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Mercuric ion, Hg(II), inactivates generalized transcription in the crenarchaeote Sulfolobus solfataricus. Metal
challenge simultaneously derepresses transcription of mercuric reductase (merA) by interacting with the
archaeal transcription factor aMerR. Northern blot and primer extension analyses identified two additional
Hg(II)-inducible S. solfataricus genes, merH and merI (SSO2690), located on either side of merA. Transcription
initiating upstream of merH at promoter merHp was metal inducible and extended through merA and merI,
producing a merHAI transcript. Northern analysis of a merRA double mutant produced by linear DNA
recombination demonstrated merHp promoter activity was dependent on aMerR to overcome Hg(II) transcrip-
tional inhibition. Unexpectedly, in a merA disruption mutant, the merH transcript was transiently induced after
an initial period of Hg(II)-mediated transcription inhibition, indicating continued Hg(II) detoxification. Metal
challenge experiments using mutants created by markerless exchange verified the identity of the MerR binding
site as an inverted repeat (IR) sequence overlapping the transcription factor B binding recognition element of
merHp. The interaction of recombinant aMerR with merHp DNA, studied using electrophoretic mobility shift
analysis, demonstrated that complex formation was template specific and dependent on the presence of the IR
sequence but insensitive to Hg(II) addition and site-specific IR mutations that relieved in vivo merHp repres-
sion. Despite containing a motif resembling a distant ArsR homolog, these results indicate aMerR remains
continuously DNA bound to protect and coordinate Hg(II)-responsive control over merHAI transcription. The
new genetic methods developed in this work will promote experimental studies on S. solfataricus and other
Crenarchaeota.

Heavy metals (class B; soft metals) are among the most toxic
substances on earth. They are extremely poisonous at low
concentrations and include mercury (Hg), cadmium (Cd), and
lead (Pb). Among bacteria, active resistance to mercuric ion,
Hg(II), is regulated by MerR, a unique representative of the
winged helix-turn-helix (wHTH) family of bacterial transcrip-
tion factors (4). MerR controls production of mercuric reduc-
tase (MerA) along with other related components (reviewed in
reference 5). This protein acts as both a repressor and a metal-
responsive activator of the mercury resistance genes by binding
an operator sequence (merO) located between �10 and �35
hexameric promoter elements (3). In this conformation, MerR
bends DNA towards itself in a manner like the catabolite
activator protein and allows RNA polymerase to form an in-
active but promoter-bound complex. In the activator confor-
mation, Hg-MerR relaxes these bends, inducing DNA distor-
tion at merO and an underwound spacer region (3). The
magnitude and direction of this Hg-MerR-induced distortion
comprises a positive control mechanism that reorients con-
served promoter elements (2, 9).

Members of the phylum Crenarchaeota, including the ther-
moacidophile Sulfolobus solfataricus, inhabit metal-rich geo-
thermal environments often containing high and naturally
occurring levels of heavy metals. Proliferation under these

conditions is accompanied by induction of active metal detox-
ification pathways (16) that include homologs of mercuric re-
ductase, MerA, and the transcriptional regulator MerR (27).
However, while regulated induction of gene expression in Ar-
chaea is not well understood, it relies on the use of numerous
eukaryote-like general transcription components, including
homologous promoter structures and orthologs of generalized
transcription factors TBP and TFIIB, as well as an RNA poly-
merase II-like enzyme (reviewed in reference 20). TBP and
TFB bind the archaeal promoter TATA box, forming a preini-
tiation complex, and acutely bend the DNA in a manner iden-
tical to that shown for eukaryotic promoters (17). Interestingly,
archaeal genomes encode numerous bacteria-like regulatory
factor sequences, suggesting an interplay occurs in these or-
ganisms between bacterial and archaeal transcription compo-
nents. Since this interplay must accommodate the acutely bent
DNA associated with the preinitiation complex, it is likely that
archaeal gene-specific transcription factors employ unique
mechanisms to regulate initiation frequency despite their se-
quence homology with bacterial proteins.

Genetic studies have demonstrated S. solfataricus MerA was
required for Hg(II) reduction and for low-level metal resis-
tance relative to that observed in bacteria (24). Since a merR
disruption mutant exhibited elevated Hg(II) resistance and
constitutive synthesis of the merA transcript, archaeal MerR
(aMerR) appears to negatively regulate merA transcription.
Though Hg(II) exposure induces expression of a resistance
mechanism in S. solfataricus, it is also acutely toxic, because it
inactivates transcription (10). In vivo Hg(II) challenge instan-
taneously blocked cell division and reduced overall RNA syn-
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thesis while elevating rates of transcript degradation (10). In
vivo or in vitro Hg(II)-treated whole-cell extracts failed to
support in vitro transcription of 16S rRNAp and lacSp promot-
ers and could be rescued by addition of TFB to Hg(II)-treated
cell extracts (10). Hg(II) treatment of TFB in vitro inactivated
its ability to restore in vitro transcription activity of TFB-
immunodepleted cell extracts (10). These findings indicated
that Hg(II) toxicity in S. solfataricus was mainly the conse-
quence of transcription inhibition due to TFB inactivation.
Consequently, it is unclear how Hg(II) exposure could simul-
taneously stimulate merA transcription while blocking overall
RNA synthesis. In the studies described here, several new
genetic methods were developed and combined with standard
RNA and DNA analytical approaches to investigate this ques-
tion and to clarify the specific role of aMerR.

MATERIALS AND METHODS

Archaeal strains, cultivation, and mutant construction. Archaeal strains and
plasmids used in this work are indicated in Table 1; primers are given in the
supplemental material. Sulfolobus solfataricus strains were grown with aeration at
80°C in the medium of Allen (1) as modified by Brock et al. (8) at a pH of 3.0
in 250-ml screw-cap flasks as described previously (22, 30). Carbon and energy
sources included 0.2% (wt/vol) sucrose (SM) or tryptone (RM) as indicated.
Growth was monitored at a wavelength of 540 nm using a Cary 50 Bio, UV-
visible spectrophotometer (Varian). When investigating the effect of mercuric
ion, cells were typically grown to an optical density at 540 nm of 0.1, which
corresponds to a previously established value of approximately 108 cells/ml. Cells
were then treated with various concentrations of mercuric chloride (Sigma) from
a freshly made 10 mM stock for the times indicated. Mutant strains were con-
structed using both new and previously established methods (24, 31). Electro-
poration was used to mobilize DNA into target cells, and strain PBL2025 (24)
was used as the recipient.

