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Water is one of the most precious natural resources, and sustainable water resources 

development is a significant challenge facing water managers over the coming decades. 

Accurate estimation of the different components of the hydrologic cycle is key for water 

managers and planners in order to achieve sustainable water resources development. The 

primary goal of this dissertation was to investigate techniques to combine datasets acquired 

by remote and proximal sensing and in-situ sensors for the improvement of monitoring 

near surface water fluxes. This dissertation is separated into three site-specific case studies. 

First study, investigated the feasibility of using inverse vadose zone modeling for field 

actual evapotranspiration (ETa) estimation. Results show reasonable estimates of ETa, both 

daily and annually, from soil water content (SWC) sensors and Cosmic-Ray Neutron 

Probes (CRNPs). Second study, combined remote and proximal sensing methods to 

explore the spatial correlation between hydrological state variables and ET 

flux. Comparison of the datasets reveal that SWC and ETa were linearly correlated but the 

correlation between depth to the water table and ETa was weak. A simple multivariate 

linear regression model was used to estimate ETa. The estimated ETa values were then 

compared to the time ETa integration spline method. The comparison indicates similar 



 
 

  

seasonal ETa between the two methods in 2015 (wet) but a 20% reduction in 2016 (dry). 

The study highlights the challenge of connecting hydrologic state variables with hydrologic 

flux estimates. Third study, evaluated the functionality of automatically calibrated Earth 

Engine Evapotranspiration Flux (EEFlux) to the existing mapping evapotranspiration at 

high resolution with internalized calibration (METRIC) images in different locations. The 

comparison results showed that EEFlux is able to calculate Reference evapotranspiration 

Fraction (ETrF) and ETa in agricultural areas comparable (RMSE=0.13) to the ones from 

trained expert METRIC users. However, the EEFlux algorithm needs to be improved to 

calculate ETrF and ETa in non-agricultural areas (RMSE=0.21). Given the paucity of in-

situ data across much of the globe the field of remote sensing offers an alternative but 

requires users to be cautious and realistic about associated errors and uncertainty on using 

such information to help construct a hydrologic budget. 
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Tmin   = Minimum Daily Temperature (⁰C) 

Tmax   = Maximum Daily Temperature (⁰C) 

Tp   = Potential Transpiration (mm/day) 

Ts   = Surface Temperature (K) 
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Greek Symbols 

α   = Inversely Related to Air Entry Pressure (1/cm) 

α(h)   = Root-Water Uptake Water Stress Response Function (-) 

λ   = Latent Heat of Vaporization (J/kg) 

θ   = Volumetric Soil Water Content (cm3/cm3) 

θr   = Residual Soil Water Content (cm3/cm3) 

θs   = Saturated Soil Water Content (cm3/cm3) 
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CFSR   = Climate Forecast System Reanalysis  

CRNP   = Cosmic-Ray Neutron Probes  

EC   = Eddy-Covariance 

EEFlux   = Earth Engine Evapotranspiration Flux 

GRACE  = Gravity Recovery and Climate Experiment 

HPRCC  = High Plains Regional Climate Center 

Landsat   = Land Remote Sensing Satellite 

LSM   = Land Surface Models 

MAE   = Mean Average Error 

METRIC  = Mapping Evapotranspiration at High Resolution with Internalized 

Calibration 

MODIS   = Moderate Resolution Imaging Spectroradiometer 

NDVI   = Normalized Difference Vegetation Index 

NLDAS  = North American Land Data Assimilation System 

NSE   = Nash-Sutcliffe Efficiency 

R2   = Coefficient of Determination 

RMSE   = Root Mean Square Error 

SEBAL   = Surface Energy Balance Algorithms for Land 

SK   = Simple Kriging 

SMOS   = Soil Moisture and Ocean Salinity 

TP   = Theta Probes 
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CHAPTER 1: INTRODUCTION 

 

1.1 Motivation and Research Objectives 

With global population increase, the global food demand will increase for at least 

another 40 years (Godfray et al. 2010). Much of that global population growth is expected 

to be in regions which are already struggling to feed their population (Porkka et al. 2016). 

Many of these regions are located in arid and semi-arid areas of the world and considering 

the limited available water resources in these areas water scarcity will be a growing and 

challenging problem to solve. As a consequence of increasing water scarcity and drought, 

further exacerbated by climate change, intense competition between the agricultural sector 

and other economical sectors is expected (Mancosu et al. 2015). However, rapid 

technological developments in proximal sensing, remote sensing, and in-situ sensors 

provide scientists and water planners hope by providing more resolved datasets in time and 

space. While remote sensing collects the data from a platform operating on satellites or 

aircraft, proximal sensing collects the information from a ground-based platform which is 

usually located near the object of interest (Price 1986). These improved observations will 

be helpful for more precise water resource planning in order to meet agricultural needs and 

avoid excessive water consumption. It is well recognized that: “one cannot effectively 

manage that which one does not monitor”.  

During past few years, proximal sensing has widely been used for collecting 

detailed information about water flux and soil state near the surface (Binley et al. 2015). A 

few examples of proximal sensing key to this dissertation are Bowen ratio tower (Tanner 
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1960; Blad and Rosenberg 1974; Massman 1992; Zhang et al. 2008; Irmak 2010), eddy-

covariance tower (Swinbank 1951; Tanner 1960; Kizer and Elliott 1991; Anthoni, Law, 

and Unsworth 1999; Wilson et al. 2001; Sun et al. 2008) and Cosmic-Ray Neutron Probes 

(CRNP) (Zreda et al. 2008, 2012; Franz et al. 2012; Dong et al. 2014; Desilets and Zreda 

2013) which measure different fluxes and hydrological state variables from the land 

surfaces and its surrounding areas. In addition, many governmental and federal agencies 

use remotely sensed data (e.g., MODIS, Landsat, Sentinel, GRACE, and SMOS etc.) for 

their studies and analysis. Satellites orbit the earth and provide independent datasets which 

cover the range of hydrological cycle components (McCabe et al. 2017). Finally, in-situ 

sensors like water level, temperature, flow velocity, soil moisture etc. are often used to 

collect observations at a point in a field in order to more efficiently manage water 

consumption. A fundamental and remaining challenge is how to combine remote, proximal 

and in-situ sensors to better understand water flux and soil state at the same spatial and 

temporal scale.  

From land surfaces, evapotranspiration (ET) constitutes about 2/3 of the total 

annual partitioning of available precipitation, making it the largest flux of water. 

Understanding ET is vital for regional and global estimates of water balance. Uncertainty 

in ET estimation can cause imprecise water balance prediction (Anayah and Kaluarachchi 

2014). Real-time field scale ET measurement is important as it has huge consequences on 

water management in agriculture. For instance, in the state of Nebraska over 90% of water 

is used for agriculture but field scale ET measurement is challenging and costly; therefore, 

the measurements are limited to scientific studies. As the measurements of the hydrological 
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state variables are much easier and less expensive than field scale ET measurement, this 

research aimed to explore statistical and physically based models driven by these state 

variables to estimate actual ET (ETa) flux. In this study, different techniques were used to 

estimate ETa at the field scale. In addition, key hydrological state variables (e.g., soil water 

content and groundwater) were used to explore the relationship between ETa and the state 

variable(s). Here we combined a novel set of data from proximal and remote sensing data 

with in-situ sensors to investigate spatiotemporal changes in ETa and what factors 

controlled it.  

For example, by using Landsat images and applying mapping evapotranspiration at 

high resolution with internalized calibration (METRIC) model ETa was estimated in 

different part of the Nebraska. METRIC is a satellite-based image-processing model 

consisting of multiple sub models. The method generates an accurate and highly resolved 

ETa estimation map in space (~30 m) as the residual of the surface energy balance equation 

by using satellite imagery (Allen et al., 2007b, 2007a). In another part of this research, the 

automated calibrated Earth Engine Evapotranspiration Flux (EEFlux) ETa was compared 

to manually calibrated METRIC ETa in different parts of the U.S. While EEFlux is 

designed based on the METRIC model, it applies the automated calibration algorithms for 

the computations (Allen et al. 2015) and uses the imagery archives of Google Earth Engine, 

(see Gorelick et al. 2017). Where METRIC takes more effort and expertise to process the 

imagery, EEFLUX is freely available across the globe.  

In addition, point scale and the area-average soil water content (SWC) data were 

used to estimate ETa at a field in eastern Nebraska using a physically based model 
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(HYDRUS). The ETa was then compared to the independently measured ETa by an eddy-

covariance tower of the same field. The point scale SWC data were measured by in-situ 

sensors, theta probes (TP), and the area-average SWC data were recorded by newly-

developed CRNPs (Zreda et al. 2008) and later (Zreda et al. 2012). CRNPs provide highly 

resolved temporal data sets of area-average soil moisture measurement over a large 

horizontal footprint (tens of hectometers) and a depth of tens of centimeters. The CRNPs 

spatial and temporal resolution makes it desirable for combining with remotely 

sensed products. CRNPs do not need to be inserted into the soil, while point sensors need 

to be in a direct soil contact which is often logistically challenging due to factors such as 

routine management practices. This challenge makes point sensor network installation and 

maintenance costly and time consuming to upkeep in agriculturally systems (Franz et al. 

2016). 

 

1.2 Dissertation Outline 

The previous section presented an overview of the general objectives of this 

dissertation. This section outlines the specific research questions and findings of the 

remaining chapters. 

In Chapter 2, the feasibility of using inverse vadose zone modeling was investigated 

for field ETa estimation at a long-term agricultural monitoring site in eastern Nebraska. 

Data from both point based SWC sensors and CRNPs were used to estimate ETa at the 

study site and then the estimated ETa values compared to the ETa measured by Eddy-

Covariance tower located at the site. The key results indicated: 
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 Reasonable estimates of ETa, both daily and annually, from point sensors and 

CRNP. 

 Due to soil texture variability at the study site, soil hydraulic function 

parameterizations were highly variable. This leads to equally good ETa 

modelled estimates which is consistent with the hydrological principle of 

equifinality.  

 While the focus of this study was on a particular study site in Nebraska, the 

tested framework can be easily applied to other SWC monitoring networks 

across the globe for ETa estimation.  

In Chapter 3, remote and proximal sensing measurements were combined with 

monitoring wells at a study site in central Nebraska to explore the spatial relationship 

between ETa and near surface SWC and depth to the water table (DTWT). A series of 

statistical models were explored between the state variables and flux estimates at the same 

spatial scale. This as a novel use of CRNP data, point scale data, and satellite imagery since 

it is challenging to combine data across spatial scales and sensor types. METRIC was 

applied on Landsat-8 images to estimate ETa. Data from stationary and roving CRNPs were 

used to estimate SWC. DTWT was estimated from a network of 16 observation 

groundwater wells. Results showed that: 

 While SWC and ETa were linearly correlated for shallow-rooted vegetation, 

the correlation between DTWT and ETa was weak.  

 A simple multivariate linear regression model between daily SWC, weather 

station reference evapotranspiration (ETr), and Landsat Normalized 
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Difference Vegetation Index (NDVI) was used to estimate daily growing 

season ETa for 2015 and 2016 averaged over the study area. The estimated 

ETa values were then compared to the time ETa integration spline method. 

The comparison indicates similar seasonal ETa between two methods in 2015 

(wet) but a 20% reduction in 2016 (dry).  

In Chapter 4, different EEFlux products were compared to the METRIC ones in 

agricultural and non-agricultural areas. Although EEFlux is designed based on METRIC 

algorithms, there are still some minor differences between them. The full functionality and 

reliability of the automated EEFlux platform needed to be tested. In this research, 58 

processed METRIC images in different parts of the U.S. were used to evaluate EEFlux. 

Based on the comparisons: 

 Three intermediate products, surface temperature (Ts) Albedo, and NDVI 

were nearly identical in both land cover types across the U.S.  

 Calculated net radiation (Rn) values, one of the energy balance components, 

were nearly identical in all locations across the U.S.  

 Due to the different algorithms which are used in the models for computation 

of ground heat flux (G), there were considerable differences between G and 

sensible heat flux (H), two other key energy balance components.  

 The main products of the models are reference ET fraction (ETrF), and ETa. 

Comparisons revelled that EEFlux automated calibrated algorithms are 

capable of estimating reliable ETrF and ETa values in agricultural areas. 
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 However, as the EEFlux is still in the progress the functionality of the EEFlux 

needs to be improved in non-agricultural areas.  

In the final Chapter 5, the summarized major findings from this dissertation are presented 

as well as some potential future directions in ETa estimation are discussed.  

 

1.3 Contribution to Co-authored Publications 

The core chapters of this dissertation (Chapters 2 through 4) have already been 

published or are submitted to journals and conferences. The full references follow: 

 Chapter 2: Foolad, F., Franz, T. E., Wang, T., Gibson, J., Kilic, A., Allen, R. G., 

and Suyker, A. (March 2017) “Feasibility analysis of using inverse 

modeling for estimating field-scale evapotranspiration in maize and soybean fields 

from soil water content monitoring networks”, Hydrol. Earth Syst. Sci., 21, 1263-

1277, doi:10.5194/hess-21-1263-2017. 

 Chapter 3: Foolad, F., Franz, T. E., Wang, T., Kilic, A., Allen, R. G., Abadi, A. M., 

and Ratcliffe, I. (June 2018) “Combining remote and proximal sensing to estimate 

evapotranspiration in a riparian ecosystem in central Nebraska”, (9th International 

Congress on Environmental Modelling and Software 2018, Fort Collins, Colorado, 

USA). 

 Chapter 4: Foolad, F., Blankenau, P., Kilic, A., Allen, R. G., Huntington, J., 

Erickson, T. A., Ozturk, D., Morton, C. G., Ortega-Salazar, S., Ratcliffe, I., Franz, 

T. E., Thau, D., Moore, R., Gorelick, N., Kamble, B., Revelle, P., Trezza, R., Zhao 
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W., and Robison, C. W. (June 2018) “Comparison of the Automatically Calibrated 

Google Evapotranspiration Application - EEFlux and the Manually Calibrated 

METRIC Application”, (Submitted to Remote Sensing Journal). 
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CHAPTER 2: FEASIBILITY ANALYSIS OF USING INVERSE 

MODELING FOR ESTIMATING FIELD-SCALE 

EVAPOTRANSPIRATION IN MAIZE AND SOYBEAN FIELDS 

FROM SOIL WATER CONTENT MONITORING NETWORKS 

 

2.1 Abstract 

In this study the feasibility of using inverse vadose zone modeling for estimating 

field scale actual evapotranspiration (ETa) was explored at a long-term agricultural 

monitoring site in eastern Nebraska. Data from both point scale soil water content (SWC) 

sensors and the area-average technique of Cosmic-Ray Neutron Probes were evaluated 

against independent ETa estimates from a co-located Eddy-Covariance tower. While this 

methodology has been successfully used for estimates of groundwater recharge, it was 

essential to assess the performance of other components of the water balance such as ETa. 

In light of recent evaluations of Land Surface Models (LSM) independent estimates of 

hydrologic state variables and fluxes are critically needed benchmarks. The results here 

indicate reasonable estimates of daily and annual ETa from the point sensors, but with 

highly varied soil hydraulic function parameterizations due to local soil texture variability. 

The results of multiple soil hydraulic parameterizations leading to equally good ETa 

estimates is consistent with the hydrological principle of equifinality. While this study 

focused on one particular site, the framework can be easily applied to other SWC 

monitoring networks across the globe. The value added products of groundwater recharge 

and ETa flux from the SWC monitoring networks will provide additional and more robust 

benchmarks for the validation of LSM that continues to improve their forecast skill. In 
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addition, the value added products of groundwater recharge and ETa often have more direct 

impacts on societal decision making than SWC alone. Water flux impacts human decision 

making from policies on the long-term management of groundwater resources (recharge), 

to yield forecasts (ETa), and to optimal irrigation scheduling (ETa). Illustrating the societal 

benefits of SWC monitoring is critical to insure the continued operation and expansion of 

these public datasets. 

 

2.2 Introduction 

Evapotranspiration (ET) is an important component in terrestrial water and surface 

energy balance. In the United States, ET comprises about 75% of annual precipitation, 

while in arid and semiarid regions ET comprises more than 90% of annual precipitation 

(Zhang et al., 2001; Glenn et al., 2007; Wang et al., 2009a). As such, an accurate estimation 

of ET is critical in order to predict changes in hydrological cycles and improve water 

resource management (Suyker et al., 2008; Anayah and Kaluarachchi, 2014). Given the 

importance of ET, an array of measurement techniques at different temporal and spatial 

scales have been developed (c.f., Maidment, 1992; Zhang et al., 2014), including lysimeter, 

Bowen ratio, Eddy-Covariance (EC), and satellite-based surface energy balance 

approaches. However, simple, low-cost, and accurate field-scale measurements of actual 

ET (ETa) still remain a challenge due to the uncertainties of available estimation techniques 

(Wolf et al., 2008; Li et al., 2009; Senay et al., 2011; Stoy, 2012). For instance, field 

techniques, such as EC and Bowen ratio, can provide relatively accurate estimation of local 

ETa, but are often cost prohibitive for wide-spread use beyond research applications 
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(Baldocchi et al., 2001; Irmak, 2010). By comparison, satellite-based remote sensing 

techniques are far less costly for widespread spatial coverage (Allen et al., 2007), but are 

limited by their accuracy, temporal sampling frequency (e.g., Landsat 8 has a 16-day 

overpass), and technical issues that further limit temporal sampling periods (e.g., cloud 

coverage during overpass) (Chemin and Alexandridis, 2001; Xie et al., 2008; Li et al., 

2009; Kjaersgaard et al., 2012).  

As a complement to the above-mentioned techniques, recent studies have used 

process-based vadose zone models (VZMs) for estimating field-scale ETa with reasonable 

success, particularly in arid and semi-arid areas (Twarakavi et al., 2008; Izadifar and 

Elshorbagy, 2010; Galleguillos et al., 2011; Wang et al., 2016). Although VZMs are time 

and cost effective for estimating field-scale ETa, they generally require complex model 

parameterizations and inputs, some of which are not readily available (e.g., soil hydraulic 

parameters and plant physiological parameters; c.f. Wang et al., 2016). In order to address 

the issue of missing soil hydraulic parameters, a common approach is to use pedotransfer 

functions to convert readily available soil information (e.g., texture, bulk density, etc.) to 

soil hydraulic parameters (Wösten et al., 2001); however, significant uncertainties are 

usually associated with this method for estimating local scale water fluxes (Wang et al., 

2015). In fact, Nearing et al. (2016) identified soil hydraulic property estimation as the 

largest source of information lost when evaluating different land surface modeling schemes 

versus a soil moisture benchmark. Poor and uncertain parameterization of soil hydraulic 

properties is a clear weakness of land surface models (LSMs) predictive skill in sensible 

and latent heat fluxes (Best et al., 2015). This problem will continue to compound with the 
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continuing spatial refinement of hyper-resolution LSM grid cells to less than 1 km (Wood 

et al., 2011). 

In order to address the challenge of field scale estimation of soil hydraulic 

properties, here we utilize inverse modeling for estimating soil hydraulic parameters based 

on field measurements of soil water content (SWC) (c.f. Hopmans and Šimunek, 1999; 

Ritter et al., 2003). While VZM-based inverse approaches have already been examined for 

estimating groundwater recharge (e.g., Jiménez-Martínez et al., 2009; Andreasen et al., 

2013; Min et al., 2015; Ries et al., 2015; Turkeltaub et al., 2015; Wang et al., 2016), its 

application for ETa estimation has not been adequately tested. Moreover, we note that 

simultaneous estimation of SWC states and surface energy fluxes within LSMs is 

complicated by boundary conditions, model parameterization, and model structure 

(Nearing et al., 2016). With the incorporation of regional soil datasets in LSMs like Polaris 

(Chaney et al., 2016), effective strategies for estimating ground truth soil hydraulic 

properties from existing SWC monitoring networks (e.g., SCAN, CRN, COSMOS, 

State/National Mesonets, c.f. Xia et al. (2015)) will become critical for continuing to 

improve the predictive skill of LSMs.  

The aim of this study is to examine the feasibility of using inverse VZM for 

estimating field scale ETa based on long-term local meteorological and SWC observations 

for an Ameriflux (Baldocchi et al., 2001) EC site in eastern Nebraska, USA. We note that 

while this study focused on one particular study site in eastern Nebraska, the methodology 

can be easily adapted to a variety of SWC monitoring networks across the globe (Xia et 

al., 2015), thus providing an extensive set of benchmark data for use in LSMs. The 
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remainder of the paper is organized as follows. In the methods section we will describe the 

widely used VZM, Hydrus-1D (Šimunek et al., 2013), used to obtain soil hydraulic 

parameters. We will assess the feasibility of using both profiles of in-situ SWC probes as 

well as the area-average SWC technique from Cosmic-Ray Neutron Probes (CRNP). In the 

results section we will compare simulated ETa resulted from calibrated VZM with 

independent ETa estimates provided by EC observations. Finally, a sensitivity analysis of 

key soil and plant parameters will be presented. 

 

2.3 Materials and Methodology 

2.3.1 Study Site 

The study site is located in eastern Nebraska, USA at the University of Nebraska 

Agricultural and Development Center near Mead. The field site (US-Ne3, Figure 2.1a, 

41.1797° N, 96.4397° W) is part of the Ameriflux Network (Baldocchi et al., 2001) and 

has been operating continually since 2001. The regional climate is of a continental semiarid 

type with a mean annual precipitation of 784 mm/year (according to the Ameriflux US-

Ne3 website). According to the Web Soil Survey Data (Soil Survey Staff, 2016, 

http://websoilsurvey.nrcs.usda.gov/), the soils at the site are comprised mostly of silt loam 

and silty clay loam (Figure 2.1b and Table 2.1). Soybean and maize are rotationally grown 

at the site under rainfed conditions, with the growing season beginning in early May and 

ending in October (Kalfas et al., 2011). Since 2001, crop management practices (i.e., 

planting density, cultivars, irrigation, and herbicide and pesticide applications) have been 

applied in accordance with standard best management practices prescribed for production-

http://websoilsurvey.nrcs.usda.gov/
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scale maize systems (Suyker et al., 2008). More detailed information about site conditions 

can be found in Suyker et al. (2004) and Verma et al. (2005).  

Table 2.1. Variability of soil texture in the study field based on Web Soil Survey data 

(http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm). 

Map Unit 

Symbol 
Map Unit Name 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

Hectares 

in Field 

Percent 

of Field 

3948 
Fillmore silt loam, terrace, occasionally 

ponded 
41.7 51.0 7.3 3.24 4.9% 

7105 
Yutan silty clay loam, terrace, 2 to 6 

percent slopes, eroded 
25.8 59.4 14.8 6.88 10.3% 

7280 Tomek silt loam, 0 to 2 percent slopes 32.3 61.6 6.1 47.23 70.8% 

7340 Filbert silt loam, 0 to 1 percent slopes 41.4 51.7 6.9 9.34 14.0% 

Total Area of Field 66.69 100.0% 

 
Figure 2.1. Study site (Mead Rainfed/US-Ne3) location in Nebraska (a) and locations of Eddy-

Covariance Tower (EC), Cosmic-Ray Neutron Probe (CRNP), Theta Probes (TPs), and variability 

of soil texture based on Web Soil Survey data at the study site, 2014 (b). See table 2.1 for soil 

descriptions. 

http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
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An EC tower was constructed at the center of the field (Figure 2.1 and Figure 2.2a), 

which continuously measures water, energy, and CO2 fluxes (e.g., Baldocchi et al., 1988). 

