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 This research compares Gravity Recovery and Climate Experiment (GRACE) 

groundwater storage (GWS) and root zone soil moisture (RZSM) percentiles to measured 

data, other drought indicators (DIs) and indices, and stakeholder observations for the 

purpose of assessing the feasibility and usefulness of these products to detect drought 

conditions. GRACE percentiles were directly compared to historic groundwater 

percentiles at 89 Nebraska well locations. Spatial time-series correlations over CONUS 

were performed between GRACE GWS and RZSM and the U.S. Drought Monitor 

(USDM), Standardized Precipitation Index (SPI), and soil moisture parameters from 

several North American Land Data Assimilation System (NLDAS) models. A survey of 

stakeholder observations during a 2016 flash drought event centered on Montana, 

Wyoming, South Dakota, and Nebraska was also compared to GRACE percentile data to 

analyze drought onset timing, geographic coverage, and severity.  

 Overall the results show GRACE GWS has similar spatial and temporal 

agreement over the well period of record, and generally has the expected negative 

correlation relationship with observed groundwater, but it does not accurately reflect 

historic percentiles in Nebraska. GRACE GWS and RZSM have moderate correlation 



 
 

with USDM, and high correlation with SPI, and NLDAS models over the entire U.S. with 

notable regional and seasonal patterns. SPI accumulation period also plays an important 

role in correlation strength for both RZSM and GWS with the best agreement seen at 3-

month and 12-month accumulation periods, respectively. GRACE RZSM time-series data 

closely matches stakeholder observations of decreasing soil moisture availability, while 

observations of decreasing water levels were not as closely matched by GWS. When 

analyzed as an average over all responding zip codes, RZSM showed an early warning 

trend up to six weeks prior to observed reports.  These results indicate GRACE 

percentiles are promising drought indicators that can be used as a monitoring and early 

warning system by decision makers. 
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CHAPTER 1 – INTRODUCTION 

1.1 Motivation 

Drought monitoring is a complex, but important, task in the study of weather and 

climate and in reducing societal vulnerability to drought. Economic damages from 

droughts have risen in the past decades and drought impact is estimated in billions of 

dollars every year in the United States (Smith & Katz 2013, Wilhite, 2000). Depleted 

groundwater and soil moisture are some of drought’s most severe effects, causing water 

shortages and reduced crop yield (Denmead et al. 1962). Remote sensing and modeling 

of drought’s impacts can help quantify through objective measures the extent and severity 

of drought, identify the timing of drought onset and conclusion, and determine the 

frequency of drought over individual regions.  

The National Aeronautics and Space Administration’s (NASA) Gravity Recovery 

and Climate Experiment (GRACE) mission has produced groundwater storage and root 

zone soil moisture drought indicators (DI) based on satellite gravitational measurements 

assimilated into land surface models. These products are calculated as a percentile of the 

historic mean (see section 1.3) and thus are directly comparable with other percentile-

based DIs. The monitoring of the severity and timing of droughts through tools like 

GRACE DIs helps in providing decision makers with improved, more timely information 

to mitigate and respond to this natural disaster.  

This research assesses these GRACE percentile DI products by comparing them 

against measured data, other known DIs and indices, and the observations of drought by 

stakeholders during a notable, recent drought event. This type of assessment is necessary 
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for several reasons. First to determine the accuracy of the GRACE DIs to represent 

historic groundwater or soil moisture conditions through the percentile method. The 

second is to evaluate the usefulness of GRACE percentile products as DIs. Although 

precise estimates of groundwater and soil moisture may have inaccuracies, they still have 

value in the relative differences depicted between current and historical conditions. This 

is because the drying and wetting trends, that may not accurately reflect historic 

percentiles, are still apparent in GRACE DIs for drought events. For example, an event 

that GRACE characterizes as dropping from 80% soil moisture to 31% soil moisture 

(edge of D0 drought as designated by USDM) may not mean current soil moisture is 

ranked historically in the bottom 31% of years, but the rapid drying clearly indicates a 

significant effect. The comparison to other DIs can show GRACE’s spatial and seasonal 

strengths and weaknesses because of the relatively known strengths and weaknesses of 

the more extensively studied DIs.  

Currently, spatially continuous, long-term soil moisture datasets in the U.S. are 

modeled. These models help in assessing dryness, however the associated uncertainties in 

accuracy may lead to choosing other DIs to use to determine drought extent. Sparse 

groundwater observations and the resulting spatial interpolations are the only way to 

quantify groundwater levels, which are very important to agricultural producers 

especially in times of long-term drought. GRACE percentile datasets may help close this 

gap in soil moisture and groundwater data. An increase in soil moisture estimate accuracy 

and a spatially continuous groundwater dataset would be an invaluable resource for 

stakeholders and drought specialists alike.   
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1.2 Drought Monitoring Background 

Several decades of research have yielded different definitions for drought (Wilhite 

2000). Although they are all connected, different types of droughts can vary by length 

and affect local resources differently. In general, meteorological drought is defined as 

abnormal periods with low or no precipitation. Hydrological drought deals with the 

effects of precipitation working through reservoirs, streamflow, and groundwater. 

Agricultural drought is how crops respond to increased heat stress and lack of water 

availability in the soil. Finally, socioeconomic drought is associated with economic 

supply and demand of goods, such as water and agricultural products, which are heavily 

affected by meteorological, hydrological, and agricultural droughts (Wilhite and Glantz 

1985). All of these drought types have water in common, and thus monitoring water is a 

pivotal aspect to study for all of these sectors (Tallaksen 2004).   

Drought monitoring using objective and subjective assessments of weather, 

hydrology, agriculture, and human responses is an important part in the goal of 

successfully mitigating and responding to drought effects. The widespread use of remote 

sensing systems, in acquiring meteorological, hydrological, and vegetation health data, 

allows for multiple high spatial resolution, multi-faceted resources to quantify and 

respond to drought.  

The first quantitative drought indices appeared early in the 20th century as 

Munger’s Index and Kincer’s Index (Heim 2002). These indices measured the period of 

time without a specific amount of precipitation. Because precipitation is a highly variable 

quantity, any fixed amount of precipitation would not be sufficient for all regions. The 
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mid-20th century saw more drought indices evolve to include more than just precipitation, 

and specifically analyzed variables necessary for agricultural and hydrological impacts 

(Heim 2002). In 1965, Palmer developed the Palmer Drought Severity Index (PDSI) that 

accounts for temperature and precipitation in a water balance model (Palmer 1965). This 

index was effective at identifying long-term droughts, and accounted for several variables 

previously ignored, however it lacked a high degree of comparability between regions 

and did not account for snow or ice. The next largest innovation in drought monitoring 

was in 1993, with the creation of the Standardized Precipitation Index (SPI), which 

determines precipitation surpluses or deficits in terms of anomalies from normal, 

allowing uniform calculation in different regions (McKee et al. 1993). While SPI deals 

very well with meteorological drought, it has limitations in identifying hydrological and 

agricultural droughts (World Meteorological Organization 2012). Additionally, climate-

based drought indices are based on weather station data (sometimes interpolated to a 

uniform grid) which are far less dense in remote areas. In contrast, satellite-based indices 

have continuous, equal coverage of the entire area of interest.  

 Modelling and remote sensing have recently become driving forces in drought 

monitoring with their ability to look at the large-scale effects of drought. The Normalized 

Difference Vegetation Index (NDVI) was one of the first to make use of remotely sensed 

imagery as a drought tool (Rouse et al. 1974). Using the normalized differences in 

spectral reflectance, vegetation health, often linked to water availability, is assessed. 

Hybrid drought indices such as the Vegetation Drought Response Index (VegDRI) 

(Brown et al. 2008) use the combined power of remote sensing and observed data to 
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assess drought impacts on vegetation. NLDAS soil moisture (Xia et al. 2012a, Xia et al. 

2012b), often used to identify drought events, similarly uses observed data to model soil 

moisture at high resolution.  

 Groundwater, an important resource for agriculture and urban centers, is currently 

monitored based on individual well measurements across the country, and usually done at 

the natural resource district, state, or aquifer scale. The varying groundwater depths, 

terrain, aquifer type, and observation density all contribute to a sparse set of groundwater 

data for the United States. Some modeled data based on these observations are also 

available, but many are focused at the regional level. 

 Because of the impacts of drought on state and federal resources, the National 

Oceanic and Atmospheric Administration (NOAA), the U.S. Department of Agriculture 

(USDA), and the National Drought Mitigation Center (NDMC) have created a weekly 

drought monitor map based on several climate and satellite-based DIs and indices, other 

in situ measurements and drought expert input from across the United States (Svoboda et 

al. 2000). Because drought has no formal, or quantitative definition, U.S. Drought 

Monitor (USDM) authors rely on a combination of objective drought indices as well as 

subjective expert analysis and regional and local impact reports to create comprehensive 

weekly maps of hydrological and agricultural drought conditions for the conterminous 

U.S., Alaska, Hawaii, and Puerto Rico. 
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1.3 GRACE Background 

Earth’s gravitational changes are measured by the GRACE two-satellite system in 

an orbit at an 89.5° inclination, ~500km altitude, in which the satellites are ~220km apart. 

A microwave-ranging instrument aboard the satellites measures changes in distance 

between the two satellites from which it can create maps of Earth’s changing gravity 

field. The primary cause of these changes in gravity are the fluctuations of water mass on 

Earth (Tapley et al. 2004). The GRACE satellite system has provided measurements of 

gravity changes for the entire globe from April 2002. In October 2017, one of the 

satellites suffered a battery failure, causing the mission to conclude (NASA, 2017). 

GRACE-Follow On (GRACE FO) was launched in May 2018 and promises to provide 

the same hydrologic products as the original mission, while testing several measurement 

methods for higher accuracy and precision.  

The satellite data are processed at three centers that include the University of 

Texas Center for Space Research (CSR), the GeoFroschungsZentrum Potsdam (GFZ), 

and NASA’s Jet Propulsion Laboratory (JPL). Each center has a unique processing 

algorithm, but with the same main calculations and characteristics. GRACE observed 

estimates of total water storage (TWS) are produced at monthly intervals at a spatially 

limited 150,000 km2 horizontal resolution (Rowlands et al. 2005, Yeh et al. 2006). The 

processed GRACE TWS is a single value comprised of soil moisture, vegetation, surface 

water, ice, snow, and groundwater. It represents the entire vertical column at and below 

the surface of the Earth. Through several studies, it has been shown that GRACE data can 

be effectively integrated into land surface models (LSM) in order to disaggregate 
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components of total water storage changes (TWSC) (Wahr et al. 1998). This 

disaggregation is done by subtracting modeled soil moisture and snow water equivalent 

from GRACE TWS. Most estimates assume vegetation and surface water to be terms 

small enough to negate. GRACE data have been successfully assimilated into LSMs and 

disaggregated into terms of snow water equivalent (SWE) (Niu et al, 2007) that improved 

estimates of hydrologic state and fluxes (Su et al. 2010 and Forman et al. 2012), root 

zone soil moisture (RZMC) (Wahr et al. 1998), and groundwater storage (GWS) (Rodell 

et al. 2007).  