Construction of the merI mutant. Construction of the lacS-disrupted merI
mutant employed transformation by targeted recombination using plasmid
pPB1015 as described elsewhere (24). The XhoI site located in merI of pPB1015

was created by overlap extension PCR (14) with primers merI-OL2-XhoI-F and
merI-OL2-XhoI-R. The 5� end of merI-OL2-XhoI-F begins 17 nucleotides (nt)
downstream of the merI start codon and is complementary to merI-OL2-XhoI-R.
Recombinant identity was confirmed by PCR of the modified merI allele, wild-
type allele, and lacS-disrupted merI allele using primers merI-L-BamHI-F and
merI-L-BamHI-R. The 5� end of merI-L-BamHI-F is located 714 nt upstream of
the merI start codon. The 3� end of merI-L-BamHI-R is located 717 nt down-
stream of the merI stop codon. PCR and restriction analysis were used to verify
the identity of the merI recombinant strain. Amplification of wild-type merI and
flanking regions using primers merI-L-BamHI-F and merI-L-BamHI-R pro-
duced a single band of 1.80 kb (1,806 bp) that produced two fragments after
XhoI digestion. Amplification of the disrupted merI locus in strain PBL2036
produced a single band of 3.60 kb (3,624 bp), approximately 1.80 kb larger than
that observed with the undisrupted locus due to the presence of the inserted copy
of lacS. This fragment produced three fragments after XhoI digestion of 0.75 kb
(759 bp), 1.05 kb (1,053 bp), and 1.80 kb (1,806 bp) that represented the 5� and
3� ends of merI and the lacS insert, respectively.

Linear DNA transformation and construction of the merRA double mutant.
Construction of the merRA double mutant employed transformation as described
previously (24) using a linear DNA PCR amplicon. Primers used for PCR of the
merI fragment were forward primer merI-L-BclI-F and reverse primer merI-L-
KpnI-R. merI-L-BclI-F starts 1 nt downstream of the merA stop codon, and
merI-L-KpnI-R starts 717 nt downstream of the merI stop codon. merI-L-BclI-F
encodes an added BclI site, and merI-L-KpnI-R encodes an added KpnI site.
Primers used for PCR of the merRA double mutant transformation fragment
were forward primer merR-L-BamHI-F and reverse primer merI-L-BamH-R.
merR-L-BamHI-F starts 546 nt upstream relative to the merR stop codon, and
merI-L-BamHI-R starts 717 nt downstream relative to the merI stop codon.
Both merI-L-BamHI-F and merI-L-BamHI-R encode an added BamHI site.
Primers used for PCR verification of the merRA double mutant were forward
primer merR-R-KpnI and reverse primers merI-R and merH2-R. merR-R-KpnI
starts 19 nt upstream of the merR stop codon, and merI-R starts 49 nt down-
stream of the merI start codon. merH2-R starts 5 nt upstream of the merA start
codon.

The pMerRS1 plasmid described previously (24) was digested with BclI (lo-
cated 14 nt downstream from the 5� end of merA) and KpnI (located 235 nt
downstream from the BclI site and in the polylinker of pMerRS1) in order to
remove a 235-bp merA-containing fragment. Plasmid pPB1032 was then con-
structed by insertion of a BclI-KpnI-digested PCR merI amplicon produced with
primers merI-L-BclI-F and merI-L-KpnI-R and cloned into the BclI-KpnI sites
of plasmid pMerRS1. The linear merRA double mutant PCR amplicon was
produced with primers merR-L-BamHI-F and merI-L-BamH-R using the
pPB1032 plasmid as the template DNA. This PCR amplicon was then trans-
formed into strain PBL2025 as described previously. Amplification of the wild-
type merA locus using primers merR-R-KpnI and merI-R produced a single
fragment of 2.2 kb (2,216 bp). Amplification of the deleted merA locus in strain
PBL2020 produced a single fragment of 2.6 kb (2,686 bp). Amplification of the
wild-type merR locus using primers merR-R-KpnI and merH2-R produced a
single fragment of 0.6 kb (665 bp). Amplification of the lacS-disrupted merR
locus produced a fragment of 2.4 kb (2,473 bp).

Markerless exchange and construction of merR operator mutants. Markerless
exchange employed a plasmid encoding a cloned copy of a modified DNA
sequence together with a selectable but separable marker gene (lacS) to produce
lactose-utilizing recombinant cells. Spontaneous lactose-nonutilizing segregants
were recovered by recombination resulting from loss of the plasmid vector,
selectable marker, and one of two copies of the target gene. Typically, four
transformants were selected and monitored by screening for segregation of
alleles. Unless otherwise noted, segregation frequency resulting in retention of
the wild-type or modified allele was approximately 50%. Individuals retaining the
modified allele of the target gene were identified using PCR of genomic DNA.
In all cases only one mutant was chosen for further analysis.

Construction of the merR-IR mutants employed transformation by markerless
exchange using plasmids pPB1038 and pPB1051. Primers used for PCR of the
lacS fragment were forward primer LacS-KpnI-F and reverse primer LacS-
KpnI-R. The 5� end of LacS-KpnI-F starts 170 nt upstream of the lacS start
codon, and the 3� end of LacS-KpnI-R starts 165 nt downstream of the lacS stop
codon. LacS-KpnI-F and LacS-KpnI-R each encode an added KpnI site.

Primers used for PCR of the merR-IR1 fragment were forward primer merR-
L-BamHI-F and reverse primer merH-L-BamHI-R. The 5� end of merH-L-
BamHI-R begins 727 nt downstream of the merA start codon. Both merR-L-
BamHI-F and merR-L-BamHI-R each encode an added BamHI site. The SpeI
site located in the operator of the merR-IR1 fragment was created by overlap
extension PCR (14) with primers merR-BS-SpeI-OL-F and merR-BS-SpeI-

TABLE 1. Microbial strains and plasmids

Strain or
plasmid Genotype or sequence Source or derivation

Strains
PBL2000 Wild-type S. solfataricus

strain 98/2
Lab collection

PBL2025 �(SSO3004-3050) PBL2000 (24)
pBL2026 merR PBL2025 (24)
PBL2038 merR::lacS merA

�(nt 16–1362)
PBL2025 by linear

recombination
PBL2036 merI::lacS PBL2025 by markerless

exchange
PBL2039 merR-IR1-SpeI PBL2025 by markerless

exchange
PBL2047 merR-IR2-XbaI PBL2025 by markerless

exchange

Plasmids
pUC19 bla New England BioLabs
pPB996 merR pUC19 (this work)
pPB986 merR::lacS pUC19 (24)
pPBMerA10 merA::lacS pUC19 (24)
pPB1032 merR::lacS merA

�(nt 16–1362)
pPB986 (this work)

pPB1015 merI pUC19 (this work)
pPB1034 merI::lacS pUC19 (this work)
pPB1035 lacS-KpnI pUC19 (this work)
pPB1038 lacS-KpnI merR-IR1-SpeI pPB1035 (this work)
pPB1051 lacS-KpnI merR-IR2-XbaI pPB1035 (this work)
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OL-R. The 5� end of merR-BS-SpeI-OL-F begins 25 nt upstream of the merR
start codon and is complementary to merR-BS-SpeI-OL-R. Plasmid pB1035 was
constructed by insertion of a KpnI-digested PCR lacS amplicon produced with
primers LacS-KpnI-F and LacS-KpnI-R cloned into the KpnI site of pUC19.
Plasmid pB1038 was constructed by insertion of a BamHI-digested PCR merR-
IR2 amplicon into the BamHI site of pB1035.