At this field, sensors are mounted at 3.0 m above the ground when the canopy is shorter 

than 1.0 m. At canopy heights greater than 1.0 m, the sensors are then moved to a height 

of 6.2 m until harvest in order to have sufficient upwind fetch (in all directions) 

representative of the cropping system being studied (Suyker et al., 2004). In this study, 

hourly latent heat flux measurements were integrated to daily values and then used for 

calculating daily EC ETa integrated over the field scale. Detailed information on the EC 

measurements and calculation procedures for ETa are given in Suyker and Verma (2009). 

Hourly air temperature, relative humidity, horizontal wind speed, net radiation, and 

precipitation were also measured at the site. Destructive measurements of leaf area index 

(LAI) were made every 10 to 14 days during the growing season at the study site (Suyker 

et al., 2005). We note that the LAI data were linearly interpolated to provide daily 

estimates. Theta probes (TP) (Delta-T Devices, Cambridge, UK) (https://www.delta-

t.co.uk/product/ml3/) were installed at 4 locations in the study field with measurement 

depths of 10, 25, 50, and 100 cm at each location to monitor hourly SWC in the root zone 

(Suyker et al., 2008). Here, we denote these four locations as TP 1 (41.1775° N, 96.4442° 

W), TP 2 (41.1775° N, 96.4428° W), TP 3 (41.1775° N, 96.4402° W), and TP 4 (41.1821° 

N, 96.4419° W) (Figure 2.1b). Daily precipitation (P) and reference evapotranspiration 

(ETr) computed for the tall (alfalfa) reference crop using the ASCE standardized Penman-

Monteith equation (ASCE-EWRI 2005) are shown in Figure 2.3 for the study period 

(2007–2012) at the study site. 

https://www.delta-t.co.uk/product/ml3/
https://www.delta-t.co.uk/product/ml3/
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Figure 2.2. Eddy-Covariance Tower (a) and Cosmic-Ray Neutron Probe (b) Located at the Mead 

Rainfed (US-Ne3) Site. 

 

 
Figure 2.3. Daily precipitation (P) and reference evapotranspiration (ETr) during the calibration 

(2008–2010) and validation (2011–2012) periods at the Mead Rainfed (US-Ne3) Site. 

 

In addition, a CRNP (model CRS 2000/B, HydroInnova LLC, Albuquerque, NM, 

USA, 41.1798 N°, 96.4412° W) (http://hydroinnova.com/ps_soil.html#overview) was 

http://hydroinnova.com/ps_soil.html#overview
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installed near the EC tower (Figure 2.1b and 2.2b) on 20 April 2011. The CRNP measures 

hourly moderated neutron counts (Zreda et al., 2008, 2012), which are converted into SWC 

following standard correction procedures and calibration methods (c.f., Zreda et al., 2012). 

In addition, the changes in above-ground biomass were removed from the CRNP estimates 

of SWC following Franz et al. (2015). The CRNP measurement depth (Franz et al., 2012) 

at the site varies between 15-40 cm, depending on SWC. Note for simplicity in this analysis 

we assume the CRNP has an effective depth of 20 cm (mean depth of 10 cm) for all 

observational periods. The areal footprint of the CRNP is ~250+/-50 m radius circle (see 

Desilets and Zreda 2013 and Köhli et al., 2015 for details). Here we assume for simplicity 

the EC and CRNP footprints are both representative of the areal-average field conditions. 

 

2.3.2 Model setup 

2.3.2.1 Vadose Zone Model 

The Hydrus-1D model (Šimunek et al., 2013), which is based on the Richards 

equation, was used to calculate ETa. The setup of the Hydrus-1D model is explained in 

detail by Jiménez-Martínez et al. (2009), Min et al. (2015), and Wang et al. (2016), and 

only a brief description of the model setup is provided here. Given the measurement depths 

of the Theta Probes, the simulated soil profile length was chosen to be 175 cm with 176 

nodes at 1 cm intervals. An atmospheric boundary condition with surface runoff was 

selected as the upper boundary. This allowed the occurrence of surface runoff when 

precipitation rates were higher than soil infiltration capacity or if the soil became saturated. 

According to a nearby USGS monitoring well (Saunders County, NE, USGS 
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411005096281502, ~2.7 km away), the depth to water tables was greater than 12 m during 

the study period. Therefore, free drainage was used as the lower boundary condition. 

Based on ASCE Penman-Monteith equation, ETr values can be computed for either 

grass or alfalfa and then using crop-specific coefficients daily potential evapotranspiration 

(ETp) can be calculated. Here daily ETr values were calculated for the tall (0.5 m) ASCE 

reference (ASCE-EWRI, 2005), and daily potential evapotranspiration (ETp) was 

calculated according to FAO 56 (Allen et al., 1998): 

𝐸𝑇𝑝(𝑡) = 𝐾𝐶(𝑡) × 𝐸𝑇𝑟(𝑡)                                      (1) 

where Kc is a crop-specific coefficient at time t. The estimates of growth stage lengths and 

Kc values for maize and soybean suggested by Allen et al. (1998) and Min et al. (2015) 

were adopted in this study. In order to partition daily ETp into potential transpiration (Tp) 

and potential evaporation (Ep) as model inputs, Beer’s law (Šimunek et al., 2013) was used 

as follows: 

𝐸𝑝(𝑡) = 𝐸𝑇𝑝(𝑡) × 𝑒–𝑘 × 𝐿𝐴𝐼(𝑡)                               (2) 

𝑇𝑝(𝑡) = 𝐸𝑇𝑝(𝑡)– 𝐸𝑝(𝑡)                                                 (3) 

where k [-] is an extinction coefficient with a value set to 0.5 (Wang et al., 2009b) and LAI 

[L2/L2] is leaf area index described in the previous section. The root water uptake, S(h), 

was simulated according to the model of Feddes et al. (1978): 

S(h) = α(h)×Sp                                                                    (4) 
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where α(h) [-] is the root-water uptake water stress response function and varies between 

0 and 1 depending on soil matric potentials, and Sp is the potential water uptake rate and 

assumed to be equal to Tp.  The summation of actual soil evaporation and actual 

transpiration is ETa. 

 Since the study site has annual cultivation rotations between soybean and maize, the 

root growth model from the Hybrid-Maize Model (Yang et al., 2004) was used to model 

the root growth during the growing season: 

{
𝑖𝑓 𝐷 < 𝑀𝑅𝐷, 𝐷 =

𝐴𝐺𝐷𝐷

𝐺𝐷𝐷𝑆𝑖𝑙𝑘𝑖𝑛𝑔
𝑀𝑅𝐷

𝑜𝑟 𝐷 = 𝑀𝑅𝐷
    (5) 

where D (cm) is plant root depth for each growing season day, MRD is the maximum root 

depth (assumed equal to 150 cm for maize and 120 cm for soybean in this study following 

Yang et al., 2004), AGDD is the accumulated growing degree days, and GDDSilking is the 

accumulated GDD at the silking point (e.g., accumulated plant GDD approximately 60-70 

days after crop emergence). GDD for each growing season day was calculated as: 

𝐺𝐷𝐷 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒                 (6) 

where Tmax and Tmin are the maximum and minimum daily temperature (⁰C), respectively, 

and Tbase is the base temperature set to be 10⁰ C following McMaster and Wilhelm (1997) 

and Yang et al. (1997). Finally, the Hoffman and van Genuchten (1983) model was used 

to calculate root distribution. Further details about the model can be found in Šimunek et 

al. (2013). 
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2.3.2.2 Inverse modeling to estimate soil hydraulic parameters  

  Inverse modeling was used to estimate soil hydraulic parameters for the van 

Genuchten-Mualem model (Mualem, 1976; van Genuchten, 1980): 

𝜃(ℎ) = {
𝜃𝑟 +

𝜃𝑠−𝜃𝑟

(1+|𝛼ℎ|𝑛)𝑚
, ℎ < 0

𝜃𝑠, ℎ ≥ 0
    (7) 

K(Se) = Ks × Se
l × [1– (1–Se

1/m)m]2                (8) 

where θ [L3/L3] is volumetric SWC; θr [L
3/L3] and θs [L

3/L3] are residual and saturated 

water content, respectively; h [L] is pressure head; K [L/T] and Ks [L/T] are unsaturated 

and saturated hydraulic conductivity, respectively; and Se = (θ–θr)/(θs–θr) [-] is saturation 

degree. With respect to the fitting factors, α [1/L] is inversely related to air entry pressure, 

n [-] measures the pore size distribution of a soil with m=1–1/n, and l [-] is a parameter 

accounting for pore space tortuosity and connectivity. 

Daily SWC data from the four TP locations and CRNP location were used for the 

inverse modeling. Based on the measurement depths of the TPs, the simulated soil columns 

were divided into four layers for TP locations (i.e., 0-15 cm, 15-35 cm, 35-75 cm, and 75-

175 cm), which led to a total of 24 hydraulic parameters (θr, θs, α, n, Ks, and l) to be 

optimized based on observed SWC values. In order to efficiently optimize the parameters, 

we used the method outlined in Turkeltaub et al. (2015). Since Hydrus-1D is limited to 

optimizing a maximum of 15 parameters at once and that the SWC of the lower layers 

changes more slowly and over a smaller range than the upper layers, the van Genuchten 

parameters of the upper two layers were first optimized, while the parameters of the lower 



25 
  

  

two layers were fixed. Then, the optimized van Genuchten parameters of the upper two 

layers were kept constant, while the parameters of the lower two layers were optimized. 

The process was continued until there were no further improvements in the optimized 

hydraulic parameters or until the changes in the lowest sum of squares were less than 0.1%. 

Given the sensitivity of the optimization results to the initial guesses of soil hydraulic 

parameters in the Hydrus model, soil hydraulic parameters from six soil textures were used 

as initial inputs for the optimizations at each location (Carsel and Parish, 1988), including 

sandy clay loam, silty clay loam, loam, silt loam, silt, and clay loam. Based on the length 

of available SWC data from the TP measurements, the periods of 2007, 2008-2010, and 

2011-2012 were used as the spin-up, calibration, and validation periods, respectively. 

Moreover, to minimize the impacts of freezing conditions on the quality of SWC 

measurements, data from January to March of each calendar year were removed (based on 

available soil temperature data) from the optimizations.  

In addition to the TP profile observations, we used the CRNP area-average SWC 

in the inverse procedure to develop an independent set of soil parameters. The CRNP was 

assumed to provide SWC data with an average effective measurement depth of 20 cm at 

this study site. The observation point was therefore set at 10 cm.  As a first guess and in 

the absence of other information, soil properties were assumed to be homogeneous 

throughout the simulated soil column with a length of 175 cm. Because the CRNP was 

installed in 2011 at the study site, the periods of 2011, 2012-2013, and 2014 were used as 

spin-up, calibration, and validation periods, respectively, for the optimization procedure.  
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Table 2.2. Bounds of the van Genuchten parameters used for inverse modeling. 

Soil Parameter θr (-) θs (-) α (1/cm) n (-) Ks (cm/day) 
l (-) 

Range 0.03–0.30 0.3–0.6 0.001–0.200 1.01–6.00 1–200 -1–1 

 

The lower and upper bounds of each van Genuchten parameter are provided in 

Table 2.2. With respect to the goodness-of-fit assessment, Root Mean Square Error 

(RMSE) between simulated and observed SWC was chosen as the objective function to 

minimize in order to estimate the soil hydraulic parameters. The built in optimization 

procedure in Hydrus-1D was used to perform parameter estimation. A sensitivity analysis 

of the six soil model parameters was performed. In addition, three additional performance 

criteria, including Coefficient of Determination (R2), Mean Average Error (MAE), and the 

Nash-Sutcliffe Efficiency (NSE) were used to further evaluate and validate the selected 

model behavior:  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1                        (9) 

𝑅2 = (
𝑛(∑ 𝑃𝑖𝑂𝑖)−𝑛

𝑖=1 (∑ 𝑃𝑖)𝑛
𝑖=1 (∑ 𝑂𝑖)𝑛

𝑖=1

√[𝑛 ∑ 𝑃𝑖
2−(∑ 𝑃𝑖)2]𝑛

𝑖=1 [𝑛
𝑖=1 𝑛 ∑ 𝑂𝑖

2−(∑ 𝑂𝑖)2]𝑛
𝑖=1

𝑛
𝑖=1

)2  (10) 

𝑀𝐴𝐸 =
1

n
∑ |Pi − Oi|

n
i=1        (11) 

NSE = 1 −
∑ (Pi−Oi)2n

i=1

∑ (Oi−O̅i)2n
i=1

                (12) 

where n is the total number of SWC data points, Oi, and Pi, are respectively the observed 

and simulated daily SWC on day i, and O̅i is the observed mean value. Based on the best 
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scores (i.e., lowest RMSE values), the best optimized set of soil hydraulic parameters at 

each location were selected. Using the selected parameters, the Hydrus model was then run 

in a forward mode in order to estimate ETa between 2007 and 2012. Finally, we note that 

the years 2004-2006 were used as a model spin-up period for the forward model and 

evaluation of ETa because of the longer climate record length. 

 

2.4 Results and Discussions 

2.4.1 Vadose Zone Inverse Modeling Results 

The time series of the average SWC from the four TP locations along with one 

standard deviation at each depth are plotted in Figure 2.4. Based on the large spatial 

standard deviation values (Figure 2.4), despite the relatively small spatial scale (~65 ha) 

and uniform cropping at the study site, SWC varies considerably across the site, 

particularly during the growing season. The comparison between SWC data from the 

CRNP and spatial average of SWC data at the four TP locations in the study field (i.e. 

average of 10 and 25 cm depths at TP locations) is presented in Figure 2.5. The daily RMSE 

between the spatial average of the TPs and CRNP data is 0.037 cm3/cm3, which is 

consistent with other studies that reported similar values in semiarid shrublands (Franz et 

al., 2012), German Forests (Bogena et al., 2013, Baatz et al., 2014), montane forests in 

Utah (Lv et al., 2014), sites across Australia (Hawdon et al., 2014), and a mixed land use 

agricultural site in Austria (Franz et al. 2016). We note that we would expect lower RMSE 

(~<0.02 cm3/cm3) with additional point sensors located at shallower depths and in more 

locations distributed across the study site. Nevertheless, the consistent behavior between 
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the spatial mean SWC of TPs and the CRNP allows us to explore spatial variability of soil 

hydraulic properties within footprint using inverse modeling. This will be described in the 

next sections. The study period (2007-2012, Figure 2.6) contained significant inter-annual 

variability in precipitation. During the spin-up period in 2007, the annual precipitation (942 

mm) was higher than the mean annual precipitation (784 mm), 2008 was a wet year (997 

mm), 2009-2011 were near average years (715 mm), and 2012 was a record dry year (427 

mm) with widespread drought across the region. Therefore, both wet and dry years were 

considered in the inverse modeling simulation period. 
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Figure 2.4. Temporal evolution of daily SWC (θ) at different soil depths. The black lines 

represent daily mean SWC (θ) calculated from TPs in 4 different locations at study site and the 

blue areas indicate one standard deviation. 
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Figure 2.5. Time series of daily CRNP and spatial average TP SWC (θ) data. 

 

 
Figure 2.6. Annual precipitation (P) and annual actual evapotranspiration (ETa) at the Mead 

Rainfed (US-Ne3) Site. 

 

As an illustration, Figure 2.7 shows the daily observed and simulated SWC during 

the calibration (2008–2010) and validation (2011–2012) periods at the TP 1 location (the 

simulation results of the other three sites can be found in the supplemental Figures 2.1, 2.2, 

and 2.3). The results of objective function criterion (RMSE) and the other three 

performance criteria (e.g., R2, MAE, and NSE) between simulated and observed SWC 

values at TPs locations are presented in Table 2.3.  
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Figure 2.7. Daily observed and simulated SWC (θ) during the calibration (2008–2010) and 

validation (2011–2012) periods at TP 1 location. See supplemental figures for other comparisons. 
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Table 2.3. Goodness-of-fit measures for simulated and observed SWC data at different depths 

during the calibration period (2008 to 2010) and validation period (2011-2012) at TPs locations. 

Note we assume a good fit as an RMSE between 0-0.03 cm3/cm3 and fair as between 0.03-0.06 

cm3/cm3. 

Location 
Depth 

(cm) 

Calibration Period (2008-2010) Validation Period (2011-2012) 

R2 
MAE 

(cm3/cm3) 

RMSE 

(cm3/cm3) 
NSE R2 

MAE 

(cm3/cm3) 

RMSE 

(cm3/cm3) 
NSE 

TP 1 

10 0.542 0.024 0.036 0.533 0.532 0.016 0.033 0.503 

25 0.742 0.014 0.022 0.739 0.716 0.029 0.040 0.486 

50 0.409 0.013 0.023 0.407 0.603 0.041 0.074 0.157 

100 0.352 0.015 0.022 0.343 0.419 0.027 0.038 0.358 

TP 2 

10 0.330 0.044 0.066 0.305 0.287 0.047 0.061 0.052 

25 0.623 0.010 0.020 0.604 0.718 0.038 0.055 0.135 

50 0.551 0.015 0.026 0.074 0.683 0.040 0.055 0.202 

100 0.424 0.019 0.027 -2.055 0.344 0.048 0.073 -0.473 

TP 3 

10 0.269 0.034 0.051 0.256 0.534 0.086 0.102 -4.265 

25 0.512 0.011 0.017 0.509 0.852 0.010 0.015 0.793 

50 0.549 0.015 0.023 -0.214 0.658 0.022 0.033 0.652 

100 0.238 0.018 0.029 -3.156 0.669 0.018 0.025 0.178 

TP 4 

10 0.412 0.029 0.044 0.406 0.580 0.051 0.071 -0.116 

25 0.434 0.016 0.025 0.350 0.594 0.029 0.042 0.490 

50 0.151 0.009 0.015 -13.400 0.443 0.041 0.073 0.036 

100 0.001 0.013 0.021 -12.058 0.292 0.026 0.039 0.238 

 

In this research we define RMSE values less than 0.03 cm3/cm3 between observed 

and simulated SWC values as well-matched and RMSE between 0.03 and 0.06 cm3/cm3 as 

fairly well-matched. We note the target error range of satellite SWC products (e.g. SMOS 

and SMAP) is less than 0.04 cm3/cm3 (Entekhabi et al., 2010). Similar to previous studies 
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(e.g., Jiménez-Martínez et al., 2009; Andreasen et al., 2013; Min et al., 2015; Wang et al., 

2016), the results of all the performance criteria at TP locations show the capability of 

inverse modeling in estimation of soil hydraulic parameters. The results of the calibration 

period (2008-2010) indicate that the simulated and observed SWC values are in good 

agreement (i.e. well matched as defined above) throughout the entire period at most 

locations and depths (Figure 2.7 and Table 2.3). In addition, the simulated and observed 

SWC data are fairly well-matched at most locations and depths during the validation period 

(2011-2012), with notable differences during the second half of 2012 during the extreme 

drought conditions (Figure 2.7 and Table 2.3). Reasons for this disagreement in the 

observed and simulated SWC data will be discussed in the following sections.  

The results of inverse modeling using the CRNP data also indicate the feasibility 

of using these data to estimate effective soil hydraulic parameters (Figure 2.8 and Table 

2.4). Based on the performance criteria (Table 2.4), the simulated data are fairly well-

matched with the observed SWC data during both the calibration and validation periods. 

Additional information from deeper soil probes or more complex modeling approaches 

such as data assimilation techniques (Rosolem et al., 2014, Renzullo et al., 2014) may be 

needed to fully utilize the CRNP data for the entire growing season. However, this was 

beyond the scope of the current study and merits further investigation given the global 

network of CRNP (Zreda et al., 2012) dating back to ~2011.   
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Figure 2.8. Daily observed and simulated SWC (θ) during the calibration (2012–2013) and 

validation (2014) periods at the location of Cosmic-Ray Neutron probe. 

 

Table 2.4. Goodness-of-fit measures for simulated and observed SWC data during the calibration 

period (2012 to 2013) and validation period (2014) at CRNP location. 

Location 
Depth 

(cm) 

Calibration Period (2012-2013) Validation Period (2014) 

R2 MAE 

(cm3/cm3) 

RMSE 

(cm3/cm3) 
NSE R2 MAE 

(cm3/cm3) 

RMSE 

(cm3/cm3) 
NSE 

CRNP 10 0.497 0.018 0.027 0.456 0.192 0.020 0.032 -0.310 

 

Table 2.5 summarizes the optimized van Genuchten parameters for the four 

different depths of the four TP locations and the single layer for the CRNP location. The 

optimized parameters were then used to estimate ETa for the entire study period as an 

independent comparison to the EC ETa data. The results of the ETa evaluation will be 

discussed in the next section. According to the simulation results (Table 2.5), in most of 

the soil layers, the TP 4 location results in lower n, Ks, and higher θr values than the other 

3 locations (TPs 1-3), suggesting either underlying soil texture variability in the field or 

texture dependent sensor sensitivity/calibration. As a validation for the simulation results, 

the publicly available Web Soil Survey Data (http://websoilsurvey.nrcs.usda.gov/) was 

used to explore whether the optimized van Genuchten parameters from the inverse 

http://websoilsurvey.nrcs.usda.gov/
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modeling (Figure 2.1b and Table 2.2) agreed qualitatively with the survey data. Based on 

the Web Soil Survey Data, the soil at the TP 4 location contains higher clay percentage 

than the other locations. Meanwhile, the optimized parameters reflect the spatial pattern of 

soil texture in the field as shown by the Web Soil Survey Data (e.g., lower n and Ks values 

and higher θr values at the TP 4 location with finer soil texture). Physically, finer-textured 

soils generally have lower Ks and higher θr values (Carsel and Parrish, 1988). Moreover, 

the shape factor n is indicative of pore size distributions of soils. In general, finer soils with 

smaller pore sizes tend to have lower n values (Carsel and Parrish, 1988). The observed 

SWC at the TP 4 location is consistently higher than the average SWC of the other three 

locations (Figure 2.4 in supplemental materials), which can be partly attributed to the 

higher θr values at the TP 4 location (Wang and Franz, 2015). Overall, the obtained van 

Genuchten parameters from the inverse modeling are in qualitatively good agreement with 

the available spatial distribution of soil texture in the study field, indicating the capability 

of using inverse VZM to infer soil hydraulic properties. Further work on validating the 

Web Soil Survey Data soil hydraulic property estimates is of general interest to the LSM 

community.  
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Table 2.5. Optimized van Genuchten parameters in different locations at the study site. 

Location Depth (cm) θr (-) θs (-) α (1/cm) n (-) Ks (cm/day) l (-) 

 

TP 1 

0-15 0.134 0.423 0.027 1.475 8.119 0.546 

15-35 0.136 0.408 0.007 1.345 11.540 0.480 

35-75 0.191 0.448 0.024 1.097 8.057 0.285 

75-175 0.071 0.430 0.025 1.069 9.807 0.364 

 

TP 2 

0-15 0.211 0.446 0.027 1.567 8.120 1.000 

15-35 0.197 0.434 0.006 1.191 8.655 0.022 

35-75 0.110 0.424 0.015 1.239 4.605 0.723 

75-175 0.109 0.408 0.020 1.302 6.780 0.000 

 

TP 3 

0-15 0.281 0.464 0.035 1.487 7.096 0.400 

15-35 0.072 0.402 0.012 1.085 29.960 0.353 

35-75 0.081 0.498 0.037 1.128 24.440 0.527 

75-175 0.085 0.500 0.039 1.147 17.540 0.496 

 

TP 4 

0-15 0.082 0.481 0.034 1.172 7.773 0.953 

15-35 0.200 0.426 0.013 1.217 14.060 0.044 

35-75 0.250 0.477 0.009 1.079 1.045 0.353 

75-175 0.200 0.487 0.012 1.070 1.454 0.985 

CRNP 0-15 0.100 0.392 0.019 1.154 6.931 0.547 

 

2.4.2 Comparison of modeled ETa with observed ETa 

Because a longer set of climatic data was available at the study site (as compared 

to SWC data), we used 2004-2006 as a spin-up period. Using the best fit soil hydraulic 

parameters for the four TP locations and the single CRNP location, the Hydrus-1D model 

was then run in a forward mode to calculate ETa over the entire study period (2007-2012). 
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The simulated daily ETa was then compared with the independent EC ETa measurements 

using RMSE (Eq. (9)) as the evaluation criterion. In order to upscale TP ETa estimation to 

the field/EC scale, we used the soil textural boundaries and areas defined by the Web Soil 

Survey Data map to compute a weighted average ETa. In this research we consider RMSE 

values less than 1 mm/day between observed and simulated ETa values as well-matched 

and RMSE values between 1 and 1.2 as fairly well-matched (Figure 2.9 and Table 2.6). 

