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A COMPARISON OF VNIR AND MIR SPECTROSCOPY FOR PREDICTING 

VARIOUS SOIL PROPERTIES 

Joshua R. Gates, M.S. 

University of Nebraska, 2018 

Advisor: Paul Hanson 

Soil plays an important role in our daily lives, namely producing food, cleaning 

water and storing carbon. The ability to rapidly and cost-effectively quantify the various 

components of soils can help us understand and better manage this important resource. 

This study aims to compare the ability of visible near-infrared (VNIR) spectroscopy and 

mid-infrared (MIR) spectroscopy to quickly and accurately predict various important soil 

properties (electrical conductivity, soil pH, cation exchange capacity, exchangeable 

cations, phosphorus, carbon, beta-glucosidase enzyme activity and nitrogen). Prediction 

models were developed using partial least squares regression (PLSR) techniques. Three 

different calibration sampling methods were tested along with various spectral 

preprocessing techniques to find the best predictive ability of VNIR and MIR. Soil 

components related to carbon, nitrogen and cation exchange capacity had good predictive 

ability (R2 > 0.8) by both VNIR and MIR, but MIR was more accurate. Electrical 

conductivity, sodium cations and phosphorus were poorly predicted by both (<0.71). 

VNIR models were not as robust as MIR models but could be potentially useful for 

qualitative analyses when rapid analyses are preferred over methods are more accurate. 

MIR predictions overall yielded more accurate predictions than VNIR and could 

potentially be used as a surrogate method for timely laboratory techniques for spectrally 

active soil components. 
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CHAPTER 1. INTRODUCTION 

1.1 Purpose of Study 

 Soil is a complex and heterogeneous system with many physical, chemical, and 

biological processes that govern our food and fiber production, water infiltration, 

contaminant remediation and carbon sequestration. Understanding these processes can be 

difficult and time-consuming. Conventional analytical techniques often ignore the 

complex behaviors of soils by trying to draw relationships between physical, chemical, 

and biological properties that have been analyzed and quantified independently from 

subsamples and may further complicate our understanding of soils as a system by 

disrupting the soil equilibrium with chemical extractions (Viscarra Rossel et al., 

2006).These techniques are often slow and expensive when cost-effective, and efficient 

analytical techniques are needed to better quantify our greatest natural resource. 

 Spectroscopic techniques such as: mass spectroscopy (MS), nuclear magnetic 

resonance (NMR), ultraviolet (UV), visible (VIS), near-infrared (NIR) and mid-infrared 

(MIR), may in some cases be an alternative to traditional soil analyses (Janik et al., 1998; 

Nocita et al., 2015). Great advances have been made in the last few decades to increase 

the cost-effectiveness, speed, and accuracy of spectroscopic analytical methods (Bellon-

Maurel & McBratney, 2011). These methods are able to quickly analyze soil as a whole 

without the need for hazardous chemicals and have the added benefit of being able to 

measure multiple soil properties from a single soil sample (Viscarra Rossel et al., 2006). 

Development of these techniques is crucial for our understanding of soils as a system and 

for rapidly assessing and quantifying soil properties so that we may best utilize them.             
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1.2 Objectives 

 The main objective of this thesis is to compare the predictive ability between 

VNIR and MIR spectroscopy for various soil properties at the regional scale. The soil 

properties of interest are electrical conductivity (EC), pH, cation exchange capacity 

(CEC) and extractable cations (Ca2+, Mg2+, Na+, K+), water-soluble phosphorus (H2O P), 

total phosphorous (P), total carbon (C), soil organic carbon (SOC), calcium carbonate 

(CaCO3), β-glucosidase enzyme activity (βG), and total nitrogen (N). A variety of 

spectral preprocessing techniques were tested to improve spectral signals in order to 

increase model performance. Additionally, three different model calibration sampling 

schemes were tested to find the best overall partial least squares regression (PLSR) model 

for each property.      
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CHAPTER 2. BACKGROUND & LITERATURE REVIEW 
 

2.1 Introduction 

 

 Soil is one of the most important natural resources on Earth. It provides the 

structure that allows us to produce food, fiber, and fuel that we depend on every day. Soil 

provides a habitat for microbes that decompose, process and recycle nutrients; filter water 

and remediate contaminants; soils can sequester carbon from carbon dioxide in the 

atmosphere (Lal, 2015)⁠. Therefore, understanding these complex soil processes and 

quantifying soil properties is important for ensuring our growing population has access to 

fresh water and continues to produce adequate food supplies.   

 Assessments of soil quality require measurements of many soil parameters over 

large areas to be of use in mitigating threats to soil health and in implementing 

management policies. Unfortunately, analytical laboratory techniques for measuring soil 

properties can vary widely between laboratories, hindering the exchange of comparable 

quantitative information (Nocita et al., 2015)⁠. Traditional laboratory techniques for 

analyzing soil chemical, physical and biological properties can be time-consuming, may 

utilize hazardous chemicals and are destructive to the sample. Most laboratory methods 

only measure one soil property at a time and therefore, it may be difficult to make 

correlations on a system as heterogeneously complex as soil (Stenberg et al., 2010)⁠.  

Spectroscopic techniques allow for the simultaneous characterization of various soil 

constituents in a cost-effective and timely manner (Viscarra Rossel et al., 2006)⁠.  

The benefits of spectroscopy are rapid, timely, cost-effective and nondestructive 

analysis of soil. Soil samples are processed minimally by oven drying, grinding and 

sieving and no hazardous chemicals are involved. Many samples can be scanned in a 
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short period of time and the instruments are easy to use and require very little training 

(Viscarra Rossel et al., 2006), allowing a tremendous amount of information to be 

quickly gathered about the soil. However, spectroscopic predictions may lack the 

accuracy of traditional analytical laboratory methods, especially for those properties that 

are not spectrally active.   

 Choosing between VNIR or MIR spectrometers usually comes down to cost. 