The GRACE TWS product has been assimilated into the Catchment Land Surface 

Model (CLSM) (Koster et al. 2000, Ducharne et al. 2000) and the disaggregated data is 

used in this research. This method increases spatial and temporal resolutions and 

disaggregates TWS into some of its component parts (groundwater, soil moisture, and 

snow water equivalent). The CLSM is configured with a grid centered over the 

conterminous United States similar to the North American Land Data Assimilation 

System (NLDAS) (Mitchell et al. 2004), and simulated with NLDAS-2 meteorological 

and energy flux forcing data (Xia et al. 2012a, Xia et al. 2012b) 

The GRACE assimilated CLSM takes forcing data inputs (precipitation, solar 

radiation, temperature, wind, humidity, and pressure) and integrates GRACE TWS into 

the model using an Ensemble Kalman smoother (Zaitchik et al. 2008, Kumar et al. 2016). 

Groundwater and soil moisture have been modeled by CLSM during the 1948-2016 

period using historical observations as inputs. The GRACE data assimilated (DA) model 
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products are then calculated as a percentile of the historic conditions and will be assessed 

for their usefulness as drought indicators.  

GRACE TWS that was disaggregated into groundwater and assimilated into 

model simulations was previously evaluated against non-assimilated, open loop model 

simulations on a basin scale across the United States (Zaitchik et al. 2008, Houborg et al. 

2012). Zaitchik et al. found small, but significant (α < .05) increases in correlations for 

three out of five basins (Mississippi, Ohio-Tennessee, and Missouri), with another basin 

(Red-Arkansas/Lower Mississippi) seeing significant improvement at α < 0.10 when 

compared to the non-assimilated simulation. Houborg et al. found significant (α < .05) 

improvement for three basins (Great Basin and Colorado, Upper East Coast, and 

Arkansas-Red/Lower Mississippi), while two basins (Missouri and California) saw 

statistically significant (α < .05) skill decreases. 

This research assesses the relationship between measured groundwater levels and 

GRACE groundwater percentiles and compares GRACE percentiles to other DIs and 

indices. A GRACE-based DI percentile approach was first examined by Houborg et al. in 

2012 in order to translate GRACE-assimilated products such as surface soil moisture, 

root zone soil moisture, and groundwater storage into drought indicators consistent with 

the U.S. Drought Monitor. While inaccuracies, measurement and computational errors, 

and modelling deficiencies can produce notable differences between the absolute 

GRACE soil moisture and groundwater estimates and observed data, a percentile 

approach for the datasets provides historical context and allows relative comparisons 

between the records to assess the general anomalies that are represented. While percentile 
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datasets are sensitive to the total dataset time period and comparing percentile datasets 

with different spin-up periods can result in disagreement, the general benefit of spatially 

independent historic context is critical when mitigating and making decisions in drought 

events. This study analyzes the comparison between GRACE groundwater percentiles 

and long-term United States Geological Survey (USGS) groundwater records as well as 

between GRACE groundwater percentiles and shorter-term well records from the 

Nebraska Real-time Monitoring Network (RTMN). The relationships between GRACE 

percentiles and the U.S. Drought Monitor (USDM) (Svoboda et al. 2002), Standardized 

Precipitation Index (SPI), and the North American Land Data Assimilation System 

(NLDAS) modeled soil moisture are also studied.  
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CHAPTER 2 – DATA AND METHODOLOGY 

2.1 Data Processing and Descriptions 

 As the GRACE satellites launched in March 2002, actively retrieving data since 

April 2002, all comparisons are made with the same start date of the first week of April 

2002. However, due to the data not being available when this research was conducted, 

SPI and NLDAS data comparisons only extend to the end of 2012, whereas groundwater 

well and USDM comparisons were extended to the end of 2016.  

2.1.1 GRACE Percentile Data 

 This study uses two GRACE percentile products, groundwater storage (GWS) and 

root zone soil moisture (RZSM). These data are produced weekly at 0.125° spatial 

resolution (approximately 13.8 x 13.8 km) and the time period of April 2002 – December 

2016 is used. These data are in a raster format over the continental United States. Each 

cell in the raster contains a single percentage value, ‘0’ representing the driest historical 

condition for that location, and ‘100’ representing the wettest condition. Each of the cells 

in these data-assimilated percentiles from 2002-2016, calculated from on the historical 

model data, on average range from 0.8 – 99.8% for RZSM and 3.2 – 97.3% for GWS. 

This large range indicates that both GWS and RZSM products capture nearly all 

variability of the historic dataset, and adequately represent trends during this time period. 

The original data are processed by clipping the spatial extent to match the exact 

boundaries of the continental U.S. (the raw data extended well into Canada and Mexico) 

as to match the coverage of the other datasets.  
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Then, these data are copied and separately processed according to the temporal 

and spatial resolution of the data to which it was being compared. A set of raster data is 

resampled to match the larger spatial resolution of SPI (25 x 25 km) and NLDAS (20.2 x 

20.2 km) rasters using the nearest pixel resampling method. The SPI matching dataset 

had weekly values which are averaged to monthly values using ArcGIS python scripting. 

Finally, for the USDM comparison, GRACE percentiles were reclassified into their 

respective drought levels as given by Table 1. 

Table 1 – U.S. Drought Monitor drought severity levels and equivalent percentiles to compare to 

objective drought indices (Svoboda et al. 2000) 

DROUGHT LEVEL PERCENTILE 

No Drought 31 - 100 

D0 – Abnormally Dry 21 - 30 

D1 – Moderate Drought 11 – 20 

D2 – Severe Drought 6 -10  

D3 – Extreme Drought 3 - 5 

D4 – Exceptional Drought 0 -2 

 

2.1.2 Groundwater Wells 

To assess GRACE GWS accuracy, values were compared to measured 

groundwater well levels across the state of Nebraska. While each well represents only a 

single point compared to the GRACE cells of about 190.44 km2 in area, assessing the two 

percentile levels and trends can begin to show what level of accuracy the GRACE DI has. 



12 
 

Two well datasets are used in this research, the United States Geological Survey (USGS) 

daily groundwater data and the Nebraska Real-Time Monitoring Network (RTMN) daily 

groundwater data.   

 The USGS keeps a collection of continuously reporting groundwater wells across 

the country (USGS 2016). In Nebraska, USGS maintains 33 of these wells (Figure 1) 

with relatively long-term, daily historical records. These well sites measure water levels 

as distance from the surface station at least once per day and automatically store and 

report the level. This provisional data is put through USGS quality assurance to ensure 

consistent and accountable measurements. These wells were selected because their 

historical records dating back to at least 1999, maintaining a historical record longer than 

the GRACE record. While aquifer type certainly does impact the well level responses to 

drought, selection was not based on this characteristic because of the already small 

sample size with the stipulation of record length.  

 

Figure 1 - Locations of USGS (X) and RTMN (*) wells in Nebraska 
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 The University of Nebraska – Lincoln Institute of Agriculture and Natural 

Resources (IANR) has developed a project that provides real-time groundwater level 

monitoring across the state of Nebraska (UNL IANR 2017). The RTMN project uses 

remote telemetry, smart sensors, and wireless communication to collect and analyze 

hydraulic information from 56 locations around Nebraska (Figure 1). These groundwater 

levels have generally recent and wide ranging first readings from as early as 2002 to as 

late as 2015, but on average they start around 2007. This dataset also has significant gaps 

in daily readings, which further limits the value of the data. Despite these limitations, the 

data was used in order to gain wide ranging spatial distribution of observed groundwater 

levels across Nebraska. The daily well data from both datasets were averaged to weekly 

values to match the weekly GRACE data. Weeks with no data (usually caused by 

maintenance on the well infrastructure) were omitted from the final datasets.  

2.1.3 The United States Drought Monitor 

The U.S. Drought Monitor (USDM) was created in 1999 by the U.S. Department 

of Agriculture (USDA), the National Oceanic and Atmospheric Administration (NOAA) 

and the National Drought Mitigation Center (NDMC) (Svoboda et al. 2002) as a way to 

centralize and improve drought monitoring in the United States. The end product is a 

weekly map of drought severity (categorized as D0-D4) that incorporates objective 

weather and hydrologic data with local, state, regional, and federal input. The categories 

(Table 1) correspond to percentiles based on historical data and estimate the frequency of 

different drought severities at a given location and time of year.  
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 USDM authors selectively incorporate many objective measurements and 

observational data such as weather variables (precipitation, temperature, and dewpoint), 

hydrologic levels (streamflow, snowpack, and reservoir levels), and vegetation indices 

(NDVI and other satellite-based greenness products). However, groundwater and soil 

moisture are not heavily represented, mostly due to a lack of observations and limited 

data access. GRACE percentile products have been accessible for Drought Monitor 

authors for several years (likely since 2013), and each author may have chosen to 

incorporate drought as shown by GRACE GWS or RZSM into the Drought Monitor. 

However, the accuracy and usefulness of these products had not been fully explored. 

Model-based approaches to these hydrologic variables, such as the GRACE groundwater 

and soil moisture percentiles evaluated in this research, may assist the Drought Monitor 

authors in creating a consistent and accurate representation of drought in the United 

States with known biases and patterns. Weekly USDM data were acquired in vector 

format (NDMC, USDA, NOAA, 2017) and converted to rasters corresponding to 

GRACE’s spatial resolution. 

In addition to looking at how GRACE GWS and measured well levels compare, 

these well levels were compared to the USDM. This analysis translated the previously 

calculated well level percentiles into drought categories (Table 1). This was done to 

determine if these specific well levels show any significant relationship with the gold 

standard of drought monitoring. While USDM maps do have boundaries indicating 

“Short-term” (S) and “Long-term” (L) drought impacts, these impact and drought types 

were not considered in the comparisons. While the timeframe of the drought certainly 
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effects impacts, including groundwater and soil moisture analyzed in this research, the 

processing to separate impacts in the quantitative comparisons limited this analysis. 

Additionally, the spatial designation of the time-scales of drought levels is not entirely 

consistent throughout USDM history, with some areas having clearly defined boundaries, 

and some areas just with the “S” or “L” placed without any boundaries.  

2.1.4 Standardized Precipitation Index 

 The Standardized Precipitation Index (SPI) is the cumulative probability of a 

specific rainfall event occurring (McKee et al. 1993). Historical rainfall data is fitted to a 

gamma function to obtain a normal distribution. Time scales are determined by 

accumulation periods in months, with shorter time scales showing SPI frequently moving 

above and below zero and longer time scales showing fewer fluctuations. Monthly 

gridded SPI of 14 different accumulation periods (1 month – 12-month, 18-month, 24-

month) were collected through the NDMC Drought Atlas (HPRCC and NDMC 2017) at 

25 x 25 km spatial resolution. This data was previously processed by interpolating station 

SPI into the gridded format. While SPI is a measure of only one drought variable, 

precipitation, the seasonal meteorological patterns have a large effect on groundwater but 

are often only seen much later in time or on larger accumulation ranges. Fiorillo et al 

(2010) found SPI is best correlated with river discharge at 9- to 12-month accumulation 

periods. Accumulation periods of 12-month or longer also are highly tied to reservoir and 

groundwater levels (World Meteorological Organization, 2012). Soil moisture, on the 

other hand, would respond quicker to precipitation events. Accumulation periods between 
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1-month and 6-months are associated with soil moisture conditions (World 

Meteorological Organization, 2012).    