The performance criterion results indicate that the simulated daily ETa is in a better 

agreement with EC ETa measurements at the TP 1-3 locations than at the TP 4 and CRNP 

locations (Table 2.6). However, based on the performance criteria from inverse modeling 

results and on the Web Soil Survey Data, we conclude that spatial heterogeneity of soil 

texture in the study field results in significant spatial variation in ETa rates across the field 

(e.g., less ETa occurs at the TP 4 location than from the other parts of the field). Here 

smaller ETa rates at the TP 4 location are likely due to finer soil texture at this location, 

which makes it more difficult for the plant/roots to overcome potentials to extract water 

from the soil, thus leading to a lower ETa rate and greater plant stress. In addition, higher 

surface runoff can be expected at the TP 4 location due to finer-textured soils (as we 

observed during our field campaigns). According to the simulation results the average 

surface runoff at the TP 4 location was about 44.8 mm/year from 2007 to 2012, while the 

average surface runoff at the other three locations (TPs 1-3) was around 10.6 mm/year, 

which partially accounts for the lower ETa rates. We note that future work using historic 

yield maps may also be used to further elucidate the soil hydraulic property differences 

given the direct correlation between transpiration and yield. 
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Table 2.6. Goodness-of-fit measures for simulated and observed daily ETa during the simulation 

period (2007-2012) at study site. 

Location R2 
MAE 

(mm/day) 

RMSE 

(mm/day) 
NSE 

ETp 0.510 1.359 1.992 0.340 

TP 1 0.644 0.696 1.062 0.618 

TP 2 0.754 0.610 0.907 0.746 

TP 3 0.751 0.601 0.904 0.728 

TP 4 0.365 0.878 1.387 0.168 

TPs Weighted Average 0.742 0.599 0.911 0.714 

CRNP 0.573 0.742 1.143 0.562 

 

 
Figure 2.9. Simulated daily ETa versus observed daily ETa at different locations in the study site 

(2007-2012). 
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Given that CRNPs have a limited observational depth and that only one single soil 

layer was optimized in the inverse model for the CRNP, one could expect the simulated 

daily ETa from the CRNP to have larger uncertainty. Here we found an RMSE of 1.14 

mm/day using the CRNP versus 0.91 mm/day for the upscaled TP locations. However, 

when the optimized soil parameters obtained from the CRNP data were used to estimate 

ETa, the model did simulate daily ETa fairly well during both non-growing and growing 

seasons in comparison to the EC ETa measurements. 

Table 2.7. Summary of simulated yearly and average actual evapotranspiration (ETa) (mm) and 

observed yearly and average actual evapotranspiration (ETa) (mm) from Eddy-Covariance tower 

during 2007 to 2012. 

Location 
Year 

2007 2008 2009 2010 2011 2012 Average 

ETp 1048.5 987.9 989.4 1011.5 1025.7 1326.7 1064.9 

EC 656.8 608.4 589.7 646.1 622.2 570.1 612.5 

TP 1 646.1 629.0 559.8 642.1 573.9 415.5 579.5 

TP 2 614.3 598.4 576.7 620.5 576.9 429.5 574.7 

TP 3 529.0 556.1 556.4 590.4 549.8 405.2 545.4 

TP 4 652.2 576.1 529.9 677.3 458.2 381.2 525.3 

Upscaled TPs 613.9 564.1 556.3 600.3 547.7 405.9 548.0 

CRNP 745.3 707.1 603.0 721.8 642.2 439.3 643.1 

 

On the annual scale, ETa measured by the EC tower accounted for 87% of annual 

P recorded at the site during the study period (Figure 2.6). Overall, the simulated annual 

ETa at all the TP and CRNP locations is comparable to the annual ETa measured by the EC 

tower, except during 2012 (Table 2.7), in which a severe drought occurred in the region. 

One explanation is that the plants extract more water from deeper layers under extreme 

drought conditions than what we defined as a maximum rooting depth (150 cm for maize 
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and 120 cm for soybean) for the model, thus limiting the VZM ability to estimate ETa 

accurately during the drought year (2012). In fact, based on the EC ETa measurements at 

the study site, there was just 8.18% reduction in annual ETa in 2012 than the average of the 

other years (2007-2011), while there were 29.58% and 35.75% reduction in annual 

simulated ETa values respectively in upscaled TP and CRNP. This shows that although 

2012 was a very dry year, the plants probably found most of the needed water by extracting 

water from deeper soil reservoirs. As previously mentioned we defined a maximum rooting 

depth for the model that could greatly impact the results. To further illustrate this point, a 

sensitivity analysis was performed on the maximum rooting depth and presented in the 

following section. However, we note that given the fact that EC ETa estimation can have 

up to 20% uncertainty (Massman and Lee, 2002, and Hollineger and Richardson, 2005), 

and accounting for the natural spatial variability of ETa due to soil texture and root depth 

growth uncertainties, the various ETa estimation techniques performed fairly well. In fact, 

it is difficult to identify which ETa estimation method is the most accurate method. These 

results are consistent with the concept of equifinality in hydrologic modeling given the 

complexity of natural systems (Beven and Freer, 2001). Moreover, the findings here are 

consistent with Nearing et al. (2016) that show information lost in model parameters 

greatly affects the soil moisture comparisons against a benchmark. However, soil 

parameterization was less important in the loss of information for the comparisons of 

ET/latent energy against a benchmark. Fully resolving these issues remains a key challenge 

to the land surface modeling community and the model’s ability to make accurate 

predictions (Best 2015). The following section provides a detailed sensitivity analysis of 
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the soil hydraulic parameters and root depth growth functions in order to begin to 

understand the sources of error in estimating ETa from SWC monitoring networks. 

 

2.4.3 Sensitivity analysis of soil hydraulic parameters and rooting depth 

In this research we compared simulated ETa with the measured EC ETa. As 

expected some discrepancies between simulated and measured ETa values existed. In order 

to begin to understand the key sources of error we performed a set of sensitivity analysis 

experiments on the estimated soil hydraulic parameters. Building on Wang et al. (2009b), 

a sensitivity analysis for a single homogeneous soil layer (6 parameters) and a 4-layer soil 

profile (24 parameters) was performed over the study period (2007–2012). Here we 

performed a preliminary sensitivity analysis by changing a single soil hydraulic parameter 

one at a time while keeping the other parameters constant (i.e. at the average value). Figure 

2.10 illustrates the sensitivity results on simulated ETa, indicating the soil hydraulic 

parameters have a range of sensitivities with tortuosity (l) being the least. We found that n 

and α were the most sensitive, particularly in the shallowest soil layer. This sensitivity to 

the shallowest soil layer provides an opportunity to use the CRNP observations, 

particularly in the early growing season (i.e. when evaporation dominates latent energy 

flux), to help constrain estimates of n and α. As the crop continues to develop (and 

transpiration contributes a relatively larger component of latent energy) additional 

information about deeper soil layers should be used to estimate soil hydraulic parameters 

or perform data assimilation. Moreover, the CRNP may be useful in helping constrain and 
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parameterize soil hydraulic functions in simpler evaporation models widely used in remote 

sensing (c.f. Allen et al. 2007) and crop modeling (c.f. Allen et al. 1998). 

 

Figure 2.10. Sensitivity analysis of the effect of soil hydraulic parameters on average annual ETa 

values (2007-2012) for a single homogeneous soil layer (6 parameters) and for a 4-layer soil 

profile (24 parameters). 

 

Following the sensitivity analysis, we repeated the optimization experiment using 

only α, n, Ks, and used model default estimates for the other parameters in each layer. We 

found that the RMSE values were significantly higher (1.511 vs. 0.911 mm/day) than when 

considering all 24 parameters. We suspect that given the high correlation between soil 

hydraulic parameters (Carsel and Parrish 1988), that fixing certain parameters leads to a 

degradation in overall performance. We suggest further sensitivity analyses, in particular 



43 
  

  

changing multiple parameters simultaneously or using multiple objective functions, be 

used to fully understand model behavior (c.f. Bastidas et al. 1999 and Rosolem et al. 2012).  

A sensitivity analysis of ETa by varying rooting depth is summarized in Figure 2.11. 

As would be expected with increasing rooting depth, higher ETa occurred. In addition, 

Figure 2.11 illustrates a decreasing RMSE against EC observations for up to 200% 

increases. Again it is unclear if the EC observations are biased high or in fact rooting depths 

are much greater than typically considered in these models. The high observed EC values 

in the drought year of 2012 indicate that roots likely uptake water from below the 1 m 

observations. Certainly the results shown here further indicate the importance of root water 

uptake parameters in VZMs and LSMs, even in homogeneous annual cropping systems. 

While beyond the scope of this paper we refer the reader to the growing literature on the 

importance of root water uptake parameters on hydrologic fluxes (c.f. Schymanski et al. 

2008 and Guswa 2012).  
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Figure 2.11. Sensitivity analysis of root depth on ETa estimation for a single homogeneous soil 

layer profile. Note that root depth is in terms of percent depth as it is dynamic over the growing 

period. 

 

2.4.4 Applications and limitations of the vadose zone modeling framework 

Given its simplicity and widespread availability of ground data, ETr and Kc values 

are often used in a wide variety of applications to estimate ETp and thus approximate ETa. 

It is well known that SWC is a limiting factor affecting the assumption that ETp ~ ETa. On 

the other hand, we know that SWC observations are local in nature and not necessarily 

representative of ETa footprint estimates. The key questions are: what is the value of SWC 

observations, how many profiles do we need to install in a footprint, and at which depths 

to constrain estimates of fluxes? The well instrumented and long-term study presented here 
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allows us to start to answer these key questions. First we find that ETp has an average 

annual value of 1064.9 mm as compared to EC at 612.5 mm (Table 2.7). By including 

individual SWC profiles (TP 1 to 4) and the CRNP in the VZM framework we are able to 

constrain our estimate of ETa to between 525.3 and 643.1 mm and reduce ETa RMSE from 

1.992 mm/day to around 1 mm/day (Table 2.6). In addition, a range of soil hydraulic 

parameters for each depth and spatially averaged top layer can be estimated to help better 

constrain recharge fluxes simultaneously. Given the principle of equifinality in hydrologic 

systems, the VZM framework may lead to equally reasonable estimates of parameters 

which is a limitation of the method and LSMs in general. Based on our sensitivity analysis 

(Figure 2.10) the key parameters of α, n may greatly affect ETa.   

Although sparsely distributed, widespread state, national, and global 

meteorological observations paired with SWC profiles (Xia et al. 2015) and the VZM 

framework provide an opportunity to better constrain ETa and local soil hydraulic 

functions. Moreover, where multiple SWC profile information is available a range of ETa 

and soil hydraulic parameters can be estimated and thus considered in LSM data 

assimilation frameworks. The combination of basic metrological observations with a 

CRNP in the VZM framework further allows for estimates of upscaled soil hydraulic 

parameters with similar estimates of ETa as found with individual SWC profiles. Moving 

forward, combining CRNP with deeper SWC observations from point sensors seems to be 

a reasonable strategy in order to average the inherent SWC variability in the near surface 

yet provide SWC constraints at depth, particularly as annual crops develop over the 

growing season. 
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2.5 Conclusions 

In this study the feasibility of using inverse vadose zone modeling for field scale 

ETa estimation was explored at an agricultural site in eastern Nebraska. Both point SWC 

sensors (TP) and area-average techniques (CRNP) were explored. This methodology has 

been successfully used for estimates of groundwater recharge, but it was critical to assess 

the performance of other components of the water balance such as ETa. The results indicate 

reasonable estimates of daily and annual ETa but with varied soil hydraulic function 

parameterizations. The varied soil hydraulic parameters were expected given the 

heterogeneity of soil texture at the site and consistent with the principle of equifinality in 

hydrologic systems. We note that while this study focused on one particular site, the 

framework can be easily applied to other networks of SWC monitoring across the globe 

(Xia et al., 2015). The value-added products of groundwater recharge and ETa flux from 

the SWC monitoring networks will provide additional and more robust benchmarks for the 

validation of LSM that continue to improve their forecast skill.  

 

2.6 Data availability 

 The climatic and EC data used in this research can be found at 

http://ameriflux.lbl.gov/. The TP SWC and LAI data in the study site are provided by Dr. 

Andrew Suyker and CRNP SWC are provided by Dr. Trenton E. Franz and both sets of 

data can be requested directly from the authors. The US soil taxonomy information is 

provided by Soil Survey Staff and is available online at http://websoilsurvey.nrcs.usda.gov/ 
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(accessed in July, 2016). The remaining datasets are provided in the supplemental material 

associated with this paper. 
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CHAPTER 3: COMBINING REMOTE AND PROXIMAL SENSING 

TO ESTIMATE EVAPOTRANSPIRATION IN A RIPARIAN 

ECOSYSTEM IN CENTRAL NEBRASKA  

 

3.1 Abstract 

 Sound methods for simultaneously estimating hydrologic fluxes and state variables 

are critical to quantifying the complexity of water consumption from riparian ecosystems 

that have connected surface and groundwater. While the volume of earth observation data 

has significantly increased over the past few years, fundamental questions still remain as 

to how best combine and leverage datasets of state variables and fluxes from different 

sources and spatiotemporal resolutions. The primary objective of this study was to compare 

remotely sensed actual evapotranspiration (ETa) values with both proximal sensed and in-

situ observations to elucidate spatiotemporal correlations between ETa and state variables 

of soil water content (SWC) and depth to water table (DTWT). The study was conducted 

at a 132-ha riparian site in Nebraska. Here, we used Landsat-8 data coupled with the 

Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) 

model to estimate ETa. Data from stationary and roving cosmic-ray neutron probes were 

used to estimate SWC. DTWT was estimated from a network of 16 groundwater wells. 

Comparisons among the datasets reveal that SWC and ETa were linearly correlated for 

shallow-rooted vegetation. The correlation between DTWT and ETa was weak. A simple 

statistical model of daily ETa vs. the time ET integration spline method indicates similar 

seasonal ETa between methods in 2015 (wet) but a 20% reduction in 2016 (dry). The 

difference underscores the need for better accounting of local state variables occurring 
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between the 16-day Landsat overpasses and some inherent limitations of periodic satellite-

based remote sensing of seasonal ETa. 

 

3.2 Introduction 

The volume of earth observation data and associated retrievals has significantly 

increased over the past few years with technological developments in remote sensing, 

proximal sensing, in-situ sensors, opportunistic sensing, and citizen science (McCabe et 

al., 2017). With respect to water resources, these technologies can provide high quality 

datasets describing fluxes and state variables in time and space, thus opening new avenues 

of research and commercial activities. For example, satellite remote sensing has been 

widely used to provide valuable information at scales from local to global, but is often 

limited by time between repeat overpasses. Many governmental and commercial earth-

observing satellites (e.g., MODIS, Landsat, SMOS, GRACE, and CubeSats) have diverse 

mission objectives that include measuring different types of fluxes, tracking air pollution, 

and monitoring flood propagation, precipitation, groundwater, terrestrial water storage, and  

soil water content (SWC) (McCabe et al., 2017). Other technologies such as unmanned 

aerial systems equipped with multispectral sensors have been used to complement a myriad 

of in-situ sensors to enable scientists to gain a more comprehensive understanding of 

components of the hydrological cycle near the surface. In-situ sensors provide more 

frequent observations in time but are limited by spatial coverage and thus spatial 

representativeness. A fundamental question still remains as to how to best combine the raw 

datasets of state variables and fluxes (e.g., groundwater, SWC, and evapotranspiration 
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(ET)) (Peters-Lidard et al., 2017) at different spatiotemporal resolutions. Moreover, there 

are remaining questions in how the datasets can best be ingested into complex physically 

based models to help us to better understand hydrologic budgets and to make informed 

water management decisions (Clark et al., 2017). In this work, we aimed to investigate and 

characterize spatiotemporal relationships between hydrologic fluxes and state variables at 

a riparian study site in central Nebraska.  

Given the critical importance of actual evapotranspiration (ETa) in land surface 

energy and water budgets, a multitude of studies have investigated its relationship with 

different state variables such as wind speed, solar radiation, SWC, depth to water table 

(DTWT),  and various land cover types (Chen and Shu, 2006; Foolad et al., 2017; Hays, 

2003; Kurc and Small, 2004; Villarreal et al., 2016). In humid regions with an abundance 

of water supply, ETa is mostly influenced by meteorological factors and vegetation type 

(Kurc and Small, 2004; Laio et al., 2001; Rodriguez-Iturbe et al., 2001; Shuttleworth, 1991; 

Western et al., 2002). By comparison, in arid and semi-arid regions with limited water 

supply, ETa is further limited by available SWC (Kurc and Small, 2004; Reynolds et al., 

2000; Rodriguez-Iturbe et al., 2001). In riparian systems with shallow groundwater, deep-

rooted vegetation may extract water from both unsaturated and saturated zones for ETa, 

adding complexity to system behavior and feedbacks, particularly in semi-arid regions 

(e.g., Acharya et al., 2014; Gribovszki et al., 2008; Groeneveld, 2008; Groeneveld et al., 

2007; Loheide et al., 2005; Maxwell and Kollet, 2008; Soylu et al., 2011; Troxell, 1936; 

White, 1932). This applies to quantifying the impact of groundwater depth on ETa. Surface-

groundwater connections complicate the fundamental understanding of vegetation water 
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and energy limitations on ETa, and also increase the complexity and computational 

resources needed to apply physically based models to simulate and predict system 

dynamics (Maxwell and Condon, 2016; Maxwell and Kollet, 2008).  

The complexity of connected surface and groundwater systems in riparian areas 

requires computationally intensive numerical models, and dense spatiotemporal 

observations of state variables and fluxes are desirable for calibration, validation, and 

evaluation of those numerical models for an in-depth understanding of hydrological 

processes and feedbacks. However, it is generally time-consuming and costly to construct 

monitoring networks in riparian areas with densely distributed sensors, largely due to the 

significant spatial heterogeneity in those areas (e.g., Yue et al., 2016). As such, given the 

data needed to ground-truth a model, it is clear that a strategy for combining remote sensing 

data with proximal sensing data and in-situ observations is both essential and pragmatic. 

Here, we combined various data sources to estimate spatiotemporal state variables and 

fluxes over a 4-year period (2013-2016) in a ~132 ha central Nebraska riparian zone along 

the Platte River. Specifically, we used Landsat 8 data processed with the Mapping 

Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model 

(Allen et al., 2007) to estimate ETa at a 30 m spatial resolution in the area. We combined 

this with data from a stationary cosmic-ray neutron probe (CRNP) and a roving CRNP 

(Franz et al., 2015) to provide near surface spatiotemporal SWC maps at the same spatial 

scale and overpass times of the Landsat 8 satellite. Lastly, a network of 16 groundwater 

monitoring wells was used to provide observations of DTWT across the study site.  
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The primary objective of this study was to compare remotely sensed ETa values 

with estimates made using proximal sensing and in-situ observations in order to elucidate 

the spatiotemporal correlations between hydrological fluxes (ET) and key state variables 

(SWC, DTWT) at the riparian study site. The site contains three distinct land cover types 

(i.e., cottonwood, dry ridge grasses, and wet slough grasses), making it an effective location 

to evaluate the connections between ETa, SWC, and DTWT across a natural vegetation and 

ground-water gradient. Given the complexity of riparian ecosystems with connected 

surface and groundwater interactions and feedbacks, establishing sound methods to 

simultaneously estimate hydrologic fluxes and state variables is a critical first step to 

evaluate the reliability of physically based models of the ecosystem.  

 

3.3 Materials and Methodology 

3.3.1 Study Area 

This study was conducted in conjunction with the Platte River Recovery 

Implementation Program 

(https://www.platteriverprogram.org/AboutPRRIP/Pages/Default.aspx) that addresses 

issues related to endangered species and loss of habitat along the Platte River (Smith, 

2011). The study site (~132 ha) on Shoemaker Island, is located in a riparian zone of the 

Platte River in central Nebraska, USA (Figure 3.1) (Yue et al., 2016). The local climate is 

of a continental semiarid type with the average annual precipitation of 478 mm and the 

mean annual temperature of 10.3 °C, based on the long-term climatic data (1995-2016) 

from the Alda 3W station within the Nebraska High Plains Mesonet 

https://www.platteriverprogram.org/AboutPRRIP/Pages/Default.aspx
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(https://mesonet.unl.edu/). Soil pit observations at the study site indicate a dominance of 

coarse to medium sands in the top 1-2 m. According to the Web Soil Survey data 

(http://websoilsurvey.nrcs.usda.gov/; Soil Survey Staff, 2017), soils at the site are 

comprised mostly of Barney-Bolent complex (39.3%), Platte-Bolent complex (22.7%), 

Bolent-Calamus complex (20.0%), and Gothenburg loam (12.9%). The study area is 

covered by three distinct land covers, namely cottonwood (a mixture of cottonwood 

(Populus sect. Aigeiros) and red cedar (Juniperus virginiana)), dry ridge grasses (e.g., Poa 

pratensis and Carex sp.), and wet slough grasses (e.g., Panicum virgatum and Bromus 

inermis). Figure 3.1 illustrates the gentile topographic relief present at the study site with 

elevation increasing westward from 589.3 to 592.0 m.a.s.l.. 

 
Figure 3.1. Study site (Shoemaker Island) located in the Platte River basin in central Nebraska, 

USA.  

https://mesonet.unl.edu/
http://websoilsurvey.nrcs.usda.gov/
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 The Alda 3W station (established in 1995) is located in the dry ridge grass area, 

measures hourly global irradiance, air temperature, relative humidity, wind speed, and 

precipitation (Figure 3.1). Weather data (2013-2016) at the Alda 3W station were retrieved 

from the High Plains Regional Climate Center (HPRCC) (https://hprcc.unl.edu/). Hourly 

and daily reference evapotranspiration (ETr) were computed for the tall (alfalfa) reference 

crop using the ASCE standardized Penman-Monteith equation (Allen et al., 2005b). The 

site also contained 16 shallow monitoring wells installed along two parallel transects 

(~1200 m in length). Neighboring monitoring wells had separation distances ranging 

between 5 and 300 m within each transect (Figure 3.1). Hourly water table elevations have 

been recorded at each monitoring well since June 1, 2013 using vented pressure transducers 

by Level TROLL 500 (In-Situ Inc., Fort Collins, Colorado, USA), which do not require 

barometric pressure correction (Yue et al., 2016). A stationary cosmic-ray neutron probe 

(CRNP) (model CRS 2000/B, HydroInnova LLC, Albuquerque, NM, USA) was installed 

next to the Alda 3W station (Figure 3.1) on October 7, 2014. The CRNP measures hourly 

moderated neutron counts, which are converted into near surface SWC (Zreda et al., 2008, 

2012). Lastly, a mobile CRNP capable of 1-minute level moderated neutron counts (Franz 

et al. 2015) was used to make spatial SWC maps of the study area on select sampling dates. 