VNIR spectrometers utilize less expensive technology, are often smaller, and can be 

easily accommodated in a backpack for field use (Knadel et al., 2013). However, they 

tend to be less accurate and have larger prediction errors. Depending on the soil property, 

this may not be acceptable for precision agricultural practices, but if the goal is to collect 

large amounts of coarse data, such as environmental monitoring or assessing changes in 

soil carbon content, the slight increase in accuracy gained from MIR may not be worth 

the cost (Viscarra Rossel et al., 2006). 

2.2 Electromagnetic Radiation and Matter 

 Spectroscopy is the study of how electromagnetic (EM) radiation and matter 

interact. The electromagnetic (EM) spectrum is composed of the various frequencies of 

electromagnetic radiation that have energy (photons) as is illustrated in figure 1. EM 

radiation can be measured by its wavelength (nm or μm) or by its wavenumber (cm-1). It 

is more common to use wavelength when referring to relatively short wavelengths such 

as visible (400-700 nm) light or near-infrared (700-2500nm) radiation. Spectroscopists 

commonly switch to wavenumbers when referring to mid-infrared (4000-400 cm-1) 

radiation because it directly relates to the amount of energy of the radiation (energy 

decreases as wavelength increases) (Viscarra Rossel et al., 2006).  
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Figure 2.1 The electromagnetic (EM) spectrum highlighting the far infrared (FIR), thermal infrared (TIR), 

mid-infrared (MIR), near-infrared (NIR), red (R), green (G), blue (B), and ultraviolet (UV) regions 

(McBratney et al., 2003) 

  

EM radiation interacts with matter in three ways: reflection, transmission, and 

absorption. In the visible region of the spectrum, the colors you see are examples of 

reflected radiation, and the colors you do not see are examples of absorbed radiation. 

Molecules are composed of elements bonded together. These bonds are continuously 

moving and have specific vibrational modes (stretching and bending) that occur when 

exposed to visible and infrared radiation. When molecular bonds are exposed to levels of 

radiation (energy) that match a bonds vibrational mode, the bond will absorb the photon, 

inducing an excited vibrational state that has energy equal to the absorbed photon (Clark, 

2017). The frequency (wavelength or wavenumber) at which this absorption occurs can 

be used to identify and quantify specific molecules.  

 Absorbance cannot be directly measured but it can be calculated according to 

Beer’s Law, which states that the intensity of light transmitted through a substance 
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decreases exponentially as the distance the light travels (path length) increases, 

concentration of the absorbing substance increases, and how strongly the substance can 

absorb light (extinction coefficient). More simply stated, absorbance is linearly related to 

the concentration of the absorbing substance (equation 1): 

(1)     𝐴 = −𝑙𝑜𝑔⁡(
𝐼0

𝐼
) = 𝜀𝑙𝑐 

where, A is absorbance (Au), Io is the intensity of transmitted radiation, I is the intensity 

of incident radiation, ε is the extinction coefficient, l is the path length and c is the 

concentration of the substance (Osibanjo et al., (2017). In soil spectroscopy, reflectance is 

easier to measure than transmittance and is used as a replacement for transmittance, 

where reflectance is calculated as the ratio of reflected radiation to incident radiation 

(equation 2) (Bellon-Maurel and McBratney, 2011): 

(2)    𝑅 =
𝑅𝑜

𝑅𝐼
         

where, R is reflectance, Ro is the amount of radiation reflected and RI is the incident 

radiation. Using Beer’s Law (equation 3), we can calculate absorbance from reflectance 

(Stenberg et al., 2010): 

(3)    𝐴 = 𝑙𝑜𝑔
1

𝑅
 

  Vibrational spectroscopy works according to these assumptions, that absorbance 

is linearly related to the concentration of the substance, and that absorption occurs at 

specific wavelengths for specific molecular bonds (Clark, 2017). Many organic 

compounds have distinct absorption features in the MIR region, making MIR 

spectroscopy a valuable tool. These absorption features occur at the frequency required to 

excite a molecular bond or functional group to its first excited vibrational state or 

fundamental vibration. At higher frequencies there is more energy available and the 
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molecule can be excited to additional vibrational states or overtones. Since energy and 

frequency are proportional, the first overtone occurs at twice the wavenumber of the 

fundamental vibration and absorbs approximately twice the energy (Shay and Holmes, 

2015). Organic compounds in the VNIR region contain a multitude of absorption bands 

related to first and second overtones, and combination bands (more than one fundamental 

vibration occurring simultaneously). These absorption features tend to be broader, less 

defined and more complex than the fundamental vibrational features in the MIR, making 

it more difficult to accurately quantify concentrations of the absorbing substance 

(BenDor et al., 1997; Zornoza et al., 2008; Bellon-Maurel and McBratney, 2011). Figure 

2.2 shows an absorbance spectrum of soil. 

 

Figure 2.2 Soil spectrum shown in the visible (VIS), near infrared (NIR) and mid-infrared (MIR). 

Absorption bands of kaolinite (K), quartz (Q), smectite (S), calcite (Ca), organic compounds (OC) and soil 

free water (OH). Dashed lines in the bottom figure indicate the boundaries between the visible and near 

infrared and the near infrared and mid-infrared, respectively. (Viscarra Rossel et al., 2006). 
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2.3 Spectral Preprocessing 

 Variations in the spectra, often caused by the light scattering effects of quartz sand 

or by instrument drift, sometimes require spectral preprocessing to improve adsorption 

features by reducing the noise (Rinnan et al., 2009). Spectral preprocessing techniques 

can be generally divided into three categories: scatter correction, spectral smoothing, and 

spectral derivatives.  