The XbaI site located in the mer operator of the merR-IR2 fragment was
created by overlap extension PCR (14) with primers merR-BS-XbaI-OL-F and
merR-BS-XbaI-OL-R. The 5� end of merR-BS-XbaI-OL-F begins 25 nt down-
stream of the merR start codon and is complementary to merR-BS-XbaI-OL-R.
Plasmid pPB1051 was constructed by insertion of a BamHI-digested PCR merR-
IR2 amplicon into the BamHI site of pPB1035.

PCR, restriction analysis, and DNA sequencing were used to verify the identity
of the merR-IR recombinant strains. PCR of the modified merR-IR alleles and
wild-type allele used primers merR-L-BamHI-F and merH-L-BamHI-R. Ampli-
fication of wild-type merR and flanking regions using primers merR-L-BamHI-F
and merH-L-BamHI-R produced a single band of 1.9 kb (1,919 bp) that was not
cut by XbaI. Amplification of the modified merR-IR1 sequence in strain
PBL2039 produced a single band of 1.9 kb (1,923 bp). This fragment was cut by
SpeI into two fragments of 0.94 kb (947 bp) and 0.98 kb (989 bp) that repre-
sented the 5� and 3� ends of the merR-IR1 insert, respectively. Amplification of
the modified merR-IR2 sequence in strain PBL2047 produced a single band of
1.9 kb (1,923 bp). This fragment was cut by XbaI into two fragments of 0.94 kb
(947 bp) and 0.98 kb (989 bp) that represented the 5� and 3� ends of the
merR-IR2 insert, respectively. DNA sequencing of the merR-IR1 and merR-IR2
PCR amplicons also confirmed the identity of the respective mutations.

DNA cloning, PCR, and plasmid transformation of Escherichia coli were
performed as described elsewhere (13, 21). DNA sequencing was as described
previously (23). DNA and RNA concentrations were measured using either a
DyNA Quant 200 fluorometer (Hoefer) or a UV-visible spectrophotometer
Genesys 2 (Spectronics). All manipulations of RNA were as described previously
(6, 12). Protein concentrations were measured using the BCA protein assay
reagent kit (Pierce). Unless otherwise indicated, all chemicals were obtained
from common chemical suppliers.

Northern blot analysis. RNA extraction and Northern hybridization using
antisense riboprobes were performed as described elsewhere (6, 12). RNAs were
detected by autoradiography on X-Omat AR film (Kodak). Digital images were
acquired using a gel documentation system GDS7600 (UVP). Scanning densi-
tometry of the images was performed using GelBase-Pro software (UVP). The
7S RNA probe was prepared as described elsewhere (6). The merA probe was
prepared by PCR amplification using chromosomal DNA and primers MerA-F
and MerA-R that were complementary to positions 133 to 161 and 773 to 801,
respectively, in the merA coding region. The 640-bp fragment was cloned at the
XbaI and SphI sites of pT7T3/18U (Pharmacia). In riboprobe synthesis, merA
was linearized using SmaI, and T3 RNA polymerase was used for transcription
to produce a 32P-labeled antisense RNA. The merH probe was prepared by PCR
amplification using primers MerH-2F and MerH-2R. The 5� end of MerH-2F is
located 3 nt upstream of the merH start codon, and the 3� end of MerH-2R is
located 18 nt upstream of the merH stop codon. The 184-bp fragment was cloned
at the EcoRI and HindIII sites of pT7T3/18U (Pharmacia). In riboprobe syn-
thesis, merH was linearized using EcoRI, and T3 RNA polymerase was used to
transcribe a 32P-labeled antisense RNA. The merI probe was amplified by PCR
using primers MerI-2F and MerI-3R, which were complementary to positions 1
to 34 and 341 to 368 relative to the merI coding region. The 368-bp fragment was
cloned into EcoRI and PstI sites of pT7T3 and linearized with EcoRI. A labeled
antisense RNA was transcribed using T3 RNA polymerase.

Primer extension analysis. The merH transcript was subjected to primer ex-
tension using primer MerH-PE, which is complementary to positions 64 to 84
downstream of the merH start codon. The primer extension oligonucleotide was
labeled at the 5� end with [�-32P]ATP using T4 kinase (USB) as described
elsewhere (6, 29). The labeling reaction was terminated by EDTA addition
followed by heating at 65°C. The labeled primer was purified using a Sep-Pak C18

cartridge (Waters), dried, and resuspended in 10 �l of 10 mM pH 8.0 Tris-Cl, 1
mM EDTA. A typical reaction yielded 10 �l of 106-cpm/�l-labeled oligo, and 1
�l of this oligo was used for each reverse transcription reaction. Reverse tran-
scription was performed as described previously (6, 29) with modifications. Sam-
ples of total RNA (20 �g) were hybridized with the labeled primer in 150 mM
MgCl2, 10 mM Tris-Cl pH 8.3, and 1 mM EDTA, heated at 65°C for 90 min, and
cooled to allow primer annealing. The mixture was adjusted to 20 mM Tris-Cl pH
8.3, 10 mM MgCl2, 0.5 mM dithiothreitol, 0.15 mg/ml actinomycin D, 0.15 mM
deoxynucleoside triphosphates, and 5 U of avian myeloblastosis virus reverse
transcriptase (Pharmacia) was added. The reaction mixture was incubated for 1 h
at 42°C and terminated by addition of 17.5 ng/ml salmon sperm DNA and 14

ng/ml RNase A followed by incubation for 15 min at 37°C. The reaction was
extracted with phenol-chloroform (1:1), and primer-extended DNA was recov-
ered by ethanol precipitation, dried, and resuspended in the Stop solution of the
T7 Sequenase version 2.0 DNA sequencing kit (Amersham). The primer exten-
sion primer also was used to generate the sequencing ladder for mapping the
start site of transcription of merHp and merIp. The template used to generate the
DNA sequencing ladder for merAp primer extension mapping was plasmid
pPBMerA10. DNA sequencing reaction products were separated on pre-
equilibrated 8% (wt/vol) denaturing polyacrylamide sequencing gels as de-
scribed previously (23).

