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Deterministic Solutions for a Step-growth Polymerization*

Sungjae Choi, Xiangdong Liu, Delmar C. Timm

Abstract:

Chain topology, including branch node, chain link and cross-link dynamics that contribute to the number 
of elastically active strands and junctions, are calculated using purely deterministic derivations. 
Solutions are not coupled to population density distributions. An eigenzeit transformation assists in the 
conversion of expressions derived by chemical reaction principles from time to conversion space, 
yielding transport phenomena type expressions where the rate of change in the molar concentrations of 
branch nodes with respect to conversion is expressed as functions of the fraction of reactive sites on 
precursors and reactants. Analogies are hypothesized to exist in cross-linking space that effectively 
distribute branch nodes with i reacted moieties between cross-links having j bonds extending to the gel. 
To obtain solutions, reacted sites on nodes or links with finite chain extensions are examined in terms of 
stoichiometry associated with covalent bonding. Solutions replicate published results based on Miller 
and Macosko’s recursive procedure and results obtained from truncated weighted sums of population 
density distributions as suggested by Flory.
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Introduction:

This paper addresses the prediction of network chain structures within a thermosetting resin’s insoluble 
gel fraction that contribute to the rubbery equilibrium modulus. Authors have stated that only stochastic-
based models can achieve this task. However, the literature suggests approaches that may provide 
equivalent information based on chemical reaction reasoning coupled with transport phenomena. 
Analysis addresses branch node and chain-link distribution dynamics for ideal step-growth 
polymerizations. The level of mathematics used in deterministic derivations presented is comparable to 
that used in the statistical, recursive method developed by Macosko and Miller.1,2 Original contributions 
appear in sections addressing the extent of cross-linking.

Rubbery Elasticity:

Mark and Erman3 discussed the theory of rubbery elasticity in terms of developing network structures. 
The resin’s equilibrium modulus for idealized networks includes affine4 and phantom5 models. The 
paper’s emphasis is on the calculation of strands υc  that connect two active junctions and junctions µc

that have three or more covalent bonds attached to chain segments leading to the gel.
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Chain Topology:

Authors have used probabilistic reasoning7–9 to estimate chain contributions to the equilibrium modulus. 
The recursive method by Miller, Macosko and co-workers is widely cited.6,10–13 With competing 
polymerization reactions, hybrid models couple deterministic chemical reaction models with stochastic-
based reasoning.14–16 A purely kinetic-based approach is believed incapable of yielding descriptions of 
required network features within the gel. For example, Flory,4 Dotson et al.,6 Dusek and Somvársky,17

Williams et al.,18 and Galina and Lechowicz19 have stated that one must use stochastic-based 
methodology. A purely kinetic-based approach is believed to be incapable of yielding descriptions of 
required chain connectivity in the insoluble gel fraction. And yet, the literature provides a basis for 
contemplating deterministically based derivations.

Flory4 discussed two limits obtained by summing weighted population density distributions (PDDs) 
descriptive of the molar concentration of constituent molecules within network-forming resins. Moments 
become conditionally convergent as conversion advances, and, therefore, multiple sums or limits exist,20

Although Flory4 and Stockmayer21 frequently used stochastic reasoning in deriving PDDs, exact or 
numerical solutions can be obtained from Smoluchowski22 type derivations.23–26 Flory concluded that 
PDDs are confined to the soluble sol portion of the resin. Ziff and Stell27 explicitly addressed reactions 
within the sol, between the sol and gel and within the gel and concluded that derivations for PDDs 
included both intermolecular and intramolecular cross-linking reactions. In an ideal polymerization the 
latter is confined to the gel. Robbins et al.28,29 described required chain structures for predicting the 
equilibrium modulus, i.e., chain-link and branch node dynamics, based solely on deterministic models. 
A criticism lies in the area of illustrated mathematical complexity since conditionally, convergent 
properties of the leading moments were incorporated in solutions. In the research reported, the 
dependency on PDDs is eliminated.

A deterministically based chemical reaction model is discussed for the A4 + B2  resin system. The 
system is representative of numerous resins, including select amine-cured epoxies.30–33 Depending on 
formulated monomers, primary and secondary amines may experience identical rates of reaction.30

Selected bi-functional epoxy monomers may also be void of first-shell substitution effects.34–36 Solutions 
initially presented are based on chemical reaction principles, but yield to transport phenomena type 
interpretation. The deterministic approach illustrated may have advantage when addressing complex 
reaction mechanisms, where authors couple deterministic and stochastic methodology.10,37,38 In the 
reported work transformations from time to extent of reaction to extent of cross-linking are discussed.