The three commonly used scatter correction techniques are; multiplicative scatter 

correction (MSC), standard normal variate (SNV), and spectral detrending. MSC is one 

of the most widely used preprocessing technique to increase signals by reducing the 

effects of light scattering or path length (Rinnan et al., 2009). The MSC algorithm 

generates new spectra in two steps, first by estimating the correction coefficients by 

performing ordinary least squares regression on a spectrum (equation 4): 

(4)    𝑥𝑖 = 𝑏0 + 𝑏1 ⋅ 𝑥𝑟𝑒𝑓 + 𝜀 

where, xi is the ith uncorrected spectrum, xref is the reference spectrum obtained by taking 

the average of all the spectra by wavelength, b0 and b1 are scalar parameters, and ε are the 

residuals. The next step corrects the spectrum with the correction coefficients (equation 

5): 

(5)    𝑥𝑚𝑠𝑐 =
𝑥𝑖−𝑏0

𝑏1
 

where, xmsc is the ith corrected spectrum (Rinnan et al., 2009). SNV, another popular pre-

processing technique for scatter correction, has a similar form to MSC (equation 6) but 

differs from MSC by operating on spectra independently. SNV is performed by centering 

the spectrum and then dividing by the standard deviation of the spectrum: 
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(6)    𝑥𝑠𝑛𝑣 =
𝑥𝑖−𝑎0

𝑎1
  

where, xsnv is the spectrum of corrected values, xi is the original spectrum, a0 is the mean 

absorbance value of the spectrum and a1 is the standard deviation of the absorbance 

values (Rinnan et al., 2009). Detrending removes the mean function by first fitting a 2nd 

order polynomial (equation 7): 

(7)    𝑥𝑖 = 𝑎𝜆2 + 𝑏𝜆 + 𝑐 + 𝑒𝑖 

where, xi is the ith spectrum; λ is the vector of wavelengths; a, b, and c are coefficients 

estimated by ordinary least squares and ei are the residuals, then the detrended spectrum 

is found by subtracting the mean function from the spectral response (equation 8): 

(8)    𝑥𝑖
∗ = 𝑥𝑖 − (𝑎𝜆2 + 𝑏𝜆 + 𝑐) = 𝑒𝑖 

where, 𝑥𝑖
∗ is the detrended spectrum (Barnes et al., 1989).  

 Spectral smoothing techniques are also common and involve averaging sections 

of spectra by a given gap size (Zornoza et al., 2008). Window smoothing averages the 

values of each section sequentially by overlapping with the previously averaged gap. A 

second type of smoothing is Savitsky-Golay (SG) smoothing which operates in the same 

way as window smoothing but averages all the gaps at once and can enhance absorption 

peaks (Burns and Ciurczak, 2001). 

 The third category of signal processing, spectral derivatives, have long been used 

with other spectroscopic techniques to improve signals (Rinnan et al., 2009). A first-order 

spectral derivative is obtained by finding the rate of change between points determined 

by the gap size from a smoothed spectrum. A second-order derivative is then obtained by 

finding the derivates in a first-order transformed spectrum.  
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2.4 Chemometrics 

 Quantifying soil properties from MIR and VNIR spectral data requires the use of 

chemometric techniques. Chemometric techniques aim to extract relevant information 

from complex systems using mathematical and statistical techniques. For prediction 

purposes, techniques involve multivariate data analysis and model calibration and 

validation (Geladi, 2003)⁠.  

Following preprocessing of spectra, multivariate techniques such as, multiple 

linear regression (MLR), principal component analysis (PCA), and partial least squares 

regression (PLSR) are used to analyze spectra. MLR cannot be applied to datasets that 

are collinear, such as spectra, and require the variables to be reduced, likely by band 

selection. This technique loses much of the information that may have been present when 

using the whole spectra (Bertrand et al., 2001).  

PCA and PLSR are much better suited to handle spectra because they serve two 

purposes. They both are used to convert a set of highly correlated variables to a set of 

independent variables and to reduce data dimensionality by extracting the most important 

variables (Geladi, 2003; Tinti et al., 2015). PCA decomposes the matrix of predictor 

variables (spectra) into principal components (latent variables) that maximize the 

variance among variables. These principle components are independent of each other and 

can be used as new predictor variables in a regression model. PCA works well when there 

are more observations than original variables (n > k) but is limited when there are more 

variables than observations, as is usually the case with spectral datasets.   

Much like PCA, PLSR decomposes the collinear variables into latent variables 

but has the benefit of having the response variable annotated to the predictor variables 
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(the same as in multiple linear regression). PLSR attempts to maximize both the variance 

between response variables and latent variables (Wold et al., 2001). Because PLSR takes 

the response variable into account, it is capable of analyzing data with fewer observations 

than variables. For this reason, PLSR is more useful than PCA for building regression 

models from smaller datasets (Tinti et al., 2015).  

Other multivariate techniques often used for predicting soil properties from 

spectral data include artificial neural networks (ANN) and regression trees (RF) and have 

modeled soil properties successfully (Minasny and Mcbratney, 2008; Wijewardane et al., 

2016)⁠. While these methods are powerful if given enough input data, they can be very 

complicated and often cannot explain how soil spectra and soil properties are related. 

Additionally, these methods are prone to overfitting if not properly validated (Martens, 

2001). 

Any model created from multivariate methods must be validated in order to 

determine the model’s performance, a process commonly done by splitting the data into 

calibration and validation sets. The calibration set is used to train the model with and the 

validation set is used to test the model. If the dataset is large, this can typically be 

accomplished by randomly assigning some independent subset of the data as the training 

set and the rest to the test set. It is necessary to have enough observations to best describe 

the relationship between the spectra and response in order to train the model, usually 

done by randomly assigning two-thirds of the data to the calibration set and the remaining 

third to the validation set (Estienne et al., 2001)⁠. When the number of observations is 

small, a leave-one-out or jack-knifing approach may be used to increase model 

“robustness” and has the benefit of easily detecting outliers (Martens et al., 2001)⁠. This is 
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done by training the calibration set on the whole dataset minus a subset of the data and 

validating the model with the subset. This process is repeated with a new subset that is 

independent of the first and is continued until every observation has been used to test the 

calibration set. 