2.1.5 The North American Land Data Assimilation System (NLDAS) Soil Moisture 

Data  

 The North American Land Data Assimilation System (NLDAS) is a quality 

controlled, spatially and temporally consistent land surface model (LSM). The project is a 

collaboration among NOAA/National Centers for Environmental Prediction’s (NCEP) 

Environmental Modeling Center (EMC), NASA’s Goddard Space Flight Center (GSFC), 

Princeton University, the University of Washington, NOAA/National Weather Service 

(NWS) Office of Hydrological Development (OHD), and NOAA/NCEP Climate 

Prediction Center (CPC). Modeled soil moisture percentiles were obtained using two 

NLDAS land surface models, Noah (Chen et al. 1996), and Variable Infiltration Capacity 

(VIC) (Liang et al. 1994) as well as the ensemble mean of Noah, VIC, Sacramento (SAC) 

(Burnash et al. 1973) and Mosaic (Koster and Suarez 1992). Each LSM simulates the 

processes of evapotranspiration, drainage, and vegetation uptake and depth slightly 

differently, and the output of each model can differ from each other. These LSMs are 

used in this research to compare to GRACE soil moisture percentiles as each LSM also 

produces soil moisture percentiles as outputs. GWS was not compared as groundwater is 

a fundamentally different quantity and NLDAS groundwater was not available for all 

models. NLDAS soil moisture data was gathered from NDMC projects at ~20 x 20 km 

resolution and produced at weekly intervals. This evaluation uses NLDAS data from 

April 2002 to December 2012.   
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2.1.6 2016 Northern Plains Flash Drought 

 In spring and summer 2016, a flash drought event developed rapidly over the 

Northern Plains, centered on western South Dakota, eastern Wyoming, southeastern 

Montana and northwestern Nebraska (USDM 2016). Flash drought refers to rapid onset 

drought events characterized by extreme atmospheric anomalies that persist for several 

weeks. Quickly deteriorating vegetation health, warm surface temperatures, increased 

evapotranspiration, and depleted soil moisture are typical conditions seen in flash drought 

events (Otkin et al. 2013). This region experienced impacts including forest and grassland 

fires, low forage production, decreased water quantity, and plant stress/death contributing 

to large economic losses for stakeholders. Through a National Integrated Drought 

Information Systems (NIDIS) funded project to study agricultural impacts of flash 

droughts and the drought monitoring capabilities of the Evaporative Stress Index (ESI) 

and USDM, a survey was sent to agricultural producers in the drought affected region 

(IRB#20160816292 EX). This survey was developed with expert input and pretested by 

agricultural extension personnel. It included questions focused on the timing and severity 

of individual impacts that allows researchers to track the onset and spread of drought.  

 The survey (Appendix I) was sent to 2389 agricultural producers living in 42 

South Dakota, 16 Wyoming, 13 Nebraska, and 13 Montana counties that had experienced 

at least abnormally dry (D0) conditions by July 2016 according to USDM. A stratified 

random sample was taken that oversampled counties experiencing the most severe 

drought levels and undersampled the large number of counties that only experienced 

abnormal dryness. This sample was done in order to ensure that a sufficient number of 
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responses were returned from areas experiencing each level of drought severity. The 

sampling frame was a list of producers participating in federal farms programs and was 

obtained from a Freedom of Information Request to the USDA Farm Services Agency.  

The National Drought Mitigation Center (NDMC) administered the survey, with 

surveys mailed to the producers using the U.S. Postal Service. Following Dillman et al. 

(2009), a pre-survey letter was mailed to each producer in early November 2016, 

followed by the initial survey mailing in late November 2016 with a follow up survey 

mailing in January 2017. Out of the 2389 surveys mailed out, 516 (22%) were completed 

and returned to NDMC, 348 (15%) being completed by agricultural producers. Any 

survey not filled out by landowners actively engaged in agricultural production were 

excluded from the analysis.  

In order to visualize a better spatial resolution of responses, the respondent’s zip 

code was used to represent the location of each report. Counties represented too large an 

area to assume homogeneity of impacts, while pinpointed locations were not displayed 

because many addresses consisted of PO boxes and to respect the respondent’s 

information privacy. It should be noted that individual responses could potentially 

integrate information from surrounding areas if land was owned in more than one zip 

code. Agricultural producer responses from 136 zip codes are represented in Figure 2. 



19 
 

Date reports were averaged by zip code to denote the first occurrence of impacts. 

 

Figure 2 – Locations of individual zip codes from which completed surveys were received. 

2.2 Comparison Methods 

This research employs three main methods of comparing data. The first compared 

the gridded GRACE data to measured well point data.  For April 2002 to December 

2016, well levels were calculated as a percentile rank of the total historic record for that 

well. Each well location was sampled from the GRACE GWS time series using two 

spatial sampling techniques, nearest and cubic, and compared to well levels and well 

percentiles. Nearest sampling takes only the value of the pixel that each location is in, 
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whereas cubic calculates a weighted average value based on the 16 nearest pixels (ESRI 

2017).  

The two time-series were then compared using Spearman’s Rank Correlation  

𝑟𝑠 =  𝜌𝑟𝑔𝑋 , 𝜌𝑟𝑔𝑌 =  
𝑐𝑜𝑣(𝑟𝑔𝑋,𝑟𝑔𝑌) 

𝜎𝑟𝑔𝑋,𝜎𝑟𝑔𝑌
   Eq. 1 

where 𝜌 denotes the correlation coefficient for ranked variables, 𝑐𝑜𝑣(𝑟𝑔𝑋 , 𝑟𝑔𝑌) is the 

covariance of the ranked variables, and 𝜎𝑟𝑔𝑋 and 𝜎𝑟𝑔𝑌 are the standard deviations of the 

ranked variables. Spearman rank correlation was selected as it describes the association 

strength between any of the two datasets (GRACE-wells, GRACE-USDM, GRACE-SPI, 

and GRACE-NLDAS), while its calculation assumptions also fit the data. Additionally, 

Spearman correlations are robust to outliers (Croux and Dehon 2009). Pearson correlation 

requires data to be normally distributed, linear and equally distributed about the 

regression line. Over the specific time periods of GRACE, normal distribution cannot be 

assumed and linearity would need to be proven. Spearman’s assumptions however, are 

the data must be ordinal and its result measures how monotonic the relationship is. 

Because this data is ranked and converted to percentile, the ordinal assumption is 

fulfilled. The correlation of well and GRACE data was done using an R script and base R 

correlation function (Appendix II).  

If a relationship between GRACE data and the well data exists, the correlation is 

expected to be negative. This is due to well levels being reported as distance from the 

surface – the smaller the number, the closer the water table is to the surface and more 
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water is in the ground. Conversely, larger amounts of groundwater in GRACE are 

indicated by larger numbers.  

The second method spatially compared two gridded time-series datasets. To 

assess the strength and spatial extent of the relationship between GRACE products and 

other DIs and indices, a python script was created to calculate Spearman’s Rank 

correlation coefficient pixel by pixel (Appendix III), so that each time-series comparison 

created a single map with each cell value representing the magnitude of correlation (-1 to 

+1). This script’s method converted each raster into a numPy array and correlated each 

array index, then converted it back into a raster using built-in ArcPy functions. The 

method can only be used when both datasets are exactly the same cell size and grid 

extent, so each dataset had to be resampled and clipped to match each other. The code 

was validated by sampling several points of the time-series data and manually calculating 

the correlation making sure it matched with the output map at those points.  

The final method of comparison consisted of qualitative and quantitative 

comparisons of GRACE with the survey data from the 2016 Northern Plains flash 

drought as a case study. The qualitative analysis was simply a visual comparison of the 

onset and extent of drought using month-by-month USDM and GRACE GWS and RZSM 

maps. The quantitative analysis looked at the evolution of USDM drought levels and 

GRACE percentiles as compared to the date of first occurrence of certain drought 

conditions as reported by stakeholders in the region by averaging USDM and GRACE 

GWS and RZSM values over all zip codes during a 12-week period centered on the date 

that each impact first occurred for each individual zip code. Re-centering the time series 
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for each zip code allows for a more consistent comparison of the datasets because it 

accounts for the different timing of drought impacts across the region. All grid points 

located within each zip code were identified using a shape file and then used to compute 

the mean for each dataset and zip code. An average time series was then computed for 

each dataset and survey question using the re-centered time series from each respondent. 

The resultant time series provide an opportunity to evaluate the consistency between the 

timing of the reported impacts and the characteristics of the drought monitoring datasets. 

2.3 Statistical Methods 

At the α < 0.05 confidence level, each individual correlation coefficient can be 

assessed as being significantly different than zero using the student’s t test with n-2 

degrees of freedom in Eq (2a) and solved for rcrit in Eq (2b) 

𝑡 = 𝑟√
𝑛−2

1−𝑟2    Eq. 2a 

𝑟𝑐𝑟𝑖𝑡 =  
𝑡

√(𝑡2+𝑛−2)
    Eq. 2b 

where rcrit is the significant correlation value, t is the critical t-value, and n is the sample 

size. When comparing well data with GRACE data, certain weeks will have less than the 

maximum number of observations (well maintenance or quality assurance removal), thus 

making the observation sample size for significance calculations highly variable. This 

problem does not exist when comparing raster data as each cell has data throughout the 

time-series. Table 2 gives the observation sample size of each spatial comparison along 
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with the critical r to determine if the value is significantly different than zero at α < 0.05. 

After each individual well or cell correlation was calculated, the values were averaged to 

determine the general trends – the same significance values still apply to the average 

values. The standard deviation of the correlations was also measured as a way to describe 

the variability of the comparisons.  

Table 2 – Critical correlations at α < 0.05 for spatial correlations 

Spatial Comparison Sample Size (n) rcrit 

GRACE - USDM 770 0.071 

GRACE - SPI 129 0.171 

GRACE - NLDAS 560 0.083 
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CHAPTER 3 – RESULTS 

3.1 Groundwater Well Comparison 

 The point comparisons using both USGS and RTMN well datasets with different 

spatial averaging techniques yielded enormous variance. Over all 33 locations, USGS 

well levels show a highly variable, but generally negative correlation with GRACE GWS 

(Fig 3a). The 56 RTMN locations indicate a very similar pattern of variability but overall 

negative correlation (Fig 3b). Both datasets suffer from large ranges in the correlation. 

While the majority of wells had a negative correlation to GRACE, which was expected if 

both datasets represent the same quantity, a significant amount was spread into near zero 

and high positive correlations. Overall, USGS wells had slightly stronger average 

correlations with nearest correlation values USGS = -0.274, and RTMN = -0.243. The 

cubic average correlation values were nearly identical at USGS = -0.273 and RTMN = -

0.245.   
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A 

 

B 

 

Figure 3 - USGS (a) and RTMN (b) correlation values between wells and GRACE percentiles. 

The red dot represents the mean, the middle notch represents the median, and the box represents 

the 25th and 75th percentiles. 
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 Figure 4 illustrates the correlation relationships between the well percentiles 

converted to drought levels and USDM drought levels at each well location. In this case, 

a strong relationship of similar trends would be positive due to the processing of the well 

percentiles taking the inverse to convert to drought levels. Overall USGS wells showed 

weak positive correlation with the USDM but had high variance. RTMN wells, on 

average, had weak negative correlation and a larger variance, with the average value very 

close to zero. This result is further discussed in Chapter 4.   