Analysis of an A4 + B2 Resin

Several treatises have addressed step-growth polymerizations with tetra-functional A4  and bi-functional 
B2  monomers.1,2,4,21,28,29,39 Random molecular motions coupled with large-scale translational 
displacements ultimately place reactive moieties in proximity, yielding second-order reactions. Analyses 
are constrained by equal reactivity of functional groups, intermolecular within the sol and between the 
sol and gel and intramolecular reactions within the gel. Transients associated with the dependent 
variables descriptive of the molar concentrations of branch nodes ni  and chain links l j having i reacted 
sites are developed. With increasing conversion, these entities become distributed between the sol and 
gel within the molecules that form the resin.

Conservation principles yield a set of ordinary differential equations:
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(1)

Branch nodes react proportionately to the product of their molar concentrations ni and to the 
number of their chemically reactive A sites (4 – i). The cumulative concentration of the second moiety in 
the resin is expressed by B. The rate constant is K. The dimensionless transform used in solutions is 
explicit. The Kronecker delta function appears in solutions and equals

(2)

The delta function permits eq 1 to represent monomer dynamics. Conservation of A moieties 
associated with the second-order reaction permits the transformation to conversion space ρ :

(3)

Equations 1 are linear first ordering differential equations in conversion space. Subject to initial 
conditions ni(0) , integration yields

(4)

Integrating factors provide an effective method of solution.

Similarly, the molar concentration of chain links may be derived and equal

(5)

Solutions expressed by eqs 4 and 5 yield stochastic interpretations. Conversion terms express the 
likelihood (a mole fraction) that a site is reacted or not. These independent events associated with the 
reaction states of moieties yield the power expressions. Coefficients address the number of permutations 
for placing i reacted sites on the selected branch node or chain link.

Transport Phenomena:

The form of eq 1 is noteworthy. Its derivation is based on chemical reaction theory. Mathematics 
transformed eq 1 to a linear, ordinary, differential equation but in the process moved the model to the 
realm of transport phenomena. Specifically, the derivative or gradient represents the rate of change of 
the molar concentration of nodes ni with respect to the fraction of A moieties reacted in the resin ρ . The 
coefficient (1 – ρ) equals the fraction of A groups. After dividing by this coefficient, terms on the right 
hand side address the mole fractions of A sites on reactants and precursors, the driving forces for 
chemical change. Limits of integration specify an arbitrary but bounded conversion 0 ≤ ρ ≤ 1. The 
model explicitly addresses the fact that a chemical group may be either unreacted or reacted. Solutions 
distribute the initial number of nodes n0(0)  within the set ni.
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With some variation in definitions, future sections utilize transport phenomena to distribute nodes 
and links between the sol and gel. Now a reacted site is either covalently bonded to a finite or infinite 
chain extension. Initial conditions identify the existing population of nodes or links ni or l i ;
transformations distribute bonds within cross-link junctions Xi, j and chain-link extensions Li , j  that have i
reacted sites and j attached chain segments extending to the gel. Fundamentals reside in the underlying 
chemical reactions, i.e. the constraint that intermolecular/intramolecular reactions are governed by 
random collisions controlled by large scale molecular translations and localized atomic vibrations. 
Flory4 addressed expected relative reaction rates and concluded that sufficient collisions will exist in a 
curing thermosetting resin to sustain both second-order reactions for extended conversions. Such is 
universally accepted in models descriptive of polymerization reactions and is consistent with 
experimental measurement. Chain connectivity is simply related to this course of events.

Sol/Gel Node Dynamics:

Nodes ni  are distributed as cross-link junctions Xi, j  where 
0 ≤ j ≤ i ≤ 4. When j = 0, molecules containing nodes X i ,0  are in the soluble sol. The monomer’s molar 
concentration n0 is equivalent to X 0 ,0 . If j = 1 the molecular clusters that contain X i ,1  are pendent to the 
gel’s network chain structure. When j = 2, nodes appear in elastically active strands and when j = 3 or 4, 
cross-links contribute to elastically active junctions. Analogous statements apply to chain-links Li , j  but 0 
≤ j ≤ i ≤ 2 .The molar concentrations for each type of cross-link and chain-link will now be calculated as 
a function of conversion.