  The many differences in modeling techniques can make it hard to compare and 

assess model performance across different studies.  The coefficient of determination (R2) 

can be used to compare the degree of relationship between the observed and predicted 

values and is often used to test goodness of fit for calibration models. However, this 

value is dependent on the range of the dataset and should not be the only criteria used for 

characterizing model performance (Davies & Fearn, 2006). Reeves and Smith (2009) 

considered threshold values for model performance as: very good (R2 > 0.9), useful (R2 

from 0.7-0.9), and not useful (R2 < 0.7). Janik et al., (1998) suggested that models with 

high correlation (R2 > 0.9) are a suitable replacement for traditional laboratory techniques 

and those from 0.7-0.9 may be a useful surrogate for analysis that are time-consuming 

and costly. The standard error of prediction (SEP) or root mean square error of prediction 

(RMSEP) are statistical parameters commonly used to describe model prediction 

performance (Estienne et al., 2001; Bellon-Maurel et al., 2010)⁠.⁠ RMSEP is computed as 

the sum of squares of the differences between the predicted and the actual values for the 

validation/test set (equation 9): 

(9)    𝑅𝑀𝑆𝐸𝑃 = √
∑ (𝑦𝑖̂−𝑦𝑖)

2𝑛𝑡
𝑖=1

𝑛𝑡
 

where nt is the number of samples in the test subset, ŷ is the predicted value and y is the 

true value. The RMSEP, like R2, is affected by the range of the measured quantity and 

must be standardized first to allow for comparisons across studies and populations 
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(Bellon-Maurel et al., 2010)⁠. A common way this is done is to divide the standard 

deviation of the response by the RMSEP (equation 10) (Davies and Fearn, 2006; Bellon-

Maurel et al., 2010). This result is the Ratio of Performance to Deviation (RPD), with 

higher values indicating a better fitted model. Chang et al. (2001) defined threshold 

values for model reliability as excellent (RPD > 2.0), fair (1.4 < RPD < 2), and poor 

(RPD < 1.4). 

(10)     𝑅𝑃𝐷 =
𝜎

√∑
(𝑦𝑖̂−𝑦𝑖)

2

𝑚
𝑚
𝑖=1

  

The ratio of performance to inter-quartile distance (RPIQ), is another metric for model 

comparison proposed by Bellon-Maurel et al. (2010). RPIQ is similar to RPD but is 

found by dividing the interquartile range (Q3-Q1) by the RMSEP, making it better metric 

when data are non-normal. 

2.5 Predicting Soil Properties 

 

Many authors have found that spectrally active soil properties (such as soil 

organic matter, carbonates, clay minerals and texture) and soil properties that are highly 

correlated with the spectrally active properties show promise at being predicted with the 

visible and infrared spectrum (Farmer, 1968; Pirie et al., 2005; Stenberg et al., 2010).  

VNIR and MIR soil spectra contain useful information that arises from molecular 

vibrations in soil properties and can be used with chemometric analyses to make 

predictions about the concentrations of these properties. The VNIR region has spectral 

features that relate to overtones and combinations of fundamental bond vibrations of 

organic compounds, soil water, and iron content. The MIR region shows distinct 

absorption peaks from fundamental vibrations of organic compounds, carbonates quartz, 
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feldspars, silicates and clay minerals (Chabrillat et al., 2013; Viscarra Rossel et al., 2006; 

Stenberg et al., 2010).  

Accurate and rapid predictions are valuable for producers who use variable-rate 

fertilization, for high-resolution soil mapping and for those without access to lab facilities 

(Shepherd and Walsh, 2007; Stenberg et al., 2010).  Soil electrical conductivity, pH, plant 

nutrients, CEC, carbon content and enzyme activity all play a role in plant growth and 

soil quality. Rapid and accurate predictions of soil properties can allow producers to 

apply the appropriate amount of fertilizer to maximize yield and reduce cost and create 

high-resolution maps for environmental monitoring. 

2.5.1 Electrical Conductivity   

 Soil electrical conductivity (EC) or salinity, is a measure of salt content in a soil. 

Soil salinity tends to be elevated in irrigated croplands, resulting in limited plant water 

availability, decreased soil permeability and alteration of exchangeable cation 

composition, all which negatively impact crop productivity (Corwin and Lesch, 2003). 

The use of MIR and VNIR to predict soil electrical conductivity has been widely studied 

(Minasny et al., 2009; Viscarra Rossel et al., 2006; Pirie et al., 2005; Janik et al., 2009) 

with varied and often poor results since EC is not spectrally active. Todorova et al. 

(2011) found a moderate correlation with EC and the NIR spectra (R2 = 0.74) and had 

moderate prediction performance (RPD = 1.5). Zornoza et al. (2008) had poor model 

predictions for EC using NIR (R2 = 0.57; RPD = 1.73). Viscarra Rossel et al. (2006) 

found that MIR predicted EC better than NIR (R2 = 0.38 and, 0.04 respectively), but Pirie 

et al. observed the opposite (R2 < 0.10; RPD = 1.0 and R2 = 0.20; RPD = 1.1 for MIR and 

VNIR). Minasny et al. (2009) predicted EC with MIR (R2 = 0.79; RPD = 2.2) and 
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believes this success was due to having a large range of values in the dataset. EC has 

been found to be modeled poorly when the sample range is small and poorly distributed 

(Minasny et al., 2009). Other authors report good predictions when electrolyte 

concentrations are in equilibrium with exchange sites, allowing EC to be predicted 

indirectly by correlations with CEC and clay mineralogy (Minasny et al., 2008; Janik et 

al., 2009).    

2.5.2 Soil pH  

Soil pH is the measure of the hydrogen ion activity and is used to measure soil acidity. It 

is an extremely important soil parameter that governs nutrient availability, microbial 

activity, soil organic matter transformations and many other soil properties (Todorova et 

al., 2011). Soil pH is not a spectrally active soil property but was predicted when correlated 

with soil organic acids, carbonates and soil minerals (Reeves, 2001; Sarathjith et al., 2014; 

Todorova et al., 2011). Todorova et al. (2011) found good model predictions for pH using 

NIR (R2 = 0.91; RPD = 2.3) and, Sarathjith et al. (2014) also found strong correlations with 

pH and organic carbon and had similarly good predictions (R2 > 0.76; RPD > 2.07). 