EMSA of merHp. A 328-bp region spanning the merHp sequence was amplified
from wild-type S. solfataricus or PBL2039, the mutant strain containing the
merR-IR1 sequence, using primers MerA2-F and MerH-R. MerA2-F starts 325
nt upstream of the merA start codon and has an added EcoRI site, and MerH-R
starts 4 nt upstream of the merA start codon. Template (100 ng) was end labeled
using [�-32P]ATP and T4 polynucleotide kinase (USB) at 37°C for 60 min and
terminated by the addition of 0.5 M EDTA pH 8.0, followed by incubation at
65°C for 5 min. The labeled oligonucleotide was recovered using phenol-chlo-
roform (1:1) extractions followed by ammonium acetate and ethanol precipita-
tion. Radiolabeled DNA was resuspended in 20 �l deionized distilled water, and
its radioactivity was calculated using a Beckman LS1701 scintillation counter.
Electrophoretic mobility shift assay (EMSA) reaction components were com-
bined in a 10� buffer containing 0.5 M Tris-Cl pH 8.0, 250 mM MgCl2, 10 mM
EDTA, prepared using diethyl pyrocarbonate-treated deionized distilled water,
along with varying amounts of recombinant MerR protein, 1.0 �g poly(dI-dC)
(Sigma), 1 mM dithiothreitol (Invitrogen), and deionized distilled water to a final
volume of 15 �l. Reaction mixtures were incubated at 50°C for 10 min. Probe was
added to the mixtures at 106 cpm/�l and incubated for 20 min at 50°C. After
incubation, glycerol was added to the reaction mixtures at 10% (vol/vol), and
samples were loaded on a 6% (29:1 acrylamide-bisacrylamide), 1% glycerol, 1�
Tris-borate-EDTA (TBE) gel using a Dual gel electrophoresis system (Owl).
Electrophoresis was at 100 V for 3 h, and the gels were dried for 30 min at 80°C
and used to expose X-ray film. Competition assays were performed using an
unlabeled 328-bp fragment encoding the merHp sequence in molar excess as
specific competitor. Nonspecific competitor DNA used was an unlabeled 176-bp
merA fragment amplified using forward primer merAsense2 and reverse primer
merAantisense. The 5� end of merAsense2 begins 336 nt downstream of the
merA start codon, and the 3� end of primer merAantisense begins 511 nt down-
stream of the merA start codon. A mutant template with the 36 nt spanning the
mer operator sequence deleted, called merHp-IRdel36, was created using prim-
ers merIR-OL-F2 and merIR-OL-R paired with merR-L-BamHI-F and merH-
L-BamHI-R, respectively. The 5� end of merIR-OL-F2 is located 30 nt down-
stream of the merR start codon. The 5� end of merIR-OL-R is located 40 nt
upstream of the merH start codon. For EMSA using Hg(II), MerR protein (139
nM) was first incubated for 10 min at 50°C, followed by addition of probe (33
pM) and further incubation for 10 min. Hg(II) was added after the binding
reactions in amounts resulting in 0.1, 1.0, and 10.0 �M, and incubation was
continued for 10 min at 50°C.

Preparation of recombinant aMerR. The S. solfataricus merR open reading
frame (SSO2688) was amplified from genomic DNA using Taq polymerase
(Invitrogen) and oligonucleotide primers MerR-F and MerR-R (24). The PCR
amplicon was digested with NcoI and XhoI and ligated into pET28b (Novagen),
creating plasmid pPB996. E. coli strain BL21 Rosetta (Novagen) was trans-
formed with pPB996 for expression of recombinant C-terminal hexahistidine-
tagged MerR. For preparation of recombinant MerR, cells were grown to an
optical density at 600 nm of 0.1 and expression was induced by addition of 0.5
mM isopropyl-�-D-thiogalactopyranoside followed by a 3-h additional incuba-
tion. Cells were harvested by centrifugation, resuspended in 50 mM Tris-HCl pH
7.8, 0.5 M NaCl, 10% glycerol, 10 �M �-mercaptoethanol (buffer A), and lysed
by sonication followed by centrifugation. The soluble extract was heated at 80°C
for 20 min and centrifuged at 10,000 � g for 20 min to remove denatured
proteins. All glassware and reagents used for MerR purification were made
RNase free by baking at 180°C for 4 h or by treatment with DEPC. The super-
natant was applied to a 1.0-ml Ni2�-nitrilotriacetic acid agarose bead column
(QIAGEN). The column was equilibrated with 10 column volumes of buffer A,
and supernatant was then loaded followed by a wash with 5 column volumes of
buffer A plus 75 mM imidazole. MerR eluted in 5 column volumes of buffer A
plus 75 mM imidazole as indicated by analysis of fractions on sodium dodecyl
sulfate-polyacrylamide gel electrophoresis after staining with Coomassie blue
R250. Protein was concentrated using Centricon YM-3 or YM-10 (Amicon)
filters prior to storage of aliquots at �80°C.

Alignment of the MerR operator. Sequences were identified with NCBI ad-
vanced BLASTn (expect value of 1,000; size 7) using the full genome sequences
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of Sulfolobus acidocaldarius, Sulfolubus tokodai, and S. solfataricus. ClustalW was
used to create the multiple-sequence alignment.

RESULTS

Composition and transcription of the archaeal mer operon.
In previous studies (24), primer extension mapping identified
the 5� end of the merA transcript 7 nt upstream of the merA
start codon in a region lacking a canonical archaeal promoter
(Fig. 1). Despite this finding, in vitro transcription analysis
using a DNA template encoding this region failed to produce
a specific start site, while a 16S rRNA promoter template could
(V. Dixit and P. Blum, unpublished). This raised the possibility
that an alternate promoter was used in vivo at a site located
further upstream. Consistent with this possibility was the iden-
tification of a small open reading frame annotated as a putative
metal binding peptide encoding a “TRASH” domain in the S.
solfataricus mer region (Fig. 1) (11). The TRASH domain is
encoded within a 180-nt sequence, SSO10899, positioned 16 nt
5� to the merA start codon and out of frame with regards to
merA (25). Sequence comparisons indicated it lacked homol-
ogy with bacterial merT or the merP-like N-terminal domains
found on some bacterial MerA proteins. Presence of a con-
served metal binding motif suggested instead that it could be
involved in Hg(II) mobilization by acting as a metal chaperone.
To test whether SSO10899 was expressed in response to Hg(II)
challenge, Northern blot analysis was conducted. Hybridiza-
tion of total RNA from Hg(II) challenged wild-type cells, using
a riboprobe complementary to SSO10899, detected two tran-
scripts of the identical sizes as those seen previously using a
merA riboprobe (24) (Fig. 2A). These transcripts differed in
size by approximately 400 nt. The similarity in transcript sizes
detected using riboprobes complementary either to merA or
SSO10899 indicated SSO10899 was cotranscribed with merA
from a start site further upstream. The SSO10899 open reading
frame was thus renamed merH.

On the 3� side of merA is another open reading frame,
SSO2690 (25). This gene encodes a small protein of 122 resi-
dues and is separated from merA by a 142-nt intergenic region.
SSO2690 has several characteristics of interest, including an
acid-rich domain in its N-terminal region reminiscent of the

acid blob domains found in eukaryotic activators and a zinc
finger domain in its C-terminal region with the motif Cx2Cx9

CxC. This protein is a conserved crenarchaeotal protein with
homologs of nearly identical size in the related organism Sul-
folobus tokodai (70% identity in the C terminus) and Acidianus
ambivalens (80% identity in the C terminus). Hybridization of

FIG. 1. Components of the S. solfataricus mer operon and mer operator. A. Components of the S. solfataricus mer operon. Nucleotide lengths
are indicated for the open reading frames (filled arrows) and intergenic regions (open boxes). Promoters and estimated unprocessed transcript
lengths are indicated (thin arrows). B. Sequence of the mer operator (divergent thin arrows), BRE and TATA elements (boxes), merH transcription
start site (bold), and merR and merH initiator codons.