 

Figure 4 - USGS and RTMN well percentiles converted to drought levels correlated with USDM 

drought levels. The red dot represents the mean, the middle notch represents the median, and the 

box represents the 25th and 75th percentiles. 

 As the two well datasets have a general spatial distribution over the state, Figure 5 

illustrates the spatial pattern of correlation values. The result shows the same significant 

variability as the individual comparisons. In general, the eastern part of the state shows 
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slightly better (more negative due to GRACE percentiles and well levels trending in 

opposite directions when indicating the same changes) correlations, while the western, 

specifically southwestern portion shows worse (more positive) correlations with the 

occasional strong negative outlier.  

 

 

Figure 5 – Spatial distribution of GRACE GWS and USGS and RTMN well level correlation 

coefficients using the nearest sampling technique. Positive correlations indicate poor agreement, 

negative indicate good agreement due to the numbers trending in opposite directions when 

showing the same change. 

3.2 Spatial Correlations 

 The gridded comparison of GRACE and other drought indicators (SPI, NLDAS 

soil moisture, and USDM) provides complete coverage over CONUS. The analysis of 

this relationship should give an indication if these products provide any skill at 

monitoring and assessing drought from an objective point of view. All correlations are 

represented with a decimal between -1 and 1. -1, represented by dark red, is a perfect, 

negative correlation, 1, represented by dark green, is a perfect, positive correlation, and 0, 
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represented by yellow, means the data is not monotonically related and has no 

correlation. 

3.2.1 GRACE - USDM 

 Both GWS and RZSM dataset comparisons provide five maps - one complete 

time series (Fig 6a and 6b) and four seasons broken into the commonly used 

meteorological seasons, December-January-February (DJF), March-April-May (MAM), 

June-July-August (JJA), and September-October-November (SON) (Figures 7a and 7b). 

The USDM drought levels were compared including both short and long-term droughts 

as shown on the published USDM maps. This was because the separation of the gridded 

data into short and long-term droughts was not feasible in this study’s timeframe. This 

separation is further discussed in the conclusions and future work section. 

 The complete timeseries GWS – USDM comparison had an average correlation of 

0.434 indicating a significant positive relationship (Table 2). However, the spatial 

distribution varied widely from near-zero correlation to many areas with above 0.75 

correlation (Fig 6a). The South and Southeast, Midwest, California and Northern Rocky 

Mountains show very strong positive correlation. Parts of New England as well as much 

of the High Plains, Pacific Northwest, and Colorado/New Mexico yield lower and more 

sporadic agreement. There is a notable and sharp gradient from good correlations in East 

Texas and Oklahoma to low positive or near-zero correlations in West Texas and New 

Mexico. Other similar gradients are on the Idaho – Washington/Oregon border and in 

Central Arizona. These gradients do not seem to strictly follow topographical features. 

The differences in correlations may be explained by the number of drought events 
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captured in the 2002-2016 timeframe, where areas experiencing more droughts have 

more variation to be correlated with GRACE data. 

Table 3 – Complete and seasonal correlation average values and standard deviations between 

GRACE levels and USDM levels 

CORRELATION MEAN  STD 

GWS COMPLETE TIME-SERIES 0.434 0.165 

GWS DJF 0.395 0.216 

GWS MAM 0.385 0.208 

GWS JJA 0.487 0.186 

GWS SON 0.462 0.220 

RZSM COMPLETE TIME-SERIES 0.383 0.130 

RZSM DJF 0.351 0.182 

RZSM MAM 0.377 0.171 

RZSM JJA 0.389 0.157 

RZSM SON 0.351 0.186 

 

As for the seasonal comparisons, the cool seasons of DJF and MAM showed a 

lower average, but very similar spatial patterns. Note there are large areas of NODATA, 

indicated by areas of white, as certain areas of GRACE data converted to drought levels 

had a covariance of zero, i.e. never dropped below 30%. The warm seasons of JJA and 

SON showed large correlation increases nearly everywhere. SON’s higher values seem to 

emit from the high correlations becoming stronger, while the low correlations becoming 

lower. This SON comparison yields the first regions of the U.S. with overall near zero or 

slightly negative correlations in Colorado and New Mexico.   
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Figure 6 - Correlations between GRACE drought levels and USDM drought levels. GWS (a), RZSM (b) 
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Figure 7 – Seasonal correlations between GRACE drought levels and USDM drought levels. GWS (a), RZSM (b) 

 

 DJF MAM JJA SON 

G
W

S 

a – 1 a - 2 a – 3 a – 4 

R
ZS

M
 

b - 1 b - 2 b - 3 b - 4 



32 
 

 

The RZSM – USDM complete time-series comparison has an average correlation 

of 0.383, as well as a more consistent (lower variance) distribution across the U.S. 

Visually, the lower correlation than the GWS comparison is clear, but the homogeneity 

also becomes more apparent. The spatial pattern is overall very similar to the GWS 

comparison. The most distinctive changes are the loss of sharp gradients in Texas, 

Arizona, and Idaho, as well as a significant increase in average correlation over South 

Dakota, Nebraska, and Kansas.   

As with GWS comparisons, the RZSM seasonal calculations show similar spatial 

patterns to the complete time-series. In this case DJF and SON have the lowest average 

correlations, whereas JJA and MAM show the best agreement. The difference between 

seasonal averages, however, is not as strong as the GWS seasons. The most distinct 

change in the seasons is the much greater correlations around the Midwest in JJA and 

SON seasons, and the low correlations of California in DJF and SON seasons. The 

differences revealed by comparing the complete time-series to seasonal correlations 

clearly indicate there are times and places where agreement is higher and lower between 

GRACE drought products and the USDM. 

In the attempt to remove any covariance between GRACE and USDM (as authors 

may have incorporated GRACE data post 2013), a correlation analysis was performed for 

data up to December 2012. Figure 8 presents the difference between correlation maps for 

this period (Full period – 2012 period). Overall, the average GWS correlation for the 

2002-2012 period very slightly increases from 0.434 to 0.447, while the average RZSM 
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correlation slightly increases from 0.383 to 0.401. The largest areas of difference are in 

California and much of the western and southwestern U.S. California, Nevada, 

northwestern New Mexico, and some of northern Texas, and see better correlations when 

post 2012 data is included. However, much of Arizona, the Idaho-Washington-Oregon 

border, and western Texas have better correlations when post 2012 data is not included. 

The RZSM differences are in the same pattern, but less extreme.  
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Figure 8 – Difference between full period correlations (2002-2016) and truncated period 

correlations (2002-2012) for GWS (a) and RZSM (b). Green indicates the full period correlation 

are higher, while red indicates the 2002-2012 period correlations are higher. 
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3.2.2 GRACE – SPI 

 Correlations between SPI and GRACE GWS and RZSM percentiles provide a 

valuable comparison of two objective drought indices. While SPI is computed as standard 

deviations of precipitation anomalies, the relative changes positive or negative are 

compared. Table 4 shows the average results of the 14 SPI accumulation periods that are 

compared to GRACE GWS and RZSM. Figures 9 and 10 show the spatial patterns of 

each accumulation period correlation with GWS and RZSM respectively.  

 All comparisons yielded similar spatial patterns. Starting with 1-month 

accumulation period, SPI - GWS correlations were generally poor across the U.S. with a 

pocket of reasonably good correlations in Missouri and the Kentucky-Tennessee-North 

Carolina-Virginia area.  This accumulation period also has the most homogeneity as 

demonstrated by the low standard deviation. As the accumulation period becomes longer, 

correlations increase. Throughout the accumulation periods, the spatial pattern is 

consistent and the largest change occurs in the jump from 12-month to 18-month. Overall 

the eastern, south, and far west regions of the U.S. show consistently high correlations, 

peaking at the 11- and 12-month accumulation periods. This result agrees with the 

previously mentioned research regarding the best groundwater and streamflow 

correlations to SPI at 9-month or later accumulation periods. The central plains of South 

Dakota, Nebraska, and Kansas, along with large areas of mountainous terrain in Montana, 

Wyoming, and Colorado typically show the lowest correlations, but are still generally 

positive. These same areas also see large increases in correlations with the inclusion of 

18- and 24-month accumulation periods. The amount of spatial variability, that is 
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variation from one pixel to another in the same accumulation period correlation, is 

generally consistent throughout the accumulation periods as shown in the standard 

deviations in Table 4.  

 The RZSM comparisons establish that small temporal accumulation periods have 

higher correlation than their GWS comparison counterparts, with 1-month periods 

yielding 0.44 correlation. Increasing the accumulation period still increases the 

correlation to a maximum average value of 0.585 at 3-months and stays very constant up 

until 12-months. Accumulation periods of 18- and 24- month shows highly decreased 

correlations. The spatial pattern is nearly identical to the GWS comparisons, with slightly 

more homogeneity across the country, corresponding to the generally lower standard 

deviations.  Additionally, the highest average value for RZSM comparisons was slightly 

higher than for GWS. 
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Table 4 – Correlation average values and standard deviations between GRACE GWS and RZSM 

percentiles and SPI anomalies for different accumulation periods.  

Accumulation 

Period 

GWS 
 

RZSM 
 

Mean Std Mean Std 

1 Month 0.131 0.099 0.440 0.116 

2 Month 0.284 0.148 0.571 0.133 

3 Month 0.363 0.164 0.585 0.127 

4 Month 0.417 0.170 0.581 0.121 

5 Month 0.456 0.170 0.574 0.119 

6 Month 0.485 0.168 0.568 0.119 

7 Month 0.506 0.168 0.561 0.120 

8 Month 0.522 0.166 0.557 0.121 

9 Month 0.533 0.165 0.550 0.124 

10 Month 0.539 0.166 0.538 0.130 

11 Month 0.542 0.167 0.525 0.131 

12 Month 0.543 0.167 0.512 0.132 

18 Month 0.511 0.182 0.427 0.152 

24 Month 0.488 0.191 0.395 0.158 
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Figure 9 – Correlation map values between GRACE GWS and 

SPI anomalies for different accumulation periods.  
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Figure 10 – Correlation map values between GRACE RZSM 

and SPI anomalies for different accumulation periods.  
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GWS seasonal comparisons of 9-, 10-, 11-, and 12-month accumulation periods, 

chosen due to their highest average correlation, showed the transition seasons of MAM 

and SON generally had the lowest correlations with similar patterns to the complete time-

series maps (Fig 11). All SPI seasonal values are given in Table 5. The best average 

correlations appear in the summer months of JJA and winter months of DJF. MAM 

shows far lower correlations across the High Plains at 9- and 10-month accumulation 

periods and SON sees a similar lower correlation pattern for the High Plains at all four 

accumulation periods. Throughout all seasons and accumulation periods, the Southern 

U.S. has consistently high, positive correlations. 

Seasonal RZSM comparisons of 2-, 3-, 4-, and 5-month accumulation periods, 

again chosen due to their highest average correlations, show generally higher correlations 

during MAM, JJA, and SON, and significantly lower correlations during the winter 

months of DJF (Fig 12). The variance of the correlations is also much higher in DJF than 

in the other three seasons. The winter months also show severe deterioration of 

correlations in high peaks of the Rocky Mountains of Colorado and Wyoming across all 

four accumulation periods. JJA shows significant improvement of correlation in the same 

region for all accumulation periods, while MAM and SON are similar to the complete-

time series values.  
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Table 5 – Correlation average values and standard deviations between GRACE GWS and RZSM 

percentiles and SPI anomalies for different seasons and accumulation periods.  