However, when there was not a strong correlation between pH, organic matter or clay 

mineralogy, predictions were poor.  Chang et al. (2001) and Islam et al. (2003) observed 

little correlation between pH and spectrally active components, therefore, their pH models 

were poorer (R2 < 0.71; RPD < 2). Reeves et al., (2001) found that MIR predicted pH better 

than NIR and attributed this to MIR’s ability to distinguish soil mineral composition. 

Viscarra Rossel et al. (2006) also found that MIR spectroscopy performed better than NIR 

and had smaller errors (R2 = 0.86; RMSEP = 0.10 for MIR and R2 =0.57; RMSEP = 0.57 

for NIR). This improvement was likely due to increased sensitivity to clay minerals in the 
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MIR region. In summary, soil pH can be predicted with VNIR and MIR spectroscopy, but 

only when secondary correlations with spectrally active soil components (SOM, carbonates 

and clay mineralogy) occur. 

⁠2.5.3 Phosphorous  

Phosphorous has been relatively well studied in spectroscopy as P is an essential 

plant nutrient and excessive P can contribute to eutrophication and algal blooms in 

catchment basins  (Bogrekci and Lee, 2005; Abdi et al., 2012).⁠ Current P extraction 

methods available such as Mehlich 3 (Mehlich, 1984), Olsen (Olsen et al., 1954), Bray 1, 

Bray 2 (Bray and Kurtz, 1945), and water (Morel et al., 2000) are expensive, destructive 

and time-consuming (Abdi et al., 2012). There is no one standard extraction method for 

all soils, as extraction methods are determined by the soils pH.   In a recent review of 

VNIR literature by Stenberg et al. (2010), varying correlations for P predictions (R2 from 

0.23-0.92) were found and the authors suggested that some of the variation in P 

predictability may be explained by the multitude of methods that are used to determine 

reference P content, which can be a part of different P fractions (total, extractable, 

available). ⁠ 

  Total P has been predicted successfully with VNIR by Bogrekci & Lee (2005) (R2 

= 0.92, RMSE = 273.3 mg/kg P) and Todorova et al. (2011) (R2 = 0.89, RPD = 2.0).  One 

study by Reeves and Smith (2009) observed that MIR performed much better at 

predicting total P concentrations than NIR (MIR: R2 = 0.85 , RPD = 2.6 ;NIR: R2 = 0.09, 

RPD = 1.1). Although it predicted well, total P may not be as meaningful to managers 

and producers who are interested in plant available P or extractable P. Plant available P is 

the form of P that producers are most interested in because it is the amount of P available 
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to the crop. However, there are no methods that directly measure plant available P, so 

extractable P is used to relate to plant available P (Tiessen and Moir, 1993). Bogrekci and 

Lee (2005) found that Mehlich III extracted-P correlated slightly better with VNIR than 

water extracted-P (R2 = 0.86 for Mehlich III P and R2= 0.77 for water-soluble P). Chang 

et al. (2001) found that Mehlich III extractable cations were better predicted with VNIR 

than cations extracted by ammonium acetate, however, Mehlich III P was poorly 

predicted (R2 = 0.40, RPD = 1.18).  

 MIR spectroscopy also portrays large variations in extractable P predictions. Janik 

et al., (2009) observed good predictions with water extractable P (R2 = 0.85, RPD 2.5) and 

very poor correlation for Bray 1 extractable P (R2 = 0.28).  A study by Minasny et al., 

(2009) found similar results, with water extractable P (R2 = 0.79, RPD = 2.1) performing 

better than Bray 1 extractable P (R2 = 0.04, RPD = 0.9).  

 Phosphorus is not a spectrally active component in the soil, therefore it cannot be 

directly measured, although it may be correlated with SOC, clay content and CEC 

(Minasny et al., 2009). This may explain why total P is well predicted by MIR and VNIR 

but not NIR. Total P would be highly correlated with clay mineralogy and clay content, 

both of which are well predicted by MIR, while VNIR and MIR are very good at 

predicting SOM (Bellon-Maurel and McBratney, 2011)⁠. Water extractable P, which is the 

P sorbed to the soil, is related to the surface area and charge of the soil, which may 

explain why it has been predicted relatively well.  Because MIR and VNIR spectroscopy 

are better at predicting SOC and clay mineralogy, they may be better at predicting P 

fractions than NIR. 
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2.5.4 Cation Exchange Capacity and Exchangeable Cations 

Cation exchange capacity is important because it is a measure of the soils’ 

buffering capacity and can inform the producer of a soils’ ability to hold exchangeable 

cations (Sparks, 2003). CEC (cmol kg-1) is determined by measuring the amounts of Ca, 

Mg, and Na cations and summing their quantities. While cation exchange capacity is not 

a spectrally active component in the soil, it is related to clay mineralogy and SOM 

content, both of which are spectrally active properties (Stenberg et al., 2010). Chang et al. 

(2001) using VNIR and Zornoza et al. (2008) with NIR were successful in predicting 

CEC at regional scales (R2 = 0.81; RPD = 2.28 and R2 = 0.92; RPD = 3.46 respectively). 

A study by Groeningen et al. (2003) found effective cation exchange capacity better 

predicted by NIR (R2 = 0.83; RPD = 2.36) than MIR (R2 = 0.56; RPD = 1.54) at the field 

scale. However, a comparison of MIR and VNIR predictions by Viscarra Rossel et al. 

(2006) indicated that CEC had a better response in the MIR than VNIR, with average R2 

values of 0.88 and 0.73 respectively. This may be due to the MIR’s higher sensitivity to 

clay mineralogy and organic matter.  