FIG. 2. Northern blot analysis of merH and merI expression during
mercury challenge. A. Northern blot analysis of merH. B. Northern
blot analysis of merI. Samples were removed at the times indicated
from a culture treated with 0.3 �M mercuric chloride and analyzed for
mRNA content using merH and merI riboprobes, respectively. Major
transcripts are indicated (dashes). Culture doubling time ranged from
8 to 10 h.
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total RNA from Hg(II)-challenged wild-type cells using an
SSO2690 riboprobe detected a transcript that was the same
size as the smaller of two large transcripts seen previously
using both the merH riboprobe and the merA riboprobe (24)
(Fig. 2B). A second transcript sufficient in size to encode
SSO2690 was also observed. This smaller transcript was con-
stitutively expressed at a low level, but following Hg(II) expo-
sure its abundance increased. These results indicate SSO2690
is cotranscribed in a mercury-responsive manner with merH
and merA from a promoter located upstream of merH and,
separately, from its own promoter. SSO2690 was therefore
renamed merI. These data revise the composition of the S.
solfataricus mer locus to include four genes (Fig. 1).

Primer extension analysis was used to determine the tran-
scription start sites located upstream of merH and upstream of
merI (Fig. 3A). The 5� end of the transcript initiating upstream
of merH was 11 nt from the merH start codon. The 5� end of the
transcript initiating upstream of merI occurred at the first po-
sition of the merI start codon, indicating this transcript was a
leaderless mRNA. In previous studies, in vivo primer extension
analysis mapped the 5� end of the merA transcript immediately
upstream of merA and 3� to the merH coding region (24). The
merH Northern and primer extension data, however, indicated
that a transcript encoding merA could initiate upstream of
merH at a promoter called merHp. Taken together these data
suggested that a primary transcript initiated at merHp was

endonucleolytically processed to produce the 5� end near merA
and that merHp rather than merAp is the main mer promoter.

The mer operator sequence. Sequence examination of the
region upstream of merHp identified a 31-nt inverted repeat
(Fig. 3B, top) as the putative binding site for aMerR. The right
half of this repeat overlaps the putative TFB binding site
(BRE) of merHp and contains one additional T immediately
adjacent to the BRE. The internal 18 nt of this sequence
includes a perfect inverted repeat with 8-nt half-sites and a 2-nt
central spacer. In bacteria, a shorter inverted repeat comprises
the binding site for MerR and is located between divergently
transcribed �10 and �35 boxes (5). The location of the S.
solfatarcius sequence in an upstream location suggests a mech-
anism for how aMerR may control and possibly protect gen-
eralized transcription factors bound at merHp from transcrip-
tion inhibition during Hg(II) exposure. A large segment of this
inverted repeat sequence (10 contiguous positions out of 15) is
also found upstream of the putative merI promoter (Fig. 3B,
bottom), suggesting aMerR may bind both locations and me-
diate transcription in response to Hg(II) exposure.

Effect of MerA on mRNA abundance. Efforts to gain an
understanding of the mechanism underlying Hg(II) as an in-
ducer of mer expression were complicated by the simultaneous
effect of this metal as a general inhibitor of transcription (10).
Accumulation of mercuric reductase (MerA) could impact this
process by accelerating metal detoxification (24). To test this
hypothesis, a strain that constitutively expressed merA (MerR
deficient) was used to measure transcription inhibition (10)
relative to an otherwise isogenic wild-type strain by evaluating
mRNA abundance for selected genes. Transcript abundance
levels of several genes, including lacS, tfb-1, tfb-2, and merA,
were evaluated in cells overproducing MerA (Fig. 4). Elevation
of MerA levels was achieved using a strain with an inactivated
copy of merR. Batch cultures grown in SM were treated with 0.3
�M mercuric chloride, and samples were removed for analysis at
times thereafter. The signal recognition particle, 7S RNA, was
used to standardize mRNA band intensity as described previously
(6). In the merR disruption mutant, transcript levels for all genes
remained virtually unaffected by Hg(II) challenge throughout the
time course. In the wild-type strain, all transcripts were detected
at 0 and 0.5 h; however, lacS and tfb-2 transcript levels dropped

FIG. 3. Primer extension and DNA sequence analysis of merH and
merI promoter regions. A. Primer extension analysis. RNA was ob-
tained from cultures 4 h after treatment with 0.3 �M mercuric chlo-
ride. B. Promoter sequences. The location of the operator at merHp
and matching half-repeat at merIp are indicated (arrows). The TBP
binding site (TATA box octamer) and TFB binding site (BRE hex-
amer) are indicated by the boxed regions. Transcription start sites
(�1) and start codons (bold) are indicated.

FIG. 4. Effect of mercuric reductase overproduction on Hg(II)-
challenged mRNA abundance. Samples were removed at the times
indicated from the wild-type and the merR disruption mutant strains
treated with 0.3 �M mercuric chloride and then analyzed for mRNA
content. Northern blots were analyzed using four different probes
(lacS, tfb-1, tfb-2, and 7S RNA); 7S RNA was used as an internal
control. Transcript sizes are indicated on the left.
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sharply at 1, 2, and 4 h. After 9 h of Hg(II) exposure, each of these
mRNAs was again detected. Interestingly, the level of tfb-1
mRNA was increased at 1 and 2 h in the wild-type strain during
Hg(II) challenge. These results indicate high intracellular levels of
MerA suppress the Hg(II)-mediated reduction in transcript abun-
dance arising from inhibition of generalized transcription (10, 24),
and they support the use of strains lacking this gene in subsequent
studies.

MerR and Hg(II)-resistant transcription. The mer genes
undergo induction when transcription of other genes is inhib-
ited (10, 24). This suggests mer responds in a fundamentally
different way to metal challenge and implicates a role for
MerR in this process. The contribution of MerR in Hg(II)-
resistant transcription of merHp was investigated using a dou-
ble mutant encoding a merA deletion in a merR::lacS disrup-
tion mutant background (strain PBL2026) (24).

The merRA double mutant was created using linear DNA
recombination to replace wild-type merA located in the chro-
mosome with a deleted version (Fig. 5A). A PCR product was
transformed into the merR disruption mutant that encom-
passed the lacS-disrupted merR gene, merH, a deletion of merA
spanning nt 16 to 1362, SSO2690, and its flanking regions.
Recombinants were recovered by selection for lactose utiliza-
tion and characterized using PCR and DNA sequencing. The
identity of the merRA double mutant was confirmed by PCR
analysis and DNA sequencing (Fig. 5B and C). To assess the
physiological consequence of merA deletion in the absence of
merR, the response of the merRA double mutant to Hg(II)
challenge was compared to that of the otherwise-isogenic wild-
type strain (Fig. 5D). Both strains were grown in SM and at a
cell density of 108 cells/ml, and 0.5 �M Hg(II) was added to
each culture. Untreated cultures of both strains were included
as controls. Growth of the wild-type strain exhibited a lag
followed by a slightly reduced rate of growth, while the merRA
double mutant exhibited a significantly longer lag followed by
a slightly reduced rate of growth. Recovery of the mutant
suggests Hg(II) was redistributed and possibly reduced by
other cellular reductases or was lost to cellular thiols.

