - 125 6.71 0.204
116 159.375 11.5 129 12.28 124 - - 125 6.27 0.201
117 150 13.8 129 12.14 126 - - 129 6.48 0.198
118 140.625 16.1 129 12.43 126 - - 129 6.67 0.195
119 131.25 17.3 129 12.56 127 - - 129 6.90 0.197
120 121.875 17.7 129 12.54 128 - - 129 6.78 0.201
121 112.5 17.4 129 12.58 130 - - 129 6.33 0.207
122 103.125 16.9 130 12.72 130 - - 129 5.53 0.214
123 93.75 15.9 130 12.20 131 - - 129 4.46 0.220
124 84.375 14.7 130 11.53 131 - - 129 2.94 0.224
125 75 13.0 130 10.15 131 - - 129 0.80 0.224

Worst Case Snag PointsMaximum DeflectionMax.  Pocket AngleImpact Location
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Table F-2. BARRIER VII Results for Wood Post Transition Model 

 

Parallel 
Time

Node    
No.

Dist. U.S. of 
Impact  (in.) (deg.) @ Node (in.) @ Node Post # Snag (in) Post # Snag (in) (sec)

81 487.5 21.0 97 26.30 94 97 5.80 - - 0.239
82 478.125 21.1 97 25.93 94 97 6.66 - - 0.241
83 468.75 21.5 97 26.15 95 97 6.64 - - 0.242
84 459.375 21.5 97 25.96 96 97 5.99 - - 0.240
85 450 19.7 97 23.80 97 97 5.67 - - 0.234
86 440.625 19.0 98 23.79 98 101 5.68 - - 0.233
87 431.25 18.8 101 23.61 98 101 5.66 - - 0.235
88 421.875 18.9 101 23.44 100 101 5.87 - - 0.236
89 412.5 18.7 101 23.33 101 101 5.84 - - 0.237
90 403.125 18.5 105 23.38 102 105 5.96 - - 0.237
91 393.75 18.7 106 23.26 102 105 5.82 - - 0.235
92 384.375 18.6 106 22.79 103 105 5.66 - - 0.234
93 375 17.1 106 21.23 104 105 5.29 - - 0.228
94 365.625 18.0 110 21.25 104 105 4.87 - - 0.228
95 356.25 18.0 110 20.30 105 109 4.74 - - 0.224
96 346.875 17.0 110 19.02 106 109 4.51 - - 0.219
97 337.5 17.3 111 18.72 107 109 4.40 - - 0.217
98 328.125 17.4 111 18.02 108 109 3.99 - - 0.213
99 318.75 16.8 111 17.13 108 109 3.70 - - 0.210
100 309.375 17.2 112 16.82 110 113 3.98 - - 0.209
101 300 16.8 112 16.74 112 113 4.12 - - 0.209
102 290.625 16.0 112 15.57 111 113 4.30 - - 0.208
103 281.25 15.9 113 15.36 112 115 4.59 - - 0.209
104 271.875 15.5 113 15.12 112 115 4.90 121 2.11 0.210
105 262.5 14.9 113 14.56 112 115 4.72 121 3.93 0.210
106 253.125 14.0 113 14.02 114 117 4.62 121 4.92 0.209
107 243.75 13.6 117 13.07 114 117 4.77 121 6.51 0.209
108 234.375 12.8 117 13.01 116 119 4.38 121 6.94 0.209
109 225 12.4 117 12.65 116 119 3.98 121 7.19 0.208
110 215.625 11.7 117 11.92 117 119 3.61 121 7.32 0.206
111 206.25 10.7 117 11.33 118 119 3.02 121 7.32 0.205
112 196.875 9.8 120 10.72 119 119 2.25 121 7.11 0.204
113 187.5 8.7 122 10.01 120 119 1.18 121 6.45 0.202
114 178.125 8.6 123 9.76 122 - - 125 6.54 0.201
115 168.75 8.8 124 9.54 123 - - 125 6.74 0.200
116 159.375 8.7 125 9.62 124 - - 125 6.47 0.199
117 150 9.1 126 9.62 124 - - 125 6.26 0.200
118 140.625 11.7 129 10.04 126 - - 129 6.53 0.197
119 131.25 14.2 129 10.61 127 - - 129 6.71 0.193
120 121.875 15.2 129 10.86 128 - - 129 6.63 0.195
121 112.5 19.9 129 10.61 130 - - 129 6.47 0.200
122 103.125 14.7 130 11.20 130 - - 129 5.69 0.206
123 93.75 14.1 130 11.11 130 - - 129 4.53 0.214
124 84.375 12.7 130 10.21 131 - - 129 3.35 0.219
125 75 11.5 130 9.21 131 - - 129 1.46 0.220

Worst Case Snag PointsImpact Location Max. Pocket Angle Maximum Deflection
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