GWS Mean Std RZSM Mean Std 

DJF - 9 Month 0.561 0.222 DJF - 2 Month 0.539 0.223 

DJF - 10 Month 0.583 0.210 DJF - 3 Month 0.575 0.221 

DJF - 11 Month 0.584 0.207 DJF - 4 Month 0.572 0.208 

DJF - 12 Month 0.575 0.208 DJF - 5 Month 0.568 0.211 

MAM - 9 Month 0.519 0.211 MAM - 2 Month 0.583 0.188 

MAM - 10 Month 0.538 0.208 MAM - 3 Month 0.601 0.184 

MAM - 11 Month 0.565 0.197 MAM - 4 Month 0.626 0.166 

MAM - 12 Month 0.584 0.192 MAM - 5 Month 0.617 0.160 

JJA - 9 Month 0.567 0.178 JJA - 2 Month 0.654 0.161 

JJA - 10 Month 0.572 0.175 JJA - 3 Month 0.653 0.150 

JJA - 11 Month 0.575 0.183 JJA - 4 Month 0.632 0.151 

JJA - 12 Month 0.570 0.195 JJA - 5 Month 0.621 0.155 

SON - 9 Month 0.543 0.213 SON - 2 Month 0.625 0.166 

SON - 10 Month 0.537 0.210 SON - 3 Month 0.618 0.169 

SON - 11 Month 0.533 0.213 SON - 4 Month 0.603 0.169 

SON - 12 Month 0.537 0.213 SON - 5 Month 0.588 0.165 
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Figure 11 – Correlation values between GRACE GWS percentiles and SPI anomalies for different seasons and accumulation periods.  
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Figure 12 – Correlation values between GRACE RZSM percentiles and SPI anomalies for different seasons and accumulation periods.
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3.2.3 GRACE – NLDAS 

 The model to model comparisons of GRACE RZSM percentiles and NLDAS 

LSM RZSM percentiles cannot definitively tell where GRACE performs well and where 

it does not. Because both datasets are models, fed often times by identical meteorological 

and energy flux observations (Xia et al. 2012a, Xia et al. 2012b), this comparison only 

yields the spatial patterns of where there is general agreement and disagreement. The 

GRACE data has the hope to produce more accurate, more useful information through the 

assimilation of GRACE satellite gravity data. NLDAS soil moisture can be used as a 

reference observed map of soil moisture data due to the lack of a national soil moisture 

network, and itself is can be used as a drought indicator by drought monitor authors.  

 The ensemble of Noah, VIC, SAC, and Mosaic models showed the strongest 

agreement with GRACE soil moisture, while Noah and VIC showed similarly strong, but 

slightly less agreement (Table 6). The ensemble model also yielded the lowest standard 

deviation, and again, Noah and VIC showed similar but higher standard deviations. The 

three complete time-series comparisons showed nearly identical spatial patterns, with 

strong agreement over the central Great Plains, medium agreement in the eastern U.S. 

and sporadically good and poor agreement over the mountainous central-western and 

western U.S. (Fig 13). The Rocky Mountains show a clear signal in these maps, with 

lower agreement near the high peaks. This mountain signal is also potentially seen in the 

Cascades and Sierra Nevada ranges of the Pacific Coast, as well as a weaker signal in the 

lower Appalachian Mountains of South Carolina and Georgia.  
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Table 6 – Correlation average values and standard deviations between GRACE RZSM percentiles 

and NLDAS Ensemble (ENS), Noah, and VIC soil moisture percentiles for different seasons  

RZSM Comparison  Mean Std 

ENS Complete Time Series 0.660 0.124 

ENS DJF 0.597 0.190 

ENS MAM 0.639 0.154 

ENS JJA 0.682 0.123 

ENS SON 0.703 0.121 

NOAH Complete Time Series 0.605 0.135 

NOAH DJF 0.500 0.218 

NOAH MAM 0.568 0.179 

NOAH JJA 0.643 0.133 

NOAH SON 0.654 0.135 

VIC Complete Time Series 0.602 0.131 

VIC DJF 0.533 0.199 

VIC MAM 0.576 0.166 

VIC JJA 0.639 0.135 

VIC SON 0.649 0.150 

  

Seasonally, it is clear, JJA and SON have significantly higher average 

correlations, along with generally lower standard deviations. Figure 14 corresponds to 

this result, with nearly all areas showing improved agreement between GRACE RZSM 

and NLDAS modeled SM. The largest increases appear in the Western U.S., but the area 

still has some sporadic distribution of good and poor correlations. While still boasting a 

strong, positive correlation, DJF consistently has the lowest agreement, followed with 

mild improvement by MAM. The strongest deterioration during DJF appears over 

Wyoming and Colorado, with a few areas indicating significant negative correlation. DJF 

and MAM also see some lowered agreement within the Kentucky-Tennessee area.  
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 Overall, this model-model comparison of GRACE and NLDAS soil moisture 

yields the highest average correlations out of all the gridded datasets computed in this 

study. Even with the comparison of two models, significant differences are found by 

season and region.  
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Figure 13 – Correlation values and between GRACE RZSM percentiles and NLDAS soil moisture percentiles
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Figure 14 – Correlation values and between GRACE RZSM percentiles and NLDAS soil moisture percentiles for different seasons
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3.3 2016 Northern Plains Flash Drought Analysis 

 The stakeholder survey (Appendix I) included sets of questions regarding 

producer decisions and ecosystem impacts of drought onset. This research focuses on the 

multi-part question, Q3, where respondents were asked to mark if certain drought impacts 

occurred, and if they did, when they first started. Table 7 gives the total results from the 

respondents, the number of responses for each condition, the percentage of responses that 

indicated the condition did or did not occur on their land and the average date of first 

occurrence of each condition from those responding it did occur.  
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Table 7 – Results of stakeholder survey regarding occurrence and start date of drought conditions  

           DID IT OCCUR?  

 

N/A  NO  YES  

MEAN 

DATE 

A. Decreased topsoil moisture 

(n=329) 
2% 4% 94% May 14 

B. Decreased subsoil moisture 

(n=319) 
3% 7% 90% May 21 

C. Delayed or lack of plant emergence 

(n=317) 
9% 26% 65% May 20 

D. Delayed or lack of plant growth 

(n=321) 
2% 11% 87% May 31 

E. Plant stress (crop or pasture) 

(N=318) 
2% 6% 92% Jun 16 

F. Plant death (crop or pasture) 

(N=302) 
9% 40% 51% June 27 

G. Poor grain fill (n=301) 46% 15% 39% June 29 

H. Deteriorating range conditions 

(n=319) 
5% 8% 86% June 17 

I. Decreased forage productivity 

(n=316) 
5% 9% 86% June 13 

J. Lowered water levels in ponds, 

streams, or other water sources 

(n=318) 

11% 9% 80% June 6 

K. Lack of water in ponds, streams, or 

other water sources (n=317) 
13% 16% 70% June 16 

L. Wells unable to keep up with 

livestock or irrigation needs 

(n=307) 

28% 56% 16% June 30 

M. Fire (n=311) 23% 59% 17% July 6 

N. Infestations of insects or other 

pests (n=305) 
18% 57% 25% June 15 

  

This survey indicates nearly all responding stakeholders observed drought 

conditions during 2016, with observations of decreased top and subsoil moisture, and 

plant stress showing the highest percentage (94%, 90%, and 92%, respectively). Many 

producers also saw decreased forage productivity (86%) and deteriorating range 
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conditions (86%) as well as a large portion observing lowered water levels (80%) and 

even lack of water (70%). While fire and pests did occur for some producers, this event 

was predominately a quick onset meteorological/agricultural drought that was not 

prolonged enough for more severe, long-term impacts. These reports show a multi-

faceted drought strongly and quickly impacting soil moisture, local water resources, and 

vegetation health.  

 A general timeline of events emerges based on the mean dates of first occurrence. 

It begins with decreased top and subsoil moisture and poor initial crop growth in mid to 

late May followed by more severe symptoms of plant stress, deteriorating range and 

forage conditions, and low water levels through mid-June, and finally in late June first 

reports of crop death, poor grain fill and insufficient water resources take place. The use 

of mean date in this fashion does ignore regional differences in the intensification of the 

drought, but in general this logical progression of events increases the confidence in the 

results of this survey. 

 This section will go month by month, March through August, looking at the 

USDM levels of drought with overlaid zip codes of reports of first occurrence of 

decreased topsoil moisture (QA), decreased subsoil moisture (QB) and lowered water 

levels in ponds, streams, or other water sources (QJ) and visually compare them with 

GRACE GWS and RZSM. Blue outlined areas in the Figures 15-20 represent zip codes 

that first saw the drought condition in that individual month, while black outlines 

represent zip codes that saw the first occurrence prior to that individual month. This 
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approach also highlights differences between USDM and GRACE drought products, as 

well as differences between drought products and stakeholder perception.  

3.3.1 Monthly Analysis 

March 

 As the first major month of reports of decreased soil moisture, March also shows 

extensive areas of abnormally dry conditions (D0), with several areas of moderate (D1) 

and small areas of severe (D2) drought (Fig 15). This dryness is predominately in 

Montana, North Dakota and Wyoming, with some areas of South Dakota also affected. 

The dryness and drought conditions from the USDM correspond to warm monthly 

conditions coupled with dryness from the previous fall and winter. These warm 

conditions seem to agree with the beginning of reports of decreasing topsoil and subsoil 

moisture. There are also a few reports of lowered water levels, which may be in part due 

to the previous seasons’ dryness, amplified by the month’s warm temperature.  

 GRACE RZSM shows a wide range of soil moisture conditions, from very poor to 

very good. Many of the reports of decreased topsoil moisture occur within the area of 

high percentile GRACE soil moisture conditions. However, several of the reports of 

decreased top and subsoil moisture do occur in areas where GRACE RZSM is low. 

GRACE GWS shows the region generally has near normal water levels, with some below 

average levels mostly occurring in Wyoming. The new reports of lowered water levels 

also occur in Wyoming, but it is difficult to tell if the two reports (northeast and north-

central Wyoming) are in agreement.  
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Figure 15 – Maps showing locations where survey respondents observed decreased topsoil moisture (a), subsoil moisture (b), and lowered water 

levels (c) with USDM map valid 31 March 2016 overlaid. Black (blue) hatched areas denote zip codes where conditions were observed prior to 

(during) March. Maps showing GRACE RZSM (d) and GWS (e) valid March 31 where green represents higher percentiles and red low 

percentiles. 
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April 

 The month of April sees a significant rise in the number of reports of all three 

conditions from the area. Most of the additional reports of decreased top and subsoil 

moisture (Fig 16) are on in western South Dakota, eastern Wyoming, and southeastern 

Montana. USDM shows significant improvement in dryness, with far fewer areas 

considered dry by the USDM and GRACE RZSM and GWS products. The majority of 

new reports of decreased soil moisture occur in areas not considered dry. GRACE RZSM 

is again, highly variable, but does see deteriorated conditions along the South Dakota-

Wyoming border where many reports originated. Most of the rest of the remaining region 

showed good or improved soil moisture conditions.  