 

3.4 Methods 

In order to achieve the main objective of this study, we combined remote sensing, 

proximal sensing, and in-situ sensors to explore the connections between ETa, SWC, and 

DTWT. Daily ETa was estimated at the study site using the METRIC model with Landsat 

https://hprcc.unl.edu/
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8 images during 4 growing seasons (2013-2016). Spatial SWC maps were made using 

roving CRNP surveys from October 2014 through November 2015 (see Table 3.1 for 

survey dates). Groundwater data from 16 monitoring wells were used to construct DTWT 

maps (2013-2016) for the study site using Simple Kriging (SK) interpolation method. In 

addition, the normalized difference vegetation index (NDVI) was calculated from Landsat 

8 images for the 4 growing seasons (2013-2016). Based on the boundaries of the three land 

cover classes, the spatial average value of each variable (ETa, SWC, DTWT, and NDVI) 

was extracted from each dataset for each land cover class on the days whenever the ETa 

products were available, and statistical relationships between ETa and state variables were 

explored. Lastly, following the estimates from simple statistical models using NDVI and 

SWC, daily and growing season ETa was calculated for the study area, and the results were 

compared with daily and growing season METRIC ETa interpolated by the cubic spline 

method detailed in Allen et al., (2005a). The following sections provide further details on 

the methods used in this study.  

Table 3.1. Roving CRNP survey dates at the study site. 

Survey Number  Date 

1 2014/11/21 

2 2014/12/05 

3 2015/05/12 

4 2015/05/23 

5 2015/07/21 

6 2015/07/24 

7 2015/08/13 

8 2015/08/31 

9 2015/09/03 

10 2015/09/13 
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3.4.1 Spatiotemporal estimation of ETa using METRIC  

METRIC is a satellite-based image-processing model that estimates ETa as a 

residual of a surface energy balance (Allen et al., 2007). METRIC uses the principles and 

techniques originated in the Surface Energy Balance Algorithms for Land (SEBAL), a 

widely used ETa estimation model, developed by Bastiaanssen and others (Bastiaanssen, 

1995; Bastiaanssen et al., 1998). METRIC uses weather-based ETr to establish energy 

balance conditions at a “cold” pixel, which is a primary difference between METRIC and 

SEBAL. In contrast, SEBAL assumes all available energy is converted to evaporation at a 

temperature similar to that of a local water body for the “cold” condition of the image 

(Allen et al., 2007). In both METRIC and SEBAL methods energy consumed by ETa is 

calculated as the residual of the surface energy equation: 

LE = Rn – G – H    (1) 

where LE is the latent heat energy (W/m2) consumed by ETa; Rn is the net radiation (W/m2); 

G is the ground heat flux (W/m2) conducted into the ground; and H is the sensible heat flux 

(W/m2) convected into the air. Satellite-measured narrow-band reflectance and surface 

temperature are used to compute Rn. Ground heat flux is derived from Rn, surface 

temperature, and vegetation indices. Sensible heat flux is estimated from surface 

roughness, surface temperature ranges, and wind speed using buoyancy correction. Finally, 

LE is calculated as the residual of the Eq. (1) (see Allen et al., 2007 for more detailed 

information). LE is estimated at the exact time of the satellite overpass for each pixel. ETa 

is then calculated by dividing LE by latent heat of vaporization: 
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ETinst = 3600
LE

λρw
    (2) 

where ETinst is the instantaneous ET (mm h-1); 3600 converts seconds to hours; ρw is the 

density of water (~1000 kg m-3); and λ is the latent heat of vaporization (J kg-1) that can be 

computed using Ts, which is the surface temperature (K): 

λ = [2.501 – 0.00236(Ts – 273.15)] × 106 (3) 

The reference ET fraction (ETrF) for each pixel is calculated as the ratio of the 

computed ETinst from each pixel to the hourly ETr: 

ETrF =
ETinst

ETr
     (4) 

We note that ETrF is very similar to the well-known crop coefficient (Kc), and is used to 

extrapolate ETa from the image time to periods of 24 hours or longer (Allen et al., 2007). 

Lastly, in order to calculate the daily ETa over 24 hours, ETrF values for each individual 

pixel were multiplied by the daily ETr values computed from the weather data, assuming 

consistency between ETrF at overpass time and ETrF for the 24-hour period (Allen et al., 

2007): 

ETa = ETrF × ETr    (5) 

Further technical details on SEBAL and METRIC can be found elsewhere (e.g., Allen et 

al., 2011, 2005a, 2007; Bastiaanssen et al., 2005; Bastiaanssen, 1995; Bastiaanssen et al., 

1998; Irmak et al., 2012).  

In this study, the METRIC model was applied based to Landsat 8 images (30 m 

spatial resolution) to determine the spatial ETa across the study area. However, due to 
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cloudiness conditions, we were not able to use all available Landsat 8 images for the study 

site. Between 2013 and 2016, we used 25 Landsat 8 images that contained zero percent 

cloudiness over the study area. A summary of Landsat 8 images used in the study is given 

in Table 3.2. The results of the METRIC model are presented in sections 3.1 and 3.2. 

 

Table 3.2. Landsat 8 images used in this study with their Path and Row. 

Date Path Row Date Path Row 

2013/06/10 29 32 2015/03/12 29 32 

2013/06/26 29 32 2015/04/29 29 32 

2013/07/03 30 32 2015/06/16 29 32 

2013/07/12 29 32 2015/07/18 29 32 

2013/08/20 30 32 2015/08/03 29 32 

2013/08/29 29 32 2015/09/04 29 32 

2013/09/21 30 32 2016/06/02 29 32 

2013/10/07 30 32 2016/06/18 29 32 

2014/03/09 29 32 2016/07/20 29 32 

2014/06/13 29 32 2016/08/21 29 32 

2014/07/15 29 32 2016/10/08 29 32 

2014/09/17 29 32 2016/10/24 29 32 

2014/10/03 29 32    

 

 

3.4.2 Spatiotemporal observations of DTWT using monitoring well data 

Hourly groundwater level data obtained from 16 monitoring wells (Figure 3.1), 

during 4 growing seasons (2013-2016), were used to observe DTWT fluctuations at 

different locations across the study area. A SK method has been shown to be an accurate 

method for DTWT spatial interpolations (Sun et al., 2009; Zimmerman et al., 1999). 

Therefore, in this study, the SK method was used to produce DTWT maps for days when 
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ETa maps were available from the METRIC model (see Table 3.2 for dates). The DTWT 

maps are summarized in section 3.3. 

 

3.4.3 Spatiotemporal estimates of SWC using the stationary and mobile CRNP 

 Ten mobile CRNP surveys were carried out at the site to estimate SWC from 

October 2014 through November 2015. The roving CRNP system was mounted to an all-

terrain vehicle driven at the speeds of 8-15 km hr-1 at ~15-20 m spacing for each reading 

of the moderated neutron counts. It required about 180 minutes to complete the survey of 

the study area. The mobile CRNP records epithermal neutron intensity integrated over one-

minute counting intervals (Franz et al., 2015). The change in epithermal neutron intensity 

is inversely correlated to the mass of hydrogen in the measurement volume (Zreda et al., 

2012). The authors note that SWC changes are by far the largest contributor to the changes 

in hydrogen mass (McJannet et al., 2014). Numerous validation studies across the globe 

(Bogena et al., 2013; Franz et al., 2012, 2016; Hawdon et al., 2014) have shown the CRNP 

to have area-average measurement uncertainty of less than 0.03 cm3cm-3, within the top 

0.3 m of soil profile, validated against a variety of industry standard SWC point scale 

probes. The measurement volume of the CRNP is roughly a disk, with a ~250 m radius 

circle and penetration depths of 0.15 to 0.40 m (Köhli et al., 2015) depending on local 

conditions. For simplicity, a constant penetration depth of 0.3 m was assumed for all 

surveys.  

In order to provide a SWC map, a spatial map of neutron intensity was first 

estimated, and then a calibration function was applied following Franz et al., (2015). The 
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neutron intensity map was created in two steps. First, a drop-in-the-bucket preprocessing 

step was applied, where a dense grid was generated (here 20 by 20 m) and all raw data 

points were found within a certain radius (here 50 m). Then, the average of all raw data 

found within the search radius was assigned to the grid center. This oversampling approach 

is necessary for sharpening the image quality and is a common strategy used in remote 

sensing analyses (see Chan et al., 2014) when overlapping area-average observations are 

collected, like the CRNP in this study. Next, an inverse-distance-weighted approach was 

used on the resampled 20 m grid to produce a neutron intensity estimate. The gridded 

neutron intensity estimate was converted to SWC following Franz et al., (2015). The 

authors refer the readers to the rapidly growing CRNP literature (see Zreda et al., 2012) 

instead of providing full details of the methodology here for the purpose of brevity. The 

hourly stationary CRNP data were processed in the same manner. Finally, spatial SWC 

maps were produced on the same days as the METRIC ETa dates by merging the stationary 

time series and spatial maps using linear regression for each grid location following (Franz 

et al., 2015).  

 

3.5 Results 

Figure 3.2 provides a summary of time series for daily rainfall, ETr, DTWT, and 

stationary CRNP-estimated SWC between 2013 and 2016. In addition, spatial averages of 

ETa, DTWT, and SWC are also provided for each of the three land covers. Individual maps 

for each state variable and flux are discussed in the following sections. First, we will 

explore the relationships between ETa, DTWT, and SWC. Only the 2016 growing season 
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maps are provided here for conciseness (Figures 3.3-3.6); whereas, the maps for 2013-2015 

are provided in the supplemental material, and their data are used in the following analyses. 

Lastly, the METRIC model produces ETrF (Kc) maps; therefore, spatial relationships 

among ETrF and DTWT and SWC are also explored.  

  
Figure 3.2. a) Daily P, ETr, and average daily ETa in satellite overpass days in different land 

covers, b) average depth to the water table (DTWT), based on groundwater observation data, in 

different land covers, and c) continuous SWC measured by stationary CRNP and average SWC in 

different land covers measured by CRNP rover. 
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3.5.1 Spatiotemporal observations of ETrF  

The METRIC model was applied to 25 Landsat 8 images during 4 growing seasons 

(2013-2016). The spatial ETrF values were sampled at different locations across the study 

area during production of ETa maps. Figure 3.3 illustrates ETrF maps of the study site in 

2016, produced by the METRIC method. Generally, ETrF ranges from 0 to about 1.1, 

where 1.0 indicates equivalency with the tall (alfalfa) reference ET. Figure 3.3 also displays 

the boundaries of the 3 distinct vegetation types as shown in Figure 3.1. Based on the 

processed images, cottonwood areas tended to have higher ETrF values compared to the 

other two land covers, especially the dry ridge grass area in the early (March-April-May 

(MAM)) and late growing season (September-October (SO)). However, in the mid growing 

season (JJA), the grass areas usually had higher ETrF values. We note that the pattern of 

ETrF was highly variable between and within seasons, subject to meteorological conditions 

and moisture availability in the soil and shallow alluvial aquifer. Section 4.1 explores these 

correlations explicitly. 
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Figure 3.3. Sample ETrF maps of study site in 2016, produced by METRIC method (rest of ETrF 

maps can be found in supplemental materials). 

 

3.5.2 Spatiotemporal observations of ETa 

Figure 3.4 illustrates ETa maps of the study site in 2016 generated using the 

METRIC method. Because ETrF maps were used to make the ETa maps, similar 

spatiotemporal patterns as the ones of ETrF are shown in the ETa maps. Figure 3.2a 

illustrates the spatially averaged ETa rate values for different land covers with minimal 
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differences in the average ETa amongst those land covers. Figure 3.2a also illustrates the 

daily ETr values calculated from the ASCE standardized Penman-Monteith equation. We 

note that average ETa values for the different land covers were always less than ETr, 

indicating that water limitations existed across the study site during the study period. 

 
Figure 3.4. Sample ETa maps of study site in 2016, produced by METRIC method (rest of ETa 

maps can be found in supplemental materials). 
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3.5.3 Spatiotemporal observations of DTWT 

Figure 3.5 presents the 2016 DTWT maps corresponding to the ETa observation 

dates. Figure 3.2b illustrates the average DTWT values for different land covers, indicating 

that DTWT was deepest in the dry ridge grass area, which tended to have slightly higher 

land elevation (Figure 3.1). The wet slough area had the shallowest DTWT during the 

observation period. Visual observations of the DTWT maps in Figure 3.5 indicate no clear 

spatial patterns. We suspect this may be due to the limited number of observation wells 

and spatial interpolation technique, as well as heterogeneous vegetation conditions.  
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Figure 3.5. Sample DTWT maps of study site in 2016 based on groundwater observations (rest of 

DTWT maps can be found in supplemental materials). 

 

3.5.4 Spatiotemporal observations of SWC 

The hourly moderated neutron counts from the stationary CRNP measurements 

were converted into SWC (Figure 3.2c) following standard correction procedures and 

calibration methods (Zreda et al., 2012). Figure 3.6 illustrates the 2016 SWC maps 
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interpolated from the roving and stationary CRNP. In order to provide SWC maps on the 

same days as ETa, a linear regression procedure was used to compare each 20 m grid 

location from the rover surveys to the fixed CRNP values following Franz et al., (2015).  

 
Figure 3.6. Sample SWC maps of study site in 2016 based on CRNP SWC data (rest of SWC 

maps can be found in supplemental materials). 
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Figure 3.7a illustrates the spatial distribution of correlation coefficient (R2) values. 

Figure 3.7b shows the cumulative distribution function (CDF) of R2 and associated p values 

for each 20 m grid location. Figure 3.7b illustrates that approximately 60% of grid cells 

have R2 > 0.50 and 65% of grid cells had p values < 0.05. The area with the poorest 

performance of the regression was in the wet slough area, where there were minimal 

temporal changes in the SWC during the rover surveys (i.e., they were always wet). The 

SWC maps in Figure 3.6 clearly illustrate that SWC increased from the southern to northern 

part of the study area, meaning that the wet slough and dry ridge grass areas had higher 

SWC values compared to the cottonwood area during all the rover CRNP surveys. The 

SWC patterns in general followed the elevation contours at the site (Figure 3.1). Figure 

3.2c also illustrates the average SWC values for each land cover on the days of the Landsat 

overpass dates and stationary CRNP SWC. The stationary CRNP SWC data were closest 

to the dry ridge grass SWC. The spatial average of SWC also indicates that the cottonwood 

area had the lowest SWC values and the wet slough had the highest SWC values. 
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Figure 3.7. a) Spatial distribution of linear R2 values using the rover SWC survey value and fixed 

SWC CRNP value for a 20 m grid. b) CDF of grid R2 and p values from linear regression. 

 

 

3.6 Discussion 

 The METRIC method was applied to generate a total of 25 daily ETa maps based 

on available Landsat images having no cloud coverage over the study area during 4 

growing seasons (2013-2016). Ten rover CRNP SWC surveys, from October 2014 through 

November 2015 (Table 3.1), were conducted. Statistically combining the rover surveys 
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with the stationary CRNP data allowed us to generate daily SWC maps. Daily DTWT maps 

were generated during the 4 growing seasons (2013-2016) from the 16 well locations. The 

paucity of available Landsat data and CRNP surveys underscores the challenge of using 

spatially exhaustive but temporally limited data to construct a continuum of ETa. With 

respect to the Landsat satellite, the 16-day overpass and cloud contamination issues can 

greatly reduce the number of images to use in the temporal interpolation. Likewise, the 

roving CRNP is often limited by field access and labor availability. The DTWT spatial 

interpolation method is limited by the localized conditions of the well data and the number 

of available wells. Therefore, strategies to combine infrequent spatial data and spatially 

limited temporal point data remain an important challenge in order to generate 

spatiotemporal data that can be utilized by models. In order to overcome this challenge, the 

next sections evaluate the use of continuous sensor data with simple linear regression 

models to make spatiotemporal predictions for ETa. Lastly seasonal estimations regarding 

land cover average ETa are discussed. 

 

3.6.1 Relationships between ETa and ETrF with SWC, DTWT, and NDVI 

Figures 3.8 to 3.10 illustrate the linear correlations of ETa and ETrF with SWC, 

DTWT, and NDVI averaged over each of the three land cover types. It is worth mentioning 

that, while the correlation of ETa and ETrF with DTWT and NDVI were examined during 

4 growing seasons (2013-2016), the correlation of ETa and ETrF with SWC were explored 

just during 2 growing seasons (2015-2016) due to the lack of SWC data.  
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Figure 3.8. a) The relationship between ETa (mm/day) and SWC (m3/m3), b) relationship between 

ETa (mm/day) and DTWT (m), c) relationship between ETa (mm/day) and NDVI, d) relationship 

between ETrF and SWC (m3/m3), e) relationship between ETrF and DTWT (m), and f) 

relationship between ETrF and NDVI in the cottonwood area at the study site. 

 

In general, both ETa and ETrF had stronger linear correlations with SWC than with 

DTWT and NDVI, specifically in the wet slough area (ETa, R
2=0.393, p=0.052) and dry 

ridge grass (ETa, R
2=0.323, p=0.086) area as compared to the cottonwood area (R2=0.136, 

p=0.295). This confirms the limiting control and importance of SWC on ETa in semi-arid 

areas with shallow rooted vegetation. A much weaker relationship can also be seen in the 
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cottonwood area. The results show no relationships between ETa and ETrF and DTWT in 

any of the three land covers.  

 
Figure 3.9. a) The relationship between ETa (mm/day) and SWC (m3/m3), b) relationship between 

ETa (mm/day) and DTWT (m), c) relationship between ETa (mm/day) and NDVI, d) relationship 

between ETrF and SWC (m3/m3), e) relationship between ETrF and DTWT (m), and f) 

relationship between ETrF and NDVI in the dry ridge grasses area at the study site. 

 

We note the data limitations of DTWT and spatial resolution differences make this 

analysis and conclusion challenging here and in surface-groundwater studies in general. 

The analysis between ETa and ETrF versus NDVI in all the land covers show strong 
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correlations, specifically between ETrF and NDVI (R2>0.33, p<0.003).  Lastly we note that 

ETa may be nonlinearly dependent on SWC and DTWT. Therefore, the use of spatial 

averages may mask the nonlinearity, causing the low R2 values. 

 
Figure 3.10. a) The relationship between ETa (mm/day) and SWC (m3/m3), b) relationship 

between ETa (mm/day) and DTWT (m), c) relationship between ETa (mm/day) and NDVI, d) 

relationship between ETrF and SWC (m3/m3), e) relationship between ETrF and DTWT (m), and 

f) relationship between ETrF and NDVI in the wet slough area at the study site. 
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3.6.2 Estimation of area average daily and seasonal ETa  

 For illustrative and comparative purposes, a simple multivariate linear regression 

model between daily CRNP SWC, Landsat NDVI, and weather station ETr, was used to 

estimate daily growing season ETa for 2015 and 2016 averaged over the study area. The 

statistical model of ETa was compared to the more commonly used cubic spline method 

for estimating daily and seasonal ETa (Allen et al., 2005a), see Figure 3.11. Given the 16-

day overpass time of Landsat 8, daily ETa time integration of observations are uncertain 

and subject to local conditions that may further limit ETa. The statistical model was 

estimated using the 2015 METRIC data resulting in ETrF = 0.575*NDVI + 1.088*SWC – 

0.0287, R2 = 0.98, p = 0 and RMSE = 0.238. The model was then validated against the 

2016 METRIC data resulting in R2 = 0.88, p = 0 and RMSE = 1.077. Figures 3.11a, c, d 

indicate excellent daily and seasonal ETa agreement in 2015, which was a wet year as 

shown by Figure 3.2c. However, the drier SWC conditions of 2016 indicate different daily 

and seasonal ETa, Figures 3.11b, c, and d. Seasonal ETa estimated with the statistical model 

was about 20% lower (720 vs 580 mm) as compared to the ETa from cubic spline method 

in 2016. Unfortunately, no independent surface energy balance methods were available for 

the study area to confirm the predicted reduction in 2016 seasonal ETa. We note that due 

to the weak correlation between DTWT and ETa, DTWT was not included in the multi-

linear regression equation. We also note that deep SWC changes below the sensitivity of 

the CRNP (~>0.4 m) were not accounted for in the statistical model. Of particular 

importance, DTWT observations between 2015 and 2016 (Figure 3.2b) indicate further 

drawdown in 2016 accounting for some of the water used by the vegetation and supporting 

the higher seasonal ETa values from METRIC and the cubic spline time integration. Future 
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work at sites with direct surface energy balance observations (i.e. eddy covariance) should 

better quantify whether these differences in seasonal ETa noted between the cubic spline 

method using METRIC data and observations are real and which ones are closest to reality. 

The study presented here was a first attempt to illustrate the connections and dependence 

between remotely sensed fluxes and proximal sensing/in-situ observations of state 

variables. The main point is that local SWC conditions on the ground between 16-day 

Landsat overpasses may lead to significant differences in daily and seasonal ETa estimates 

of riparian study sites.   
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Figure 3.11. Daily and seasonal ETa estimates of the study site during calibration growing 

seasons a) (2015) and b) validation growing seasons (2016) using the standard METRIC 

interpolation method vs NDVI & CRNP-SWC statistical model. c) Daily ETa and d) 

seasonal values are also compared. 
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3.7 Conclusions 

Calibration, validation, and evaluation of complex physically based models with 

surface and groundwater connections require rich spatiotemporal datasets of water fluxes 

and state variables. This paper attempts to generate novel spatiotemporal datasets of ETa, 

SWC, and DTWT using a combination of remote (METRIC model) and proximal sensing 

methods (fixed and roving CRNP) in a well instrumented riparian study site in central 

Nebraska. Comparison of the datasets reveal that SWC and ETa were linearly correlated 

for shallow rooted vegetation at the study site. The correlation between DTWT and ETa 

was weak but may be limited by the localized conditions of the groundwater observations. 

Lastly a simple statistical model of daily ETa vs. the calculated daily ETa from the 

commonly used cubic spline method indicate similar seasonal ETa values in the wet 

conditions of 2015. Comparison of the two temporal interpolation methods in the drier 

conditions of 2016 indicate a 20% difference in seasonal ETa. The difference underscores 

the need for better accounting for local state variable changes between the 16-day overpass 

of the Landsat 8 satellite. 
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CHAPTER 4: COMPARISON OF THE AUTOMATICALLY 

CALIBRATED GOOGLE EVAPOTRANSPIRATION 

APPLICATION - EEFLUX AND THE MANUALLY 

CALIBRATED METRIC APPLICATION 

 

4.1 Abstract 

 

Reliable evapotranspiration (ET) estimation is a key factor for water resources 

planning, attaining sustainable water resources use, irrigation water management, and 

water regulation. During the past few decades, researchers have developed a variety of 

remote sensing techniques to estimate ET. The Earth Engine Evapotranspiration Flux 

(EEFlux) application uses Landsat imagery archives on the Google Earth Engine platform 

to calculate the daily evapotranspiration at the local field scale (30 m). Automatically 

calibrated for each Landsat image, the EEFlux application design is based on the widely 

vetted Mapping Evapotranspiration at high Resolution with Internalized Calibration 

(METRIC) model and produces ET estimation maps for any Landsat 5, 7 or 8 scene in a 

matter of seconds. In this research we evaluate the consistency and accuracy of EEFlux 

products that are produced when standard US and global assets are used. Processed 

METRIC products for 58 scenes distributed around the western and central United States 

were used as the baseline for comparison. The goal of this paper is to compare the results 

from EEFlux with the standard METRIC applications to illustrate the utility of the EEFlux 

products as they currently stand. Given that EEFlux is derived from METRIC, differences 

are expected to occur due to differing calibration methods (automatic versus manual) and 

differing input datasets. The products compared include the fraction of reference ET 
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(ETrF), actual ET (ETa), and surface energy balance components net radiation (Rn), ground 

heat flux (G), and sensible heat flux (H), as well as Ts, albedo and NDVI. The product 

comparisons show that the intermediate products of Ts, Albedo, and NDVI, and also Rn 

have similar values and behavior for both EEFlux and METRIC. Larger differences were 

found for H and G. Despite the more significant differences in H and G, results show that 

EEFlux is able to calculate ETrF and ETa values comparable to the values from trained 

expert METRIC users for agricultural areas. For non-agricultural areas such as semi-arid 

rangeland and forests, the automated EEFlux calibration algorithm needs to be improved 

in order to be able to reproduce ETrF and ETa that is similar to the manually calibrated 

METRIC products. 

