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One of the largest challenges in agriculture is weed management. Improper or 

sub-optimal application techniques can cause decreased weed control and increased 

environmental contamination. Effective weed management is highly correlated with the 

product and the application method. Herbicide performance are affected by 

environmental conditions; they influence the physiology and growth of a plant and as 

well the herbicide performance. Among all environmental factors, rain shortly after 

herbicide application is one of the most harmful issues to the performance of the 

herbicide. Droplet size is a key factor in pesticide applications in regards to both drift and 

efficacy. Droplet size can be altered by several application parameters, such as the nozzle 

type, pressure, orifice size and spray solution.  Droplet size is a key component in 

pesticide application with respect to overall application efficacy and off-target 

movement. As tank mix ingredients can significantly influence the resulting droplet size, 

agitation systems are critical to ensuring proper mixing of all components and overall 

performance. Sitting time, a period where the tank is held in a non-agitated state, 

potentially affects droplet size as well.  

The objectives of this research were: 1) understand the influence of nozzle 

spacing, boom height, nozzle type, on weed control, also expand the scientific knowledge 



   

on aforementioned parameters. 2) Evaluate the effect of rainfall after herbicide 

application on weed control, following certain intervals in order to understand the wash 

off effect. 3) Analyze the impact of nozzle type, application speed and pressure on weed 

control, in order to contribute to a more reliable recommendation of such parameters.    

This research highlights the impact of parameters regulated by the sprayer on 

weed control and allow a better understanding of how non-chemical parameters affect the 

efficacy on weed management, as well as a greater understanding on absorption and 

evaporation of herbicide plus losses of application efficacy. The results will clarify some 

of the most concerning question on one of the most complex process in agriculture. 
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CHAPTER 1 

 

Literature Review 

 

Weed management continue to be a critical process in a successful crop system in 

United States. Among all pesticides used in a row crop system, herbicides classify as the 

most commonly used in U.S. According to USDA, herbicides were applied to 97% of 

planted acres of corn, followed by 13% and 12% of insecticide and fungicides 

respectively (Fernandez-Cornejo et al., 2014). In addition, 95% of total planted acres of 

corn (Zea mays L.), cotton (Gossypium hirsutum L.) and soybean (Glycine max (L.) 

Merr) received in 2015 at least one herbicide application (USDA-NASS, 2015). Weed 

control in crops by herbicide application can improve crop yield (Fernandez-Cornejo et 

al., 2005). Weed management consists of many strategies, such as biological, cultural, 

mechanical and chemical this last one been the preferable strategy. Main reason for the 

large use of herbicides is due to the low cost and convenience to growers while providing 

a satisfactory weed control. 

While weed management continue to increase in use among growers, the risk of 

particle drift, vapor drift, contamination, resistance and other sources of application 

losses increase due to lack of knowledge of the process (Bish and Bradley, 2017). Particle 

drift and vapor drift are the two mechanisms possible for movement of herbicide 

downwind. Particle drift consists in the movement of particles containing the active 

ingredient carried by the action of the air at the application time or soon after the 

application, outside of the intended area of treatment. While vapor drift occurs when 
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evaporation of herbicide happens in the treated area, are suspended in the air in the form 

of vapor, and move outside the treated area in that form. Up to 50% of pesticides losses 

are estimated in the form of volatilization and particle drift (Berg et al., 1999). Spray 

particle drift is normally influenced by wind speed and wind direction, spray droplet size, 

boom height and buffers zone (Creech et al., 2015). Once weather related parameters in 

application cannot be controlled, droplet size rise as one of the most important 

components in order to control particle drift during herbicide application (Berg et al., 

1999; Etheridge et al., 1999). Uneven distribution patterns (Miller and Butler Ellis, 

2000), lack of coverage and deposition, are also causes of particle drift when combined 

with improper weather conditions resulting in reduction on the efficacy been expected 

(Johnson et al., 2006).  

As previously stated, in order to mitigate drift droplet size is a key factor and that 

can be controlled mainly by nozzle type (Butler Ellis et al., 2002), pressure and orifice 

size (Nuyttens et al., 2007). Typically, nozzles are classified as Venturi and non-Venturi 

nozzles. Venturi nozzle technology consist in nozzles with a pre-orifice, air fluid mixing 

chamber and the exit orifice, which generates the pattern of the nozzle spray fluid. Such 

technology contributes to the production of larger droplets with air included in the 

droplets when compared versus the conventional non-Venturi fan nozzle at a known 

determined pressure (Etheridge et al., 1999). Nozzle type selection depends on the 

scenario, where herbicide been used and weed species targeted influence the nozzle type  

selected (Meyer et al., 2016), as well as carrier volume of the application. A common 

practice to increase droplet size and thus reduce particle drift is to reduce application 

pressure and also increase orifice size (Creech et al., 2015; Hartley and Graham-Bryce, 
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1980). In consequence of that if application is not adjusted for speed, application rate and 

efficacy will be influenced (Knoche, 1994), other feasible alternative to reduce drift 

potential is to change nozzle type (Henry et al., 2015; Zhu et al., 2004). In addition, 

alternative particle drift strategies showed to be important in order to increase droplet size 

once previous reported work showed losses on herbicide efficacy when droplet size 

increased (Butts et al., 2018), and the same trend was observed for insecticide (Ebert et 

al., 1999). 

Herbicide particle drift can cause damage to nearby crops and sensitive plants (de 

Snoo and de Wit, 1998; Nordby and Skuterud, 1974) this impact is due to herbicide 

toxicology, especially because some modes of action are highly active at low 

concentrations, and distance to sensitive vegetation. Another tool for drift management 

are the drift reduction technologies (DRTs) which has the objective to reduce the 

percentage of driftable fines by increasing the viscosity of the spray reducing the number 

of small droplets. Other drift control adjuvants acts as a suspension inverter to improve 

the spray sheet breakup in order to reduce fines. More and more herbicide application are 

including DRTs especially near sensitive areas, at the same time the addition of adjuvants 

to the tank-mixture does not influence the efficacy of the herbicide, actually in the other 

hand adjuvants can make the herbicide applications more efficient (Mcmullan, 2000). 

Droplets are generated by a process denominated atomization, which consists on 

breaking the liquid sheet into fine particle capable of reaching the surface of the target. 

Among the various process of atomization, agricultural nozzles utilizes the process of 

forcing the liquid through a small orifice under a certain pressure at that moment droplets 

are formed. There are numerous nozzles called hydraulic nozzles, which can be a flat fan, 
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air induction, twin fluid, deflector, and both cones, hollow and full cone. Once droplets 

are generated, a complex process starts reaching to the intended target, retention on leaf 

surface, deposit of the active ingredient, absorption and biological response (Ebert and 

Downer, 2008; Reichard, 1988). Droplets for optimum performance and biological 

activity need to be delivered properly, meaning a adequate coverage and deposition in 

order to maximum availability of active ingredient for plant absorption, that is correlated 

with nozzle spacing and boom height as well (Forney et al., 2017).  

Aforementioned parameters plays a role in drift as well as in coverage and 

deposition in order for an optimum biological response of weed control, but there is also 

other parameters that also play an important role in weed management, which are above 

mentioned, boom height and nozzle spacing which influence the homogeneity of the 

application. Coefficient of variation (CV) of an application is a quantification of the spray 

pattern uniformity (Ozkan and Ackerman, 1992) measuring the evenness of the 

distribution exiting the nozzle exit orifice. Once a smaller CV would be achieved with an 

increasing boom height and a narrower nozzle spacing (A. H. Azimi et al., 1985). CV of 

hydraulic nozzles versus air induction goes from 12 to 22 % respectively. Two types of 

methods can be used to measure pattern uniformity, static and dynamic. Static consist of 

a patternator composed by graduate cylinders where the spray is collected across the 

entire boom (A. Womac et al., 2001; Etheridge et al., 1999). Meanwhile the dynamic 

method involve collecting the spray in a measurement zone with water sensitive cards (A. 

Womac et al., 2001), petri dishes or string collectors, last two more commonly used on 

aerial applications. 
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Droplet size not only is critical for particle drift purposes but also important to 

application efficacy. Better crop penetration, droplet impaction, herbicide retention and 

increased efficacy can be obtained by smaller droplet size (Knoche, 1994). Contact 

herbicides are more influenced by droplet size when increasing the droplets when 

compared with systemic herbicides due to how the herbicide acts on the plant (Etheridge 

et al., 2001). Application efficacy is directly correlated with retention, absorption among 

other factors accordingly to targeted plants (Zwertvaegher et al., 2014) which can lead to 

economic losses and contamination when misconsidered. All those factors are dependent 

of the morphological characteristics of the plant, with the leaf surface composition with 

pubescence, waxy layer, and neutral. 

 

Objectives 

 

Pesticide applications is one of the most complex process in agriculture, 

applicators and growers are facing what seems to be an endless variety of options to 

choose when selecting the proper equipment, proper nozzle type and proper parameters to 

achieve an optimum application with no to little activity outside intended area of 

treatment. Adequate nozzle selection will influence droplet size generated and uniformity 

of the swath and thus will affect the efficacy of the operation and potential contamination 

for a given situation. 

Droplet size depends on the combination of nozzle type and its orifice size, as 

well as characteristics of the spray solution utilized in the given scenario, just as the 
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application pressure enforced in that process at which the liquid will be exiting the nozzle 

exit orifice. 

This research had as main objective understand and better explain the influence of 

physical application parameters on herbicide efficacy and droplet size, and it was divided 

into three sub-objectives, which were: 1) understand the influence of nozzle spacing, 

boom height, nozzle type, on weed control; also expand the scientific knowledge on 

aforementioned parameters. 2) Evaluate the effect of rainfall after herbicide application 

on weed control, following certain intervals in order to understand the wash-off effect. 3) 

Analyze the impact of nozzle type, application speed and pressure on weed control, in 

order to contribute to a more reliable recommendation of such parameters. 
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CHAPTER 2 
 

Influence of nozzle spacing, boom height and nozzle type on the efficacy of dicamba, 
saflufenacil, glyphosate and glufosinate. 