 The reports of lowered water levels were in slightly better agreement with areas 

the USDM considered abnormally dry or in drought. GRACE GWS showed only slightly 

lower conditions than March, with a large portion of Wyoming with lowered water 

levels. Any GWS trend was difficult to analyze visually due to the slow change.  
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Figure 16 – Same as figure 14 but all images valid 30 April 2016.  



56 
 

May 

 By May 31, dryness and moderate drought emerged in the South Dakota – 

Wyoming border region. There was slight improvement in the drought conditions of 

central and western Wyoming. Reports showed a widening area of decreased topsoil and 

subsoil moisture around the South Dakota-Wyoming border and into central South 

Dakota. Decreasing topsoil moisture reports (Fig 17) primarily occur on the edges or 

slightly away from areas the USDM considered in dryness or drought, whereas decreased 

subsoil moisture seems to be concentrated more closely with the regions depicted as dry 

by USDM. Several more reports of lowered water levels also appear, similar to decreased 

subsoil moisture, close to the USDM drought region.  

 GRACE RZSM appears to capture the same trend as the stakeholder observations, 

showing significant deterioration across South Dakota. RZSM spatially agrees very well 

with both reports of decreased topsoil and subsoil moisture, as well as showing similar 

trends to USDM. GRACE GWS shows slightly lowered conditions across the region, but 

changing very slowly, and does not have significant areas below 30-40%. While the 

lowering of water levels could agree with GWS, the drought conditions seem decoupled 

from GRACE GWS at this time. This is likely due to the slow nature of groundwater 

change and the more substantial effect of long-term droughts on groundwater compared 

to short-term drought groundwater effects.  
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Figure 17 – Same as Figure 14 but all images valid 31 May 2016
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June 

 A very rapid intensification of drought took place by the end of June. The USDM 

showed the first indications of extreme drought (D3), centered in the South Dakota – 

Wyoming border region. Widespread dryness (D0) and moderate (D1) to severe (D2) 

drought was also present across all of western South Dakota, northern and northeastern 

Wyoming, southern and southeastern Montana, and southwestern North Dakota. Many 

more reports of decreased topsoil and subsoil moisture also appear (Fig 18). Decreased 

topsoil moisture reports (QA) are scattered and widespread, with many appearing on the 

fringes of USDM dry regions, but some also corresponding to the intensification event in 

D1 or D2 regions. Decreased subsoil moisture reports (QB) are slightly more centralized 

and mostly located within or on the border of dry regions. There are also a substantial 

number of additional reports of lowered water levels (QJ) that clearly agree with the 

USDM categorization, appearing in D0, D1, D2, and D3 drought areas.  

 There is a clear signal of deteriorating conditions in GRACE RZSM with the 

entire area in very low percentiles. Many regions, including most of South Dakota, the 

Nebraska panhandle, and eastern Wyoming are in single digit percentiles. RZSM shows 

very high agreement with the scattered reports of QA and QB, with all zip codes 

reporting those conditions having very low percentiles. GRACE GWS does show 

deterioration, but not to the extent of USDM or RZSM, lowering only several percent 

mainly over South Dakota, Wyoming, and Montana. Fewer areas are above 50% 

groundwater and much of South Dakota and Wyoming show distinct declines since May. 

The reports of lowered water levels, for the most part, are where GWS had the largest 
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decreases. One area in particular, east-central South Dakota, had GWS lower than the rest 

of the region, with some percentiles in the 20 to 30% range. This area was on the fringes 

of USDM dryness classification, but stakeholders reported water levels lowering.  
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Figure 18 – Same as Figure 14 but all images valid 30 June 2016 
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July 

 By the end of July, the drought had reached its peak intensity and distribution 

from a USDM perspective. The drought region of the South Dakota – Wyoming border, 

along with a small area of southeastern Montana were in D3 drought, with widespread 

areas of D2, D1, and D0 across South Dakota, Wyoming, southern Montana, and 

northwestern Nebraska. Most new reports of decreased topsoil moisture (QA) (Fig 19) 

occurred in south-central South Dakota and northwestern Nebraska. These specific 

regions had a fairly rapid onset of dryness between June and July. Reports of decreased 

subsoil moisture (QB) follow a similar pattern to topsoil moisture reports, and both QA 

and QB fall very much within USDM regions of at least D0 dryness. Areas reporting 

lowered water levels occur mostly scattered across South Dakota. Again, these reports 

overlap or border with the USDM drought regions.  

 While the GRACE RZSM showed overall improving soil moisture conditions 

compared to June, the core drought region was still at very low percentiles, spreading far 

into Wyoming and the Nebraska panhandle. There was very good agreement with the 

single digit percentiles, in red, and both reports of decreased top and subsoil moisture, as 

well as with USDM maps. The main areas that showed improvement between June and 

July in RZSM were areas of central-western Nebraska and parts of North Dakota. 

Continuing the slow, downward trend, GRACE GWS sees a similar, but delayed pattern. 

There was still deterioration with some areas below the 30% level, but in general GWS 

levels did not respond to these quick drying events. Across South Dakota, there was 
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slight deterioration, but not severe, and the spatial occurrence did not match well with 

lowered water level reports.  
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Figure 19 – Same as Figure 14 but all images valid 31 July 2016 
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August 

 The month of August saw some improvements in conditions around the core 

drought region, but still had some areas of D3 drought, and widespread areas of D2, D1, 

and D0. There were only a few new reports of decreased topsoil moisture (Fig 20) on the 

edges of the D0 conditions. A few more reports of decreased subsoil moisture also 

occurred, with a mix of within USDM drought and on the edge of drought areas. At this 

point, nearly all zip codes that had responses have indicated decreasing top and/or subsoil 

moisture, with the highest density of reports from within the core drought region of the 

South Dakota – Wyoming border. Additionally, there were more reports of lowered water 

levels, again mostly across South Dakota and close to D0 and D1 USDM areas.  

 At this point GRACE RZSM had substantial improvement in conditions across 

nearly the whole region, with some areas of Wyoming with very low soil moisture. This 

trend generally agrees with the lack of or lower number of reports of decreasing soil 

moisture conditions, even if the area is still generally dry. It is during this month, 

GRACE GWS percentiles were at their lowest average point over South Dakota, 

Nebraska, Wyoming, and Montana, with the state of Wyoming experiencing far lowered 

water levels. South Dakota sees little change from the previous month. This indicates 

some sort of disparity between the lowered water level reports and GWS percentiles.  
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Figure 20 – Same as Figure 14 but all images valid 31 August 2016 
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3.3.2 Time-Series Comparison 

 This section assesses the evolution of the drought datasets in a 12-week period 

surrounding the date at which a respondent reported the specific conditions. For each 

individual survey response RZSM and GWS percentiles, and USDM drought level rasters 

were averaged by week over the respondent’s zip code from 6 weeks prior to 6 weeks 

after the date of first occurrence of each condition. This averaging gives 348 individual 

trends for each condition. These individual trends were all averaged together, with the 

date of first occurrence of each condition centered on week zero.   

 Figure 21 indicates that at the time decreased topsoil moisture was first noted, 

RZSM had been steadily decreasing for up to 5 weeks, and USDM for up to 3 weeks 

previous. As this figure is averaged over all zip codes, the spatial pattern may not be 

homogenous, but in most areas, there is a signal of deteriorating conditions prior to 

stakeholders noting those conditions. RZSM starts at ~80% and decreases to ~40%, 

which by itself does not correspond to the D0 USDM drought category, but the 

deterioration is still a strong signal. This figure also indicates a signal is present in RZSM 

before USDM detects it.  

 Figure 22 shows the same process for decreased subsoil moisture. A similar trend 

is found where both RZSM and USDM detect a dryness signal before stakeholders. As in 

Figure 21, RZSM signals do not go into low percentiles, and vacillate between 40-50%. 

Figure 23 looks at the signal for lowered groundwater levels. As seen in the monthly 

comparisons, GRACE GWS showed a very gradual deterioration, which is evident in the 

graph. Six weeks prior to stakeholders observing lowered water levels, GWS was near 
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80% levels on average, and has a stead decreasing trend. Throughout the 12 weeks, GWS 

levels lowered on average ~10%. A similar trend occurs with RZSM, where the end 

percentile is not included in a drought category, but the trend is the main focus.   

 

Figure 21 – Time series average values six weeks prior to six weeks after reports of first 

occurrence of decreased topsoil moisture. Left axis is average value of USDM drought category 

over each zip code. Right axis is average value of GWS and RZSM percentiles over each zip 

code. Left and right axes do not correspond to each other nor to associated drought level 

percentiles in Table 1. 
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Figure 22 – Same as Figure 21, but with reports of first occurrence of decreased subsoil moisture 
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Figure 23 – Same as Figure 21, but with reports of first occurrence of lowered water levels in 

streams, ponds, or other water sources 
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CHAPTER 4 – DISCUSSION 

4.1 Groundwater Well Comparison 

 The overall poor correlations for the well-GRACE comparisons indicates that 

GRACE GWS does not accurately reflect historic groundwater levels at this spatial 

resolution. This comparison and interpreting the results from both data sources is 

challenging because of the different timeframes each dataset used. Because the GRACE 

data assimilation uses the Catchment LSM and ranks current GWS percentiles based on 

the 1948-2009 levels, the historic data record is much longer than the well level period of 

record. A few USGS wells had historic records going back into the 1970’s, but on 

average they started in the 1990’s. The RTMN had even shorter periods of record, 

starting around 2009, which severely limits their historic rank accuracy. However, it 

seems that period of record does not determine correlation strength as demonstrated in 

Figure 24. Even wells with short histories may have strong negative correlations 

(negative in this comparison would indicate the same trend), and correlation strength is 

highly variable with record length. Even with these limitations, the dramatic variability in 

correlation values from well to well, indicates that there is some information contained 

within GRACE GWS, but it does not represent local, point-based well levels. One reason 

for this difference may be the differing spatial scales. Well observations are point 

measurements, while GRACE GWS is a single value over 190 km2 area. The GRACE 

values representing an area averaged value may not always reflect the local well 

observations. Some wells have strong enough correlations to be considered significantly 

different than zero – agreeing with the conclusion that there is good information 
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contained within the GRACE dataset. Even if the percentiles were off, the increasing or 

decreasing trend would allow for stronger correlations than were observed.  

 

Figure 24 – Individual well correlation values and their respective periods of record for both 

USGS (red circle) and RTMN (blue triangle) well datasets. 

 Additionally, correlations between well levels (converted to USDM drought 

levels using the percentiles in Table 2) showed weak or negative correlations with USDM 

drought levels. This result was just a simple comparison that did not take into account the 

potential time-lag between GWS and USDM data. Because of this result, it is clear that 

raw well level data, or even data converted to historic percentile, when not accounting for 

time lag, is not on its own a good drought indicator. While GRACE GWS percentiles do 

not accurately represent groundwater levels from a drought monitoring perspective 

because it may still contain useful land surface information that correlates well to 

drought.  
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 The spatial distribution of the correlations does not appear to directly correspond 

to major aquifer type as the vast majority of Nebraska land is above the High Plains 

aquifer, an unconsolidated sand and gravel aquifer. While many of the better (more 

negative) correlations appear along the Platte River, an area with high irrigation density, 

upon closer inspection the better correlations do not appear to be associated directly with 

more irrigated land. Figure 25 overlays the irrigated land with the correlation values. This 

irrigation dataset was produced by USGS with MODIS imagery for the year 2012 at 

250m resolution (USGS, 2015). The higher density irrigation near the south-central part 

of the state around the Platte River does see good correlations, however, in other areas 

where there is significant irrigation, correlations are far poorer, specifically in the 

southwestern corner of the state. Additionally, throughout the Sandhills, northwestern – 

northern part of the state, where there is little or no irrigation, correlations range 

from -.80 to 0.4.  
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Figure 25 – Spatial distribution of individual well correlation values with irrigation density 

overlaid. 