 

4.2 Introduction 

Reliable and accurate estimates of water consumption are essential for water rights 

management, water resources planning and water regulation, especially for agricultural 

fields that may have specifically attached water rights (Allen et al., 2011a). Over the past 

few decades, a variety remote sensing techniques have been used to quantify 

evapotranspiration (ET) at the field and larger scales over large range of agricultural and 

nonagricultural land uses (Allen et al., 2011a; Anderson et al., 2011; Bastiaanssen, 1998; 

Courault et al., 2005; Kustas and Norman, 1996; Morton, 1983). Among the types of 

remote sensing of ET models, surface energy balance techniques are one of the more 

popular methods used. The Mapping Evapotranspiration at high Resolution with 

Internalized Calibration (METRIC) application (Allen et al., 2007a, 2005a) is one of the 
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more widely used surface energy balance models in operational practice, and employs 

principles and techniques that originated with the Surface Energy Balance Algorithms for 

Land (SEBAL) (Bastiaanssen et al., 1998). 

The accuracy of METRIC ET has been evaluated using measured ET by Lysimeter, 

Bowen ratio and eddy covariance towers in a range of locations of the U.S. (Allen et al., 

2015, 2007b; Geli et al., 2017; Irmak et al., 2011; Medellín-Azuara et al., 2018; Morton et 

al., 2013; Tasumi et al., 2005). Because results of comparisons between METRIC ET and 

measured ET have been promising, and due to the physically-based employment of surface 

energy balance algorithms, METRIC is considered to be a well-established model that has 

been routinely applied as part of the water resources management operations in a number 

of states and federal agencies (Irmak et al., 2012). However, applying METRIC can often 

be time-consuming, since a well-trained expert is typically needed to calibrate and run the 

model. Calibration of METRIC is required for each Landsat scene and image date and 

entails the determination and assignment of extreme ranges in ET (high and low) to 

locations within an image. The step calibrates temperature-impacted components of the 

surface energy balance to reproduce the assigned ET range. Different users who might not 

be equally experienced can produce different results. To reduce the uncertainties associated 

with the calibration process, and to save time and money, Allen et al., 2013 and Morton et 

al., 2013, designed automated calibration algorithms for the METRIC model to generate 

ET estimates comparable to ones manually produced from well-trained users. Comparison 

results have suggested that an automated calibration algorithm can estimate ET comparable 

to the ET estimated by trained users, and the variation within populations of ET produced 
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with automated calibrations have mimicked the variation produced manually between 

different users (Morton et al., 2013). 

Although the automated calibration of the METRIC application reduces some of 

the expertise requirements of ET production, users still have to accrue and assemble a 

variety of inputs including the satellite image, land cover map, digital elevation map, local 

weather data, and soils map, from a variety of sources and platforms. There can be a 

significant amount of pre-processing required for the different inputs before applying the 

algorithms. The input and data handling can be one of the most time consuming parts of 

the overall process. As a means to automate data assembling and handling and to speed the 

ET computation process, the Earth Engine Evapotranspiration Flux (EEFlux) application 

was designed and developed on the Google Earth Engine platform based on the METRIC 

model (Allen et al., 2007a). EEFlux utilizes Landsat imagery archives stored on Google 

Earth Engine, a cloud-based platform (see Allen et al., 2015). A web-based interface 

provides users with the ability to request ET estimation maps for any Landsat 5, 7 or 8 

scene in a matter of seconds. EEFlux also provides rapid generation of intermediate product 

maps, such as surface temperature (Ts), normalized difference vegetation index (NDVI) 

and albedo maps for given Landsat scene that may be useful for other applications besides 

ET. 

The goal of this paper is to compare the results from EEFlux with standard 

manually calibrated METRIC products to assess the utility and accuracy of EEFlux 

products as they currently stand. Though METRIC does not represent ground-truth, its 

standing in the scientific community is established, making it a reasonable benchmark for 
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comparison. Further, given that EEFlux is derived from METRIC, it is useful to examine 

the differences between their products. Differences are expected due to the differing energy 

balance calibrations (automatic versus manual), versions of METRIC, geographic location 

and differing input datasets. Because of the continuing evolution of both METRIC and 

EEFlux, there are algorithmic differences beyond the energy balance calibrations, but these 

generally tend to have more minor impacts on the final ET products relative to calibration 

and input differences. Therefore, this paper does not seek to trace each algorithmic 

difference but touches on some of the significant known differences. The products 

compared include the fraction of reference ET (ETrF), actual ET (ETa), net radiation (Rn), 

ground heat flux (G), sensible heat flux (H), Ts, albedo and NDVI. Those products were 

gathered from 58 METRIC scenes in the western and central United States that were 

produced by trained individuals.  

 

4.3 Materials and Methods 

4.3.1 Study Area 

A suite of images from different parts of the western and central U.S. were chosen 

to compare the performance of automatically calibrated EEFlux to manually calibrated 

METRIC, and locations within agricultural fields and non-agricultural land areas were 

examined. These areas were selected due to the importance of water in the areas and the 

significant impacts of water on the study areas’ economies. In this comparison analysis, 

we used existing processed METRIC images that had been developed to identify or address 
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particular water resources issues in key areas. Analyzing different regions of the U.S. 

provided a basis for examining regional differences in comparison statistics. 

In total 58 Landsat image dates were evaluated in this study. Figure 4.1 shows 

the Landsat scene locations and study areas of the research. In central Nebraska, areas 

along the Platte River were the focus of study, where 15 Landsat images (Paths 29-30 and 

Rows 31-32), during summer 2002, were utilized. In western Wyoming, agricultural areas 

along the Green River were evaluated. That area falls into 2 Landsat rows on a single path 

(Path 37 and Rows 30-31). We utilized 9 Landsat images during summer 2011 for the 

comparison. Southern California was the third study area (Path 39 and Row 37). Due to its 

very dry climate, the California location had the highest frequency of cloudless images, so 

that we were able to evaluate 13 Landsat images from late January 2014 to early November 

2014. A large irrigated area in southern Idaho comprised a fourth area containing 15 

Landsat image dates from year 2016 (Path 40 and Row 30). That location represents a large 

irrigated region receiving irrigation water from the Snake River and from the Snake Plain 

Aquifer. The fifth location was comprised of agricultural areas in the Klamath basin of 

southern Oregon and northern California where we evaluated 6 Landsat images (Path 45 

and Row 31), during the growing season of year 2004. 
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Figure 4.1. Locations of Landsat Scenes evaluated in this study. 

 

4.3.2 Methods 

Because the objective of this study was the comparison between the 

automatically calibrated EEFlux products to manually produced METRIC products, we 

discuss the primary differences between the two applications and refer the readers to 

primary documents that explain the details of the METRIC model (e.g., Allen et al., 2011a, 

2007a, 2005a; Bastiaanssen et al., 1998; Irmak et al., 2012). We note that the Google Earth 

Engine-based EEFlux application is still being actively developed by the University of 

Nebraska-Lincoln (UNL), University of Idaho (UI) and Desert Research Institute (DRI). 

EEFlux production data from version 0.9.4 was used in this study.  
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In this section, we briefly explain the sampling methods we used and introduce the 

criteria used to compare EEFlux and METRIC products. We note that METRIC algorithms 

have been improved upon and evolved over time, with applications of METRIC in the 

study areas occurring over a number of different years (2002-2016), and using different 

versions of METRIC algorithms. The different versions of METRIC include differences in 

produced energy balance components that are generally minor, for example, in the 

calculation of ground heat flux and aerodynamic roughness. 

 

4.3.2.1 Similarities and Differences between EEFlux and METRIC 

EEFlux employs primary METRIC algorithms that conduct a full energy balance 

at the land surface and calculate latent heat energy (LE, W/m2) on a pixel by pixel basis as 

a residual of the surface energy balance equation: 

LE = Rn – G – H    (1) 

where LE is heat energy used by water in its phase change from liquid to gas during the 

ETa process, Rn is net radiation flux density (W/m2); G is the ground heat flux density 

(W/m2) representing sensible heat conducted into the ground; and H is the sensible heat 

flux density (W/m2) convected into the air. LE is estimated at the exact time of the satellite 

overpass for each pixel. ETa is then calculated by dividing LE by the latent heat of 

vaporization: 

ETinst = 3600
LE

λρw
    (2) 



101 
  

  

where ETinst is the instantaneous ET flux (mm h-1); 3600 converts seconds to hours; ρw is 

the density of water (~1000 kg m-3); and λ is the latent heat of vaporization (J kg-1) that can 

be computed using Ts, which is the surface temperature (K): 

λ = [2.501 – 0.00236(Ts – 273.15)] × 106 (3) 

The ETrF is calculated for each pixel as the ratio of the computed ETinst from each pixel to 

the instantaneous tall crop reference evapotranspiration (ETr): 

ETrF =
ETinst

ETr
     (4) 

ETrF is used as a vehicle for extrapolating ET from the instant of the overpass to the 

surrounding 24-hour period. Lastly, daily ETa over the 24 hour period is calculated by 

multiplying ETrF values for each individual pixel by the daily ETr computed from local or 

gridded weather data, assuming consistency between ETrF at overpass time and ETrF for 

the 24-hour period (Allen et al., 2007a): 

ETa = ETrF × ETr    (5) 

Equivalency of instantaneous and 24-hour ETrF is applied to land uses that typically have 

an adequate water supply for full ET, including agriculture and wetland classes. For most 

other classes such as rangeland and forest, the well-known evaporative fraction, EF, 

(Crago, 1996) is used to extrapolate to the full day, where EF = ETinst/(Rn-G)inst. Both 

EEFlux and METRIC applications utilize hourly and daily ETr computed for the tall 

reference crop of alfalfa to convert ETrF to daily ETa, where the tall alfalfa reference 

approximates maximum, energy-limited ET from a well-watered, extensive surface of 
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vegetation. ETr is computed using the ASCE Standardized Penman-Monteith method 

(ASCE 2005). 

One of the primary differences between EEFlux and METRIC is in the use of  

sources of weather data in their calibration and calculations. METRIC generally uses 

ground-based hourly weather data from an agriculturally sited weather station to calculate 

ETr for the solution of the surface energy balance equation during calibration and 

estimation of any background evaporation caused by recent precipitation events. EEFlux 

uses gridded hourly and daily weather data stored on Earth Engine. For locations processed 

in the US, EEFlux uses North American Land Data Assimilation System (NLDAS) 

(https://ldas.gsfc.nasa.gov/nldas/) (Cosgrove et al., 2003) hourly weather data for 

calibration and GridMet gridded weather data (Abatzoglou John T., 2013) for determining 

background evaporation.  In California, EEFlux uses spatial California Irrigation 

Management Information System (CIMIS) (https://cimis.water.ca.gov/) daily weather 

data, if available for the particular date, instead of GridMet.  For locations outside of the 

conterminous United States, EEFlux uses the six-hourly CFSv2 operational analysis (Saha 

et al., 2013; Yuan et al., 2011) and the Climate Forecast System Reanalysis (CFSR) 

(http://cfs.ncep.noaa.gov/cfsr/) (Saha et al., 2010) gridded weather data for all calculations. 

The use of gridded weather data in EEFlux can explain, to some extent, differences 

between METRIC and EEFlux final products, including estimates for daily ETa. This is 

discussed in more detail in the following sections. More detailed information on METRIC 

and EEFlux ETr calculations is found elsewhere (Allen et al., 2005b, 2015; Blankenau, 

2017). 

https://ldas.gsfc.nasa.gov/nldas/
https://cimis.water.ca.gov/
http://cfs.ncep.noaa.gov/cfsr/
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During calibration, METRIC and EEFlux solve the energy balance equation by 

applying an estimate for ETa at low ET and high ET conditions and solving for H = Rn – 

G – LE. The low and high ET calibration end-points are referred to as hot and cold pixels. 

In METRIC, these end-points are searched for automatically or manually, and EEFlux, 

they are determined automatically. LE is computed by multiplying ETr by the assumed 

fraction of ETr at the calibration points (typically between 0 and 0.1 for the hot pixel and 

between 1 and 1.05 for the cold pixel). The estimate for instantaneous ETr does not have a 

large effect on the ETrF or ETa values, since ETrF is assigned to the end-point conditions. 

However, it does have an impact on the internally computed H, which is used to absorb 

and later correct for systematic biases in the other parameters, including Rn, G, albedo, 

aerodynamic roughness and ETr (Allen et al., 2007a). 

A significant internal difference between EEFlux and METRIC is in the way they 

calculate G. Some versions of METRIC evaluated calculated G by the following equations 

depending on the pixel leaf area index (LAI) value: 

G

Rn
= 0.05 + 0.18e‐0.521 LAI  (LAI ≥ 0.5)  (6a) 

G

Rn
=

1.80(Ts‐273.15)

Rn+0.084
   (LAI ˂ 0.5)  (6b) 

whereas later versions of METRIC calculated G as a function of sensible heat flux for LAI 

> 0.5 and equation 6b otherwise. Very recent versions of METRIC calculate G as a function 

of LAI only.  The version of EEFlux evaluated calculated G as: 

G = (0.1 + 0.17e‐0.55 LAI) × Rn    (7) 



104 
  

  

LAI is estimated from surface-corrected NDVI. Due to the differences in calculation of G, 

the G products often do not match well between METRIC and EEFlux. These differences 

are carried into the calibration of H, as previously described, but are generally factored 

back out during calculation of ETa due to the internal bias correction of METRIC and 

EEFlux.  This is shown later in the results.  

 METRIC and EEFlux use similar methods for estimating aerodynamic roughness 

length for momentum transfer, zom, used in calculating aerodynamic resistance in the 

calculation of H, sensible heat flow from the surface to the air. zom is estimated as a function 

of estimated LAI for agricultural land classes and as fixed values for nonagricultural 

classes. METRIC and EEFlux apply a Perrier (1982) roughness function for trees, where 

roughness is a convex function of amount of ground cover. Some versions of METRIC 

provide for local modification of land cover maps to specify orchard, vineyard and tall 

(corn) crops so that special estimation can be made for zom as well as albedo and surface 

temperature to account for shadowing in deep canopies.  

 

4.3.2.2 Sampling method and comparison criteria 

 For the comparisons, the highest percentage cloud-free images were selected for 

the five locations and, for the few images having minor cloud cover, a cloud mask was 

applied to avoid sampling from clouded areas. A minimum thermal threshold of 270 (K) 

was used to further screen sampling pixels to avoid thermal pixels lying near the edges of 

cloud masks or at the edge of gaps in Landsat 7 images caused by the Scan Line Corrector 

failure. Occasionally, thermal pixels in Landsat 7 images are contaminated by cubic 
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convolution-averaged non-data values stemming from the original native thermal 

resolution of 60 m. 

For the comparison, we randomly chose 1000 pixels from specified areas of interest 

in the Landsat scenes. These areas targeted primary agricultural areas and adjacent non-

agricultural areas comprised of rangeland or forests. National Land Cover Database 

(NLCD) (https://www.mrlc.gov/) raster data were used to distinguish between agricultural 

and non-agricultural land covers during sampling. Pixels designated as 81 and 82 NLCD 

class numbers were used to represent agricultural areas. Non-agricultural pixels were 

sampled from among all pixels not labeled 81 or 82 in the area of interest. We used a 7×7 

focal standard deviation on NDVI to avoid sampling from agricultural field edges, which 

usually contain mixed pixels, by selecting a pixel only when the standard deviation of the 

NDVI for those 49 pixels was less than 0.05. Pixels with negative values were removed 

from the sample selection.  

Root Mean Square Error (RMSE) and Coefficient of Determination (R2) were 

calculated for each set of data to compare EEFlux products with the same products from 

METRIC. In addition, slopes of EEFlux products vs. METRIC products with zero intercept 

were calculated to indicate when EEFlux underestimated or overestimated the products, on 

average, compared to METRIC. In this study, R2 values higher than 0.8, RMSE values less 

than 15% of the average magnitude of each product, and slope values between 0.9 to 1.1 

were conidered acceptable, in terms of expected error common to operationally produced 

spatial ET products (Allen et al., 2011a, 2011b, 2007a; Gonzalez-Dugo et al., 2009; Kalma 

et al., 2008). 

https://www.mrlc.gov/
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4.4 Results 

Five locations in the United States comprised of nine Landsat image scenes were 

used to compare the automatically calibrated EEFlux products to the manually calibrated 

METRIC products. Although the final and primary products of the applications are ETrF 

and ETa, we also compared intermediate products from the models including Ts, albedo, 

and NDVI, and the primary components of the energy balance: Rn, G, and H. EEFlux is a 

user-friendly web-based platform that enables users to download the intermediate products 

of Ts, albedo, and NDVI in addition to ETrF and ETa. Therefore, it is useful to confirm 

similarity with METRIC for those additional products. 

 We compared the intermediate and final products for each location and calculated 

R2, RMSE, and slopes relative to the METRIC products. Figure 4.2 shows an example 

comparison for each product sampled from within agricultural fields in Path 29 Row 32 in 

central Nebraska for a Landsat 5 (2002/06/28) image. Additional graphs of the same format 

as Figure 4.2 are included for each location studied in the Supplemental Figures 4.1-4.8. 
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Figure 4.2. Comparison between various components of EEFlux and METRIC models for 

agricultural fields located in central Nebraska (Path 29 Row 32, Landsat 5, 2002/06/28). 

 

The comparisons in Figure 4.2 indicate that the three intermediate products of Ts, 

Albedo, and NDVI have nearly identical values between EEFlux and METRIC. Their R2 

and slope values are nearly equal to 1 and they have very small RMSE values. The slope 

for NDVI is greater than 1 due to the particular METRIC version computing NDVI using 

top-of-atmosphere reflectance values rather than using surface reflectance values as is done 

in EEFlux. The Rn and H products are also similar between the two models, with R2 and 

slope close to 1. Considering the magnitudes of the two products, RMSE values are 

relatively small. The EEFlux version evaluated uses a different equation to compute G, as 
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compared to the METRIC version applied in Nebraska. Therefore, as expected, G values 

do not match well, with a positive offset in EEFlux estimates of about 20 W/m2; However, 

the R2 and RMSE values are still within the acceptable range. Moreover, due to the self-

reducing bias reduction used internally in EEFlux and METRIC, the systematic bias in G 

largely cancels out during production of ETrF (Allen et al., 2007b).  

The agreement found with the intermediate products and energy balance 

components are good indicators of strong correlation and similarity in algorithm 

performance between EEFlux and METRIC.  ETrF values from EEFlux and METRIC were 

very similar, with R2 and slope close to 1 and RMSE value of 0.03. This indicates similarity 

in the energy balance calibration performed in EEFlux via the automated scheme and the 

manually-determined calibration in METRIC. For daily ETa, however, EEFlux had a 

significant bias relative to METRIC, with RMSE exceeding 2 mm/d and slope of 1.3. The 

higher estimation of ETa from EEFlux, given similarity in ETrF, traces to the conversion 

of ETrF to ETa by multiplying by daily ETr, which is derived from synoptic gridded weather 

data in EEFlux as compared to being derived from local measured point or gridded weather 

data collected from agricultural environments. The general aridity of synoptic weather data, 

with generally lower humidity content and higher air temperature than experienced under 

irrigated conditions, especially in semiarid and arid climates (Jensen and Allen, 2016; 

Temesgen B. et al., 1999), causes overstatement of ETr by the Penman-Monteith 

combination reference equation that presumes a well-watered surface and associated air 

temperature and humidity parameters (ASCE-EWRI 2005). This is discussed more in a 

later section. 
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4.4.1 Overall Summary of EEFlux vs METRIC comparisons 

A summary of comparisons over all 58 images and five locations was compiled by 

combining all sampled data and calculating overall R2, RMSE, and slope values. For 

individual image and location comparisons, the reader is referred to Supplemental Tables 

4.1-4.6 that provide statistics for both agricultural and non-agricultural areas for each 

image date. Table 4.1 presents the overall R2, RMSE, and slope values for all products for 

agricultural and non-agricultural areas. Intermediate products of Ts, Albedo, and NDVI 

were relatively similar between agricultural and non-agricultural classes, with R2 and slope 

values close to 1 and with relatively small RMSE values. Rn estimates by EEFlux correlated 

well with those by METRIC, with an average R2 value of 0.93 and slope of 1.02 for 

agricultural areas and average R2 of 0.87 and slope of 1.02 for non-agricultural areas. 

Relative RMSE for Rn was less than 5%, on average, for Rn for both land covers. The other 

two energy balance components sampled (G and H) did not match as well between EEFlux 

and METRIC. The poor agreement for G is attributed to the previously noted differences 

between METRIC and EEFlux equations for G. Although the equations for G differed 

between EEFlux and the various METRIC versions, the average RMSE and slope indicate 

that EEFlux still calculated ETrF and ETa values that compared well to METRIC for 

agricultural areas, with R2 values of 0.82 and 0.76 for ETrF and ETa, respectively. The 

relatively good agreement for ETrF and the relatively poor agreement in H is partly 

explained by the systematic differences in estimates for G, which are embedded into the 

calibrated estimates for H, and that are then removed from the ET estimates during the ET 

production steps, due to the internal, systematic bias correction of METRIC and EEFlux. 

Differences in H are also traceable to the sources used to compute instantaneous ETr as 
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noted previously, where generally higher estimates in ETr in EEFlux produce lower values 

for H during the surface energy balance calibration. 

Because METRIC typically uses ground-based weather data for hourly and daily 

ETr calculation, and EEFlux uses gridded weather data sets to derive ETr, the calculated 

ETr values used in computations can be different due to differences in origin of weather 

data and aridity biases common to the gridded weather data sets. While several of the 

METRIC applications applied only a single ETr value for an entire Landsat image for both 

energy balance calibration and for interpolation to 24-hour periods, ETr values used in 

EEFlux can vary across the image through the gridded weather data that has an 

approximately 12 km grid spacing for NLDAS-2 hourly data, for CONUS, and 4 km grid 

spacing for GRIDMET 24-hour data. In order to explore differences among ETr values 

used in METRIC and EEFlux, we calculated averages of gridded ETr values for each image 

date and associated ratios of those average values to the typically single scene-wide 

METRIC ETr values. Table 4.1 summarizes average slopes of 24-hour EEFlux ETr values 

to METRIC ETr values. On average, over all five locations and the dates evaluated, the 

grid-based ETr ran higher than ground-based calculated ETr by ratios of 1.10 and 1.09 for 

agricultural and non-agricultural land uses, respectively. The approximately 10% higher 

ETr estimation by the gridded data suggests that general ET applications with EEFlux can 

be biased 10% high solely due to the aridity bias of the gridded data sets  (Blankenau, 2017; 

Lewis et al., 2014). This bias is the basis for ongoing studies and development of methods 

to identify and condition gridded data sets to remove aridity bias prior to calculation of 

reference ET, which represents near maximum ET in well-watered environments (Jensen 
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and Allen 2016). We further explored the ETr biases for each individual date and location 

as described later in the discussion section.  