Exchangeable cations such as Ca2+, Mg2+, K+, and Na+ play an important role in 

plant nutrition. The exchangeable cations calcium and magnesium have been predicted 

successfully with both NIR and MIR spectroscopy while exchangeable potassium and 

sodium generally show poorer correlations (Groenigen et al., 2003; Minasny et al., 2009; 

Pirie et al., 2005; Janik et al., 2009)⁠.  In a review of VNIR studies, Stenberg et al. 2010 

found exchangeable Ca, Mg, K, and Na to have highly variable correlations (R2 in 

parenthesis): Ca (0.75-0.89), Mg (0.53-0.82), K (0.11-0.55, and Na (0.09-0.44), 

suggesting that locally present co-variation of spectrally active components determines 
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the success of the predictions. Groeningen et al. (2003) had much success in predicting 

exchangeable magnesium (R2 = 0.82; RPD of 2.27) and exchangeable calcium (R2 = 

0.80; RPD = 2.17) with VNIR but had very poor results for potassium (R2 = 0.11; RPD = 

1.10). Chang et al. (2001) had similar results with VNIR spectroscopy, strong predictions 

for Ca (R2 = 0.75; RPD = 1.94) and Mg (R2 = 0.68; RPD = 1.75) and poor predictions for 

K (R2 = 0.55; RPD = 1.44) and Na (R2 = 0.09; RPD = 0.92). Similar predictions for Ca, 

Mg, K, and Na are observed with MIR models (Janik et al., 2009; Pirie et al., 2005).⁠ 

Janik et al. (2009) observed Ca (R2 = 0.87; RPD = 3.0), Mg (R2 = 0.90; RPD = 3.1), K 

(R2 = 0.34;) and Na (R2 = 0.31), indicating very good model performance for Ca and Mg. 

Pirie et al. (2005) observed Ca (R2 = 0.69; RPD = 1.8), Mg (R2 = 0.76; RPD = 2.1), K (R2 

= 0.46; RPD = 1.3) and Na (R2 = 0.20; RPD = 1.3) and suggests that the poor 

performance for K and Na are due to their small range of values in the dataset. A study 

by Minasny et al. (2009) suggests this may be the case, as they observed good 

correlations and model performance for exchangeable Na (R2 = 0.76; RPD = 2.0) by 

having a range 1.5 times greater than that of Pirie et al. (2005). Ca and Mg are predicted 

well by both MIR and VNIR when there is a wide range of values in the dataset.  

2.5.5 Carbon 

 Soil carbon plays a very important role in soil systems and is fundamental in the 

carbon cycle. Soil organic carbon (SOC) is the amount of carbon stored in the soil and a 

significant component of soil organic matter (SOM). SOC is often used as an indicator 

for soil health (Weil and Magdoff., 2004). It affects bulk density and promotes soil 

aggregation, both of which have effects on soil water capacity and nutrient transport. 

Sequestering carbon in soils can increase food productivity while reducing greenhouse 
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gas emissions (Lal, 2015).  It is important that we have rapid and cost-effective methods 

for quantifying soil carbon stocks.  

 There has been a good deal of research focusing on predicting soil carbon with 

VNIR (Stenberg et al., 2010; Chang et al., 2001, Viscarra Rossel et al., 2006; Bellon-

Maurel and McBratney, 2011) and MIR techniques (Minasny et al., 2008; Wijewardane 

et al., 2018).  In a comprehensive study of recent literature by Bellon-Maurel and 

McBratney (2011), MIR spectroscopy performed slightly better at predicting soil carbon 

than NIR, with MIR prediction errors about 10-40% lower than those by NIR and these 

findings have since been supported by other authors (Henaka Arachchi et al., 2016; 

Vohland et al., 2014). Ge et al. (2014) found that MIR models performed slightly better 

than VNIR models for organic carbon (R2 = 0.8 and RPD = 2.26). Researchers suggest 

that MIR outperforms Vis and NIR as a result of the fundamental molecular vibrations 

that occur in the MIR spectrum. The fundamental bond vibrations from H-C, H-N, and 

H-O showed up as distinct absorption peaks that were linearly related to carbon content 

(Chang et al., 2001; Bellon-Maurel and McBratney, 2011). Minasny et al. (2008) had 

excellent predictions for total C using MIR spectroscopy with an RPD value of 6.25 and 

RMSEP of 0.24% and Wijewardane et al. (2018) also observed excellent predictions for 

total C (R2 = 0.95 and RPD = 4.44).   

 While the NIR spectrum does not contain the distinct absorption features of the 

bond vibrations seen in the MIR region, it does contain weak overtones and combinations 

of these fundamental vibrations. This can make qualitative assessments of C content 

difficult by just looking at the spectrum. However, bands in the visible spectrum (410, 

570 and 660 nm) and in the NIR (1875-1905 nm and 2200-2210 nm) have strong 
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correlations with soil organics and are found useful for predicting SOC (Viscarra Rossel 

et al., 2006; Vohland et al., 2014). Due to the relationship between soil color and organic 

matter, some studies have achieved better results with a combination of the visible and 

NIR spectrum than the NIR region itself. (Islam et al., 2003; Viscarra Rossel et al., 2006). 

Islam et al. (2003) improved R2 and RMSEP values for SOC predictions (NIR: R2 = 0.68, 

RMSEP = 0.45%; VNIR: R2 = 0.81, RMSEP = 0.35%). Chang et al., (2001) reported 

excellent results for total carbon (R2 = 0.87; RPD = 2.79; RMSEP = 7.86%) using the 

VNIR spectrum and Wijewardane et al., (2016) had similar results for total C (R2 = 0.83; 

RPD = 2.41; RMSEP = 7.38%).  

 Predictions for SOM and SOC are highly variable, where predictions tend to be 

poorer over larger, coarser scales with wide variations in C concentrations and better at 

field scales where C pools do not vary as much (Stenberg et al., 2010).  Stenberg et al., 

(2010) also found that calibrations for SOM could be improved by removing the sandiest 

of soils from the calibration dataset due to light scatter masking soil organic content in 

higher quartz content in some sandy soils.    