 
 

Abstract 

 

One of the largest challenges in agriculture is weed management.  Effective weed 

management is highly correlated with the product and the application method. The 

objective of this research was to find which combinations of nozzle spacing, boom 

height, and nozzle type are most efficacious with dicamba, saflufenacil, glyphosate and 

glufosinate when applied on common lambsquarters (Chenopodium album L.), velvetleaf 

(Abutilon theophrasti Medik.), Palmer amaranth (Amaranthus palmeri S. Wats.). The 

study was conducted under greenhouse conditions and treatments were applied to plants 

were 10 to 15 cm in height. Nozzle spacings of 38, 50, and 76 cm were used in a 1.67 x 

4.2 m spray chamber with a single-track three nozzle boom. Herbicides were applied at 

276 kPa, and the application rates were 94 L ha-1 (glyphosate, saflufenacil, and dicamba) 

or 140 L ha-1 (glufosinate). Herbicides were applied at rates of 140 g ae ha-1 dicamba, 37 

g ai ha-1 saflufenacil, 473 g ae ha-1 glyphosate and 286 g ai ha-1 glufosinate. Applications 

were made using four TeeJet nozzles: XR11004, AIXR11004, TT11004 and TTI11004 

and the boom heights tested were 31, 46, and 61 cm. The experimental design was a 

completely randomized factorial design (four nozzle types x three boom heights x three 

nozzles spacing x four herbicides x four weed species). Data were subjected to ANOVA 

and means were separated using Fisher’s Protected LSD test. Results showed significant 

main effects interactions between nozzle type, nozzle spacing, and boom height for each 
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herbicide solution within each weed species.  These data suggest the need to adjust our 

application techniques for different situations in order to promote greater weed control 

efficacy. Narrower nozzle spacings were more effective compared to wider nozzle 

spacings, carried truth across herbicides and weed species used. XR nozzle type were the 

least affected by boom height or nozzle spacings among nozzle types used. Application 

parameters analyzed in this study proved the necessity of better understanding of their 

effects in order for an optimal weed control.  

 

Introduction 

 

Weed management is currently one of the biggest challenges in agriculture and a 

key factor for crop productivity. Several factors can influence successful weed 

management including spray boom height (Jong et al. 2000), nozzle type and pressure 

(Creech et al. 2015), nozzle spacing (Murphy et al. 2000) and spray distribution 

(Debouche et al. 2000). In addition, weather conditions such as wind speed, temperature, 

crop temperature and humidity can significantly impact the success of a pesticide 

application (Craig et al. 1998). Applications made outside the recommended arrangement 

of parameters can lead to particle drift, uneven distribution patterns (Miller and Butler 

Ellis 2000), or even lacks in coverage and deposition (Taylor et al. 2004), all of which 

may lead to possible decreases in weed control. Sub-lethal doses may lead to resistance 

(Busi and Powles 2009) and reduced efficacy (Johnson et al. 2006). 

Nozzle spacing and boom height can influence particle drift and coverage and are 

typically optimized to delivering proper amount of chemical uniformly from the boom to 
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the target to provide good coverage and weed control (Forney et al. 2017) while 

mitigating particle drift. Coefficient of variation (CV) is a quantification of spray pattern 

uniformity (equation 1) (Ozkan, H.E., & Ackerman, K. D. 1992) providing a measure 

how even the distribution is coming out of a nozzle. Higher CV indicates poor 

distribution and lower CV indicates good distribution. Higher boom heights also have the 

potential for the wind speeds at the nozzle exit to be greater than if the nozzle were 

positioned at a lower boom height, potentially resulting in increased particle drift (M. E. 

Teske and H. W. Thistle 1999). In aerial applications, boom height and wind speed are 

two of the most critical factors, in addition to droplet size, impacting drift and deposition 

(Bird et al. 1996, M. E. Teske and J. W. Barry 1993). 

 CV (%) = (100%) – (√Ʃ(xi – x̅)2 / n – 1)/ (Ʃxi/n) 
 

[1] 

Where: 
xi = flow rate of the ith sample across spray pattern in mL min-1 
x̅ = mean flow rate in mL min-1 
n = number of collection tubes.  

The CV decreases as the boom height increases (A. H. Azimi et al. 1985) 

preventing proper overlap resulting in an adequate an variable coverage (Forney et al. 

2017).  Similar to boom height, nozzle spacing can affect CV. Nozzle spacing is the 

distance between the nozzles positioned across the boom section. Typically, 

recommendations for nozzle spacing can be obtained from the manufacturers.  As an 

example, for a TeeJet 80˚ flat fan nozzle the recommended nozzle spacing is 50 cm for a 

75 cm boom height, while for 110˚ flat fan nozzle the recommended nozzle spacing is 50 

cm for the same boom height (TeeJet Technologies, 2014). Correct nozzle spacing 

guarantees an appropriate overlap of the spray sheets. Typically as nozzles are positioned 
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closer together, the CV decreases (A. H. Azimi et al. 1985). With reduced nozzle spacing, 

the number of nozzles needed will increase potentially resulting in an over application of 

product that can cause phytotoxic problems. The effects of nozzle spacing on spray 

uniformity with nozzle spacings outside of recommended values are not widely reported 

(Forney et al. 2017). 

Another factor influencing distribution and particle drift is nozzle type. Each 

nozzle type provides a different spatial distribution pattern and droplet size potentially 

requiring different boom heights and nozzle spacing to achieve optimal coverage. Air 

incorporation in the solution happens in different manners and for tested nozzles in this 

study two scenarios were used, first with two air inlets (AIXR) one by each side of the 

nozzle. While only one air inlet and two internal air inlets (TTI) in the second nozzle, 

coupled with a mixing chamber before exiting the nozzle with a 15˚ angle from vertical 

position (Matthews. et al. 2014; TeeJet Technologies, 2014). 

 When particle drift from conventional boom sprayers is a concern, changes in 

nozzle type offer the easiest and most effective method for altering droplet size to reduce 

drift potential (Zhu et al. 2004; Henry et al. 2015). Generally, nozzles are characterized 

Venturi or non-Venturi.  Venturi nozzles are constructed with a pre-orifice, an air-mixing 

chamber, and an exit orifice, which is responsible for creating the pattern. Typically, 

Venturi nozzles generate larger droplets at the same application pressure when compared 

to non-Venturi nozzles (Etheridge et al. 1999). The optimal nozzle type required depends 

on the herbicide type and the weed species targeted (Meyer et al. 2016) 

Common lambsquarters is among the weeds more problematic to obtain control in 

crops. Summer annual weed species with fast emergence in the beginning of the growing 
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season, other characteristics which contributes for common lambsquarters to be 

problematic is the capacity of germination in shallow depths combined with poor activity 

from some herbicides used post emergence (Westhoven et al. 2008). In the world, 

common lambsquarters is classified as the forth weed species most important with 

herbicide resistance (Heap 2007).  Common lambsquarters given aforementioned 

characteristics competes with row crops such as corn and soybeans. 

Velvetleaf competes highly with crops and became a major problem in weed 

management in row crops that are grown in United States. Seed production is very high 

with large number of seeds per plant produced with the capacity of longevity staying 

viable in the soil (Paszkowski and Kremer 1988). Leaf composition of velvetleaf is 

highly pubescent, with the plant shooting its leaves trying to capture the most of sun light 

and compete the most with the crops. 

Palmer amaranth constitutes of an erect, branched herbaceous summer annual 

weed species with a terminal spike inflorescence containing male and female flower on 

two different plants (dioecious) (Klingaman and Oliver 1994). The competitiveness of 

this weed species is mainly due to prolific seed production allowing greatness in seed 

spreading. Palmer amaranth competes for light, water and nutrients mainly due to its 

rapid growth and allopathic potential. Leaf structure composes of alternate leaves, plain 

for greater competition potential. According to Heap (2007) Palmer amaranth has 60 

herbicide resistant cases reported across the world, proving to be prone to those cases 

with many modes of actions. 

The objective of this study was to determine which combinations of nozzle 

spacing, boom height and nozzle type were most efficacious with dicamba, saflufenacil, 
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glyphosate and glufosinate when applied to common lambsquarters (Chenopodium album 

L.), velvetleaf (Abutilon theophrasti Medik.), and Palmer amaranth (Amaranthus palmeri 

S.). 

 

Material & Methods 

 

A greenhouse study was conducted at the University of Nebraska – Lincoln 

Pesticide Application Technology Laboratory (PAT Lab) in North Platte, NE USA on the 

following weed species: common lambsquarters, velvetleaf, and Palmer amaranth. These 

species were selected based on their diversity in leaf surface type (waxy, hairy and 

neutral), family and other physiological characteristics. 

Application. Carrier volume for this study was 94 L ha-1. Clarity® (dicamba) at 

140 g ae ha-1, Sharpen® (saflufenacil) at 37 g ai ha-1, and Roundup PowerMax® 

(glyphosate) at 473 g ae ha-1 were applied. Liberty® (glufosinate) was applied at 286 g ai 

ha-1 in 140 L ha-1 based in label record. Ammonium sulfate was added to glyphosate and 

glufosinate at 5% v v-1 rate and methylated seed oil was added to saflufenacil at 1% v v-1. 

Applications were made using a 1.67 x 4.2 m single-track three nozzle boom spray 

chamber (DeVries Manufacturing, Hollandale, MN 56045). Nozzle spacings were 38, 50 

or 76 cm and boom height was 31, 46 or 61 cm from the target. Four nozzles were used 

in this study; air induction extended range flat spray tips (AIXR), turbo TeeJet wide angle 

flat fan spray tips (TT), Turbo TeeJet Induction flat fan spray tips (TTI), Extended Range 

flat spray tips (XR) (TeeJet Technologies, Spraying Systems Co., Glendale Heights, IL 

60139 USA). Nozzles were 110˚ flat fans with 04-orifice size. 
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Applications were made with a spray pressure of 276 kPa.  To ensure that the 

same volume was applied for all treatments, different speeds were used for each nozzle 

spacing (Table 2.1.). Plants were treated when they were 10 to 15 cm tall. After 

treatment, plants were placed back in the greenhouse to complete their life cycles. Visual 

estimations of injury were collected at 28 days after application (DAA) with ratings 

ranging from 0 (no injury) to 100 (plant death). Immediately after rating, plants were 

harvested at the soil surface, placed in a dryer at 60 C until they reached a constant mass 

and the dry weights were recorded. The full study was repeated twice with each run 

having four replications.    

Droplet size. Droplet spectrum for each treatment combination was evaluated 

using a low-speed wind tunnel. The droplet spectrum for each treatment was analyzed 

using a Sympatec HELOS-VARIO/KR laser diffraction system with the R7 lens 

(Sympatec Inc., Clausthal, Germany) controlled by WINDOX 5.7.0.0 software 

(Sympatec Inc., Clausthal, Germany). This lens was capable of detecting droplets in a 

range from 18 to 3500 μm. The spray plume was oriented perpendicular to the air flow. 

An actuator traversed the nozzle at a constant speed of 0.2 m s-1 such that the entire spray 

plume passed through the laser beam. The exit orifice of the nozzles were 30 cm from the 

laser beam and a concurrent airflow velocity of 6.7 m s-1 was maintained, as described by 

(Creech et al. 2016). A minimum of three replications were made and Dv0.1, Dv0.5, and 

Dv0.9 values were recorded.  These are the droplet diameters (µm) at which 10, 50 and 

90% of the total spray volume is comprised of droplets of smaller or equal diameters 

respectively. Percentage fines (expressed as the percentage of the total spray volume 

comprised of droplets with a diameter less than a 150 µm) and relative span (RS) were 



17 
 

also recorded. RS is a non-dimensional parameter, which indicates the variation in the 

size distribution: 

 RS = (Dv 0.9 - Dv 0.1) / Dv 0.5 [2] 

A RS value that approaches zero is preferable, representing a more homogeneous 

droplet spectrum. 