Table 4.1. Average values for R2, RMSE, and slope for EEFlux vs. METRIC, based on a 

comparison over all data (Ag sample size = 47838, Non-Ag sample size = 35110). 

Product 

Average R2 Average Slope Average RMSE 

Ag Non-Ag Ag Non-Ag Ag Non-Ag 

Ts (K) 1.00 1.00 1.00 1.00 0.53 0.51 

Albedo 0.98 0.97 1.00 1.00 0.01 0.01 

NDVI 0.97 0.93 1.09 1.11 0.07 0.06 

Rn (W/m2) 0.93 0.87 1.02 1.02 26.77 31.63 

G (W/m2) 0.53 0.26 1.43 1.22 41.77 40.59 

H (W/m2) 0.47 0.37 1.03 0.94 69.02 71.53 

ETr (mm) --- --- 1.10 1.09 --- --- 

ETrF 0.82 0.45 0.94 0.64 0.13 0.21 

ETa (mm/day) 0.76 0.44 1.01 0.70 1.23 1.39 

 

4.4.2 ETrF and ETa examples 

 For most applications, the primary products of EEFlux and METRIC that are of 

most interest are ETrF and ETa. Therefore, this results section focuses on those two 

products. Figure 4.3 illustrates ETrF and ETa correlations and behavior between EEFlux 

and METRIC over individual sample points for two locations (central Nebraska and 

southcentral Idaho) and two Landsat systems for agricultural areas. The top two rows of 

graphs show good EEFlux calibration and estimation relative to the METRIC calibration 
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and estimation, producing relatively good R2, RMSE, and slope values. The lower row of 

graphs illustrates a poorer calibration where EEFlux substantially underestimated ETrF and 

ETa especially in the lower end of the ET spectrum, as reflected in poor R2, RMSE, and 

slope values. The poor agreement for the particular location and date indicate that the 

EEFlux automated calibration algorithms can fail under some conditions. As previously 

noted, those algorithms are under continued improvement by the UNL and UI developers. 

While the automated calibration of EEFlux is prone to producing poor calibrations under 

some circumstances, it should be noted that manually calibrated METRIC can also depart 

from the ground truth (Anderson et al., 2012). In the 2002/5/2 application shown in Figure 

4.3, the METRIC application diagnosed a substantial impact of recent rain on elevating 

minimum ETrF to no lower than 0.6 across the Landsat scene, even for bare soils. The 

EEFlux application, which used GRIDMET-based precipitation, did not diagnose that 

same evaporation residual, apparently due to low precipitation amounts present in the 

gridded data set, and EEFlux therefore projected minimum values for ETrF of 0.0. This last 

illustration illustrates some of the challenges associated with what are sometimes labeled 

as ‘wet’ images, where atmospheric conditions are clear for processing, but the land surface 

is relatively wet from recent precipitation events. 
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Figure 4.3. Examples of ETrF and ETa calibrations at agricultural fields in different locations. The 

upper two graphs: good calibration (P29 R31, Landsat 7, central Nebraska, 2002/9/8). The middle 

two graphs: relatively good calibration (P40 R30, Landsat 7, southcentral Idaho, 2016/9/27). The 

lower two graphs: poor calibration (P30 R31, Landsat 5, central Nebraska, 2002/5/2). 

 

In the following section, we explore the differences between EEFlux and METRIC 

by discussing average statistics determined for ETrF and ETa for each of five locations. 
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4.4.3 EEFlux ETrF vs METRIC ETrF 

 Table 4.2 provides a statistical summary for ETrF comparisons for each of the nine 

Landsat path and row locations evaluated that were located in five general USA locations. 

Statistics are provided for agricultural and non-agricultural land uses. Figure 4.4 illustrates 

average slope values for ETrF for the different locations and Figure 4.5 presents average 

RMSE values for ETrF. The supplemental Figure 4.9 provides similar plots showing 

average R2 values for ETrF. As shown in Table 4.2 and Figures 4.4 and 4.5, there was 

minor underestimation of ETrF values by EEFlux, relative to METRIC, within agricultural 

land uses for some locations. However, the results were generally good, and EEFlux, on 

average, is judged to have produced reasonably accurate and useful ETrF imagery, 

particularly in southern California, southern Oregon, the Green River area of Wyoming, 

and in southern Idaho, with average R2 values higher than 0.84 and average slope values 

larger than 0.93, and where, in some of the areas, slopes were nearly 1.00. Moreover, the 

RMSE values in these areas were almost all less than 10% of the average magnitudes of 

ETrF values (0-1.05). RMSE values of 10% are considered by Allen et al., 2011b and 

Jensen and Allen (2016) to be common to ET estimation and ET measurement. Within the 

agricultural fields in Nebraska, EEFlux performance was not as good or consistent as for 

the other locations. However, RMSE and R2 values are still within our acceptable range, 

except for one scene area which had an ETrF RMSE value of 0.28 and R2 value of 0.69. 

This was previously illustrated in Figure 4.3 and is explained by the impact of recent rains, 

where EEFlux underestimated ETrF for agricultural areas for several dates in central 

Nebraska. 
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 R2, slope and RMSE values in Table 4.2 and Figures 4.4 and 4.5 indicate that 

EEFlux ETrF values did not match METRIC ETrF values as strongly for non-agricultural 

land uses as they did for agricultural land uses. EEFlux tended to underestimate ETrF for 

all non-agricultural land covers sampled and produced RMSE values that were higher than 

those for agricultural land uses within the same Landsat scene. Some of the differences are 

due to different means for estimating soil heat flux, for aerodynamic roughness of natural 

vegetation systems, and potentially due to impacts of the digital elevation model (DEM) 

used to estimate solar radiation and aerodynamic behavior in complex terrain that is 

characteristic of natural systems. Differences are also attributed to the weather data sources 

used in the application of the evaporative fraction (EF) function to nonagricultural land 

uses, where a ratio of ETa to Rn – G is used to transform ETrF to 24-hour ETrF values, 

rather than assuming that 24-hour ETrF equals instantaneous ETrF as is done for 

agricultural land uses (Allen et al., 2007b). The typically stronger ETr from gridded 

weather data impacts this transformation. Causes of these differences, with location, 

continue to be investigated. 
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Table 4.2. Average values for R2, slope and RMSE for ETrF for each Landsat scene location 

evaluated. RMSE values are unitless. 

Path Row Year 
Processed 

Year 

Ag ETrF Non-Ag ETrF 

n R2 Slope RMSE n R2 Slope RMSE 

29 31 2002 2014 2003 0.84 0.80 0.16 1063 0.83 0.63 0.26 

29 32 2002 2014 2387 0.86 0.86 0.15 1309 0.32 0.42 0.30 

30 31 2002 2014 3187 0.69 0.72 0.28 1910 0.19 0.40 0.42 

30 32 2002 2014 3302 0.94 0.94 0.11 3906 0.50 0.55 0.28 

37 30 2011 2013 4815 0.84 0.93 0.11 915 0.52 0.61 0.18 

37 31 2011 2013 3608 0.89 1.05 0.10 1921 0.31 0.72 0.14 

39 37 2014 2014 10152 0.86 1.00 0.13 6311 0.61 0.81 0.14 

40 30 2016 2016 12164 0.89 0.95 0.10 12416 0.52 0.81 0.16 

45 31 2004 2011 5765 0.89 0.98 0.10 5759 0.49 0.70 0.18 

 

 

 
Figure 4.4. Average slope values for ETrF for EEFlux vs. METRIC for different locations and 

scenes for agricultural and nonagricultural land uses. 
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Figure 4.5. Average RMSE values for ETrF for EEFlux vs. METRIC for different locations and 

scenes for agricultural and nonagricultural land uses. 

 

4.4.4 EEFlux ETa vs METRIC ETa for Individual Locations 

Table 4.3 provides a statistical summary for ETa comparisons for the nine Landsat 

path and row locations evaluated, for both agricultural and non-agricultural land uses. 

Figures 4.6 and 4.7 show average slopes and RMSE values for ETa. Supplemental Figure 

4.10 provides similar plots for average R2 values for ETa. As shown in Table 4.3 and 

Figures 4.6 and 4.7, slope values increased over those for ETrF for both agricultural and 

non-agricultural areas for most of the locations investigated. As discussed previously, that 

is largely a consequence of ETr overestimation by use of the gridded weather data set 

(Blankenau, 2017; Lewis et al., 2014). R2 and slope values were generally within the 

acceptable accuracy range for agricultural areas. R2 values were mostly larger than 0.8 and 
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RMSE values were generally in the range of 0.9 to 1.1 mm/d, except one location where it 

was 0.69 mm/d. Most R2 values were less than 0.8 for non-agricultural land uses and RMSE 

values in all locations, except for southern California and southern Idaho, were larger for 

non-agricultural land uses as compared to agricultural lands. Slope values show that 

EEFlux tended to underestimate ETa for non-agricultural land uses everywhere except for 

southern Idaho. In general, ETa was substantially lower in non-agricultural land uses than 

in agricultural areas due to limits on ET imposed by precipitation amount. The agricultural 

areas sampled were generally all irrigated. 

 

Table 4.3. Average values for R2, slope and RMSE for 24-hour ETa for each Landsat scene 

location evaluated. RMSE values have units of mm/d. 

Path Row Year 
Processed 

Year 

Ag ETa Non-Ag ETa 

n R2 Slope RMSE n R2 Slope RMSE 

29 31 2002 2014 2003 0.84 0.92 0.93 1063 0.83 0.73 1.90 

29 32 2002 2014 2387 0.87 1.11 1.76 1309 0.39 0.54 2.33 

30 31 2002 2014 3187 0.50 0.69 1.89 1910 0.49 0.46 2.67 

30 32 2002 2014 3302 0.86 0.91 0.92 3906 0.52 0.57 1.78 

37 30 2011 2013 4815 0.83 0.91 1.11 915 0.58 0.54 1.58 

37 31 2011 2013 3608 0.87 1.02 0.88 1921 0.34 0.62 1.13 

39 37 2014 2014 10152 0.76 1.10 1.22 6311 0.51 0.96 0.97 

40 30 2016 2016 12164 0.82 1.13 1.29 12416 0.53 1.05 1.15 

45 31 2004 2011 5765 0.89 1.11 0.80 5759 0.54 0.82 0.86 
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Figure 4.6. Average slope values for ETa for EEFlux vs. METRIC for different locations and 

scenes for agricultural and nonagricultural land uses. 
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Figure 4.7. Average RMSE values (mm/d) for ETa for EEFlux vs. METRIC for different 

locations and scenes for agricultural and nonagricultural land uses. 

 

4.4.5 Time dependency of EEFlux performance  

 Because the study area in southern California had the broadest time series of 

processed images, we chose this location to explore the time dependency of EEFlux 

performance and to assess the impact of time of year on performances of the two processing 

systems. As described earlier we evaluated 13 processed Landsat 8 images for the southern 

California location. The first and last images evaluated were the 26th of January 2014 and 

the 10th of November 2014, respectively. Figure 4.8 shows R2, slope, and RMSE values for 

ETrF and ETa for agricultural and non-agricultural land uses for different comparison dates. 

Generally, there was not any statistical correlation between the performance of EEFlux as 
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compared to that of METRIC with time of year. While R2 values for both ETrF and ETa 

were always higher for agricultural land uses as opposed to non-agricultural land uses, no 

trends through time were detected. The slope values were similar over time for both 

agricultural and non-agricultural land uses. However, slopes for non-agricultural ETrF and 

ETa do show a slight trend, decreasing from March through November. RMSE values for 

ETrF, like R2 and slope values did not follow any visible trend during 2014 in the 

agricultural land uses in southern California. However, as observed in the bottom plot of 

Figure 4.8, RMSE values for ETa increased for both land covers during summer time, 

indicating larger differences between EEFlux ETa values and METRIC values during the 

primary growing season when ETa was higher.  
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Figure 4.8. a) R2 b) slope and c) RMSE values for EEFlux vs. METRIC for a series of 

comparison dates (Path 39 Row 37). 

 

4.5 Discussion 

Based on the comparison results, we conclude that the implementation of EEFlux on 

GEE, including the automated internal calibration, has been relatively successful. EEFlux 

ETrF and ETa results matched those from manually applied METRIC applications for most 

of the agricultural areas evaluated. For some dates within central Nebraska, EEFlux 

performance was poorer than for the other locations for agricultural land uses. Some of the 

increased error is due to fewer Landsat images processed for that region due to extensive 

cloud clover. In one location we were able to evaluate only 3 Landsat image dates (Path 29 
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Row 31) and for the other three Worldwide Reference System (WRS) scene areas we 

evaluated 4 image dates; whereas we evaluated 13 Landsat Image dates in California and 

15 image dates in Idaho. Having fewer image dates can result in more extreme means due 

to greater impacts of outliers and/or a smaller sample size. Other impacts, as noted, for 

central Nebraska is the tendency for more frequent and substantial rainfall during the 

growing season that increases the impact of background evaporation. This complicates the 

image calibration. In non-agricultural land uses, EEFlux did not match with METRIC as 

well as it did for agricultural land uses. This may be partially due to differences among G 

and H products and DEM sources used. As noted earlier, we evaluated EEFlux version 

0.9.4 and, as EEFlux is still in progress, the automated calibration algorithms are expected 

to be improved in the future, which should result in even more accurate ETrF and ETa 

estimates. 

 

4.6 Other Analyses 

4.6.1 Source of Reference ET Estimation 

Besides using ETr for internal energy balance calibration and computation, EEFlux 

uses gridded weather data to extrapolate instantaneous daily ETrF values to the 24-hour 

period, which is then multiplied by 24-hour ETr to calculate daily ETa values. Figure 4.9 

shows ratios of gridded ETr values versus the single ETr values generally used in METRIC 

computations for each image date and location. As shown in Figure 4.9, for most dates and 

locations, the average gridded ETr values used in EEFlux were higher than the associated 

single average gridded ETr values used by METRIC, with variation within each location 
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from about 0.9 to 1.3. As we discussed earlier, the average EEFlux-gridded ETr was larger 

than the METRIC calculated, ground-based ETr values by an average ratio of 1.10 and 1.09 

for agricultural and non-agricultural land uses, respectively. The higher 24-hour ETr 

estimation in EEFlux due to the gridded weather data source, leads to some degree of daily 

ETa overestimation. 

 
Figure 4.9. Ratio of calculated 24-hour ETr used in EEFlux (based on gridded weather data) to 

that used in the METRIC model (calculated from ground-based weather station data) for five 

different Landsat scene locations and comparison days. 

 

4.6.2 Impact of METRIC Calibration Style (User) on METRIC Estimation 

Some of the differences noted between ETrF and ETa from EEFlux vs. METRIC 

could stem from the semi-subjective behavior for METRIC estimates that are traceable to 

the particular individual user and situation responsible for the METRIC application and 

calibration. To explore the impact of METRIC user, two different METRIC users with 

varying experience and expertise in ET image production applied similar METRIC 

algorithms independently during two different time periods, where they calibrated two 

image dates in central Nebraska (Path 29 Row 32) for year 2015. Figure 4.10 shows the 
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results of comparisons for two processed Landsat 8 image dates for the agricultural land 

use. The top two comparisons belong to 18th of July and the two in the bottom belong to 

4th of September. While R2 of ETrF and ETa values are higher than 0.89 for both days, the 

RMSE and slope values are considered to be acceptable for only July 18th, and is not in the 

acceptable range for September 4th. The average R2 of ETrF and ETa values for combination 

of all the data were 0.78 and 0.73, respectively. The combined slope values were 0.9 for 

ETrF and 1.07 for ETa values, which do fall within the acceptable ranges. Scatter in the 

comparisons is due to small differences in the METRIC version used or in internal 

parameter settings in METRIC such as corrections for low albedo in crops such as corn 

that have deep canopies (Allen et al., 2007b). Combined RMSE values were 0.14 for ETrF 

and 0.98 mm/d for ETa values. A comparison of these average R2, slope and RMSE values 

with average values for EEFlux vs. METRIC summarized in Table.4.1, suggests that, for 

the locations evaluated, that the EEFlux automated calibration algorithm is generally able 

to estimate ETrF and ETa values for agricultural land uses that are comparable in accuracy 

and reproducibility to differences noted from METRIC when applied by different trained 

users. This finding is consistent with that of Medellín-Azuara 2018. 
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Figure 4.10. Comparison between METRIC products (ETrF and ETa) that were manually 

calibrated and produced by 2 different METRIC users. The top two comparisons are for 18th of 

July and the bottom two are for 4th of September. 

 

4.7 Summary and Conclusions 

The consistency and accuracy of ET products from the automatically calibrated 

Google Earth Engine EEFlux application were evaluated by comparing EEFlux products 

to those from manually calibrated METRIC images for 58 Landsat images. Sets of Landsat 

images from five study locations distributed across central and western USA included both 

agricultural and non-agricultural land uses. The agricultural areas sampled were typically 

irrigated. The comparison results show that EEFlux is able to calculate ETrF and ETa values 

in agricultural areas that are comparable to those produced by trained METRIC users and 

that are generally within accepted accuracy ranges. Differences between EEFlux and 

METRIC were larger for non-agricultural land uses showing room for improvement to the 
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EEFlux algorithms. Differences noted could, in part, be the result of EEFlux struggling to 

account for background evaporation at the hot pixel calibration end point. Hot pixel bias in 

the hot pixel assigned ETrF tends to affect the non-agricultural pixels more than 

agricultural pixels because the non-agricultural pixels tend to have lower ET and are 

therefore more impacted by error or bias in the overall surface energy balance. Another 

likely reason for the poorer performance for non-agricultural land uses is a bias introduced 

during the application of EF to extrapolate instantaneous ETrF to daily ETrF, as discussed 

earlier. The EF relies on the instantaneous and 24-hour ETr, Rn and G being accurate. We 

have established that both ETr and G estimates deviate between METRIC and EEFlux, so 

we would expect to have different results in the non-agricultural areas.  In fact, we should 

expect larger differences between METRIC and EEFlux in non-agricultural areas than in 

agricultural areas given that the instantaneous ETrF used in the agricultural areas is robust 

in the face of biased G and instantaneous ETr. While EEFlux is still a work in progress, it 

can be used to rapidly estimate ETa for areas of interest. However, it is important to be 

aware of biases in 24-hour ETa estimates due to aridity biases in the gridded weather data 

used by EEFlux. Results presented in this paper should provide a good overview of the 

general variability and error to be expected for ETrF and ETa estimates from EEFlux.  
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

 

5.1 Summary and Conclusion 

In this study, different techniques were used to estimate ETa at the field scale and 

also explored the relationships between ETa and some key hydrological state variables 

(e.g., soil water content and groundwater). Novel proximal and remote sensing datasets 

were combined with in-situ sensors to investigate spatiotemporal changes in ETa and what 

factors controlled it.  

In chapter 2, the feasibility of using inverse vadose zone modeling for field ETa 

estimation was investigated at a long-term agricultural monitoring site in eastern Nebraska. 

SWC data from both point sensors and the area-average were used to estimate ETa. The 

point scale SWC data were measured by in-situ sensors, theta probes (TP), and the area-

average SWC data were recorded by CRNP. In order to check the accuracy of the estimated 

values, the estimated ETa were compared to the measured ETa by an eddy-covariance tower 

at the same field. The results indicate reasonable estimates of daily and annual ETa but with 

varied soil hydraulic function parameterizations. The varied soil hydraulic parameters were 

expected given the heterogeneity of soil texture at the site and consistent with the principle 

of equifinality in hydrologic systems. While this study focused on one particular site, the 

framework can be easily applied to other SWC monitoring networks across the globe. 

In chapter 3, novel spatiotemporal datasets of ETa, SWC, and DTWT using a 

combination of remote (METRIC model) and proximal sensing methods (fixed and roving 

CRNP) were generated in a well instrumented riparian study site in central Nebraska. ETa 
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was estimated by applying METRIC model on Landsat images. Data from stationary and 

roving cosmic-ray neutron probes were used to generate spatial SWC maps. DTWT was 

made based on the groundwater data from a network of 16 observation wells. Comparison 

of the datasets reveal that SWC and ETa were linearly correlated for shallow rooted 

vegetation at the study site. The correlation between DTWT and ETa was weak but may be 

limited by the localized conditions of the groundwater observations. A simple statistical 

model of daily ETa vs. the calculated daily ETa from the commonly used cubic spline 

method indicate similar seasonal ETa values in the wet conditions of 2015. Comparison of 

the two temporal interpolation methods in the drier conditions of 2016 indicate a 20% 

difference in seasonal ETa. The difference underscores the need for better accounting for 

local state variable changes between the 16-day overpass of the Landsat 8 satellite. 

In chapter 4, the functionality of automatically calibrated EEFlux was evaluated by 

comparing the EEFlux products to 58 existing manually calibrated METRIC images in 

nine different locations. The comparison results showed that EEFlux is able to calculate 

ETrF and ETa values in agricultural areas comparable to the ones from trained expert 

METRIC users. Based on the comparisons, the EEFlux automated calibration algorithm 

needs to be improved in order to be able to calculate ETrF and ETa in non-agricultural areas 

as good as manually calibrated METRIC ones. While EEFlux is still a work in progress, it 

could be used to quickly estimate ETa for areas of interest but it is important to 

acknowledge and be aware of the biases due to the gridded weather data EEFlux is fed and 

be aware of the general variability and error expected in ETrF and ETa estimates.  
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5.2 Future Work 

For future research, the following recommendations are suggested based upon the 

experience gained while carrying out this research: 

 

 While the study in chapter 2 focused on one particular site, we believe the 

framework can be easily applied to other SWC monitoring networks across 

the globe, and in order to be more assured about the framework that would 

be ideal to evaluate the performance of framework elsewhere. 

 In chapter 3, based on the results, SWC and ETa were linearly correlated but 

the correlation between DTWT and ETa was weak at the study site. The 

results can be time, therefore, repeating the same study at the study site seems 

essential. Also the results can be site specific and applying the same method 

elsewhere is desirable. 

 Based on the comparisons, in chapter 4, the EEFlux automated calibration 

algorithm needs to be improved in order to be able to calculate ETrF and ETa 

in non-agricultural areas as good as manually calibrated METRIC ones. The 

differences between EEFlux and METRIC in non-agricultural areas could, in 

part, be the result of poor hot pixel selection and improvement in hot pixel 

selection might improve EEFlux functionality in non-agricultural areas 
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APPENDIX A: SUPPLEMENTAL TABLES 

Supplemental Table 4.1. R2 values for different products between EEFlux and METRIC by scene 

location and date for agricultural land uses. 