4.2 Spatial Correlations 

4.2.1 GRACE-USDM 

 The conversion of GRACE percentiles into drought levels causes a significant 

loss of information. The six-decimal precision of the original GRACE percentile 

(accuracy not withstanding) is grouped into five categories. All the variation within 

groups is lost, including all high levels of groundwater and soil moisture (no drought 

corresponding to the largest percentile range) and only the transition from one category to 

another is analyzed with this correlation. Using these drought levels is necessary, 

however, because of the inherent uncertainty when authoring the USDM. These levels 

also are triggers for certain emergency responses in the United States, such as disaster 

declaration and relief funding. In addition to the loss of information from the 

reclassification of GRACE data, the GRACE drought levels revealed some areas of the 
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U.S. that have never experienced less than 30% dryness in GRACE GWS and RZSM 

historical data record. This led to the entire time series for pixels to be constant (-1). 

Because some covariance is required to calculate correlation, these areas are filled with 

NODATA values, again losing some additional information.   

 Overall, both GRACE GWS and RZSM showed strong, but not perfect 

correlations with USDM. GWS-USDM showed a stronger relationship than RZSM, 

although there was less spatial variability with RZSM-USDM. Because of the significant 

and positive relationship between these GRACE products and USDM, there is valuable 

drought monitoring information contained within GRACE products.  

 Moving from the complete time series to the seasonal comparisons, it is clear 

GRACE GWS has more agreement during JJA and SON, than MAM and DJF. RZSM 

performed better as a DI (higher agreement with the gold standard of drought indicators, 

USDM) during JJA, but not as notable a difference as with GWS. There were also 

distinct decreases in correlations over mountainous areas during winter months. This 

lends itself to a hypothesis that precipitation amount and precipitation type may influence 

performance of RZSM as a drought indicator. Mountainous areas also have generally 

shallow, poorly characterized soil moisture and groundwater estimates which may have 

led to a disconnect between GRACE products and drought characterization in these areas.  

Generally individual pixel correlations for all comparisons ranged from greater 

than 0.90 to just above zero, but there is certainly a spatial pattern associated with it. 

Certain factors can be immediately removed as possible causes of this pattern such as 

altitude, irrigation, and precipitation, because they do not follow the same patterns as 
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higher and lower correlated areas. A possible explanation for areas not experiencing 

strong agreement is the previously mentioned loss of information both from no 

covariance, as well as no variation within drought levels and inherent errors in the models 

and observation measurements.   

In the analysis of whether GRACE datasets and USDM are independent, that is, 

did the Drought Monitor authors use GRACE data when deciding areas of drought, the 

correlations of data only through 2012 resulted in a slightly higher average correlation 

value for both GWS and RZSM. This indicates the general trend was not affected by any 

use of GRACE data for USDM. The major areas where the full timespan had higher 

correlations were typically those that saw extreme droughts post-2012 such as California. 

This additional change in drought level provides more trends to correlate with. While the 

possibility still exists that Drought Monitor authors used GRACE data, this study shows 

any overall impact was generally minor and regional.  

As briefly discussed with USDM data, this research did not separate drought 

impacts and drought levels into “Short-term” and “Long-term”. Not distinguishing 

between these time-scales does limit the conclusion of this research. Logically, long-term 

drought designations would better correlate with groundwater, where short-term drought 

designations would correlate higher with soil moisture.  

4.2.2 GRACE – SPI 

 The comparison of different accumulation periods of SPI and GRACE GWS and 

RZSM indicated a logical increase of correlation as the accumulation period increased up 
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to a maximum, for GWS up to 0.543 and for RZSM up to 0.585. GWS logically takes 

longer to react to precipitation changes than RZSM and shows the highest correlations 

with longer accumulation periods, around 9-11 months. This timeline is in agreement 

with Fiorillo et al. (2010), which states springtime river discharge is best correlated with 

SPI at 9- to 12-month accumulation periods. The pattern of correlations may be explained 

simply by the amount of time precipitation takes to enter groundwater. Different geologic 

formations and aquifer types impact this amount of time.  

RZSM shows very quick response to precipitation on the order of 2-5 months. 

There is less of a spatial pattern in these comparisons, potentially due to the quicker and 

more direct influence of precipitation on soil moisture. It is also important to note the 

RZSM – 3-month SPI showed the highest agreement at 0.585. This very high agreement 

with a well-known and widely used drought indicator shows strong promise for GRACE 

RZSM as a routine drought indicator.  

Seasonality of GWS-SPI comparisons show us that both DJF and JJA hold 

similarly high correlations, whereas the transition seasons of MAM and SON have 

slightly lower correlations. A reason these differences are not strong may be because the 

minimum 9-month accumulation period obscures the original precipitation season. Liquid 

precipitation would enter groundwater faster than frozen, but the 9-month SPI will allow 

for seasonal frozen precipitation to melt and enter the groundwater system.  

RZSM-SPI seasonal comparisons show significantly more seasonality with JJA 

agreeing most strongly with 2-5-month SPI. Because frozen precipitation takes longer to 

impact soil moisture than liquid precipitation, the winter DJF months have lower 
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correlations. The spatial pattern is also consistent with this precipitation type theory, and 

DJF months show near zero or even slightly negative correlations over the high Rocky 

Mountains at all four accumulation periods.  

4.2.3 GRACE – NLDAS 

The three NLDAS model comparisons showed significant agreement with 

GRACE RZSM. As these comparisons are simply assessing where/when similar LSMs 

produce the same trends, the resulting high correlations were mostly expected. 

Differences that appeared mostly in the western U.S. could be a result of different 

topographic calculations between the Catchment LSM and NLDAS LSMs. Possible 

explanations could be rock/aquifer type or different observation densities. While the 

patterns also do not strictly match U.S. aquifers, the different physical characteristics of 

those aquifers may have a significant impact on the remote sensing and modeling aspect 

of GRACE data. Additionally, because this dataset is an LSM with extra data assimilated, 

the Catchment LSM may have observing or modeling bias in certain regions or may 

perform better with certain precipitation types.  

 The warmer months of JJA and SON produced the highest correlations in all three 

models. An explanation similar with the SPI correlations could also be at play here, that 

is, frozen precipitation. These NLDAS models may parameterize the melting and 

infiltration of snow differently to Catchment, so areas with high amounts of snow, 

specifically in winter months would have less overall agreement.  
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4.3 2016 Northern Plains Flash Drought 

 The examination of this specific flash drought event through the perspective of 

stakeholders in the region provides impact-based timelines of events that were compared 

to GRACE drought products. The ability of these products to match stakeholder 

observations, as well as other drought indicators such as USDM, should be a strong basis 

on which to decide what drought information to look at or include for decision makers.  

 The survey responses revealed this drought was comprised of a rapid decrease in 

both topsoil and subsoil moisture, increasing plant stress and death, followed by lowered 

water levels in ponds, streams, and wells. The USDM analysis showed many reports of 

drought conditions occurred near the time those areas were put into D0 or higher drought 

conditions. Several months saw a large number of reports early in the season before any 

widespread drought had reached those areas in the USDM. So, on monthly or longer 

time-scales, USDM and stakeholder reports generally agreed, the first occurrence of 

drought conditions were almost always preceding any USDM drought classification. In 

this region, drought is a typical part of the climate, and dryness happens relatively often. 

Based on the USDM drought percentile classifications, certain drought conditions, such 

as decreased soil moisture may appear before the “historic” dry points are reached.  

In the month-to-month analysis GRACE RZSM matched relatively well with the 

USDM classifications. The overall trend into dry conditions was spatially and temporally 

captured across the region. RZSM percentiles dropped below 10% across much of the 
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core drought region by the end of June, which correctly corresponds to D2 – D3 drought 

severity. Stakeholder observations of decreased topsoil and subsoil moisture also agreed 

with month to month GRACE RZSM decreases.  

GRACE GWS proved a slowly changing indicator in this drought event. 

Throughout the drought event, GWS percentiles did not change quickly by jumping from 

higher percentiles one month to moderate or low percentiles the next, but instead 

gradually decreased across the region over many months. Many areas, including the core 

drought region, did end up with GWS percentiles near the 30% threshold for USDM D0 

classification. GRACE GWS likely does not match the changes in stakeholder 

observations and USDM classifications because of the short nature of this event. Even 

with the generally poor performance of GWS for this specific event, the overall trend of 

declining groundwater was captured, just over longer timescales. This still allows for 

GWS percentiles to be used as a long-term drought indicator.  

The quantitative analysis of zip code averaged drought indicator values, 

surrounding the date of first occurrence for the three drought conditions revealed that 

both USDM and GRACE RZSM picked up on deteriorating conditions long before the 

observations. The lowering of GRACE percentiles may not reach any thresholds before 

an observation was made, but the trend, if picked up by decision makers, could be used as 

early warning for flash drought events. For both topsoil and subsoil moisture GRACE 

RZSM shows declining trends over a month in advance and continues to deteriorate after 

observations were made. These soil moisture percentiles also started relatively high, near 
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80%, and the 12 weeks of worsening conditions halved that, showing a significant 

amount of dryness occurring.  

A similar, but slower, trend is found with GRACE GWS percentiles. From 6 

weeks prior to 6 weeks after first observations of lowered water levels, GWS continued 

on a steady decline from ~80% to ~70%. This timeframe corresponded to rapid 

intensification of drought as characterized by USDM. Because this slow trend was 

relatively weak, its use as a way to pinpoint drought areas is lessened.   
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 CHAPTER 5 – CONCLUSIONS  

This research used several comparison methods with observed, modeled, 

surveyed and professionally authored data to compare to GRACE GWS and RZSM 

percentile maps. In general, GRACE data showed some correlation with these datasets, 

meaning GRACE contains drought information and can provide necessary and timely 

information to decision makers about drought onset and severity.  

The observed well data of USGS and RTMN compared relatively poorly with 

GWS, showing an expected average negative, but highly variable correlation [-0.826 < r 

< 0.696]. This result coupled with previous studies of larger scale resolution GRACE 

data (Zaitchik et al. 2008, Houborg et al. 2012) conclude historic GRACE GWS 

percentiles are far from perfect accuracy. These poor correlations with observed data may 

be explained by variable geologic and hydrologic formations, different densities in model 

observation data assimilation, as well as general inaccuracies in model parameters that 

determine groundwater levels.  