 MIR spectroscopy shows excellent predictions for total carbon content and 

organic carbon content due to the fundamental molecular vibrations which can be linearly 

related to the amount of carbon present (Bellon-Maurel and McBratney, 2011). VNIR 

spectroscopy has good performance but tends to not perform as well as MIR because it 

relates broader, less distinct absorption peaks to carbon content. These absorption 

features can be easily masked by the scattering effects of quartz, as is the case for sandy 

soils (Stenberg et al., 2002).   



 

 

 

 

22 

2.5.6 β-Glucosidase 

 Soil microbial activity can be used as an indicator of soil quality (Cohen et al., 

2005)⁠. Measuring microbial activity has advantages over measuring chemical properties 

due to its interactive and dynamic nature. β-glucosidase producing microbes are of 

particular importance when it comes to SOC. The β-glucosidase (βG) enzyme is involved 

in converting cellulose into glucose, which in turn provides energy for microbes (Cohen 

et al., 2005; Dick et al., 2013). Because of this direct relationship with soil organic 

carbon, βG activity can be used to monitor rapid changes in SOC that occur from changes 

in soil management (Bandick and Dick, 1999). β-glucosidase activity, due to its 

relationship with soil organic carbon, has been modeled successfully with infrared 

spectroscopy (Cohen et al., 2005; Zornoza et al., 2008; Dick et al., 2013) Cohen et al. 

(2005) had excellent predictions for β-glucosidase activity for wetland soils using VNIR 

(R2 = 0.96; RPD = 2.64) as did Zornoza et al. (2008), who predicted β-glucosidase 

successfully (R2 = 0.93; RPD = 3.66) using NIR. Dick et al. (2013) found that excluding 

the visible region of the spectrum reduced noise and improved correlations. Infrared 

spectroscopy has been observed to be capable of predicting β-glucosidase enzyme 

activity by correlation with SOC and shows the potential for rapid assessments of soil 

quality.     

2.5.7 Nitrogen 

Nitrogen, like phosphorus, is considered one of the most important macronutrients 

in agriculture and is a common fertilizer component (Todorova et al., 2011). Plant 

available N, such as ammonium and nitrate are dynamic and thus estimates of these 

nitrogen forms are quite variable and hard to predict (Stenberg et al., 2010; Viscarra 
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Rossel et al., 2006; Minasny et al., 2009). Viscarra Rossel et al. (2006) found no 

correlation across the VNIR and MIR spectra with nitrate-N. Minasny et al. (2009) 

observed similar results for nitrate-N using MIR (R2 = 0.08, RPD = 0.9). However, total 

N and total Kjeldahl N (TKN), which contain larger fractions of N and tend to be less 

dynamic, have been predicted with very good accuracy using NIR (Chang et al., 2001; 

Todorova et al., 2011; Zornoza et al., 2008). 

Total N is the total amount of nitrogen in the soil including all organic and 

inorganic forms while TKN includes the organic and ammonium form of nitrogen. Chang 

et al. (2001) observed r2 values of 0.85 and RPD values of 2.52. Todorova et al. (2011) 

observed similar results as Chang et al. (2001) (R2 = 0.91 and RPD = 2.3). Zornoza et al. 

(2008) had very good predictions for TKN (R2 = 0.96 and RPD = 4.88). MIR predictions 

were similar to VNIR for total N. Minasny et al. (2009) observed R2 value of 0.76 and an 

RPD of 2 indicating moderate model performance. Reeves et al. (2001) observed a good 

fit for total N (R2 = 0.95) but model performance was not reported. VNIR and MIR 

spectroscopy were equally effective in predicting total N, but both failed to predict plant 

available N. Quantifying soil nitrate and ammonium was likely difficult due to their low 

concentrations and their dynamic nature (Janik et al., 1998). 

 

2.6 Summary 

 

 Infrared spectroscopy can be used to predict a wide range of spectrally active soil 

properties. In particular, soil organic content and total nitrogen are usually predicted very 

well with both VNIR and MIR. For spectrally inactive properties like pH and CEC, 

prediction accuracy is determined by the amount of co-variation these properties have 

with soil organic matter and the clay mineralogy of the soil. Additionally, datasets that 
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have large response ranges tend to have better prediction accuracy than those that have 

smaller ranges, as is the case for exchangeable Na. In general, studies have shown that 

MIR predictions are more accurate than VNIR for predicting soil carbon content and soil 

properties closely related to SOM due to the fundamental molecular vibrations of organic 

compounds. However, this slight increase in prediction accuracy may not offset the costs 

associated with the more expensive MIR spectrometers. Visible and infrared 

spectroscopic methods can collect a significant quantity of information on various soil 

properties rapidly and nondestructively, making these methods ideal for sampling of 

coarse data over large spatial regions or fine resolution sampling at the field scale.    
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CHAPTER 3. MATERIALS & METHODS 

3.1 Study Area 

 Soil samples used in this study were from a subset of samples collected for the 

National Rapid assessment Carbon analysis (RaCA) by the United States Department of 

Agriculture Natural Resources Conservation Service (USDA-NRCS) (Soil Survey Staff 

and Loecke, 2016). 27 sites were randomly chosen across Nebraska and Kansas within 

major land resource area (MLRA) 5, figure 3.1. The sites included a variety of land 

use/land cover (LULC) classes: pasture (n = 6), rangeland (n = 11), cropland (n = 7) and 

conservation reserve program (CRP) land (n = 3). At each site, samples were collected 

from a central pedon or profile (0-100 cm) and from two satellite pedons (0 – 100 cm), 30 

meters away, on either side of the central pedon. A total of 156 samples used in this study 

came from A horizons, 0-5 cm and 5 cm to the bottom of the A horizon. Sub-horizons not 

classified as A horizons were omitted from the study.  