R2 (Agricultural Lands) 

Path Row Date Satellite Ts Albedo NDVI Rn G H ETr ETrF ETa 

29 31 6/28/2002 L5 1.00 0.98 0.99 0.72 0.87 0.94 --- 0.96 0.95 

29 31 8/15/2002 L5 1.00 0.95 0.99 0.29 0.88 0.73 --- 0.94 0.91 

29 31 9/8/2002 L7 0.98 0.96 0.99 0.61 0.66 0.90 --- 0.93 0.88 

29 32 5/3/2002 L7 0.98 0.98 0.99 0.79 0.03 0.83 --- 0.87 0.87 

29 32 6/28/2002 L5 1.00 0.99 0.99 0.86 0.82 0.92 --- 0.97 0.91 

29 32 8/15/2002 L5 1.00 0.97 1.00 0.66 0.84 0.87 --- 0.97 0.95 

29 32 9/8/2002 L7 0.99 0.97 0.99 0.69 0.57 0.93 --- 0.95 0.94 

30 31 5/2/2002 L5 0.97 0.90 0.97 0.62 0.75 0.53 --- 0.65 0.64 

30 31 6/11/2002 L7 0.99 0.96 0.96 0.87 0.31 0.91 --- 0.92 0.90 

30 31 7/29/2002 L7 0.98 0.88 0.96 0.83 0.44 0.94 --- 0.95 0.95 

30 31 9/15/2002 L7 0.97 0.95 0.94 0.74 0.71 0.54 --- 0.81 0.54 

30 32 5/2/2002 L5 0.99 0.91 0.96 0.75 0.14 0.84 --- 0.86 0.85 

30 32 6/11/2002 L7 0.99 0.95 0.93 0.87 0.08 0.95 --- 0.94 0.88 

30 32 7/29/2002 L7 1.00 0.93 0.99 0.91 0.86 0.98 --- 0.98 0.98 

30 32 9/15/2002 L7 0.98 0.95 0.94 0.79 0.75 0.75 --- 0.87 0.72 

37 30 7/15/2011 L5 0.98 0.85 0.86 0.10 0.71 0.52 --- 0.29 0.26 

37 30 7/23/2011 L7 0.99 0.99 0.96 0.26 0.77 0.48 --- 0.64 0.46 

37 30 8/16/2011 L5 1.00 0.99 0.99 0.91 0.63 0.80 --- 0.95 0.92 

37 30 9/1/2011 L5 1.00 0.97 0.99 0.61 0.61 0.73 --- 0.87 0.82 

37 30 9/25/2011 L7 1.00 0.96 0.98 0.84 0.33 0.81 --- 0.93 0.89 

37 31 7/15/2011 L5 1.00 1.00 0.98 0.43 0.85 0.83 --- 0.81 0.75 

37 31 7/23/2011 L7 1.00 1.00 0.99 0.61 0.79 0.80 --- 0.90 0.88 

37 31 8/16/2011 L5 1.00 0.99 0.99 0.93 0.79 0.95 --- 0.96 0.96 

37 31 9/1/2011 L5 1.00 0.99 0.99 0.68 0.70 0.88 --- 0.89 0.86 

39 37 1/26/2014 L8 1.00 0.98 0.98 0.79 0.50 0.99 --- 0.93 0.91 

39 37 2/11/2014 L8 1.00 0.99 0.98 0.85 0.53 0.98 --- 0.96 0.93 

39 37 3/15/2014 L8 1.00 0.99 1.00 0.86 0.33 0.92 --- 0.91 0.81 

39 37 3/31/2014 L8 1.00 0.99 1.00 0.94 0.63 0.99 --- 0.98 0.96 

39 37 4/16/2014 L8 1.00 0.99 1.00 0.96 0.48 0.99 --- 0.97 0.96 

39 37 5/2/2014 L8 1.00 0.99 1.00 0.94 0.17 0.96 --- 0.93 0.90 
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Supplemental Table 4.1. (continued) 

R2 (Agricultural Lands) 

Path Row Date Satellite Ts Albedo NDVI Rn G H ETr ETrF ETa 

39 37 6/19/2014 L8 1.00 1.00 1.00 0.97 0.08 0.88 --- 0.76 0.72 

39 37 7/21/2014 L8 1.00 1.00 1.00 0.96 0.01 0.97 --- 0.91 0.84 

39 37 8/6/2014 L8 1.00 1.00 1.00 0.96 0.00 0.98 --- 0.91 0.88 

39 37 8/22/2014 L8 1.00 1.00 1.00 0.88 0.73 0.97 --- 0.87 0.79 

39 37 9/23/2014 L8 1.00 0.99 0.98 0.89 0.16 0.72 --- 0.76 0.76 

39 37 10/9/2014 L8 1.00 0.99 0.99 0.88 0.46 0.99 --- 0.91 0.92 

39 37 11/10/2014 L8 1.00 0.98 0.99 0.76 0.59 0.98 --- 0.95 0.95 

40 30 3/19/2016 L7 0.99 0.94 0.99 0.64 0.31 0.72 --- 0.62 0.53 

40 30 4/20/2016 L7 1.00 0.96 1.00 0.92 0.75 0.99 --- 0.97 0.92 

40 30 5/30/2016 L8 1.00 0.97 1.00 0.94 0.53 0.90 --- 0.95 0.89 

40 30 6/7/2016 L7 0.99 0.94 0.99 0.94 0.72 0.98 --- 0.94 0.80 

40 30 6/23/2016 L7 0.99 0.97 0.99 0.94 0.27 0.95 --- 0.94 0.88 

40 30 7/1/2016 L8 0.99 0.95 0.99 0.85 0.76 0.92 --- 0.93 0.85 

40 30 7/9/2016 L7 0.99 0.97 0.99 0.93 0.43 0.96 --- 0.95 0.88 

40 30 7/25/2016 L7 1.00 0.96 1.00 0.95 0.65 0.99 --- 0.96 0.89 

40 30 8/2/2016 L8 0.99 0.96 0.98 0.90 0.21 0.90 --- 0.84 0.81 

40 30 8/10/2016 L7 1.00 0.99 1.00 0.96 0.72 0.96 --- 0.96 0.91 

40 30 8/18/2016 L8 0.99 0.95 0.99 0.92 0.06 0.98 --- 0.94 0.89 

40 30 9/11/2016 L7 0.98 0.95 0.99 0.81 0.10 0.88 --- 0.82 0.71 

40 30 9/19/2016 L8 1.00 0.94 1.00 0.83 0.67 0.96 --- 0.95 0.90 

40 30 9/27/2016 L7 0.99 0.94 1.00 0.73 0.66 0.97 --- 0.93 0.73 

40 30 10/21/2016 L8 0.98 0.93 1.00 0.40 0.85 0.93 --- 0.75 0.36 

45 31 4/30/2004 L5 1.00 0.99 0.98 0.89 0.72 0.79 --- 0.92 0.90 

45 31 6/1/2004 L5 0.99 0.95 0.97 0.79 0.81 0.74 --- 0.92 0.91 

45 31 8/4/2004 L5 1.00 0.99 0.99 0.90 0.77 0.93 --- 0.96 0.93 

45 31 8/20/2004 L5 1.00 0.98 0.99 0.90 0.85 0.96 --- 0.98 0.96 

45 31 9/21/2004 L5 0.99 0.98 0.99 0.83 0.79 0.87 --- 0.95 0.94 

45 31 10/7/2004 L5 0.99 0.98 0.96 0.85 0.69 0.93 --- 0.95 0.94 
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Supplemental Table 4.2. R2 values for different products between EEFlux and METRIC by scene 

location and date for non-agricultural land uses. 

R2 (Non-Agricultural Lands) 

Path Row Date Satellite Ts Albedo NDVI Rn G H ETr ETrF ETa 

29 31 6/28/2002 L5 1.00 0.95 1.00 0.71 0.69 0.90 --- 0.84 0.83 

29 31 8/15/2002 L5 1.00 0.96 0.99 0.67 0.65 0.83 --- 0.83 0.84 

29 31 9/8/2002 L7 0.99 0.94 0.99 0.54 0.52 0.92 --- 0.83 0.81 

29 32 5/3/2002 L7 0.97 0.98 0.99 0.69 0.67 0.11 --- 0.17 0.17 

29 32 6/28/2002 L5 1.00 0.95 1.00 0.77 0.39 0.82 --- 0.68 0.65 

29 32 8/15/2002 L5 1.00 0.95 0.99 0.61 0.37 0.85 --- 0.73 0.74 

29 32 9/8/2002 L7 0.98 0.93 0.99 0.44 0.35 0.77 --- 0.62 0.62 

30 31 5/2/2002 L5 0.93 0.59 0.85 0.02 0.17 0.01 --- 0.12 0.12 

30 31 6/11/2002 L7 0.98 0.81 0.91 0.50 0.38 0.89 --- 0.87 0.86 

30 31 7/29/2002 L7 0.94 0.73 0.79 0.47 0.00 0.86 --- 0.83 0.83 

30 31 9/15/2002 L7 0.94 0.64 0.93 0.14 0.33 0.85 --- 0.67 0.70 

30 32 5/2/2002 L5 0.97 0.63 0.83 0.08 0.29 0.08 --- 0.18 0.16 

30 32 6/11/2002 L7 0.97 0.72 0.89 0.42 0.18 0.75 --- 0.75 0.76 

30 32 7/29/2002 L7 0.96 0.69 0.91 0.41 0.00 0.91 --- 0.75 0.75 

30 32 9/15/2002 L7 0.97 0.65 0.95 0.26 0.21 0.74 --- 0.49 0.49 

37 30 7/15/2011 L5 1.00 1.00 0.99 0.91 0.38 0.68 --- 0.78 0.79 

37 30 7/23/2011 L7 1.00 0.99 0.99 0.87 0.64 0.30 --- 0.71 0.69 

37 30 8/16/2011 L5 1.00 0.99 0.99 0.94 0.36 0.60 --- 0.84 0.83 

37 30 9/1/2011 L5 1.00 0.99 0.98 0.79 0.44 0.32 --- 0.71 0.72 

37 30 9/25/2011 L7 0.99 0.98 0.97 0.76 0.46 0.47 --- 0.69 0.62 

37 31 7/15/2011 L5 1.00 0.99 1.00 0.93 0.53 0.76 --- 0.85 0.85 

37 31 7/23/2011 L7 1.00 0.99 1.00 0.92 0.55 0.55 --- 0.85 0.84 

37 31 8/16/2011 L5 1.00 0.98 0.99 0.83 0.18 0.65 --- 0.64 0.57 

37 31 9/1/2011 L5 1.00 0.99 0.99 0.86 0.17 0.80 --- 0.75 0.78 

39 37 1/26/2014 L8 1.00 0.96 0.56 0.71 0.37 0.76 --- 0.38 0.38 

39 37 2/11/2014 L8 1.00 0.97 0.69 0.66 0.34 0.60 --- 0.57 0.58 

39 37 3/15/2014 L8 1.00 0.96 0.86 0.63 0.25 0.42 --- 0.10 0.09 

39 37 3/31/2014 L8 1.00 0.94 0.93 0.70 0.16 0.79 --- 0.33 0.33 

39 37 4/16/2014 L8 1.00 0.96 0.96 0.71 0.02 0.44 --- 0.24 0.24 

39 37 5/2/2014 L8 1.00 0.97 0.94 0.79 0.17 0.39 --- 0.27 0.26 
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Supplemental Table 4.2. (continued) 

R2 (Non-Agricultural Lands) 

Path Row Date Satellite Ts Albedo NDVI Rn G H ETr ETrF ETa 

39 37 6/19/2014 L8 1.00 0.98 0.93 0.82 0.02 0.25 --- 0.12 0.12 

39 37 7/21/2014 L8 1.00 0.98 0.96 0.83 0.12 0.65 --- 0.32 0.31 

39 37 8/6/2014 L8 1.00 0.98 0.88 0.77 0.08 0.78 --- 0.41 0.37 

39 37 8/22/2014 L8 1.00 0.97 0.95 0.68 0.21 0.82 --- 0.64 0.77 

39 37 9/23/2014 L8 1.00 0.95 0.86 0.66 0.11 0.48 --- 0.35 0.35 

39 37 10/9/2014 L8 1.00 0.97 0.88 0.76 0.02 0.92 --- 0.73 0.72 

39 37 11/10/2014 L8 1.00 0.92 0.90 0.66 0.51 0.88 --- 0.33 0.33 

40 30 3/19/2016 L7 0.98 0.94 0.97 0.62 0.23 0.83 --- 0.48 0.49 

40 30 4/20/2016 L7 0.98 0.92 0.96 0.69 0.46 0.85 --- 0.72 0.73 

40 30 5/30/2016 L8 1.00 0.97 0.97 0.69 0.37 0.68 --- 0.65 0.63 

40 30 6/7/2016 L7 0.99 0.97 0.96 0.90 0.25 0.96 --- 0.88 0.89 

40 30 6/23/2016 L7 0.98 0.89 0.95 0.80 0.15 0.74 --- 0.62 0.62 

40 30 7/1/2016 L8 0.99 0.87 0.98 0.83 0.32 0.75 --- 0.60 0.61 

40 30 7/9/2016 L7 0.98 0.84 0.91 0.81 0.12 0.62 --- 0.61 0.60 

40 30 7/25/2016 L7 0.99 0.88 0.98 0.84 0.22 0.93 --- 0.85 0.84 

40 30 8/2/2016 L8 0.99 0.91 0.92 0.76 0.02 0.76 --- 0.77 0.77 

40 30 8/10/2016 L7 1.00 0.97 0.99 0.89 0.10 0.94 --- 0.88 0.88 

40 30 8/18/2016 L8 0.99 0.91 0.97 0.76 0.12 0.94 --- 0.75 0.77 

40 30 9/11/2016 L7 0.98 0.93 0.92 0.63 0.04 0.82 --- 0.55 0.53 

40 30 9/19/2016 L8 0.99 0.93 0.99 0.58 0.21 0.82 --- 0.81 0.81 

40 30 9/27/2016 L7 0.97 0.90 0.95 0.60 0.21 0.86 --- 0.57 0.60 

40 30 10/21/2016 L8 0.96 0.82 0.97 0.30 0.56 0.70 --- 0.21 0.19 

45 31 4/30/2004 L5 0.99 0.97 0.96 0.75 0.50 0.21 --- 0.31 0.33 

45 31 6/1/2004 L5 1.00 0.96 0.98 0.84 0.74 0.02 --- 0.41 0.41 

45 31 8/4/2004 L5 1.00 0.99 0.95 0.80 0.46 0.44 --- 0.59 0.59 

45 31 8/20/2004 L5 1.00 0.97 0.98 0.75 0.30 0.58 --- 0.63 0.62 

45 31 9/21/2004 L5 1.00 0.96 0.97 0.76 0.59 0.18 --- 0.42 0.47 

45 31 10/7/2004 L5 1.00 0.97 0.93 0.68 0.64 0.39 --- 0.43 0.45 
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Supplemental Table 4.3. Slope values for different products between EEFlux and METRIC by 

scene location and date for agricultural land uses. 

Slope (Agricultural Lands) 

Path Row Date Satellite Ts Albedo NDVI Rn G H ETr ETrF ETa 

29 31 6/28/2002 L5 1.00 0.99 1.15 1.03 1.55 1.35 1.14 0.82 0.94 

29 31 8/15/2002 L5 1.00 1.01 1.15 1.01 1.44 2.07 1.09 0.74 0.80 

29 31 9/8/2002 L7 1.00 1.00 1.22 1.02 1.45 0.99 1.15 0.88 1.01 

29 32 5/3/2002 L7 1.00 1.00 1.15 0.98 1.38 1.25 0.98 0.53 0.52 

29 32 6/28/2002 L5 1.00 0.98 1.14 1.04 1.57 1.00 1.30 1.00 1.29 

29 32 8/15/2002 L5 1.00 0.99 1.14 0.99 1.42 1.57 1.14 0.75 0.85 

29 32 9/8/2002 L7 1.00 0.99 1.20 1.03 1.44 0.96 1.27 0.91 1.15 

30 31 5/2/2002 L5 1.00 1.01 1.16 0.98 1.70 1.37 0.94 0.55 0.51 

30 31 6/11/2002 L7 1.00 1.00 1.14 0.99 1.55 1.39 0.92 0.70 0.64 

30 31 7/29/2002 L7 1.00 0.99 1.14 1.05 1.55 1.15 1.14 0.89 1.01 

30 31 9/15/2002 L7 1.00 1.05 1.21 0.97 1.33 1.75 1.05 0.85 0.87 

30 32 5/2/2002 L5 1.00 1.00 1.15 0.99 1.45 1.01 0.92 0.81 0.74 

30 32 6/11/2002 L7 1.00 1.01 1.16 1.01 1.38 1.09 0.97 0.80 0.78 

30 32 7/29/2002 L7 1.00 0.99 1.12 1.06 1.64 1.31 1.11 1.00 1.10 

30 32 9/15/2002 L7 1.00 1.04 1.20 0.99 1.36 1.50 0.98 1.02 0.99 

37 30 7/15/2011 L5 1.00 1.01 1.13 1.07 1.46 1.95 1.06 0.96 1.01 

37 30 7/23/2011 L7 1.00 1.02 1.14 1.06 1.43 2.39 0.95 0.91 0.86 

37 30 8/16/2011 L5 1.00 1.01 1.13 0.97 1.31 1.51 0.94 0.82 0.77 

37 30 9/1/2011 L5 1.00 1.01 1.15 1.01 1.32 1.44 0.90 1.03 0.91 

37 30 9/25/2011 L7 1.00 1.04 1.22 0.97 1.14 0.95 1.03 1.05 1.08 

37 31 7/15/2011 L5 1.00 1.01 1.10 1.06 1.52 1.68 1.05 1.00 1.05 

37 31 7/23/2011 L7 1.00 1.02 1.13 1.05 1.41 1.52 0.95 1.02 0.97 

37 31 8/16/2011 L5 1.00 1.01 1.11 1.01 1.29 1.18 0.94 1.13 1.06 

37 31 9/1/2011 L5 1.00 1.01 1.14 1.03 1.51 1.36 0.92 1.03 0.95 

39 37 1/26/2014 L8 1.00 1.00 1.21 1.03 1.21 0.77 1.27 1.28 1.53 

39 37 2/11/2014 L8 1.00 0.99 1.17 1.04 1.38 0.88 1.39 1.01 1.32 

39 37 3/15/2014 L8 1.00 0.99 1.11 1.04 1.29 0.85 1.60 1.01 1.49 

39 37 3/31/2014 L8 1.00 0.99 1.09 1.04 1.22 0.96 1.32 1.04 1.26 

39 37 4/16/2014 L8 1.00 0.99 1.07 1.05 1.26 1.02 1.31 0.95 1.14 

39 37 5/2/2014 L8 1.00 0.99 1.04 1.05 1.24 1.08 1.31 0.79 0.90 
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Supplemental Table 4.3. (continued) 

Slope (Agricultural Lands) 

Path Row Date Satellite Ts Albedo NDVI Rn G H ETr ETrF ETa 

39 37 6/19/2014 L8 1.00 0.99 1.00 1.05 1.33 1.03 1.14 0.72 0.75 

39 37 7/21/2014 L8 1.00 0.99 1.00 1.05 1.31 0.82 1.13 1.06 1.03 

39 37 8/6/2014 L8 1.00 0.99 1.01 1.06 1.67 1.10 0.96 0.76 0.71 

39 37 8/22/2014 L8 1.00 0.99 1.08 1.04 1.92 0.39 1.20 0.96 1.15 

39 37 9/23/2014 L8 1.00 1.00 1.08 1.05 1.70 1.53 1.06 0.57 0.60 

39 37 10/9/2014 L8 1.00 1.00 1.14 1.06 1.58 0.73 1.19 1.09 1.30 

39 37 11/10/2014 L8 1.00 1.00 1.19 1.05 1.54 1.15 1.20 0.96 1.16 

40 30 3/19/2016 L7 1.00 0.99 1.00 0.99 1.58 1.17 1.36 0.85 1.13 

40 30 4/20/2016 L7 1.00 0.99 1.00 1.02 1.21 0.94 1.27 1.07 1.23 

40 30 5/30/2016 L8 1.00 1.00 1.00 1.00 1.27 0.79 1.05 0.96 0.91 

40 30 6/7/2016 L7 1.00 1.00 1.00 1.01 1.66 0.76 1.18 0.97 1.12 

40 30 6/23/2016 L7 1.00 1.00 1.00 1.01 1.57 0.60 1.17 1.01 1.10 

40 30 7/1/2016 L8 1.00 0.99 1.00 1.03 1.67 0.63 1.27 1.03 1.30 

40 30 7/9/2016 L7 1.00 0.99 1.00 1.03 1.65 0.48 1.29 0.97 1.20 

40 30 7/25/2016 L7 1.00 0.99 1.00 1.01 1.90 0.66 1.31 0.95 1.24 

40 30 8/2/2016 L8 1.00 1.00 0.99 1.00 2.12 1.12 1.16 0.79 0.88 

40 30 8/10/2016 L7 1.00 0.99 1.00 0.99 1.81 0.77 1.19 0.86 1.01 

40 30 8/18/2016 L8 1.00 0.99 0.99 1.03 2.09 0.75 1.15 0.95 1.06 

40 30 9/11/2016 L7 1.00 0.99 0.99 1.02 1.43 0.70 1.37 1.10 1.37 

40 30 9/19/2016 L8 1.00 0.99 1.00 1.02 1.43 0.75 1.34 0.98 1.29 

40 30 9/27/2016 L7 1.00 0.97 1.00 1.04 1.99 1.52 0.88 0.90 0.80 

40 30 10/21/2016 L8 1.00 0.98 0.99 1.05 1.79 0.77 1.65 1.00 1.63 

45 31 4/30/2004 L5 1.00 0.99 1.13 0.97 1.36 1.04 1.23 0.84 1.03 

45 31 6/1/2004 L5 1.00 1.00 1.10 0.99 1.24 1.01 0.99 1.04 1.03 

45 31 8/4/2004 L5 1.00 0.99 1.11 1.01 1.33 1.17 1.14 0.92 1.04 

45 31 8/20/2004 L5 1.00 0.99 1.12 1.01 1.07 0.96 1.32 1.00 1.32 

45 31 9/21/2004 L5 1.00 0.98 1.16 1.07 1.29 1.00 1.15 1.06 1.21 

45 31 10/7/2004 L5 1.00 0.97 1.22 1.09 1.44 1.14 1.19 1.06 1.26 
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Supplemental Table 4.4. Slope values for different products between EEFlux and METRIC by 

scene location and date for non-agricultural land uses. 