FIG. 5. Linear DNA recombination and the merRA double mutant.
A. Schematic representation of the linear DNA used to create the
merRA double mutant encoding the disrupting copy of lacS (triangle)
in merR and deletion of merA (wavy line). The ORFs with correspond-
ing lengths in nucleotides and directions of transcription are indicated
(block arrows). Each end of the fragment encodes an added BamHI
restriction site. B. PCR analysis of the entire mer operon and flanking
sequences in the wild type and merRA double mutant. Lane 1, wild
type; lane 2, merRA double mutant. Sizes (in kb) are indicated on the
left. C. PCR analysis of the entire merR locus and flanking sequences
in the wild type and merRA double mutant. Lane 1, wild type; lane 2,
merRA double mutant. Sizes (in kb) are indicated on the left. D.
Response of the merRA double mutant to Hg(II) challenge. Cells were
grown in SM to a density of 108 cells/ml and challenged with 0.5 �M
mercuric chloride at the time indicated (arrow). Symbols: triangles,
merRA double mutant; circles, wild type; filled symbols, untreated
cultures; open symbols, treated cultures.

FIG. 6. Relative abundance of Hg(II)-challenged merH mRNA in
multiple genetic backgrounds. Samples treated with 0.3 �M mercuric
chloride were removed from the cultures listed at the times indicated
and analyzed for mRNA content. Northern blots were probed either
with merH (A, B, and C) or merI (D) riboprobes. The genetic back-
grounds of strains used for RNA extraction are indicated above each
panel.
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Northern blot analysis was conducted to test the dependence
of merHA transcription on the presence of MerA and MerR
(Fig. 6). Batch cultures grown in SM were again treated using
0.3 �M Hg(II), and samples were removed for analysis at times
thereafter using either merH or merI riboprobes. In the wild-
type strain (Fig. 6A), the merH transcript was undetected at
0 h, very slightly after 0.5 h, then more strongly after 1, 2, and
4 h, and became undetectable after 9 h in a pattern similar to
that reported previously (24). In the merA disruption mutant
(Fig. 6B), merH transcript levels exhibited metal induction but
in a delayed manner, becoming detectable after 4 h and unde-
tectable after 16 h. A similar pattern of RNA abundance was
evident when samples were probed using a merI riboprobe, as
expected for this multicistronic RNA (Fig. 6D). In the merRA
double mutant, merH transcript abundance was initially high
(constitutive expression) but decreased significantly over the
next 3 h (Fig. 6C). Thereafter, merH transcript levels increased
in a transient manner, as observed for the merA disruption
mutant, but then became undetectable after 12 to 16 h rather
than resuming the constitutive and high pattern of abundance
observed in the other genetic backgrounds. In all cases, after
extended periods of incubation, the metal-treated strains re-

sumed growth. These data demonstrate that in the absence of
MerR, synthesis of the merH transcript in Hg(II)-treated cells
is inhibited, as observed for other transcripts, like lacS (Fig. 4).
At the same time, transient but delayed induction of the merH
transcript in both the merA and merRA double mutants re-
vealed the presence of a secondary pathway for Hg(II) detox-
ification which may result from other cellular reductases or
cellular thiols.

Role of SSO2690 (merI). The role of merI in the Hg(II)
resistance phenotype was investigated by creating and charac-
terizing a mutant strain encoding a merI::lacS disruption (Fig.
7A). Disruption of merI used a strategy similar to that em-
ployed for the merR disruption in strain PBL2025 (24). Identity
of the merI mutant was confirmed by PCR analysis and DNA
sequencing (Fig. 7B). To assess the physiological consequence
of gene disruption, the response of the mutant strain to Hg(II)
challenge was compared to that of the otherwise-isogenic wild-
type strain, both growing in SM, using unadapted and 0.5 �M
Hg(II)-preadapted cells as described previously (24). All cul-
tures at cell densities of 108 cells/ml were challenged with
0.5 �M (unadapted) or 1.5 �M (adapted) mercuric chloride
(Fig. 7C). Untreated cultures of both strains were included
as controls. No significant difference in patterns of growth
was apparent between the two strains under either treat-
ment regimen.

Construction and analysis of the merR operator mutants.
Multiple sequence alignments of the operator, derived from
the sequenced genomes of three Sulfolobus species, were ex-
amined (Fig. 8A). Except for the central two nucleotides, the

FIG. 7. Targeted recombination and the merI mutant. A. Sche-
matic representation of the DNA used to create the merI mutant
encoding the disrupting copy of lacS (triangle) in merI. The ORFs with
corresponding lengths in nucleotides and directions of transcription
are indicated (block arrows). B. PCR analysis of the merI locus and
flanking regions in the wild type and merI mutant. Lane 1, wild type;
lane 2, merI disruption mutant. Sizes (in kb) are indicated on the left.
C. Adaptive response of the merI mutant to Hg(II) challenge. Cells
were grown in SM to a density of 108 cells/ml and challenged with
mercuric chloride as indicated in Materials and Methods, at the time
indicated (arrow). Symbols: open symbols, merI mutant; filled symbols,
wild type; circles, untreated cultures; triangles, adapted cultures;
squares, unadapted cultures.

FIG. 8. The MerR operator. A. Alignment of the MerR operator
with Sulfolobus acidocaldarius (S.a.) and Sulfolobus tokodai (S.t.). The
conserved operator sequence spans 18 nt and includes 8-nt palin-
dromic arms (arrows) flanking a central 2-nt T-containing spacer. The
percent identity between each of the conserved operator sequences is
16/18 (88% identity). When full-length alignments are considered, the
identity values are greater than 80% (S. solfataricus/S. acidocaldarius,
29/36 [80.56%]; S. solfataricus/S. tokodai, 29/36 [80.55%]). B. Mutagen-
esis of the mer operator. A schematic representation of the location
and sequence of the modified operator sequences is shown. Mutant
nucleotides are indicated in lowercase. WT, wild type. Encoded re-
striction sites (underlined) are indicated below the sequence, as are the
points of symmetry (circumflex) and nucleotide deletion (dash).
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core 18-nt mer operator is conserved in all three Sulfolobus
species. This suggests the flanking 8 nt in each half of the
operator are critical for MerR binding. It is possible the central
2 nucleotides are necessary as a spacer for binding and func-
tion of an aMerR homodimer. Mutant strains encoding muta-
tions of this sequence were then created and characterized.