In conversion space, competing reactions describe a series of events expressed through 
n0 →  n1 →  n2 →  n3 →  n4, also see eq 1. The second-order reactions in time become first-order 
reactions in conversion space. Since the law of mass action describes both intermolecular and 
intramolecular reactions, we hypothesize that nodes may also be distributed mathematically between the 
sol and gel fractions according to an analogous sequence of events at conversion greater than the critical 
conversion for gelation ρc :

Xi,0 → Xi,1 → ... → Xi,i ;   0 ≤ i ≤ 4 ;    ρc ≤ ρ ≤ l

Chain connectivity is simply a convergence of random bond formation. In cross-linking space a 
reacted moiety has either an attached finite or infinite chain. Since only reacted sites are addressed, 
conversion is invariant as is the number of reacted sites i on the cross-links. The rate of transport, a 
consequence of this bonding, is proportional to the product ofthe number of reacted groups with finite 
attachments on the several nodes and their respective molar concentrations (analogous to eq 1 in 
conversion space). Equation 4 provides the required constants of integration. Likewise, competing 
reactions require that

Li,0 → ... →  Li,j ;   0 ≤ i ≤ 2 ;    ρc ≤ ρ ≤ l

Extent of Cross-linking:

The extents of cross-linking ρx  and ρy  are defined as the fraction of reacted sites attached to infinite 
chain segments at a specified conversion ρ:
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(6)

Initial sums equal the number of reacted chemical groups within the resin. The second sums equal 
the number of reacted sites within the resin that have attached finite chain clusters. Differences equal the 
number of sites with attached chains extending to the gel. The notation further denotes that dependent 
variables are functions of conversion.

Cross-link Dynamics:

For a node to be in the gel, it has experienced a minimum of one reaction. Since monomer is transported 
from the sol only through chemical reactions with the gel, in cross-linking space where conversion is 
invariant, its rate of transport is zero:

(7)

The partial derivative emphasizes an invariant conversion and expresses the rate of transport of the 
dependent variable in terms of the fraction of sites with chain segments extending to the gel. The 
coefficient of the derivative equals the fraction of reacted sites with finite attachments. On the right hand 
side of the expression, the coefficient equals the number of reacted sites of finite dimension at 
conversion ρ on the monomer. The dependent variable equals the molar concentration of the monomer.

Nodes with a single reacted site appear in the sol and in the gel. Transport equations are

In the initial expression, the rate expression to the right of the equal sign is proportional to the 
fraction of reacted sites with finite chain extensions appearing on the reactant. In the second expression, 
this cross-link becomes the precursor for cross-links with a single reacted site attached to the gel 
according to the hypothesized series of first-order events. For nodes with a higher extent of reaction, the 
rate of transport satisfies

(8)

Products of coefficients and dependent variables, after dividing by (1 – ρx), equal the fraction of 
reacted sites at ρ ≥ ρc that are part of finite chain clusters on reactants and precursors. The partial 
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derivative expresses the rate of change for a specified node in terms of the number of bonds that have 
chains extending to the gel. Solutions equal

(9)

Solutions have statistical interpretations, except now a reacted site on a node ni or link li is either 
attached to a finite or infinite chain segment.

Evaluation of the Extent of Cross-linking:

In addressing cross-linking functions ρx  and ρy , conservation principles associated with chemical 
bonding are implemented. Initially, reacted A groups are addressed. The total number of reacted groups 
on nodes that are bonded to finite structures may be calculated. Algebra associated with eq 4 and 9 
yields

(10)

These reacted A groups are covalently bonded to chain-links that also must lead to finite structures. 
Chain-links L1,0 and L1,1 contribute. With the former, the bond leads through the link to a B, terminating 
the chain. With L1,1 a second reacted A on the node exists that leads to the gel. Chain-links L2,0 provide 
two locations for bonding, each of which leads to finite chain segments. Links L2,1 have only one bonded 
site leading to finite clusters. The path to the gel again exists at the node. Links L2,2 contribute only 
infinite chain segments. Therefore, chain-links associated with the chain clusters equal

(11)

Since both reacted moieties addressed describe the same bond eq 10 equals eq 11:

(12)

Statistical interpretations exist. When referencing eq 10, the coefficient 4n0(0)ρ equals the fraction 
of bonds at conversion ρ. The expression (1 – ρx) represents the fraction of bonds that lead to chain 
clusters through links li. When addressing eq 12, reacted A groups on nodes were initially specified. The 
fraction of reacted A that leads to finite structures is 1 – ρx . In the first expression on the right hand side, 
the second B on the link has not reacted; the attachment leads to a finite structure with 100% confidence. 
The term ρB  represents the case when the second B moiety on the link has reacted. The fraction 
belonging to finite clusters is 1 – ρy . Thus, algebra associated with a finite bond relative to the node and 
the attached link yields a form of the law of total probability for expectations.