Slope (Non-Agricultural Lands) 

Path Row Date Satellite Ts Albedo NDVI Rn G H ETr ETrF ETa 

29 31 6/28/2002 L5 1.00 0.99 1.16 1.02 1.52 1.59 1.16 0.64 0.74 

29 31 8/15/2002 L5 1.00 0.99 1.21 0.99 1.24 1.38 1.08 0.58 0.62 

29 31 9/8/2002 L7 1.00 0.99 1.23 1.02 1.23 1.16 1.19 0.63 0.72 

29 32 5/3/2002 L7 1.00 1.00 1.15 0.98 1.21 1.40 0.99 0.28 0.28 

29 32 6/28/2002 L5 1.00 0.98 1.15 1.04 1.43 1.06 1.33 0.76 0.99 

29 32 8/15/2002 L5 1.00 0.99 1.21 0.98 1.26 1.34 1.14 0.45 0.51 

29 32 9/8/2002 L7 1.00 0.99 1.22 1.03 1.19 1.11 1.28 0.62 0.79 

30 31 5/2/2002 L5 1.00 0.99 1.15 0.99 1.60 1.90 0.93 0.17 0.16 

30 31 6/11/2002 L7 1.00 1.01 1.14 1.00 1.54 1.82 0.94 0.54 0.49 

30 31 7/29/2002 L7 1.00 0.99 1.16 1.06 1.52 1.33 1.14 0.68 0.77 

30 31 9/15/2002 L7 1.00 1.03 1.22 0.97 1.47 1.83 1.13 0.35 0.36 

30 32 5/2/2002 L5 1.00 1.00 1.14 0.99 1.52 1.26 0.91 0.52 0.47 

30 32 6/11/2002 L7 1.00 1.00 1.15 1.02 1.51 1.43 1.04 0.57 0.58 

30 32 7/29/2002 L7 1.00 0.99 1.15 1.07 1.53 1.26 1.11 0.74 0.82 

30 32 9/15/2002 L7 1.00 1.01 1.22 1.00 1.45 1.38 1.08 0.51 0.53 

37 30 7/15/2011 L5 1.00 1.01 1.14 0.99 1.46 1.53 1.02 0.50 0.50 

37 30 7/23/2011 L7 1.00 1.02 1.18 0.99 1.19 1.44 0.90 0.63 0.56 

37 30 8/16/2011 L5 1.00 1.01 1.18 0.98 1.23 1.27 0.89 0.66 0.56 

37 30 9/1/2011 L5 1.00 1.01 1.20 1.00 1.17 1.21 0.85 0.61 0.51 

37 30 9/25/2011 L7 1.00 1.03 1.33 0.97 1.02 0.88 0.99 1.05 0.99 

37 31 7/15/2011 L5 1.00 1.00 1.11 0.99 1.34 1.40 1.03 0.55 0.53 

37 31 7/23/2011 L7 1.00 1.02 1.16 0.99 1.05 1.09 0.96 0.71 0.61 

37 31 8/16/2011 L5 1.00 1.01 1.11 1.01 0.93 0.80 0.93 1.28 1.10 

37 31 9/1/2011 L5 1.00 1.01 1.16 1.03 1.25 1.20 0.95 0.64 0.55 

39 37 1/26/2014 L8 1.00 1.00 1.17 1.02 0.91 0.62 1.19 1.31 1.54 

39 37 2/11/2014 L8 1.00 0.99 1.11 1.03 1.31 1.07 1.36 1.02 1.36 

39 37 3/15/2014 L8 1.00 0.99 1.03 1.04 0.84 0.75 1.36 0.74 0.98 

39 37 3/31/2014 L8 1.00 0.99 0.99 1.05 0.91 0.87 1.14 0.87 0.98 

39 37 4/16/2014 L8 1.00 0.99 0.95 1.06 0.90 0.79 1.16 0.90 1.03 

39 37 5/2/2014 L8 1.00 0.99 0.93 1.04 0.87 0.77 1.16 0.98 1.14 
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Supplemental Table 4.4. (continued) 

Slope (Non-Agricultural Lands) 

Path Row Date Satellite Ts Albedo NDVI Rn G H ETr ETrF ETa 

39 37 6/19/2014 L8 1.00 0.99 0.90 1.05 0.93 0.72 1.03 0.86 0.88 

39 37 7/21/2014 L8 1.00 1.00 0.94 1.04 0.82 0.68 0.95 1.37 1.30 

39 37 8/6/2014 L8 1.00 0.99 0.91 1.06 1.08 0.84 0.94 0.99 0.90 

39 37 8/22/2014 L8 1.00 0.99 1.00 1.04 1.43 0.62 1.24 0.96 1.20 

39 37 9/23/2014 L8 1.00 0.99 0.98 1.05 1.14 0.99 1.08 0.50 0.53 

39 37 10/9/2014 L8 1.00 1.00 1.04 1.05 1.23 0.81 1.21 0.59 0.70 

39 37 11/10/2014 L8 1.00 0.97 1.16 1.07 1.23 1.21 1.25 0.29 0.35 

40 30 3/19/2016 L7 1.00 0.99 1.00 0.98 1.53 1.15 1.37 0.47 0.64 

40 30 4/20/2016 L7 1.00 1.00 1.00 1.01 1.62 0.92 1.00 1.32 1.33 

40 30 5/30/2016 L8 1.00 1.00 1.00 0.99 1.40 0.95 0.88 1.24 1.12 

40 30 6/7/2016 L7 1.00 1.00 1.00 1.01 1.50 0.84 1.12 1.02 1.13 

40 30 6/23/2016 L7 1.00 1.00 1.00 1.00 1.23 0.85 1.06 1.18 1.32 

40 30 7/1/2016 L8 1.00 1.00 0.99 1.02 1.29 0.67 1.17 1.27 1.59 

40 30 7/9/2016 L7 1.00 0.99 0.99 1.02 1.32 0.81 1.23 1.38 1.68 

40 30 7/25/2016 L7 1.00 0.99 1.00 1.01 1.43 0.88 1.25 0.84 1.06 

40 30 8/2/2016 L8 1.00 0.99 0.99 1.00 1.44 0.97 1.14 0.72 0.80 

40 30 8/10/2016 L7 1.00 0.99 0.99 0.98 1.60 0.90 1.15 0.81 0.93 

40 30 8/18/2016 L8 1.00 0.99 0.98 1.03 2.14 0.71 1.12 0.97 1.09 

40 30 9/11/2016 L7 1.00 0.99 0.99 1.02 1.22 0.73 1.18 0.96 1.17 

40 30 9/19/2016 L8 1.00 0.99 0.99 1.02 1.48 0.99 1.18 0.80 0.98 

40 30 9/27/2016 L7 1.00 0.98 0.99 1.02 2.13 1.35 0.92 0.81 0.74 

40 30 10/21/2016 L8 1.00 0.99 0.99 1.04 1.87 1.00 1.61 0.63 1.02 

45 31 4/30/2004 L5 1.00 0.99 1.24 1.00 1.18 0.96 1.24 0.69 0.85 

45 31 6/1/2004 L5 1.00 1.00 1.20 1.00 1.07 1.02 0.99 0.72 0.70 

45 31 8/4/2004 L5 1.00 0.99 1.23 1.02 1.13 1.06 1.18 0.68 0.79 

45 31 8/20/2004 L5 1.00 0.99 1.25 1.04 1.06 0.96 1.33 0.84 1.10 

45 31 9/21/2004 L5 1.00 0.98 1.35 1.09 1.24 0.96 1.14 0.73 0.83 

45 31 10/7/2004 L5 1.00 0.97 1.45 1.12 1.21 0.94 1.17 0.59 0.67 
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Supplemental Table 4.5. RMSE values for different products between EEFlux and METRIC by 

scene location and date for agricultural land uses. 

RMSE (Agricultural Lands) 

Path Row Date Satellite Ts Albedo NDVI Rn G H ETr ETrF ETa 

29 31 6/28/2002 L5 0.20 0.00 0.08 25.41 33.69 44.75 --- 0.15 0.91 

29 31 8/15/2002 L5 0.16 0.00 0.10 20.16 21.25 158.87 --- 0.21 1.19 

29 31 9/8/2002 L7 0.51 0.00 0.10 19.53 31.35 23.49 --- 0.08 0.55 

29 32 5/3/2002 L7 0.43 0.00 0.03 16.69 45.08 68.84 --- 0.22 1.72 

29 32 6/28/2002 L5 0.16 0.00 0.08 27.06 33.06 25.68 --- 0.03 2.14 

29 32 8/15/2002 L5 0.12 0.00 0.09 18.24 25.00 142.90 --- 0.21 0.94 

29 32 9/8/2002 L7 0.50 0.00 0.09 20.80 31.75 20.93 --- 0.06 0.88 

30 31 5/2/2002 L5 0.28 0.01 0.04 21.08 66.38 87.71 --- 0.42 2.45 

30 31 6/11/2002 L7 0.51 0.01 0.05 15.56 48.52 76.89 --- 0.19 2.14 

30 31 7/29/2002 L7 0.72 0.01 0.06 30.84 43.17 34.89 --- 0.09 0.67 

30 31 9/15/2002 L7 0.65 0.01 0.13 24.29 23.38 80.85 --- 0.19 1.00 

30 32 5/2/2002 L5 0.27 0.01 0.04 18.88 50.51 10.53 --- 0.14 0.96 

30 32 6/11/2002 L7 0.56 0.01 0.06 15.15 41.16 25.71 --- 0.11 1.17 

30 32 7/29/2002 L7 0.57 0.01 0.08 37.45 34.85 58.57 --- 0.06 0.83 

30 32 9/15/2002 L7 0.67 0.01 0.12 16.91 23.12 61.74 --- 0.08 0.53 

37 30 7/15/2011 L5 0.46 0.01 0.09 61.50 29.97 85.92 --- 0.11 1.02 

37 30 7/23/2011 L7 0.60 0.00 0.10 49.89 25.75 164.77 --- 0.11 1.40 

37 30 8/16/2011 L5 0.19 0.00 0.08 20.57 25.58 108.36 --- 0.15 1.45 

37 30 9/1/2011 L5 0.17 0.00 0.07 27.28 29.04 127.24 --- 0.09 0.86 

37 30 9/25/2011 L7 0.50 0.01 0.09 21.65 20.13 27.33 --- 0.08 0.57 

37 31 7/15/2011 L5 0.18 0.00 0.07 52.40 33.04 89.19 --- 0.10 1.12 

37 31 7/23/2011 L7 0.53 0.00 0.08 46.82 30.73 109.26 --- 0.08 0.81 

37 31 8/16/2011 L5 0.19 0.00 0.07 14.42 27.81 75.11 --- 0.13 0.64 

37 31 9/1/2011 L5 0.28 0.00 0.07 30.68 37.73 70.52 --- 0.10 0.88 

39 37 1/26/2014 L8 1.15 0.01 0.10 20.04 26.63 42.13 --- 0.26 1.27 

39 37 2/11/2014 L8 1.01 0.01 0.08 20.82 32.15 20.43 --- 0.08 1.05 

39 37 3/15/2014 L8 0.73 0.00 0.04 23.46 42.46 48.49 --- 0.09 1.87 

39 37 3/31/2014 L8 0.59 0.00 0.05 26.29 37.81 25.18 --- 0.07 1.52 

39 37 4/16/2014 L8 0.29 0.00 0.03 28.37 43.91 65.17 --- 0.07 0.98 

39 37 5/2/2014 L8 0.21 0.00 0.02 27.07 53.77 76.61 --- 0.10 0.75 
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Supplemental Table 4.5. (continued) 

RMSE (Agricultural Lands) 

Path Row Date Satellite Ts Albedo NDVI Rn G H ETr ETrF ETa 

39 37 6/19/2014 L8 0.11 0.00 0.01 26.77 71.39 91.83 --- 0.14 1.32 

39 37 7/21/2014 L8 0.08 0.00 0.01 23.87 64.76 52.76 --- 0.09 1.32 

39 37 8/6/2014 L8 0.13 0.00 0.02 30.60 68.19 67.85 --- 0.14 1.62 

39 37 8/22/2014 L8 0.72 0.00 0.04 25.95 63.76 114.64 --- 0.07 0.83 

39 37 9/23/2014 L8 0.20 0.00 0.03 24.23 56.93 118.48 --- 0.20 1.38 

39 37 10/9/2014 L8 0.69 0.00 0.06 28.30 46.50 43.46 --- 0.12 1.15 

39 37 11/10/2014 L8 0.76 0.00 0.09 23.11 31.44 21.74 --- 0.10 0.70 

40 30 3/19/2016 L7 0.34 0.01 0.01 20.39 49.80 48.02 --- 0.16 0.68 

40 30 4/20/2016 L7 0.40 0.01 0.02 18.39 31.34 26.54 --- 0.09 1.05 

40 30 5/30/2016 L8 0.69 0.01 0.01 14.28 45.59 72.36 --- 0.12 1.33 

40 30 6/7/2016 L7 0.75 0.01 0.02 19.31 54.01 41.17 --- 0.07 1.27 

40 30 6/23/2016 L7 0.62 0.01 0.02 17.11 55.09 77.38 --- 0.10 1.61 

40 30 7/1/2016 L8 0.41 0.01 0.02 24.98 41.61 59.72 --- 0.10 1.97 

40 30 7/9/2016 L7 0.59 0.01 0.02 22.50 52.77 110.26 --- 0.08 1.55 

40 30 7/25/2016 L7 0.46 0.01 0.02 16.50 49.37 54.92 --- 0.07 1.72 

40 30 8/2/2016 L8 0.43 0.01 0.01 17.62 66.00 72.68 --- 0.11 0.82 

40 30 8/10/2016 L7 0.27 0.01 0.01 15.85 50.49 41.46 --- 0.13 0.63 

40 30 8/18/2016 L8 0.75 0.01 0.02 21.94 60.53 38.78 --- 0.08 0.78 

40 30 9/11/2016 L7 0.45 0.01 0.01 20.70 52.26 71.32 --- 0.13 1.67 

40 30 9/19/2016 L8 0.49 0.01 0.01 20.03 33.36 45.32 --- 0.08 1.11 

40 30 9/27/2016 L7 0.31 0.01 0.02 23.93 50.04 51.78 --- 0.11 0.91 

40 30 10/21/2016 L8 0.96 0.01 0.01 27.50 39.75 33.83 --- 0.10 1.42 

45 31 4/30/2004 L5 0.46 0.00 0.07 25.59 35.40 20.30 --- 0.15 0.71 

45 31 6/1/2004 L5 0.74 0.01 0.08 21.28 29.98 41.15 --- 0.09 0.67 

45 31 8/4/2004 L5 0.43 0.01 0.07 17.42 30.52 41.31 --- 0.09 0.59 

45 31 8/20/2004 L5 0.39 0.01 0.07 17.42 14.60 13.75 --- 0.05 1.34 

45 31 9/21/2004 L5 0.39 0.01 0.08 34.92 26.41 16.91 --- 0.08 0.56 

45 31 10/7/2004 L5 0.35 0.01 0.10 35.94 28.04 23.01 --- 0.10 0.64 
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Supplemental Table 4.6. RMSE values for different products between EEFlux and METRIC by 

scene location and date for non-agricultural land uses. 

RMSE (Non-Agricultural Lands) 

Path Row Date Satellite Ts Albedo NDVI Rn G H ETr ETrF ETa 

29 31 6/28/2002 L5 0.14 0.00 0.08 19.97 38.46 77.67 --- 0.28 2.10 

29 31 8/15/2002 L5 0.12 0.00 0.08 21.74 25.43 98.31 --- 0.23 1.54 

29 31 9/8/2002 L7 0.51 0.01 0.09 22.68 24.92 39.06 --- 0.16 1.23 

29 32 5/3/2002 L7 0.47 0.00 0.05 21.47 40.66 124.27 --- 0.36 2.79 

29 32 6/28/2002 L5 0.11 0.01 0.07 26.06 39.20 29.61 --- 0.19 1.59 

29 32 8/15/2002 L5 0.04 0.01 0.06 22.56 34.50 86.03 --- 0.25 1.60 

29 32 9/8/2002 L7 0.48 0.01 0.08 25.58 26.22 38.67 --- 0.14 1.12 

30 31 5/2/2002 L5 0.36 0.01 0.06 32.18 58.14 200.45 --- 0.74 4.10 

30 31 6/11/2002 L7 0.57 0.01 0.06 23.31 45.16 122.26 --- 0.32 3.26 

30 31 7/29/2002 L7 0.70 0.01 0.05 38.87 44.33 66.50 --- 0.15 0.96 

30 31 9/15/2002 L7 0.61 0.01 0.09 35.88 35.33 115.57 --- 0.50 2.40 

30 32 5/2/2002 L5 0.37 0.01 0.05 34.96 55.34 70.59 --- 0.37 2.21 

30 32 6/11/2002 L7 0.62 0.01 0.06 28.84 47.76 89.12 --- 0.25 2.24 

30 32 7/29/2002 L7 0.62 0.01 0.04 43.00 45.30 50.66 --- 0.11 0.70 

30 32 9/15/2002 L7 0.68 0.01 0.08 37.22 36.26 66.89 --- 0.32 1.53 

37 30 7/15/2011 L5 0.13 0.00 0.05 20.22 47.45 123.81 --- 0.28 2.46 

37 30 7/23/2011 L7 0.56 0.00 0.08 29.26 27.37 154.83 --- 0.26 2.49 

37 30 8/16/2011 L5 0.15 0.00 0.07 20.44 32.19 92.28 --- 0.18 1.61 

37 30 9/1/2011 L5 0.12 0.00 0.06 27.39 27.19 105.08 --- 0.14 1.35 

37 30 9/25/2011 L7 0.43 0.01 0.06 31.29 11.27 38.09 --- 0.08 0.44 

37 31 7/15/2011 L5 0.10 0.00 0.04 19.50 38.76 109.43 --- 0.25 2.15 

37 31 7/23/2011 L7 0.41 0.00 0.04 16.01 16.01 55.65 --- 0.10 1.02 

37 31 8/16/2011 L5 0.04 0.00 0.02 18.34 16.52 69.39 --- 0.15 1.02 

37 31 9/1/2011 L5 0.13 0.00 0.03 23.10 32.24 59.86 --- 0.10 0.89 

39 37 1/26/2014 L8 1.14 0.01 0.04 30.61 16.00 91.47 --- 0.18 0.64 

39 37 2/11/2014 L8 1.01 0.01 0.03 39.72 26.90 25.29 --- 0.09 0.54 

39 37 3/15/2014 L8 0.74 0.01 0.02 41.65 29.20 94.04 --- 0.07 0.75 

39 37 3/31/2014 L8 0.61 0.01 0.01 48.85 29.82 53.82 --- 0.06 0.55 

39 37 4/16/2014 L8 0.24 0.01 0.01 44.77 31.51 81.66 --- 0.12 1.00 

39 37 5/2/2014 L8 0.18 0.01 0.01 44.90 34.63 102.69 --- 0.12 1.09 
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Supplemental Table 4.6. (continued) 

RMSE (Non-Agricultural Lands) 

Path Row Date Satellite Ts Albedo NDVI Rn G H ETr ETrF ETa 

39 37 6/19/2014 L8 0.14 0.01 0.01 36.25 34.84 108.02 --- 0.18 1.78 

39 37 7/21/2014 L8 0.07 0.01 0.01 32.73 37.41 128.62 --- 0.13 1.45 

39 37 8/6/2014 L8 0.10 0.01 0.01 43.53 36.48 63.54 --- 0.12 1.17 

39 37 8/22/2014 L8 0.71 0.01 0.01 38.18 53.69 100.37 --- 0.12 0.87 

39 37 9/23/2014 L8 0.19 0.01 0.01 48.29 31.98 51.55 --- 0.12 0.86 

39 37 10/9/2014 L8 0.71 0.01 0.02 41.66 39.28 45.44 --- 0.19 0.78 

39 37 11/10/2014 L8 0.79 0.01 0.03 51.14 24.56 44.88 --- 0.21 0.90 

40 30 3/19/2016 L7 0.33 0.01 0.02 23.06 50.60 48.30 --- 0.34 0.85 

40 30 4/20/2016 L7 0.40 0.01 0.02 17.59 47.40 24.41 --- 0.15 0.89 

40 30 5/30/2016 L8 0.58 0.00 0.02 14.57 58.33 40.98 --- 0.13 0.98 

40 30 6/7/2016 L7 0.72 0.01 0.02 16.53 51.40 42.33 --- 0.12 1.13 

40 30 6/23/2016 L7 0.48 0.01 0.02 13.98 30.40 58.46 --- 0.13 1.42 

40 30 7/1/2016 L8 0.33 0.01 0.02 18.90 36.76 114.90 --- 0.28 2.48 

40 30 7/9/2016 L7 0.46 0.01 0.01 16.24 36.66 74.01 --- 0.14 1.43 

40 30 7/25/2016 L7 0.51 0.01 0.01 17.29 40.44 42.51 --- 0.10 0.89 

40 30 8/2/2016 L8 0.34 0.01 0.01 19.11 42.02 36.59 --- 0.08 0.69 

40 30 8/10/2016 L7 0.28 0.01 0.01 20.48 54.61 36.55 --- 0.10 0.55 

40 30 8/18/2016 L8 0.75 0.01 0.02 28.61 78.90 89.59 --- 0.15 1.14 

40 30 9/11/2016 L7 0.35 0.01 0.01 21.59 30.14 94.22 --- 0.10 0.94 

40 30 9/19/2016 L8 0.44 0.01 0.01 20.72 39.40 20.69 --- 0.07 0.32 

40 30 9/27/2016 L7 0.34 0.01 0.02 25.49 60.99 48.16 --- 0.10 0.60 

40 30 10/21/2016 L8 0.90 0.01 0.02 25.07 40.68 14.06 --- 0.16 0.33 

45 31 4/30/2004 L5 0.43 0.00 0.09 29.08 27.42 34.79 --- 0.19 0.78 

45 31 6/1/2004 L5 0.42 0.00 0.08 23.03 20.82 57.92 --- 0.19 1.31 

45 31 8/4/2004 L5 0.44 0.00 0.09 31.92 27.85 45.08 --- 0.16 0.88 

45 31 8/20/2004 L5 0.40 0.01 0.09 37.13 23.71 32.79 --- 0.11 0.79 

45 31 9/21/2004 L5 0.40 0.00 0.12 54.24 29.63 43.46 --- 0.18 0.53 

45 31 10/7/2004 L5 0.41 0.01 0.16 58.53 23.13 43.06 --- 0.23 0.66 
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APPENDIX B: SUPPLEMENTAL FIGURES 

Supplemental Figures: Chapter 2 

 
Supplemental Figure 2.1. Daily observed and simulated SWC (θ) during the calibration (2008–

2010) and validation (2011–2012) periods at TP 2 location. 
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Supplemental Figure 2.2. Daily observed and simulated SWC (θ) during the calibration (2008–

2010) and validation (2011–2012) periods at TP 3 location. 
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Supplemental Figure 2.3. Daily observed and simulated SWC (θ) during the calibration (2008–

2010) and validation (2011–2012) periods at TP 4 location. 
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Supplemental Figure 2.4. Daily observed SWC (θ) at TP 4 location versus the average observed 

SWC (θ) at the other three locations (TP 1-3) during study period. 
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Supplemental Figures: Chapter 3 

 

 
Supplemental Figure 3.1. ETrF maps of study site (2013). 
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Supplemental Figure 3.2. ETrF maps of study site (2014). 
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Supplemental Figure 3.3. ETrF maps of study site (2015). 
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Supplemental Figure 3.4. ETa maps of study site (2013). 
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Supplemental Figure 3.5. ETa maps of study site (2014). 
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Supplemental Figure 3.6. ETa maps of study site (2015). 
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Supplemental Figure 3.7. DTWT maps of study site on (2013). 
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Supplemental Figure 3.8. DTWT maps of study site on (2014). 

 

 

 

 



161 
  

  

 
Supplemental Figure 3.9. DTWT maps of study site on (2015). 
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Supplemental Figure 3.10. SWC maps of study site (2015). 
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Supplemental Figures: Chapter 4 

 
Supplemental Figure 4.1. Comparison between different components from EEFlux and METRIC 

models for Path 29 Row 31, Landsat 5, 2002/08/15. 
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Supplemental Figure 4.2. Comparison between different components from EEFlux and METRIC 

models for Path 30 Row 31, Landsat 7, 2002/06/11. 
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Supplemental Figure 4.3. Comparison between different components from EEFlux and METRIC 

models for Path 30 Row 32, Landsat 7, 2002/06/11. 
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Supplemental Figure 4.4. Comparison between different components from EEFlux and METRIC 

models for Path 37 Row 30, Landsat 5, 2011/09/01. 
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Supplemental Figure 4.5. Comparison between different components from EEFlux and METRIC 

models for Path 37 Row 31, Landsat 5, 2011/08/16. 
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Supplemental Figure 4.6. Comparison between different components from EEFlux and METRIC 

models for Path 39 Row 37, Landsat 8, 2014/04/16. 
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Supplemental Figure 4.7. Comparison between different components from EEFlux and METRIC 

models for Path 40 Row 30, Landsat 8, 2016/08/18. 
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Supplemental Figure 4.8. Comparison between different components from EEFlux and METRIC 

models for Path 45 Row 31, Landsat 5, 2004/08/04. 
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Supplemental Figure 4.9. Average R2 values for ETrF from EEFlux vs. METRIC for five 

locations across the western USA for agricultural and nonagricultural areas. 
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Supplemental Figure 4.10. Average R2 values for ETrF from EEFlux vs. METRIC for five 

locations across the western USA for agricultural and nonagricultural areas. 
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