Statistical analysis. The experimental design was structured as a completely 

randomized factorial design (four weed species X four herbicides X four nozzle types X 

three boom height X three nozzle spacing). Dry weights were subjected to ANOVA and 

means were separated using Fisher’s Protected LSD test at α=0.05 using SAS version 9.4 

(SAS Institute Inc., Cary, NC). Dry biomass was compared using a generalized linear 

mixed model analysis of variance (GLIMMIX) (Littell et al. 2006). A Gamma 

distribution was used for glufosinate on velvetleaf in order to satisfy ANOVA 

assumptions (Butts, T. R. 2017, Stroup, W.W. 2013).  Back transformation data are 

presented. 

 

Results and Discussion 

 

Analysis of response variables across both weed species and herbicides did not 

reveal any clear patterns; as such the results and discussion are discussed within each 

weed species and herbicide solution based on significance at α = 0.05 level. 

 Common Lambsquarters. Nozzle spacing was significant within dicamba and 

glufosinate (p = 0.0035 and <0.0001 respectively) applications. With dicamba (Figure 

2.1.), 38 cm nozzle spacing provided greater control than 76 cm nozzle spacing while 
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with glufosinate (Figure 2.4.) 38 and 50 cm nozzle spacing provided greater weed control 

than 76 cm nozzle spacing.  These results support pervious findings demonstrating that 

narrower nozzle spacings decrease CV (improve deposition uniformity) and improve 

overall weed control compared to larger nozzle spacing intervals (A. H. Azimi et al. 

1985). 

Boom height was a significant factor (p = 0.0158) for glyphosate applications 

(Figure 2.3.) with the higher boom height of 61 cm resulting in greater weed control than 

the 31 cm boom height. When boom heights are not optimized for the specific nozzle 

type and nozzle spacing used, a loss in pattern uniformity and efficacy can occur. Forney 

et al. (2017) found that narrower flat fan nozzles and higher boom heights contributed for 

a greater CV. 

 The nozzle spacing*nozzle type interaction was significant (p = 0.0120) when 

spraying saflufenacil (Figure 2.2.) There were no differences in control between the TTI 

and XR nozzle types, regardless of nozzle spacing. However, with the TT and AIXR 

nozzles, 50 and 76 cm nozzle spacing provided a greater control than 38 cm nozzle 

spacing. This suggests that deflector type nozzles that integrate air inclusion technology 

(Ferguson et al. 2015; Matthews. et al. 2014) (TTI) remove the influence of nozzle 

spacing on weed control.  

Velvetleaf. Nozzle spacing was significant for dicamba on velvetleaf (p = 0.0008) 

(Figure 2.5.) with the narrower nozzle spacings of 38 and 50 cm providing better control 

than 76 cm nozzle spacing, which again supports previous findings where narrow nozzle 

spacing with a lower CV providing for better weed control efficacy (A. H. Azimi et al. 

1985).  
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The nozzle spacing*nozzle type interaction was significant for both glyphosate 

and glufosinate (p = 0.0363 and 0.0157, respectively).  With velvetleaf (Figure 2.6.), 

similar to the common lambsquarters results, there was no difference in control between 

the TTI and XR nozzles using glyphosate. However, with the AIXR nozzle the 38 cm 

nozzle spacing had greater weed control compared with the largest nozzle spacing of 76 

cm.   With the TT nozzle, a 50 cm nozzle spacing provided greater control compared to 

76 cm nozzle spacing, which provided the least among nozzle spacings. 

The boom height*nozzle type interaction was significant when spraying 

glufosinate (p = 0.0235) (Figure 2.7.). While the AIXR and XR nozzles showed equal 

control across boom heights, the TT nozzle had the best control at 31 cm nozzle spacing 

while the TTI nozzle had better control at 31 and 46 cm nozzle spacing. The Extended 

Range nozzle technology (AIXR and XR nozzles) resulted in no differences in control 

regardless of the boom height while the Turbo TeeJet nozzle technology (TT and TTI) 

had greater control at lower boom heights. Mainly, the differences between nozzle 

technologies was droplet size, which is due to the construction on those nozzles. Air 

induction nozzles (AIXR and TTI) showed greater flexibility with tested parameters 

versus non-air inclusion nozzles (XR and TT) in result of air inlets incorporating air to 

the solution and making droplets with more volume, explaining the preference to lower 

boom heights. 

Glufosinate had a significant nozzle spacing*nozzle type (p = 0.0157) interaction 

(Figure 2.8.). The XR nozzle had the same control at all nozzle spacings. The TTI nozzle 

had better control at the narrower nozzle spacings. The AIXR and TT nozzles had the 

greatest control at 38 and 50 cm nozzle spacings. 
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Palmer amaranth. Only nozzle spacing resulted in a significant effect (p-value = 

0.0193) (Figure 2.9.). The 38 and 50 cm nozzle spacing had the greater control than, once 

again demonstrating that narrower nozzle spacings typically resulted in the greater 

control. 

Droplet size. Droplet size data had the same trend along all measurements where 

two groups were created by nozzle technology. Venturi nozzles had higher Dv0.1, Dv0.5 

and Dv0.9 values and less fines (<150 µm) compared to conventional flat fan nozzles (XR 

and TTI) (Table 2.3.). RS showed similar trends of values on two-group separation by 

nozzle technology. The AIXR nozzle was more prone to changes in herbicide solution, 

especially in the case of glyphosate and glufosinate (Table 2.3.). Creech et al. (2015) 

found similar results where the TT, AIXR and TTI nozzles ranged from Coarse to Ultra 

Coarse sprays (Table 2.3.) 

 Nozzle spacing had a similar effect across herbicide used and weed species 

targeted. Narrower nozzle spacings proved to be more effective than the wider nozzle 

spacing due to the findings of A. H. Azimi et al. (1985) where it was concluded that 

narrower nozzle spacings produced a more stable distribution. These results also showed 

that nozzle selection and droplet size is an important factor on weed control supported by 

the findings of Creech et al. (2015) where it was reported that XR, TT, AIXR, AI and 

TTI had droplet sizes in this order from smallest to largest. The XR nozzles were not 

affected by nozzle spacing or boom height and the authors hypothesize that the smaller 

droplet size observed (Fine Spray – Table 2.3.) allowed for more uniform dispersion of 

the spray and a greater number of overall droplets, which likely provided greater and 

more uniform coverage. The coarser spray qualities mean larger and fewer droplets 



21 
 

which contribute to greater potential for efficacy to be affected by nozzle spacing, 

particularly on some weed species, though no clear trends were observed. When setting 

up a spray boom, herbicide type, weed species, nozzle type, nozzle spacing and boom 

height must all be considered to optimize weed control.  
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Table 2.1. – Application speed used based on nozzle spacing and application volume to 
maintain constant application volume. 
Application 
volume  

Nozzle spacing  Application speed  

(L ha-1) (cm) (km hr-1) 
94 38 25 
 50 19 
 76 12 
140 38 17 

50 13 
76 8 
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Table 2.2. -  Droplet size distribution values generated from reference nozzles described in ASAE 
S572.1. 
Nozzle Dv0.1

a Dv0.5 Dv0.9 RS <150µm Boundary 
 ___________ µm ___________  %  
11001 64 142 248 1.29 54.17 Very Fine/Fine 
11003 112 251 410 1.19 18.84 Fine/Medium 
11006 160 350 562 1.15 8.51 Medium/Coarse 
8008 189 426 706 1.21 5.87 Coarse/Very Coarse 
6510 228 511 836 1.19 3.78 Very Coarse/Extremely Coarse 
6515 310 655 1012 1.07 1.54 Extremely Coarse/ Ultra Coarse 

a Abbreviations:  Dv0.5, Dv0.5, and Dv0.9: Parameters which represent the droplet size such 
that 10, 50, and 90% of the spray volume is contained in droplets of equal or lesser 
values, respectively; RS: Relative span = (Dv0.9 - Dv0.1)/ Dv0.5. 
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Table 2.3. – Droplet size distribution data from four nozzle types with dicamba, 
saflufenacil, glyphosate and glufosinate. 

Solution  Nozzle  Dv0.1
a Dv0.5 Dv0.9 RS <150µm Spray 

classificationb  
    _______________ µm _______________  ___ % ___  

Clarity 

XR 102 d 231 d 393 c 1.26 b 23.03 a Fine 
TT 164 c 394 c 714 b 1.40 a 7.97 b Coarse 

AIXR 234 b 472 b 719 b 1.03 c 3.13 c Very Coarse 
TTI 409 a 811 a 1197 a 0.97 d 0.39 d Ultra Coarse 

Saflufenacil 

XR 125 d 251 d 411 d 1.14 b 16.32 a Medium 
TT 157 c 327 c 553 c 1.21 a 8.74 b Medium 

AIXR 257 b 481 b 700 b 0.92 d 1.77 c Very Coarse 
TTI 347 a 661 a 990 a 0.97 c 0.59 d Ultra Coarse 

Glyphosate 

XR 94 d 215 d 385 c 1.35 b 27.42 a Fine 
TT 159 c 377 c 696 b 1.42 a 8.58 b Coarse 

AIXR 200 b 429 b 693 b 1.15 c 4.67 c Very Coarse 
TTI 383 a 774 a 1171 a 1.02 d 0.44 d Ultra Coarse 

Glufosinate 

XR 86 d 203 d 362 d 1.36 b 30.92 a Fine 
TT 149 c 367 c 700 b 1.50 a 10.09 b Coarse 

AIXR 180 b 402 b 656 c 1.19 c 6.53 c Coarse 
TTI 364 a 757 a 1159 a 1.05 d 0.63 d Ultra Coarse 

Means within a column followed by the same letter are not statistically different (P ≤ 
0.05). 
a Abbreviations:  Dv0.5, Dv0.5, and Dv0.9: Parameters which represent the droplet size such 
that 10, 50, and 90% of the spray volume is contained in droplets of equal or lesser 
values, respectively; RS: Relative span = (Dv0.9 - Dv0.1)/ Dv0.5. 
b Spray classification of Dv0.5 based on ASAE S572.1 standards from reference curves 
created in table 2.2.  
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Figure 2.1. – Dry biomass for three nozzle spacings when dicamba was applied to 
common lambsquarters.  
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Figure 2.2. - Dry biomass for three nozzle spacings by nozzle type when saflufenacil was 
applied to common lambsquarters.  
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Figure 2.3. - Dry biomass for three boom heights above the target when glyphosate was 
applied to common lambsquarters. 
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Figure 2.4. - Dry biomass for three nozzle spacings when glufosinate was applied to 
common lambsquarters. 
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Figure 2.5. - Dry biomass for three nozzle spacings when dicamba was applied to 
velvetleaf. 
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Figure 2.6. - Dry biomass for three nozzle spacings by nozzle type when glyphosate was 
applied to velvetleaf. 
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Figure 2.7. - Grams of dry biomass for three boom heights by nozzle type when 
glufosinate was applied to velvetleaf. 
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Figure 2.8. - Grams of dry biomass for three nozzle spacings by nozzle type when 
glufosinate was applied to velvetleaf. 
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Figure 2.9. - Grams of dry biomass for three nozzle spacings when glufosinate was 
applied to Palmer amaranth. 
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CHAPTER 3 
 

Rainfastness of Clarity, XtendiMax, Roundup Xtend, and Roundup PowerMax 
 

Abstract 

Herbicide performance is affected by environmental conditions, which can 

influence the physiology and growth of a plant prior to and after a given application. 