Site-specific mutagenesis coupled with markerless exchange
was used for the first time with this organism to introduce
mutations in both halves of the operator (merR-IR1) or that
separated the two halves by 4 nt (merR-IR2), thereby rotating
the respective segments to opposite sides of the DNA helix
(Fig. 8B). The lacS-deficient strain, PBL2025, allows for effi-
cient recombination of unmarked mutations onto the chromo-
some via markerless exchange (7, 19) using lacS as a selectable
marker. To perform markerless exchange, the desired muta-
tion was first cloned into a suicide plasmid having lacS inserted
in the vector backbone. The resulting plasmid was then used to
transform PBL2025 to lactose utilization. Transformants arose
by integration into the host chromosome via homologous re-
combination between the plasmid-borne mutant allele and the
chromosomal wild-type allele. Integration cannot occur at the
lacS locus, because PBL2025 carries a deletion of this region
(24). The resulting merodiploids were unstable due to the extra

copy of the mutant allele. Recombinants which have resolved
the merodiploid state (and therefore have lost the integrated
vector) result in either wild-type or mutant individuals, de-
pending on where the resolving recombination event occurs.
These alleles can readily be distinguished by screening for the
lactose utilization phenotype. Next, genotypic analysis was
used to confirm the identity of the mutants. Both operator
mutants and the merR disruption mutant used as a control
exhibited constitutive resistance to a challenge of 0.5 �M mer-
curic chloride, while the same dose blocked growth of the
wild-type strain (Fig. 9). Since overexpression of mercuric re-
ductase reduces sensitivity to Hg(II), constitutive Hg(II) resis-
tance indicates the merR-IR mutants have this property and
are analogous to the merR disruption mutant that has been
described previously (24).

Electrophoretic mobility shift analysis of aMerR and
merHp. Physiological analysis of the mutants harboring altered
operator sequences indicated this sequence was the binding
site for aMerR. To study further the interaction between

FIG. 9. Response of the mer operator mutants to Hg(II) challenge.
Cells were grown in SM and challenged with 0.5 �M mercuric chloride
(arrow). A. Cultures were merR-IR1 mutant (inverted triangles) and
wild type (circles). B. Cultures were merR-IR2 mutant (inverted trian-
gles) and wild type (circles). Filled symbols, untreated cultures; open
symbols, treated cultures.

FIG. 10. EMSA of merHp using purified MerR. A. Schematic of
the merHp EMSA probe. The location of merR-IR is indicated (filled
box). B. Purification of recombinant aMerR. Lane 1, total cell extract;
lane 2, heat-fractionated clarified supernatant; lane 3, affinity-purified
protein. C. Mobility of the wild-type merHp probe. Lane 1, probe only;
lane 2, probe with MerR. D. Mobility of the merHp-IR1 probe. Lane
1, probe only; lane 2, probe with MerR. E. Mobility of the merHp-
IRdel36 probe. Lane 1, probe only; lane 2, probe with MerR. F. Effects
of increasing concentrations of mercuric chloride on the mobility of
the wild-type merHp probe with MerR. Lane 1, probe only; lanes 2 to
5, probe, MerR, and 0, 0.1, 1.0, and 10.0 �M mercuric chloride,
respectively (added after the binding reactions). In all EMSA reac-
tions, MerR was present at 139 nM while the merHp EMSA probe was
present at 33 pM.
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aMerR and this region, EMSA was conducted using a radio-
labeled 328-bp DNA probe spanning the merHp region (Fig.
10A) and purified recombinant aMerR (Fig. 10B). Small
amounts of aMerR (139 nM) were sufficient to shift this probe
(33 pM) (Fig. 10C). Competition experiments demonstrated
that the interaction between aMerR and the merHp probe was
specific, as the complex was competed by a 300-fold excess of
specific competitor and not by a 1,000-fold excess of nonspe-
cific competitor (data not shown). Since the in vivo phenotype
of the merR-IR1 mutant suggested aMerR could no longer
repress transcription, the interaction of aMerR with this mu-
tant sequence in vitro was examined. EMSA was performed
using a radiolabeled DNA probe encoding the merR-IR1 allele
of the same length and molarity as the wild-type sequence.
Interestingly, nominal amounts of aMerR (139 nM) again
formed a complex (Fig. 10D). In light of this result, aMerR
binding to a second mutant DNA probe having the entire
operator sequence deleted by removal of 36 nt (merHp-
IRdel36) was tested under identical conditions. In this case, no
complex was formed, indicating the protein-DNA interaction
was dependent on the presence of the operator sequence (Fig.
10E). Finally, to address the potential impact of Hg(II) on
complex formation, various concentrations of Hg(II) were
used to treat preformed aMerR/merHp DNA complexes. Com-
plex formation remained evident and therefore was insensitive
to metal exposure despite molar ratios of Hg(II) to aMerR
exceeding 1,000-fold (Fig. 10F). Taken together, the in vivo
and in vitro results examining aMerR interactions with the
operator sequence indicate aMerR remains bound to the op-
erator regardless of the presence of the metal ligand. Because
aMerR was able to bind the mutant operator in vitro yet
unable to mediate repression in vivo, aMerR binding and
aMerR-mediated repression are not obligatorily coupled.

DISCUSSION

Mercuric ion, Hg(II), has been shown to inactivate general-
ized transcription in the archaeon S. solfataricus in a specific
manner (10). In the data presented here, elevated levels of
mercury reductase (MerA) in a merR disruption mutant in-
creased transcript abundance of genes unrelated to metal re-
sistance during metal challenge. Since the abundance of these
transcripts was shown previously to be reduced by metal expo-
sure in an otherwise-wild-type strain (10), this new finding
provides additional evidence that transcription is a primary
target of heavy metal toxicity. For this reason, coupling mer-
cury resistance to relief of transcription inhibition represents a
unique regulatory response and one that is perhaps specific to
members of the archaeal domain that combine bacteria-like
mercury resistance genes with a eukaryote-like transcription
apparatus.

The wHTH DNA binding domain is a highly conserved
sequence motif widely distributed among transcription factors
(4). ArsR and MerR constitute two abundant but distinct fam-
ilies of wHTH proteins. A key difference between these two
families resides in their response to metal ligands; ArsR pro-
teins dissociate from DNA while MerR proteins remain
bound. At the same time, ArsR proteins are generally repres-
sors while MerR proteins both repress and stimulate bacterial
transcription initiation frequency. Despite its ability to regulate

transcription of mercury resistance genes, aMerR encodes an
N-terminal wHTH domain with a short sequence motif related
to ArsR family members. The ArsR motif in aMerR, however,
lacks the conserved cysteine residue required for ligand-in-
duced DNA release. Despite this divergent feature, the S.
solfataricus aMerR protein could be the first example of an
Hg(II)-responsive ArsR family member.

As an ArsR family member, aMerR should release DNA
upon interaction with its cognate metal ligand. While earlier
studies found that a strain lacking merR exhibited constitutive
mer expression, indicating aMerR was a transcriptional repres-
sor (24), several types of data presented in this work suggest
aMerR instead remains DNA bound during metal challenge,
where it confers resistance to transcription inhibition. North-
ern analysis of merH transcript abundance using mercuric
reductase-deficient strains examined the role of aMerR on
Hg(II) inactivation of merHp. Since the absence of aMerR
prevented accumulation of merH transcript following metal
challenge, aMerR is apparently required for initiation of tran-
scription at merHp. Secondly, the interaction of aMerR with its
DNA binding site in vitro was found to be insensitive to metal
addition, something quite unlike ArsR family members (18,
26). Finally, it was shown that an aMerR binding site mutation
that relieved repression in vivo did not prevent DNA complex
formation in vitro. Since the aMerR binding site is immediately
adjacent if not overlapping with the binding sites of general-
ized transcription factors TFB and TBP, these data suggest
aMerR remains promoter bound during metal challenge,
where it exerts a protective effect over the preinitiation tran-
scription complex. More elaborate in vivo and in vitro efforts
would further clarify the nature of MerR binding.