Through the raster correlation comparisons, it was clear both GWS and RZSM 

data contain drought information also found in other DI datasets. Averaged over CONUS, 

correlations were positive, indicating good agreement, and significantly different than 

zero. Many times, these correlations had a spatial and seasonal pattern that likely results 

from how the different compared datasets deal with precipitation and groundwater 

infiltration. Seasonality could also come into play when decision makers are using these 

data, potentially putting more trust during the summer, JJA season, where agreement was 

higher.  
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 By comparing to stakeholder observations during a flash drought event, it was 

found that GRACE RZSM provides a very similar picture of drought conditions and 

drought levels as determined by USDM. Additionally, RZSM can provide early warning 

to quick onset droughts if the data is presented in graphical form. GRACE GWS 

successfully signaled lowering of water levels during this drought event, but the spatial 

and graphical patterns were slow and limited for quick onset decisions. The GWS levels 

respond better and would be more useful in determining the extent and severity of longer 

duration drought events.  

 Through remote sensing data assimilation and modeling, GRACE GWS and 

RZSM percentiles have proven to be useful drought indicators and tools that can benefit 

stakeholders and decision makers by providing, weekly, regional scale maps of soil 

moisture and groundwater trends.  

5.1 Future Work 

 There are several areas where future work regarding the GRACE percentile 

products should be considered. First, this study only assessed the accuracy of the GWS 

percentile products and evaluating the accuracy of the RZSM percentiles is equally 

important. Using regional, temporally continuous soil moisture networks, one can 

compare observed data to GRACE percentiles to determine if the trends match. Another 

area to further research is determining if aquifer type has an effect on GWS product 

accuracy. This study did not separate confined and unconfined aquifers due to low 

sample size, but any significant differences in accuracy found could help determine 

where GRACE GWS estimates are more accurate.  
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Finally, another topic to investigate further would be the disagreement between 

GRACE RZSM and NLDAS soil moisture, specifically over the Rocky Mountains. As 

previously discussed, GRACE gravity data is the only observational forcing difference 

between the NLDAS and Catchment LSMs, so it is possible this additional data 

assimilation may be resulting in more accurate soil moisture estimates. However, in order 

to determine if they are indeed more accurate, in situ soil moisture observations in that 

region will nee to be collected and compared to both NLDAS and GRACE soil moisture 

data. A significant improvement in soil moisture estimates would help stakeholders and 

decision makers in those regions to work with the most accurate data available.   
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Appendix II 

# ## 

# Description: R code to calculate correlation coefficients between well and GRACE data 

# Author: Anthony Mucia 

# Date: May 2018 

# Notes: Very basic table output, which is then manually transformed into useable 

formats 

# to speed up 

# ## 

 

.libPaths("/Library/Path") 

library(tidyverse) 

 

## Reading in Data 

USGSPerc <- read_csv("/Path/To/Data/USGSWellPercentiles.csv", na = "NA") 

USGSWellDM <- read_csv("/Path/To/Data/USGSWellDM.csv", na = "NA") 

graceUSGSPerc <- read_csv("/Path/To/Data/USGSGRACEPercentiles.csv", na = "NA") 

graceUSGSPercC <- read_csv("/Path/To/Data/USGSGRACE_C_Percentiles.csv", na = 

"NA") 

USGSDM <- read_csv("/Path/To/Data/USGSDM.csv", na = "NA") 

 

RTMNPerc <- read_csv("/Path/To/Data/RTMNWellPercentiles.csv", na = "NA") 

RTMNWellDM <- read_csv("/Path/To/Data/RTMNWellDM.csv", na ="NA") 

graceRTMNPerc <- read_csv("/Path/To/Data/RTMNGRACEPercentiles.csv", na = 

"NA") 

graceRTMNPercC <- read_csv("/Path/To/Data/RTMNGRACE_C_Percentiles.csv", na = 

"NA") 

RTMNDM <- read_csv("/Path/To/Data/RTMNDM.csv", na = "NA") 

 

USGScols <- ncol(USGSPerc) 

RTMNcols <- ncol(RTMNPerc) 

usgscor <- 0 

rtmncor <- 0 

 

## Setting up column naming 

for (i in 2:USGScols){ 

  names(usgscor[i]) <- names(USGSPerc[i]) 

} 

for (i in 2:RTMNcols){ 

  names(rtmncor[i]) <- names(RTMNPerc[i]) 

} 

as.data.frame(usgscor) 

as.data.frame(rtmncor) 

names(usgscor) <- names(USGSPerc) 
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names(rtmncor) <- names(RTMNPerc) 

 

## Percentile - Percentile Correlation Calculations 

for (i in 2:USGScols){ 

  usgscor[i] <- cor.test(USGSPerc[[i]], graceUSGSPerc[[i]], use = 

"pairwise.complete.obs", method = "spearman") 

} 

for(i in 2:RTMNcols){ 

  rtmncor[i] <- cor(RTMNPerc[[i]], graceRTMNPerc[[i]], use = "pairwise.complete.obs", 

method = "spearman") 

} 

write.table(usgscor, "/Path/To/Data/Out/usgsCor.csv", sep = ",", append = T) 

write.table(rtmncor, "/Path/To/Data/Out/rtmnCor.csv", sep = ",", append = T) 

 

## Percentile - Cubic Correlations 

for (i in 2:USGScols){ 

  usgscor[i] <- cor(USGSPerc[[i]], graceUSGSPercC[[i]], use = "pairwise.complete.obs", 

method = "spearman") 

} 

for(i in 2:RTMNcols){ 

  rtmncor[i] <- cor(RTMNPerc[[i]], graceRTMNPercC[[i]], use = 

"pairwise.complete.obs", method = "spearman") 

} 

write.table(usgscor, "/Path/To/Data/Out/usgsCor.csv", sep = ",", append = T) 

write.table(rtmncor, "/Path/To/Data/Out/rtmnCor.csv", sep = ",", append = T) 

 

## Well DM Level - DM Level 

for (i in 2:USGScols){ 

  usgscor[i] <- cor(USGSWellDM[[i]], USGSDM[[i]], use = "pairwise.complete.obs", 

method = "spearman") 

} 

for(i in 2:RTMNcols){ 

  rtmncor[i] <- cor(RTMNWellDM[[i]], RTMNDM[[i]], use = "pairwise.complete.obs", 

method = "spearman") 

} 

write.table(usgscor, "/Path/To/Data/Out/usgsCor.csv", sep = ",", append = T) 

write.table(rtmncor, "/Path/To/Data/Out/rtmnCor.csv", sep = ",", append = T) 
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Appendix III 

# ## 

# Description: Python code to calculate correlation coefficients between two raster 

datasets 

# Author: Anthony Mucia 

# Date: May 2018 

# Notes: This code is based around a community answer by ESRI Community user 

Xander Bakker 

# https://community.esri.com/thread/200534-re-correlation-between-two-different-

rasters 

# ## 

 

def main(): 

    import arcpy, glob, winsound, os 

    import numpy as np 

    import numpy.ma as ma 

    import pandas as pd 
    arcpy.env.overwriteOutput = True 

    dataPath1 = r'Input/Data_1/Folder' 

    dataPath2 = r'Input/Data_2/Folder' 

    L1 = glob.glob(dataPath1+'\*.tif') 

    L2 = glob.glob(dataPath2+'\*.tif') 

 

    nodata = -999 

    out_ras = r'Output/Raster/Folder/output.tif' 

    outDataPath = r'Output/Raster/Folder/' 

    print("         List 1 Raster Count = "+str(len(L1))) 

    print("         List 2 Raster Count = "+str(len(L2))) 

    L1 = sorted(L1) 

    L2 = sorted(L2) 

 

    print "Creating arrays..." 

    lst_np_ras = [] 

    for i in range(0, len(L1)): 

        ras_path1 = L1[i] 

        print " - ", ras_path1 

        ras_np1 = arcpy.RasterToNumPyArray(ras_path1) 

        ras_path2 = L2[i] 

        print " - ", ras_path2 

        ras_np2 = arcpy.RasterToNumPyArray(ras_path2) 

        lst_np_ras.append([ras_np1, ras_np2]) 

 

    print "Reading numPy rasters..." 

    ras_np = lst_np_ras[0][0] 

    rows = ras_np.shape[0] 
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    cols = ras_np.shape[1] 

    print " - rows:", rows 

    print " - cols:", cols 

 

    print "Creating output numPy array..." 

    ras_path = L1[0] 

    raster = arcpy.Raster(ras_path) 

    ras_np_res = np.ndarray((rows, cols)) 

    ras_np_res2 = np.ndarray((rows, cols)) 

    print " - rows:", ras_np_res.shape[0] 

    print " - cols:", ras_np_res.shape[1] 

 

    print "Looping through pixels..." 

    pix_cnt = 0 

    for row in range(rows): 

        for col in range(cols): 

            pix_cnt += 1 

            if pix_cnt % 5000 == 0: 

                print " - row:", row, "  col:", col, "  pixel:", pix_cnt 

            lst_vals1 = [] 

            lst_vals2 = [] 

            try: 

                for lst_pars in lst_np_ras: 

                    lst_vals1.append(lst_pars[0][row, col]) 

                    lst_vals2.append(lst_pars[1][row, col]) 

                lst_vals1 = ReplaceNoData(lst_vals1, nodata) 

                lst_vals2 = ReplaceNoData(lst_vals2, nodata) 

                correlation = SpearmanCorrelation(lst_vals1, lst_vals2, nodata) 

                ras_np_res[row, col] = correlation 

            except Exception as e: 

                print "ERR:", e 

                print " - row:", row, "  col:", col, "  pixel:", pix_cnt 

                print " - lst_vals1:", lst_vals1 

                print " - lst_vals2:", lst_vals2 

 

    pnt = arcpy.Point(raster.extent.XMin, raster.extent.YMin) 

    xcellsize = raster.meanCellWidth 

    ycellsize = raster.meanCellHeight 

    dsc = arcpy.Describe(L1[0]) 

    coord_sys = dsc.spatialReference 

 

    print "Writing output raster..." 

    print " - ", out_ras 

    ras_res = arcpy.NumPyArrayToRaster(ras_np_res, lower_left_corner=pnt, 

x_cell_size=xcellsize, 
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                                 y_cell_size=ycellsize, value_to_nodata=nodata) 

    ras_res.save(out_ras) 

    arcpy.DefineProjection_management(in_dataset=out_ras, coor_system=coord_sys) 

    print("Cleaning up work files...") 

    FileCleanup(outDataPath) 

    print ("Complete") 

 

def FileCleanup(path): 

    import os, glob, winsound 

    file_name = os.listdir(path) 

    for item in file_name: 

      if item.endswith(".xml") or item.endswith(".tfw") or item.endswith(".ovr"): 

          os.remove(os.path.join(path, item)) 

    winsound.Beep(1000,1000) 

 

def PearsonCorrelation(a, b, nodata): 

    import numpy 
    try: 

        coef = numpy.corrcoef(a,b) 

        return coef[0][1] 

    except: 

        return nodata 

 

def SpearmanCorrelation(a, b, nodata): 

    import pandas as pd 
    try: 

        a = pd.Series(a) 

        b = pd.Series(b) 

        coef = a.corr(b,method = "spearman") 

        return coef 

    except: 

        return nodata 

 

def ReplaceNoData(lst, nodata): 

    res = [] 

    for a in lst: 

        if a == nodata: 

            res.append(None) 

        else: 

            res.append(a) 

    return res 

 

if __name__ == '__main__': 

    main() 
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