Among environmental factors, rainfall shortly after herbicide application is one of the 

most detrimental events that can reduce the performance of postemergence herbicides. A 

greenhouse study examining rainfastness of various pesticide formulations was 

conducted at the University of Nebraska-Lincoln at the West Central Research and 

Extension Center in North Platte, NE on the following weed species: velvetleaf, Abutilon 

theophrasti Medik, glyphosate-susceptible Palmer amaranth, Amaranthus palmeri S. 

Wats. Four herbicides were evaluated as part of the study: Clarity, XtendiMax, Roundup 

Xtend, and Roundup PowerMax. XtendiMax and Clarity were tested alone and in tank-

mixture with Roundup PowerMax, with the exception of Roundup Xtend. Rain 

simulations were conducted at intervals of 0.5, 1, 2, 4, 8 hours after application in a spray 

chamber at the Pesticide Application Technology Laboratory.  A no-rain treatment was 

included as a control. Herbicide treatments were made when weed species were 10 to 15 

cm tall using a carrier volume of 94 L ha-1 at 24 km hr-1 with an application pressure of 

434 kPa using a TTI11004 nozzle. After herbicide application rain simulations were 

conducted using a single-track laboratory research sprayer. The rainfastness had different 

responses based on weed species, once leaf characteristics influence absorption and thus 

herbicide efficacy. Rainfastness for Palmer amaranth had little to no effect on herbicide 

performance with just four herbicide reduction cases with both dicamba formulations, 
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meanwhile for velvetleaf, a more pubescent leaf, herbicide reduction was observed in 

several cases but most important was to observe that even with hours greater than stated 

in herbicide label, rainfastness was happening in most of the cases.  

 

Introduction 

Herbicide performance can be affected by environmental conditions which can 

influence the physiology and growth of a plant. Among potential environmental factors 

affecting efficacy, rainfall shortly after an application can cause significant reductions in 

the performance of the herbicide once rain due to dilution, redistribution or physical 

removal from the target (Thacker and Young 1999). Efficient herbicide applications 

depend on the success of several stages of the application process, including deposition, 

retention, uptake and translocation of the applied product (Zwertvaegher et al. 2014).  

Unsatisfactory efficacy may result in economic losses, environmental contamination and 

food safety issues. 

Rainfastness period for a herbicide is the time period after an application in which 

a rain event can compromise herbicide efficacy and performance (James et al. 2008).  

Rainfastness of a herbicide is related to the susceptibility of the deposit to be dissolved at 

the target reducing uptake rate (McCann 1983). A post-application rainfall results in a 

wash-off effect where all, or part of, the deposited herbicide is washed off the plant 

without being absorbed and activated in the plant. Soil applied herbicides are less 

influenced by environmental conditions then foliar applied herbicides. 

Herbicide composition is also important to rainfastness.  Generally, lipophilic 

herbicides have a rainfastness time of two hours, while water soluble herbicides require a 
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rain free period of more than six hours (Bryson 1987, 1988).  Kudsk and Kristensen 

(1997) showed that esters when affected by rainfall resulted in greater decrease of 

herbicide efficacy when compared to salts. This is similar result to what is reported for 

2,4-D, where the ester formulation had a greater decrease in efficacy versus the salt 

formulations.  

Glyphosate applied to quackgrass (Elymus repens (L.) Gould) was shown to be 

rainfast quicker as relative humidity rises (Caseley 1975), highlighting the need to control 

environmental conditions during a study as rainfastness results can potentially differ from 

a controlled ambient environment study compared to a study conducted under 

uncontrolled, outdoor ambient conditions (Behrens and Elakkad 1981, Kudsk, P. 1989). 

During rainfastness studies, factors that influence the interaction between 

herbicide and its absorption include quantity, intensity and frequency of rain (Cabras et 

al. 2001, Fife and Nokes 2002), time required for herbicide deposits to dry (Duarte 2008, 

Schepers 1996), formulation type (Kudsk et al. 1991), application rate (Schilder 2010), 

adjuvants (Kudsk et al. 1991), and composition of leaf surface sprayed (Debortoli, 2008). 

However, even with all of these factors, the interval between the application and the 

rainfall event has the greatest impact, followed closely by the actual volume of rain 

applied.  

Studies have shown that low-volume rain events may increase herbicide efficacy 

regardless of the wash-off effect (Caseley and Coupland 1980, Skuterud and Caseley 

1980), while higher rain volumes can result in decreased herbicidal efficacy (Kudsk and 

Kristensen 1997). Normally, increasing rain volume will increase wash-off effect, though 

there is a level of reduction after which no further decrease is expected. Kudsk and 
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Kristensen (1997) showed that increasing rain volume from 3 to 5 mm had little impact 

on herbicidal activity, which supported previous works observing that a few mm of rain 

have marginal impact on wash off and herbicide performance (Anderson and Arnold 

1985, Nalewaja and Adamczewski 1988, Nalewaja and Woznica 1985). 

Plant architecture and leaf structure also can play an important role in the 

rainfastness of applied herbicides. Leaf surface varies between weed species influencing 

spreading and absorption characteristics of the herbicide into the tissue (Sanyal et al. 

2006). Hairy leaves require more rainfall to wash-off enough herbicide to reduce 

herbicidal efficacy compared to waxy leaf surfaces (Behrens and Elakkad 1981). Waxy 

leaf surfaces reduce the wettability of leaf surface as compared to hairy leaf surfaces 

(Taylor 2011). Hair on the leaf surfaces can delay the contact between droplets and leaf 

cuticle making the deposits more prone to wash off (Yu et al. 2009).  Rainfastness is 

further complicated as it is often hard to determine if the differences in efficacy response 

levels are the result of differences in weed species response or due to the rainfastness 

differences that result from the leaf surface differences between weed species. Leaf 

surface structures affect the wetting and penetration pattern of foliar applied herbicides 

(Hess 1985, Hull et al. 1982, McWhorter 1985, Wanamarta and Penner 1989). These leaf 

surface characteristics that affect the herbicide application include the cuticle, leaf age 

and development, leaf angle and position, and number of stomata and trichromes (Hess 

1985, Hull et al. 1982, McWhorter 1985, Wanamarta and Penner 1989). Herbicide 

absorption is facilitated with either cuticular or stomatal infiltration, but while there is not 

a good understanding of what species are affected in what way, it is clear that different 

species respond differently (Hess 1985, Wanamarta and Penner 1989). 
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A waxy leaf surface is an effective barrier to herbicide absorption (Chachalis et al. 

2001). Palmer amaranth leaf cuticles have an absence of hairs and a thinner wax layer 

than many species. With the physical removal of epicuticular wax by chloroform, 

absorption of glyphosate was increased in coca (Erythroxylum coca var. coca (Lam)) 

when compared to plants with thick waxy cuticles (Ferreira and Reddy 2000). Yu et al. 

(2009) reported that among four surfaces, droplets had the longest evaporation time on 

the hydrophobic surface, waxy leaf, hydrophilic surface, and had the shortest evaporation 

time on the hairy leaf surface respectively. 

Spray retention is a key factor of leaf surfaces for uptake and biological activity of 

pesticides (Grangeot et al. 2006). Retention on a leaf surface is controlled by several 

factors, such as dynamic surface tension of the solution, properties of the leaf, contact 

angle of the droplet on the leaf, droplet size, exit velocity, adjuvant type, carrier volume, 

plant density, and canopy (Taylor 2011). The objective of this study was to investigate 

the rainfastness of dicamba on several common, difficult-to-control weed species. 

 

Material and Methods 

A greenhouse study was conducted at the University of Nebraska-Lincoln at the 

West Central Research and Extension Center’s (UNL-WCREC) Pesticide Application 

Technology Laboratory (PAT Lab) in North Platte, NE on velvetleaf (Abutilon 

theophrasti Medik) and glyphosate-susceptible Palmer amaranth (Amaranthus palmeri S. 

Wats). These weed species were selected based on their representativeness, availability, 

leaf surface type, plant structure, and greenhouse growth characteristics. Four herbicides 

were tested: Clarity was applied at 1,120 g ae ha-1, XtendiMax was applied at 1,117 g ae 
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ha-1, Roundup Xtend was applied at 1,122 g ae ha-1 of dicamba and 2,244 g ae ha-1 of 

glyphosate, and Roundup PowerMax was applied at 1,262 g ae ha-1 (Table 3.1.). 

XtendiMax and Clarity were tested alone and in tank-mixtures with Roundup PowerMax 

while Roundup Xtend was tested alone. Rainfall simulations were conducted at 0.5, 1, 2, 

4, and 8 hours after application (HAA), with one treatment having no rainfall. Six mm of 

rain was produced using a Generation III single-track research spray chamber (DeVries 

Manufacturing, Hollandale, MN 56045). 

Application. Plants were treated using a 1.67 m wide by 4.2 m long a three 

nozzle track sprayer with nozzles spaced 50 cm apart (Generation 4 Research Track 

Sprayer, DeVries Manufacturing Hollandale, MN). Plants were positioned 50 cm below 

the exit orifice of the nozzle. Herbicide treatments were made to 10 to 15 cm tall weed 

with five replications. An individually potted plant grown on greenhouse potting soil (Pro 

Mix BX by Premiere Tech, Quebec, Canada) were considered an individual replication. 

Two independent, identical runs were conducted for this experiment. 

Applications were made at a carrier volume of 94 L ha-1 using a speed of 24 km 

hr-1. Turbo TeeJet Induction Flat Spray Tip (TTI) TTI11004 nozzles (TeeJet 

Technologies, Spraying Systems Co., Glendale Heights, IL) were used at an application 

pressure 434 kPa producing an Ultra Coarse (UC) droplet size (Volume Median Diameter 

(VMD) > 622 µm based on manufacturer data).  

After herbicide treatments were applied, plants were placed out of the laboratory. 