To achieve a solution finite reacted B sites on chain-links is addressed:

(13)
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Attached nodes must also contribute finite structures:

(14)

With expressions Xi , 1  the gel is assessable through the second reacted moiety on the original chain-
link L2 ,1 . After equating eqs 13 and 14, one obtains

1 – ρy  = [(1 – ρ) + ρ(1 – ρx)]3                                                    (15)

A stochastic interpretation of eq 15 addresses the likelihood 1 – ρy  that a reacted B group is 
attached to a branch node contributing finite chain extensions. The attached branch node has three 
remaining sites, each of which must lead to finite structures. These independent events contribute the 
power of three. A selected A moiety in this group may not be reacted (with probability of (1 – ρ)) and, 
therefore, leads to finite entities. Alternately, if the A site is reacted (with a likelihood of ρ), the fraction 
of resultant bonds that lead to finite chains is (1 – ρx). Equations 12 and 15 may now be solved 
simultaneously:

(16)

The extent of cross-linking ρy  was evaluated from eq 15:

ρy = ρx /(rρ) (17)  

The critical conversion ρc  at the inception of gelation is the intercept of equations in eq 16:

(18)

Rubber Elasticity:

The number of elastically active strands40 equal  or

(19)

and the number of elastically active junctions40 equal     or
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(20)

Extent of Cross-linking Dynamics:

Solutions to eqs 16 and 17 are graphed in Figure 1, showing effects of formulation A(0)/B(0) and 
conversion on the extent of cross-linking variables ρx  and ρy . Prior to gel formation, the extent of cross-
linking variables equals zero; the ordinate of Figure 1 equals unity. At the gel point, eq 18 predicts the 
critical conversion. At higher conversions, eqs 16 and 17 apply. When A sites are 50% in excess (r = 2), 
the limiting reactant B is consumed at ρ = 0.5 where the extents of cross-linking equal approximately 
0.76. Also ρx ≈ ρy . When a stoichiometric balanced resin is cured, gelation occurs at a critical 
conversion of approximately 0.58. At complete conversion, the model further predicts that extents of 
cross-linking will equal unity. Therefore, high conversions are necessary to maximize network develop. 
When B moieties are in excess, the critical conversion is delayed and the extents of cross-linking are less 
than unity at complete conversion for the limiting reactant due to chain defects associated with dangling 
B groups.

Fig. 1. Extent of cross-linking as a function of conversion ρ and the ratio A(0)/B(0) in step-growth A4 + 
B2 system.
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Discussion:

Flory4 addressed multiple solutions for the leading moments of population density distribution functions 
associated with multi-functional monomers. Phenomena addressed included the gel point and the 
fraction of the gel relative to the sol. He concluded that the molecules described by the PDDs reside 
within the sol. Stochastic based models have since been developed to describe chain infrastructure 
within the gel. Macosko and Miller1,2 developed recursive, statistical solutions based on chain 
connectivity associated with competing reactions. Solutions replicated Gordon’ s contributions to 
network development.41,42 For the resin systems currently addressed, Robbins, et al.,28,29 utilizing 
Flory’s arguments, illustrated a purely deterministic solution for gelation; however, the evaluation of 
truncated, infinite summations associated with moments is mathematically complex and labour 
intensive. The current research has combined salient concepts from this prior research to develop 
deterministic solutions that parallel the recursive, statistical approach. The basic hypothesis is that chain 
connectivity correlates with random events associated with chemical reaction. Results of derivations 
equal results from both Robbins and Miller and Macosko type formulations. Advantages of a purely 
deterministic approach may be realized 1) with formulations based on chemistry fundamentals when 
polymerizations involve complex, competing reactions and 2) with analytical or numerical solutions 
using mathematics associated with differential equations when compared to computational time 
demanding Monte Carlo techniques.
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