Interestingly, the S. solfataricus aMerR operator spans 31 nt
while the bacterial MerR operator spans 18 nt with 7-nt pal-
indromic arms separated by a 4-nt central AT-rich spacer (5).
In contrast, the S. solfataricus aMerR protein is only 115 res-
idues, while bacterial (E. coli) MerR is larger, with 144 resi-
dues. This suggests that the S. solfataricus aMerR protein ei-
ther does not require the entire operator for binding or that it
binds differently than its bacterial counterpart. The conserva-
tion of the S. solfataricus mer operator in other Sulfolobus
species supports an important role for this sequence in medi-
ating transcriptional control of mer expression. An internal
16-nt sequence was identified by multiple sequence alignment
that could be divided into two halves separated by a variable
2-nt spacer. This suggests the flanking 8-nt half-sites interact
with each monomer of a MerR homodimer. The mercury-
resistant phenotype produced by the merR-IR2 mutation is
also consistent with a MerR homodimer. This mutation sepa-
rated the two halves of the operator by rotating them to dif-
ferent sides of the double helix. Apparently, despite a contin-
ued presence of the repeat sequences, MerR was unable to
repress mer transcription, suggesting monomer interaction may
be required for this process. Ongoing studies to examine MerR
structure will clarify this issue.

Hg(II)-mediated transient derepression of mer expression in
merA and merRA double mutant strains implicates the exis-
tence of a secondary system or alternative cellular reductases
for metal detoxification. Delayed mer induction likely results
from the need to reduce initial Hg(II) concentrations below
those that block transcription but remain sufficient to relieve
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aMerR repression. Following a period of induced expression,
mer expression is again terminated and is likely to result from
further decreases in Hg(II) concentrations below those re-
quired for gene induction. Since these strains lack mercuric
reductase, the pattern of transient derepression indicates some
alternative mechanism operates in these cells that controls
Hg(II) levels.

These studies also describe the development and application
of several new genetic techniques that expand the crenarchaeal
repertoire. Construction of the merRA double mutant required
the development and use of linear DNA recombination. This
modification of earlier methods (15, 24, 31) prevented recom-
bination between two desirable mutations, the merR disruption
and the merA deletion. Earlier methods for targeted recombi-
nation employed two successive single-crossover events, which
allowed unwanted recombination between desired regions and
resulted in loss of the merA deleted region. The new approach
overcame this constraint by enabling greater control over the
crossover event. The second new genetic method developed
and used in these studies was a version of allele replacement
(7) that is also called markerless exchange. This method was
used to construct site-specific mutations in the putative mer
binding site. Markerless exchange has been used previously for
other archaea, accompanied by counterselection (19). As em-
ployed in this study, silent mutations were introduced by se-
lection followed by loss of the selectable marker, vector, and
unaltered target allele due to spontaneous segregation. The
new methods presented here, together with other advances in
genetic modification of S. solfataricus (28), will promote efforts
targeting studies on Crenarchaeota.
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Primers  

LacS-KpnI-F  5’ AGTCCGGGGTACCAATACTAGGAGGAGTAGCATATAATTACGT 3’ 

LacS-KpnI-R 5’ AGTCCGGGGTACCAGTATTAAATCTAAATGACTTTCCAATTAG 3’ 

merR-L-BamHI-F 5’ ATGCCGCGGATCCATCTTGTGAAAATTAAGGATGCGAT 3’ 

merR-L-BamHI-R 5’ ATGCCGCGGATCCTCTTGAAAGGCTTGGAAAAATTCTG 3’ 

merR-R-KpnI 5’ CAAGTTAAATTATCTCATTAGGGTACCATATGTGCTTAGG 3’ 

merR-R 5’ CACATATGTTCTCGAGATGAGATAATTTAACTTGACC 3’ 

merI-L-BamHI-F 5’ AGTCCGCGGATCCTTTAGATGCAGCAGGAATCGAATTAAACGA 3’ 

merI-L-BamHI-R 5’ AGTCCGCGGATCCAGATTATAGATGCCCAATTGAACAAGCTGA 3’ 

merI-L-BclI-F 5’ AGTCCGCTGATCACTCGATTTCATTTCTTTTTATATAAT 3’ 

merI-L-KpnI-R 5’ AGTCCGCGGTACCAGATTATAGATGCCCAATTGAACAAG 3’ 

merI-OL2-XhoI-F 5' GATTATATGAAGATGAGGAACTCGAGGAGATAGCACTCCGTATAAC 3' 

merI-OL2-XhoI-R 5' GTTATACGGAGTGCTATCTCCTCGAGTTCCTCATCTTCATATAATC 3' 

merI-R 5’ GCTATCTCCTCGACTTCCTCA 3’ 

merH-L-BamHI-R 5’ AGTCCGCGGATCCCCCTTATCAGTAACTATTATCTTTCCCCCG 3’ 

merR-BS-OLE-F 5' ATAAGTCTTTCTA(T)GAACATACTAGTGTTCATATGAAAGATTTTTA 3' 

merR-BS-OLE-R 5' TAAAAATCTTTCATATGAACACTAGTATGTTC(A)TAGAAAGACTTAT 3' 

merR-BS-XbaI-OL-F  5’ AATAAGTCTTTCTATGAACATCTAGATGTTCATATGAAAGATTTTT 3’ 

merR-BS-XbaI-OL-R 5’ AAAAATCTTTCATATGAACATCTAGATGTTCATAGAAAGACTTATT 3’ 

merIR-OL-F2 5’ TGATTCTTATCAACTAATATAAAATTTTCACCTATTGACATTATAA 3’ 

merIR-OL-R 5’ TTTATATTAGTTGATAAGAATCATAAATAGGTGAACTAGATGGTTA 3’ 

merA-F 5’ GAATTGTACAATTACTCTTCAAAAGT 3’ 

merA-2F 5’ ATAGGAATTCCAATTCATTTGTAAGAGGCT 3’ 

merA-R 5’ AGCTACCGGAAGAAAGCCCAATGTAG 3’ 

merH-2F 5’ TAGGTGGAATTCATGGTTAATCTAAGG 3’ 

merH-2R 5’ TATCCCAAGCTTGCAACACGATGATACTCC 3’ 

merH-R 5’ CTATCCCTCTCTAGCAACACG 3’ 



merI-2F 5’ ATGCAAGAATTCAAGAGATTATATGAAGATGAGG 3’ 

merI-3R 5’ TTAACTTGATCCAGTACTGCAGCCGCAATAAGCC 3’ 

merH-PE 5’ ATATATTTCATCTTCGGATAG 3’ 

merHp-F 5’ ATAGAATTCCAATTCATTTGTAAGAGGCTCC 3’ 

merHp-R 5’ CGTGTTGCTAGAGAGGGATAG 3’ 

merR-F 5’ ACCTATTGACATTATAAAACCATGGAGCCTCTTAC 3’ 
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