Following the intervals between application and simulated rainfall, plants were brought 

back to the laboratory in order to perform rain simulation. Rain simulations were 

conducted using a single-nozzle research track sprayer (Generation III, DeVries 
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Manufacturing Hollandale, MN) using a Hi-Flow (HF) HF14015 spray nozzle (Pentair 

Hypro, New Brighton, MN) operated for six minutes at track speed of 3 km hr-1 to obtain 

6 mm rainfall. When rainfall applications were complete, plants were moved to the 

greenhouse for continuation of their life cycle. Visual estimations of injury were 

collected at 28 days after application (DAA), with the estimations ranging from 0-100 %, 

where 0% is no control and 100% is complete plant death. At 28 DAA, plants were 

clipped at the soil surface, dried to a constant mass at 60 C, and dry weights were 

recorded. 

Statistical analysis. Percent biomass reduction of treated plants was calculated 

using dry weights relative to the average biomass of the untreated control plants as 

defined by the equation 1: 

 Percent biomass reduction = (1 – (B / C))*100 

 

[1] 

B = Biomass of a single plant after being treated 

C = Mean biomass of the untreated control replicates.  

 

Values of biomass reduction were analyzed using a generalized linear mixed 

model analysis of variance (GLIMMIX) procedure (Littell et al. 2006). Simple effects 

were evaluated, and means were separated by LSD test (α = 0.05) using a mixed effect 

model in SAS v9.4 (SAS Institute Inc., Cary, NC) as a complete randomized design.  
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Results and Discussion 

 Results are presented by herbicide solution within each weed species if the 

response variable was significant at α = 0.05 level. Results, expressed as a percentage 

control of dry biomass, is presented by herbicide for velvetleaf and Palmer amaranth are 

presented on Tables 3.2- 3.3. 

 Velvetleaf. For Clarity, only the 0.5 and 1 hour post application rainfall events 

reduced velvetleaf control as compared to the no rain even treatment. With Roundup 

Powermax added to the Clarity all rain event intervals in the study had decreased 

velvetleaf control based on dry weight. The reduced efficacy was less at four hours after 

application than shorter rainfall intervals. Interestingly, the Clarity plus Roundup 

Powermax treatment also shows the need for evaluating commonly used tank-mixtures 

for rainfastness and not just individual herbicides.  

 Like Clarity, Xtendimax sprayed alone had the greatest loss in efficacy at the 0.5 

hour interval. Surprisingly, there was a difference in control between the four and eight 

hour intervals, which was not found in any of the other spray solutions. Tank-mixtures of 

Xtendimax and Roundup Powermax was sensitive to rain wash-off up to one hour after 

application. In addition, at 4 hours after application, the same level of control was 

observed as that seen with no rain simulation treatment. 

 Roundup Xtend, a pre-mixture of dicamba and glyphosate, showed a decrease in 

control resulting from rainfall events at one, four and eight hours after application, 

though there was no significant loss in control at 0.5 and 2 hours post-application. Results 

of herbicide dry biomass percentage control according to all test rain intervals to 

velvetleaf are presented on Table 3.3. 
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 Palmer amaranth. Palmer amaranth showed a decrease in control when there 

was a 0.5 hour rainfall event after application of Clarity. No other decreases in efficacy 

were observed for Clarity or any other solution tested on Palmer amaranth.  With Clarity 

alone on Palmer amaranth, only a 3% reduction was observed with a 0.5 hour rainfall 

event. Beyond two hours after application, complete control was observed with Palmer 

amaranth treated with Clarity.  The remaining tank-mixtures showed no losses in control 

at any post-application rainfall interval. 

 The primary factors driving the observed results were the varying leaf structures 

and plant composition among the two weed species along with the formulation 

differences between the selected herbicides formulations. Leaf structure and composition 

influences absorption, retention, evaporation and by consequence uptake leading to 

efficiency. Velvetleaf has a pubescent leaf surface with short and dense hairs, which can 

affect interact with depositing droplets, altering the performance of the herbicide, 

especially with droplets that are not at the optimum droplet size. Palmer amaranth leaf 

and stem surfaces are absence of pubescence and are more neutral in characteristic. 

 Formulation of a herbicide is important to the efficiency and rainfastness. Clarity 

is a composition 58% of diglycolamine salt of dicamba (BASF 2010.) (3, 6-dichloro-o-

anisic acid) with the remaining of its constituents being other ingredients. While 

Xtendimax contains 42% diglycolamine salt of dicamba (Monsanto 2016) with the rest 

been inert ingredients. One of the inert ingredients is VaporGrip technology.  

 Above mentioned fact explain the need for a higher dose of Xtendimax® versus 

Clarity® given that active ingredient concentration is 16% higher on Clarity® versus 

Xtendimax® is likely caused by the fact that spray retention is a key factor influencing 
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herbicide uptake. Interestingly, Xtendimax® provided a better percentage control 

compared to Clarity® with both species.  

 In conclusion, this study emphasizes the need for reading and following pesticide 

product label for effective control. Information such as rainfastness period of an herbicide 

can be critical to the ultimate success of any application. While the results presented 

observed indicate that label requirements for a four hour rainfastness period may be 

conservative (Table 3.4), allowing for the extra time interval can only enhance the 

efficacy of an application. While rainfastness is critical, it is also important to understand 

the characteristics of the troublesome weed species targeted and take them into 

consideration when making an application. 
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Table 3.1. – Herbicide solutions with their appropriate rate and formulation used on the 
study. 
Solutions Rate 
 g ae ha-1 
Claritya 1,120 dicamba 
Xtendimaxb 1,117 dicamba 
Claritya + Roundup PowerMaxb 1,120 dicamba + 1,262 glyphosate 
Xtendimaxb + Roundup PowerMaxb 1,117 dicamba + 1,262 glyphosate 
Roundup Xtendb 1,122 dicamba 2,244 glyphosate 

a BASF Corporation, Research Triangle Park, NC, 27709. 
b Monsanto Corporation, St. Louis, MO, 63141. 
  



52 
 

 

Table 3.2. - Control of velvetleaf across rainfall intervals for five solutions containing 
dicamba. 

Intervals 
(hours) Claritya Xtendimax 

Clarity + 
Roundup 

PowerMax 

Xtendimax + 
Roundup 

PowerMax Roundup Xtend 
  __________________________________________ % ______________________________________________ 
0.5 56 b 66 c 74 bc 66 c 81 ab 
1 57 b 70 abc 75 bc 75 bc 73 b 
2 70 ab 78 abc 63 c 78 abc 81 ab 
4 76 a 69 bc 77 bc 73 bc 77 b 
8 71 ab 84 a 82 b 85 ab 78 b 
None 79 a 83 ab 100 a 94 a 94 a 

a Means within a column followed by the same letter are not statistically different (P ≤ 
0.05).  
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Table 3.3. Control of Palmer amaranth across rainfall intervals for five solutions 
containing dicamba. 

Intervals 
(hours) Claritya Xtendimax 

Clarity + Roundup 
PowerMax 

Xtendimax + 
Roundup 

PowerMax 
Roundup 

Xtend 

 
__________________________________________ % ________________________________________________ 

0.5 97 b 98 a 100 a 100 a 100 a 
1 99 ab 100 a 100 a 100 a 100 a 
2 100 a 97 a 100 a 100 a 100 a 
4 100 a 100 a 100 a 100 a 100 a 
8 100 a 100 a 100 a 100 a 100 a 
None 100 a 100 a 100 a 100 a 100 a 

a Means within a column followed by the same letter are not statistically different (P ≤ 
0.05). 
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Table 3.4. – Rainfastness interval of herbicides according to respective labels. 

Solution Rainfastness (hours) 

Claritya 4 

Xtendimaxb 4 

Roundup PowerMaxb 6 

Roundup Xtendb 6 
a BASF Corporation, Research Triangle Park, NC, 27709. 
b Monsanto Corporation, St. Louis, MO, 63141. 
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CHAPTER 4 

 

Influence of nozzle type, speed and pressure on droplet size and weed control from 

Glyphosate®, Dicamba®, and Glyphosate® plus Dicamba®. 

 

Abstract 

 

Improper or sub-optimal application techniques can cause decreased weed control 

and increased environmental contamination. Droplet size is a key factor in pesticide 

applications in regards to both drift and efficacy. Droplet size can be altered by several 

application parameters, such as the nozzle type, pressure, orifice size and spray solution. 

The objective of this study was to evaluate the influence of nozzle type, application speed 

and pressure when using glyphosate, dicamba, or glyphosate plus dicamba on droplet size 

and control of common lambsquarters, velvetleaf, kochia, and grain sorghum. The study 

was conducted with two herbicides, glyphosate at 0.77 kg ae ha-1 and dicamba at 0.56 kg 

ae ha-1, tested alone and in combination. The application rate was 94 L ha-1 at three 

different speeds 8, 16, and 24 kph and the pressures used were a low, medium and high 

pressure for each speed and orifice size combination. The pressures were combined with 

the appropriate orifice size to deliver a fixed spray volume. An XR, AIXR, and TTI 

(TeeJet Technologies, Spraying Systems Co., Glendale Heights, IL 60139 USA) nozzle 

were used (two of which are venturi nozzle designs). Droplet size ranged from 219 µm to 

232 µm for XR nozzle across the three solutions. From 440 µm to 482 µm for AIXR 

nozzle and from 740 µm to 828 µm for TTI nozzle. Solutions using dicamba resulted in 

the largest droplet size, followed by glyphosate and then the combination. There were no 

significant interactions for nozzle by herbicide across all species. 
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Introduction 

 

Herbicides play an important role in chemical weed control worldwide. 

Herbicides are the most commonly applied pesticide in the U.S. According to USDA, 

herbicides were applied to 97% of planted acres of corn, while insecticides and 

fungicides were applied to 13% and 12%, respectively (Fernandez-Cornejo et al., 2014). 

Herbicides have been a major component in increasing crop yields over the past five 

decades.  Optimal applications of herbicides can improve crop yield by controlling weeds 

(Fernandez-Cornejo et al., 2005).  Herbicide applications are the preferred method used 

for weed management strategies in crops among a variety of methods that include 

biological, cultural and mechanical controls. Herbicides can provide satisfactory weed 

control at low cost and convenience to growers. 

The increasing dependence on the use of herbicides brings concerns such as drift 

(in the form of vapor and particle drift), resistance, contamination of water resources, and 

harm to susceptible vegetation, wildlife and human health. Improper or sub-optimal 

applications can occur with ineffective selection of application parameters (speed, nozzle 

type, nozzle spacing, boom height, pressure, and orifice size) or environmental conditions 

(wind speed and direction, temperature, humidity). Van den Berg et al. estimated that 

volatilization and drift could be responsible for up to 50% of pesticides losses (Berg et 

al., 1999). Spray particle drift is primarily influenced by wind speed and direction, spray 

droplet size, boom height and buffers (Creech et al., 2015). Given that wind speed cannot 
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be controlled by the applicator, control of droplet size is a key component in controlling 

drift when herbicide applications are made  (Berg et al., 1999; Etheridge et al., 1999).  

Droplet size is a key factor in pesticide applications in regards to both drift and 

efficacy. As herbicide passes through a nozzle, a range of droplets is produced. 

Theoretically, more efficient herbicide applications are the ones with narrower spray 

droplet distribution, meaning a more homogeneous application pattern (Hartley and 

Graham-Bryce, 1980). Normally, larger orifice sizes for a given nozzle type will produce 

larger droplets (Nuyttens et al., 2007). Improper or sub-optimal application techniques 

can cause decreased weed control and increased environmental contamination. 

  In order to reduce particle drift, a common practice is to increase the overall 

droplet sizes in the spray by reducing application pressure or increasing the orifice size of 

the spray nozzle or selecting a difference nozzle (Creech et al., 2015; Hartley et al., 

1980). According to Etheridge et al. droplets with diameters smaller than 200 µm are 

those with the  greatest drift potential (Etheridge et al., 1999), while Yates et al. states 

droplets with diameters of 150 µm or less as those with greatest drift potential (Wesley E. 

Yates et al., 1985). Different nozzle types will affect the way liquid sheets are formed and 

breaks into droplets. Increasing droplet size by reducing pressure or using larger orifice 

sizes will change application rate and potentially herbicide efficacy if not properly 

accounted for with additional nozzles or adjustment to application speed (Knoche, 1994). 

Differences in droplet spectra, deposition pattern and potentially efficacy might be 

observed with applications made with slower speeds when compared with those made 

with faster speeds (Meyer et al., 2016), as also reported by (Wolf et al., 1997). 

Absorption of glyphosate increased as droplet size increased from 326 to 977µm when 
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sprayed with constant concentration (Liu et al., 1996). In addition, weed control of equal 

or greater efficacy was obtained when comparing drift reduction nozzles to a flat fan 

nozzle with different herbicides when sprayed to several weed species (Ramsdale and 

Messersmith, 2001). Same trend of results was reported by Feng et al. with glyphosate 

and AI nozzle in comparison with XR nozzle (Feng et al., 2003). Non-target vegetation 

and organisms may also be affected due to herbicide drift  (de Snoo and de Wit, 1998; 

Freemark and Boutin, 1995). Particle drift not only alters nearby areas but also can 

decrease weed control on the intended area through loss of spray material (Johnson et al., 

2006). Increasing spray pressure leads to a larger proportion of the spray volume being 

small droplets and by consequence drift potential is increased. Larger nozzle orifice size 

typically results in larger spray droplets, with lower drift potential. Larger droplets can 

lower coverage, while smaller droplets may have higher drift potential and evaporation 

rate with better coverage (Spillman, 1984). Also, morphology of leaf and composition of 

cuticle might affect deposition of the spray in a leaf surface, and droplet rebound 

culminating in lower spray retention (Feng et al., 2004).  

Nozzle type is an important tool for reducing drift potential. Proper nozzle 

selection is also important for satisfactory weed control. Thus, it is common to discuss 

Venturi and non-Venturi nozzle types. Venturi nozzles consist of a pre-orifice, an air 

fluid mixing chamber and a fan orifice that creates the pattern for the nozzle. Venturi type 

nozzles generate larger droplets compared with conventional fan nozzles at a known  

pressure (Etheridge et al., 1999). Nozzle type selection depends on herbicide and species 

targeted for evaluation (Meyer et al., 2016). Proper nozzle type selection regarding target, 
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herbicide, and purpose of application, helps to mitigate lack of coverage and deposition 

on intended target and by consequence weed control. 

Application parameters other than nozzle selection are also important. In terms of 

application speed, the recommendation normally is in the range of 8 to 16 kph. 

Application speed will have an impact on the herbicide coverage and deposition, which 

are directly related to herbicide efficacy especially for contact herbicides. On the other 

hand, systemic herbicides are not necessarily directly affected but could be impacted by 

the quantity of active ingredient delivered to the plant and the plants ability to uptake and 

translocate the active ingredient. It is common to assume that contact herbicides, may be 

more negatively affected by the increase of droplet size when compared to systemic 

herbicides (Etheridge et al., 2001). Applications must be according to the label and 

following the instructions provided in the catalogs. 

Numerous studies have been conducted evaluating factors that affect drift and 

weed control but not many have investigated those factors acting at the same time 

impacting both drift and weed control. Furthermore, no consistent trend was found in 

studies that evaluate droplet size related to drift and weed control and some cases the 

results have been contradictory as reported by Knoche et al. (Knoche, 1994). In addition, 

limited data exists to support nozzle selection, pressure and speed recommendations for 

herbicide applications to achieve both optimum droplet size and weed control. The 

objective of this experiment was to investigate and understand the influence of speed, 

pressure and different nozzle types and orifice sizes on weed control for troublesome 

weed species across the USA. Understanding these factors that contribute to deliver the 
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herbicide to the plant and impact on weed control can lead to increased weed control and 

reduced off-target movement. 

 

Material & Methods 

 

A greenhouse study was conducted at the University of Nebraska – Lincoln’s 

West Central Research and Extension Center (UNL-WCREC) in North Platte, NE.  Plant 

species tested were common lambsquarters (Chenopodium album L.), velvetleaf 

(Abutilon theophrasti Medik), kochia (Kochia scoparia (L.) Schrad.), and grain sorghum 

(Sorghum bicolor (L.) Moencch subsp. Bicolor). These species were selected based on 

representativeness, availability, leaf surface type and greenhouse growth characteristics. 

Two commonly used foliar applied, post emergence systemic herbicides, dicamba 

(Clarity®) at 0.56 kg ae/ha and glyphosate (Roundup PowerMax®) at 0.77 kg ae/ha were 

applied. The glyphosate plus tank-mixture was tested on grass species because dicamba 

has little effect on grasses and the dicamba plus tank-mixture was tested on broadleaf 

species. The objective of this study was to evaluate the influence of nozzle type, 

application speed and pressure when combined with glyphosate, dicamba, or glyphosate 

plus dicamba on droplet size and control of common lambsquarters, velvetleaf, kochia, 

grain sorghum. 

Application. Applications were made when weed species were 10 to 15 cm tall.  

Plants were sprayed in a 1.67 m x 4.2 m spray chamber (Generation 4 Research Track 

Sprayer DeVries Manufacturing, Hollandale, MN) with a three-nozzle track sprayer with 

nozzles spaced 50 cm apart and 50 cm above the top of the plants. A factorial 
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arrangement of treatments was used. Each combination of nozzle type, application speed 

and spray solution was replicated five times. Spray treatments consisted of three different 

speeds (8, 16, and 24 kph); and three nozzle types (XR, AIXR, and TTI) (TeeJet 

Technologies, Spraying Systems Co., Glendale Heights, IL 60139 USA) with a range of 

orifice sizes (015 to 06). Spray pressure was adjusted to deliver 94 L ha-1. Treatment 

combinations generated droplet size classifications from fine to ultra-coarse depending on 

the combination used as shown in (Table 4.1.). 

The treatment list presented in (Table 4.2.) shows all parameters used for all three 

nozzle types and also all possible combinations with those parameters. These 

combinations resulted in 81 treatments for each weed species (27 combinations per 

species X 3 nozzle types). After application, plants were placed back into the greenhouse 

for continuation of their cycle and post treatment efficacy evaluation. Visual estimations 

of injury were collected in the greenhouse at 7, 14, 21, and 28 days after treatment 

(DAT), the estimations ranged from 0-100, where 0 is no control and 100 is complete 

plant death. At 28DAT, plants were clipped at the soil surface, wet weights were 

recorded, plants were dried to constant mass, and dry weights were recorded. 

Analysis of Spray Droplet Size. All treatments combinations were tested in the 

low speed wind tunnel at the Pesticide Application Technology Laboratory (PAT Lab). 

Droplet measurements were made using a Sympatec HELOS-VARIO/KR (Sympatec, 

Inc., Pennington, NJ) laser diffraction system in the PAT Lab low speed wind tunnel as 

described by Creech et al. (Creech et al., 2016). The nozzle is located 30 cm from the 

laser beam. Laminar wind speed velocity used was 6.7 m/s (Fritz et al., 2014). Droplet 

size classification for this study were based on reference curves created from reference 
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nozzle data at the PAT Lab according to ASAE 572.1 (Feng et al., 2003) as shown on 

(Table 4.2.). Comparisons between treatments were based on the measurements of Dv0.1, 

Dv0.5, and Dv0.9 (the droplet sizes at which 10, 50, and 90% of the spray volume of 

application is contained in droplets of smaller diameter). In addition, Relative Span (RS) 

was calculated which is a non-dimensional value indicating the uniformity of the spray 

droplet spectrum and it is defined by the equation: RS = (Dv0.9 - Dv0.1)/ Dv0.5.   

Statistical Analysis. The means were analyzed using ANOVA, simple effects 

were evaluated and means were separated by LSD test α= 0.05 mixed effect model in 

SAS v9.4 as a Complete Randomized Design (CRD). Two independent and identical runs 

were conducted for this experiment. 

 

Results and Discussion 

 

 Across all weed species, nozzle type was not a significant effect, though speed 

and speed*nozzle were for lambsquarters (P<0.0001 and P=0.0315, respectively) (Table 

4.3.).  While nozzle and speed were treated as main effects and nozzle*speed as an 

interaction, it is worth considering what these main effects and interactions represent.  

While only three nozzle types were used in the study, within each nozzle type multiple 

orifice sizes and spray pressures were used, as appropriate, to ensure that the spray rate 

remained at 94 L ha-1.  This resulted in a range of droplet sizes within each nozzle type 

for each solution. (Tables 4.4.-4.6.) Generally speaking dicamba produced the largest 

overall droplet sizes followed by glyphosate and then glyphosate plus dicamba.  

Similarly, the TTI nozzles generally produced the largest overall droplet size followed by 
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the AIXR and XR  nozzles, agreeing with previously reported work by Creech et al. 

(Creech et al., 2015).  Also captured within the main effect nozzle are differences in fluid 

exit velocities at differing pressures and nozzle types as well as orientation of the spray 

fan with the TTI having a 15 degree forward angle.  The main effect speed captures the 

forward traverse speed of the track but also results in differing orifice sizes and spray 

pressures (thus differing droplet sizes) within each nozzle type. The nozzle*speed 

interaction term becomes a bit more convoluted as it also incorporates these changes in 

orifice, pressure and ultimately droplet size.   

 Given this, and examining the ANOVA results (Table 4.3.) emphasis that 

herbicide type was the driving factor in the observed results for this work. Across all 

weed species, nozzle type and speed with the combination of glyphosate and dicamba 

provide superior control as compared to glyphosate or dicamba alone.  Further discussion 

of result nuances within each weed species are discussed in following sections. 

Common Lambsquarters. Both herbicide (P >0.0001) and track speed (P < 

0.0001) main effects were highly significant (Table 4.3.). However, as discussed 

previously it is difficult to discern the root cause behind the track speed significance as 

with each change in track speed, for each nozzle, orifice size and pressure were adjusted 

within each nozzle to provide a constant spray rate of 94 L ha-1, meaning droplet size 

with nozzle varied. For example, at 8 kph the AIXR 110015 spraying dicamba at 345 kPa 

had a VMD of 411 µm. While the 110025 at 124 kPa pressure had a VMD of 658 µm, an 

almost 250 µm difference.  Similarly, the TTI nozzle ranged in droplet size from 757 to 

1101 µm at 8 kph and the XR from 215 to 297 µm (Table 4.4.).  With speed and 

speed*herbicide being significant effects, the results show reduced control at higher 
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speeds for dicamba only (Figure 4.1.).  At 24 kph, each nozzle type uses a larger orifice 

and higher spray pressure, which generally resulting in larger overall droplet sizes at 24 

kph, though there are a few exceptions (Table 4.4.).  Without an assessment of at- or on-

target deposition rates, we can only conjecture as to the cause of the reduce control. The 

change in droplet size across the three nozzle types is much greater than that within each 

nozzle type, which coupled with no significant control differences between nozzle type 

(which is essentially droplet size), removes droplet size as a causal factor.  This leaves 

either the track speed or changes in nozzle exit velocities as a result of pressure as 

potential factors, though this work does not have data to objectively delineate which. 

Velvetleaf. Velvetleaf follows a very similar pattern as lambsquarters with the 

herbicide (P<0.0001), and speed (P = 0.0288) main effects and speed*herbicide (P = 

0.0003) interactions being significant predictors of control (Table 4.3.).   While 

nozzle*speed control results are less consistent for the dicamba plus glyphosate blend 

than seen with lambsquarters, the dicamba only solution follows the same trends (Figure 

4.2.).  It should be noted in the scenario of common lambsquarters and velvetleaf, that 

while significant control differences were observed within each nozzle*speed*herbicide 

combination, when analyzing within herbicide the numerical differences were less than 

10%. 

  Kochia. The only significant main effect with kochia was herbicide (P<0.0001), 

though speed*herbicide and nozzle*speed*herbicide interactions were also significant 

(Table 4.3.).  These results and the lack of significance in the nozzle and speed main 

effects couple with their being part of a significant interaction effect further illustrate to 

difficulty in determining the root causal factor, beyond the herbicide effect, driving these 
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differences.  Similar to lambsquarters and velvetleaf, there are significant differences in 

the observed controls, though these were inconsistent within nozzle type, speed and 

nozzle by speed combinations, and numerically differed by no more than 10-15% within 

nozzle/speed combination for each herbicide (Figure 4.3.). 

Grain Sorghum. There were no significant main effects with the observed 

control of grain sorghum and while speed*herbicide interaction was significant, as 

previously discussed discerning the root cause of this interaction not possible with the 

data collected during this study. The antagonistic effect with mixing glyphosate and 

dicamba resulting in reduced glyphosate toxicity in grain sorghum was not observed as 

reported by Flint et al. (Flint and Barrett, 1989) with johnsongrass (Sorghum halapense 

(L.) Pers.) (Figure 4.4.). 

Only herbicide type was shown to be a consistent, significant effect in the 

observed control across the four weed species and three tank mixture explored in this 

study.  Universally, dicamba plus glyphosate provided superior control, regardless of 

nozzle type, orifice size, spray pressure, droplet size and track speed for the weed species 

tested. These results would tend to favor a recommendation that when looking to 

optimize control of lambsquarters, velvetleaf, kochia or grain sorghum, a combination of 

glyphosate and dicamba should be used. Further, to reduce drift potential from these 

applications, nozzle type, orifice size and spray pressure should be selected to generate 

droplet size that have fewer fine droplets.  While it may be tempting to recommend using 

the largest size possible, further work examining deposition efficiency on plant surfaces 

with reduced spray  deposition are needed. The use of a dicamba/glyphosate blend offers 
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applicators a great deal of flexibility in setting up their sprays system for reduced off-

target deposition while maintaining optimum control efficacy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

 

Literature Cited 

 

Berg, F.V.D., Kubiak, R., Benjey, W.G., Majewski, M.S., Yates, S.R., Reeves, G.L., 

Smelt, J.H., Linden, A.M.A.V.D., 1999. Emission of Pesticides into the Air, in: 

Fate of Pesticides in the Atmosphere: Implications for Environmental Risk 

Assessment. Springer, Dordrecht, pp. 195–218. https://doi.org/10.1007/978-94-

017-1536-2_9. 

 
Creech, C.F., Henry, R.S., Fritz, B.K., Kruger, G.R., 2015. Influence of Herbicide Active 

Ingredient, Nozzle Type, Orifice Size, Spray Pressure, and Carrier Volume Rate on 

Spray Droplet Size Characteristics. Weed Technol. 29, 298–310. 

https://doi.org/10.1614/WT-D-14-00049.1. 

 
Creech, C.F., Moraes, J.G., Henry, R.S., Luck, J.D., Kruger, G.R., 2016. The Impact of 

Spray Droplet Size on the Efficacy of 2,4-D, Atrazine, Chlorimuron-Methyl, 

Dicamba, Glufosinate, and Saflufenacil. Weed Technol. 30, 573–586. 

https://doi.org/10.1614/WT-D-15-00034.1. 

 
de Snoo, G.R., de Wit, P.J., 1998. Buffer Zones for Reducing Pesticide Drift to Ditches 

and Risks to Aquatic Organisms. Ecotoxicol. Environ. Saf. 41, 112–118. 

https://doi.org/10.1006/eesa.1998.1678. 

 
Etheridge, R.E., Hart, W.E., Hayes, R.M., Mueller, T.C., 2001. Effect of Venturi-Type 

Nozzles and Application Volume on Postemergence Herbicide Efficacy. Weed 

Technol. 15, 75–80. https://doi.org/10.1614/0890. 

 



68 
 

 

Etheridge, R.E., Womac, A.R., Mueller, T.C., 1999. Characterization of the Spray 

Droplet Spectra and Patterns of Four Venturi-Type Drift Reduction Nozzles. Weed 

Technol. 13, 765–770. https://doi.org/10.1017/S0890037X00042202. 

 
Feng, P.C.C., Chiu, T., Sammons, R.D., Ryerse, J.S., 2003. Droplet size affects 

glyphosate retention, absorption, and translocation in corn. Weed Sci. 51, 443–

448. https://doi.org/10.1614/0043-1745(2003)051. 

 
Feng, P.C.C., Tran, M., Chiu, T., Douglas Sammons, R., Heck, G.R., CaJacob, C.A., 

2004. Investigations into glyphosate-resistant horseweed (Conyza canadensis): 

retention, uptake, translocation, and metabolism. Weed Sci. 52, 498–505. 

https://doi.org/10.1614/WS-03-137R. 

 
Fernandez-Cornejo, J., Hendricks, C., Mishra, A., 2005. Technology Adoption and Off-

Farm Household Income: The Case of Herbicide-Tolerant Soybeans. J. Agric. 

Appl. Econ. 37, 549–563. https://doi.org/10.1017/S1074070800027073. 

 
Fernandez-Cornejo, J., Nehring, R.F., Osteen, C., Wechsler, S., Martin, A., Vialou, A., 

2014. Pesticide Use in U.S. Agriculture: 21 Selected Crops, 1960-2008 (SSRN 

Scholarly Paper No. ID 2502986). Social Science Research Network, Rochester, 

NY. 

 
Flint, J.L., Barrett, M., 1989. Antagonism of Glyphosate Toxicity to Johnsongrass 

(Sorghum halepense) by 2,4-D and Dicamba. Weed Sci. 37, 700–705. 

https://doi.org/10.1017/S0043174500072660. 

 



69 
 

 

Freemark, K., Boutin, C., 1995. Impacts of agricultural herbicide use on terrestrial 

wildlife in temperate landscapes: A review with special reference to North 

America. Agric. Ecosyst. Environ. 52, 67–91. https://doi.org/10.1016/0167-

8809(94)00534-L. 

 
Fritz, B.K., Hoffmann, W.C., Kruger, G.R., Henry, R.S., Hewitt, A., Czaczyk, Z., 2014. 

Comparison Of Drop Size Data From Ground And Aerial Application Nozzles At 

Three Testing Laboratories. At. Sprays 24. 

https://doi.org/10.1615/AtomizSpr.2013009668. 

 
Hartley, G.S., Graham-Bryce, I.J., 1980. Physical principles of pesticide behaviour. Phys. 

Princ. Pestic. Behav. 

 
Johnson, A.K., Roeth, F.W., Martin, A.R., Klein, R.N., 2006. Glyphosate Spray Drift 

Management with Drift-Reducing Nozzles and Adjuvants. Weed Technol. 20, 

893–897. https://doi.org/10.1614/WT-05-162.1. 

 
Knoche, M., 1994. Effect of droplet size and carrier volume on performance of foliage-

applied herbicides. Crop Prot. 13, 163–178. https://doi.org/10.1016/0261-

2194(94)90075-2. 

 
L. E. Bode, B. J. Butler, C. E. Goering, 1976. Spray Drift and Recovery As Affected by 

Spray Thickener, Nozzle Type, and Nozzle Pressure. Trans. ASAE 19, 0213–0218. 

https://doi.org/10.13031/2013.35997. 

 
Liu, S.H., Campbell, R.A., Studens, J.A., Wagner, R.G., 1996. Absorption and 

Translocation of Glyphosate in Aspen (Populus tremuloides Michx.) as Influenced 



70 
 

 

by Droplet Size, Droplet Number, and Herbicide Concentration. Weed Sci. 44, 

482–488. 

 
Meyer, C.J., Norsworthy, J.K., Kruger, G.R., Barber, T., 2016. Effects of Nozzle 

Selection and Ground Speed on Efficacy of Liberty and Engenia Applications and 

Their Implication on Commercial Field Applications. Weed Technol. 30, 401–

414. https://doi.org/10.1614/WT-D-15-00145.1. 

 
Monsanto Company XtendiMax with VaporGripTM Technology EPA registration No. 

524-617. St Louis, 2016. 

 

Nordby A, Skuterud R. The effects of boom height, working pressure and wind speed on 

spray drift Weed Res 1974;14:385–95. doi:10.1111/j.1365-3180.1974.tb01080.x. 

 
Nuyttens, D., Baetens, K., De Schampheleire, M., Sonck, B., 2007. Effect of nozzle type, 

size and pressure on spray droplet characteristics. Biosyst. Eng. 97, 333–345. 

https://doi.org/10.1016/j.biosystemseng.2007.03.001. 

 
Ramsdale, B.K., Messersmith, C.G., 2001. Drift-Reducing Nozzle Effects on Herbicide 

Performance. Weed Technol. 15, 453–460. https://doi.org/10.1614/0890-

037X(2001)015. 

 
Spillman, J.J., 1984. Spray impaction, retention and adhesion: An introduction to basic 

characteristics. Pestic. Sci. 15, 97–106. https://doi.org/10.1002/ps.2780150202. 

 



71 
 

 

Wesley E. Yates, Robert E. Cowden, Norman B. Akesson, 1985. Drop Size Spectra from 

Nozzles in High-Speed Airstreams. Trans. ASAE 28, 405–410. 

https://doi.org/10.13031/2013.32268. 

 
Wolf, T.M., Liu, S.H., Caldwell, B.C., Hsiao, A.I., 1997. Calibration of Greenhouse 

Spray Chambers: The Importance of Dynamic Nozzle Patternation. Weed 

Technol. 11, 428–435. 

  



72 
 

 

Table 4.1. – Droplet size data from reference nozzles at the Pesticide Application 
Technology Laboratory, North Platte, NE and spray classification boundaries as defined 
by ASAE S572.1. 

Nozzlea Pressure Dv0.1 Dv0.5 Dv0.9 Boundary 

 kPa _____________ µm _____________  
11001 450 66 147 276 Very Fine/Fine 
11003 300 113 250 414 Fine/Medium 
11006 200 158 347 561 Medium/Coarse 
8008 250 198 437 735 Coarse/Very Coarse 

6510 200 234 517 855 
Very Coarse/Extremely 
Coarse 

6515 150 305 655 1060 
Extremely Coarse/Ultra 
Coarse 

a Reference flat spray nozzle as defined by ASAE S572.1 
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Table 4.2. – Combinations of speed, pressure, and orifice size for three nozzle types 
utilized in a study to evaluate droplet size and efficacy. 
kph kPa Angle Orifice sizea   
8 124 110˚ 025   
8 207 110˚ 02   
8 345 110˚ 015   
16 207 110˚ 04   
16 345 110˚ 03   
16 482 110˚ 025   
24 207 110˚ 06   
24 276 110˚ 05   
24 517 110˚ 04   

a Nozzle types for this study were XR, AIXR and TTI (TeeJet Technologies, Spraying 
Systems Co., Glendale Heights, IL 60139 USA). 
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Table 4.3. – Results for interactions and main effects on control of common 
lambsquarters, kochia, velvetleaf, and grain sorghum. 

Effect 
common 
lambsquarters kochia velvetleaf 

grain 
Sorghums 

  _____________________ Pr > F  _____________________ 
nozzle 0.7087 0.1875 0.5284 0.7407 
speed <0.0001 0.9916 0.0288 0.1081 
nozzle*speed 0.0315 0.2381 0.1147 0.9411 
herbicide <0.0001 <0.0001 <0.0001 0.1421 
nozzle*herbicide 0.8774 0.2815 0.0876 0.8234 
speed*herbicide 0.0007 0.0056 0.0003 0.0274 
nozzle*speed*herbicide 0.4369 0.0132 0.6956 0.8477 
*Bolded numbers are significant at α=0.05. 
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Table 4.4. – Droplet size distribution data for three nozzle types spraying a dicamba solution across a range of orifice sizes and 
pressures. 

Dicambaa 

Nozzle 
type 

Orifice 
size Pressure Dv0.1b Dv0.5b Dv0.9b RSc 

    kPa __________________________________  µm __________________________________   

AIXR 

0.15 345 212 n 411 m 634 k 1.03 jk 
0.2 207 230 m 430 l 635 k 0.94 m 
0.25 124 339 h 658 i 985 h 0.98 l 
0.25 482 192 p 399 n 619 l 1.07 hi 
0.3 345 204 o 414 m 630 k 1.03 jk 
0.4 207 271 k 529 k 808 j 1.02 k 
0.4 517 183 q 387 o 597 m 1.07 hi 
0.5 276 260 l 529 k 820 j 1.06 i 
0.6 207 294 j 586 j 900 i 1.04 j 

Average     243 482 737   

TTI 

0.15 345 389 f 757 f 1094 f 0.93 m 
0.2 207 437 c 837 d 1193 d 0.90 n 
0.25 124 602 a 1101 a 1540 a 0.85 o 
0.25 482 343 h 707 g 1067 g 1.02 jk 
0.3 345 371 g 774 e 1210 d 1.08 h 
0.4 207 452 b 904 b 1351 b 0.99 l 
0.4 517 302 i 666 h 1139 e 1.25 de 
0.5 276 401 e 839 d 1309 c 1.08 h 
0.6 207 415 d 865 c 1347 b 1.08 h 

Average     412 828 1250   

XR 

0.15 345 73 x 167 v 294 u 1.33 b 
0.2 207 95 u 210 t 354 s 1.23 ef 
0.25 124 123 s 259 s 426 p 1.17 g 
0.25 482 82 w 186 u 329 t 1.32 b 
0.3 345 93 v 213 t 365 r 1.28 c 
0.4 207 125 s 280 q 466 o 1.22 f 
0.4 517 93 v 215 t 385 q 1.36 a 
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0.5 276 118 t 270 r 463 o 1.27 cd 
0.6 207 132 r 297 p 494 n 1.22 f 

Average     104 233 397   
a Means within a column followed by the same letter are not statistically different (P ≤ 0.05). 
b Abbreviations:  Dv0.1, Dv0.5, and Dv0.9: Parameters which represent the droplet size such that 10, 50, and 90% of the spray 
volume is contained in droplets of equal or lesser values, respectively; 
c RS: Relative span = (Dv0.9 - Dv0.1)/ Dv0.5. 
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Table 4.5. – Droplet size distribution data for three nozzle types spraying a glyphosate solution across a range of orifice sizes 
and pressures. 

Glyphosatea 

Nozzle 
type Orifice Pressure Dv0.1b Dv0.5b Dv0.9b RSc 

    kPa ________________________________  µm ________________________________   

AIXR 

0.15 345 208 k 405 l 624 i 1.03 op 
0.2 207 186 n 386 n 592 k 1.05 mn 
0.25 124 252 i 491 j 749 h 1.01 p 
0.25 482 192 m 395 m 605 j 1.04 no 
0.3 345 200 l 406 l 616 ij 1.02 op 
0.4 207 213 j 453 k 746 h 1.18 h 
0.4 517 182 o 383 n 591 k 1.07 lm 
0.5 276 250 i 512 i 805 g 1.08 jk 
0.6 207 253 i 532 h 842 f 1.11 i 

Average     215 440  686   

TTI 

0.15 345 356 f 664 g 933 e 0.87s 
0.2 207 371 d 746 d 1110 c 0.99 q 
0.25 124 514 a 990 a 1429 a 0.93 r 
0.25 482 344 g 700 f 1067 d 1.03 nop 
0.3 345 364 e 739 e 1120 c 1.02 op 
0.4 207 417 b 852 b 1331 b 1.07 h 
0.4 517 303 h 659 g 1072 d 1.17h 
0.5 276 400 c 838 c 1317 1.09 kl 
0.6 207 395 c 834 c 1334 b 1.13 ij 

Average     385 740 1190   

XR 

0.15 345 72 v 165 u 287 s 1.32 abc 
0.2 207 87 t 197 s 348 q 1.33 ab 
0.25 124 119 p 262 p 435 n 1.20 g 
0.25 482 82 u 188 t 329 r 1.31 bcd 
0.3 345 92 s 211 r 361 p 1.27 f 
0.4 207 110 r 251 q 434 n 1.29 def 
0.4 517 93 s 215 r 382 o 1.34 a  
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0.5 276 113 q 261 p 447 m 1.28 ef 
0.6 207 119 p 277 o 480 l 1.30 cde 

Average     98 225 389   
a Means within a column followed by the same letter are not statistically different (P ≤ 0.05). 
b Abbreviations:  Dv0.1, Dv0.5, and Dv0.9: Parameters which represent the droplet size such that 10, 50, and 90% of the spray 
volume is contained in droplets of equal or lesser values, respectively;  
c RS: Relative span = (Dv0.9 - Dv0.1)/ Dv0.5. 
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Table 4.6. – Droplet size distribution data for three nozzle types spraying a glyphosate plus dicamba solution across a range of 
orifice sizes and pressures. 

    
Glyphosate plus 

dicambaa   
Nozzle 
type Orifice Pressure Dv0.1b Dv0.5b Dv0.9b RSc 

    kPa _________________________________  µm _________________________________   

AIXR 

0.15 345 187 m 383 n 599 j 1.08 jk 
0.2 207 193 l 395 m 597 j 1.02 n 
0.25 124 290 h 592 i 919 g 1.06 
0.25 482 179 n 377 o  588 k 1.09 j 
0.3 345 185 m 384 n 596 j 1.07 klm 
0.4 207 227 k 474 l 778 i 1.16 f 
0.4 517 167 o 361 p  581 l 1.15 g 
0.5 276 235 j 492 k 782 i 1.11 i 
0.6 207 259 i 534 j 832 h 1.07 kl 

Average     213 444 697   

TTI 

0.15 345 356 e 692 f 1026 f 0.97 o 
0.2 207 390 c 760 d 1122 e 0.96 o 
0.25 124 514 a 969 a 1404 a 0.92 p 
0.25 482 323 g 663 g 1028 f 1.06 lm 
0.3 345 350 f 725 e 1174 d 1.14 gh 
0.4 207 418 b 849 b 1319 b 1.06 m 
0.4 517 292 h 650 h 1125 e 1.28 cd 
0.5 276 384 d 814 c 1303 c 1.13 h 
0.6 207 383 d 815 c 1306 bc 1.13 h 

Average     379 771 1201   

XR 

0.15 345 71 v 161 x 284 t 1.33 b 
0.2 207 88 t 197 v 339 r 1.27 d 
0.25 124 113 q 249 s 418 o 1.23 e 
0.25 482 78 u 179 w 314 s 1.32 b 
0.3 345 89 t 201 u 350 q 1.30 c 
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0.4 207 113 q 256 r 429 n 1.23 e 
0.4 517 90 s 208 t 370 p 1.35 a 
0.5 276 109 r 251 s 432 n 1.29 c 
0.6 207 120 p 273 q 471 m 1.28 cd 

Average     97 219 379   
a Means within a column followed by the same letter are not statistically different (P ≤ 0.05). 
b Abbreviations:  Dv0.1, Dv0.5, and Dv0.9: Parameters which represent the droplet size such that 10, 50, and 90% of the spray 
volume is contained in droplets of equal or lesser values, respectively;  
c RS: Relative span = (Dv0.9 - Dv0.1)/ Dv0.5
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Figure 4.1. – Percent control of common lambsquarters using three nozzle types when 
glyphosate plus dicamba and dicamba was sprayed with three different application speeds. 
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Figure 4.2. – Percent control of velvetleaf using three nozzle types when glyphosate plus 
dicamba and dicamba was sprayed with three different application speeds. 
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Figure 4.3. – Percent control of kochia using three nozzle types when glyphosate plus 
dicamba and dicamba was sprayed with three different application speeds. 
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Figure 4.4. – Percent control of grain sorghum using three nozzle types when glyphosate 
plus dicamba and glyphosate was sprayed with three different application speeds. 
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