 

  

Figure 3.1. Study area and locations of 27 sampled sites. 
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3.2 Reference Data Collection 

 All analyses were performed at the NRCS Kellogg Soil Survey Laboratory. Soils 

were air-dried and ground to < 2-mm. The following analyses were performed: electrical 

conductivity (EC), pH, cation exchange capacity (CEC), extractable bases (Ca2+, Mg2+, 

K+, Na+), water-soluble phosphorus (H2O P), total phosphorous (TP), total carbon (TC), 

soil organic carbon (SOC), calcium carbonate (CaCO3), β-Glucosidase enzyme activity 

(βG), and total nitrogen (TN). All samples were analyzed according to the USDA-NRCS 

Soil Survey Laboratory Methods Manual (Burt et al., 2014). Soil standards with known 

properties were run for all analyses for quality control.  

3.2.1 Air-dry Oven-dry Ratio  

Prior to analyses, the air-dry/oven-dry (AD/OD) ratio was determined to allow 

conversion of soils to an oven-dry basis and was calculated by procedure 3D1 in the 

USDA-NRCS Soil Survey Laboratory Methods Manual (Burt et al., 2014). About a 5-

gram sample of soil was placed into a metal tin and weighed. The tin was then placed into 

a 110o C oven for 12-16 hours. Sample tins were removed and allowed to cool for a few 

minutes then weighed to the nearest milligram (mg). The AD/OD was calculated 

according to the following equation: 

(11)    𝐴𝐷 𝑂𝐷⁄ 𝑟𝑎𝑡𝑖𝑜 =
(𝑎𝑖𝑟−𝑑𝑟𝑦𝑚𝑎𝑠𝑠𝑜𝑓𝑠𝑜𝑖𝑙+𝑚𝑒𝑎𝑠𝑢𝑟𝑖𝑛𝑔𝑡𝑖𝑛)

(𝑜𝑣𝑒𝑛−𝑑𝑟𝑦𝑚𝑎𝑠𝑠𝑜𝑓𝑠𝑜𝑖𝑙+𝑚𝑒𝑎𝑠𝑢𝑟𝑖𝑛𝑔𝑡𝑖𝑛)
 

3.2.2 Electrical Conductivity  

 Electrical conductivity is used to predict soluble salt concentrations and was 

performed according to procedure 4F1a1a1. EC was determined as the conductivity of a 

soil and water solution after 24 hours. Equipment used included: an electronic balance 

with ± 1.0 mg sensitivity, conductivity bridge and conductivity cell, with automatic 
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temperature adjustment, 25 ± 0.1º C (Markson Model 1056, Amber Science, Eugene, 

OR), 30-mL plastic cups with lids (Sweetheart Cup Co. Inc., Owings Mills, MD) and 

disposable 10-mL plastic pipets. Reagents included reverse osmosis (RO) water (ASTM 

III grade of reagent water) and 0.01 N Potassium chloride (KCl) (conductivity of 1.412 

mmhos cm-1 at 25º C).  

5 grams of soil sample were weighed and placed in plastic cups. 10-ml of RO 

water were added and mixed to create a soil solution, then were allowed to equilibrate 

overnight. The conductivity bridge was standardized with RO water (blank) and 0.01 N 

KCl. Samples were placed under the conductivity cell tube and the solution is drawn into 

the cell from suction created by a pipet. The conductivity readings were measured from 

the bridge and recorded to the nearest 0.01 mmhos cm-1.  

3.2.3 Soil pH 

 Soil pH was determined by two commonly used methods, 1:1 water pH 

(procedure 4C1a2a1) and 1:2 Calcium Chloride (CaCl2) (procedure 4Cla2a2). Soil pH 

was determined from an equilibrated soil solution of water and CaCl2. Equipment used 

included: calibrated measuring scoop (≈ 20 g capacity); 120-mL disposable paper cups 

(Solo Cup Co., No. 404); reagent dispenser (0-30mL); wooden beverage stirring sticks; 

250-mL polyethylene titration beakers; automatic titrator, Metrohm Titroprocessors 

(Metrohm Ltd., Riverview, FL; Brinkman Instruments, Inc., Westbury, NY); combination 

pH-reference electrode, Metrohm part no. 6.01210.100 (Brinkman Instruments, Inc., 

Westbury, NY). Reagents included: RO water; Borax pH buffers, pH 4.00, pH 7.00 and 

pH 9.18 (Beckman, Fullerton, CA); 0.02 M CaCl2.  
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With the measuring scoop, about 20-g of soil were placed into paper cups. 20 mL 

of RO water was dispensed into samples and stirred. The sample cups were allowed to 

stand for one hour and stirred occasionally. After one hour, cups were loaded into the 

sample changer. The pH meter was calibrated with pH buffer solutions. The computer 

then automatically stirred the sample for 30 seconds, waited 1 minute, positioned 

electrode into solution and collected 1:1 water pH reading. Then 20-mL of CaCl2 solution 

was added to the sample, stirred for 30 seconds and a 1:2 CaCl2 pH reading was collected 

after 1 minute. The electrode and stirrer were automatically rinsed before continuing to 

the next sample. The pH readings were recorded to the nearest 0.01 unit.     

3.2.4 Water Soluble Phosphorus 

 Water soluble P is the amount of P available to a water solution and attempts to 

approximate soil solution P. This was determined by procedure 4D2a1a1. Samples were 

shaken in a water solution for 30 minutes and centrifuged. The supernatant was then 

reacted with a coloring solution and soluble P was determined colorimetrically. 

Equipment used included: an electronic balance, ± 1.0-mg sensitivity; Eberbach 6000 

mechanical shaker (Everbach Corp., Ann Arbor, MI); 50-mL polyethylene centrifuge 

tubes; 0.45-μm  syringe filters, (Whatman); Leur-lok 10-mL syringes; Centra GP-8 

centrifuge (Thermo IEC, Needham Heights, MA); volumetric flasks, 2-L, 1-L, 100-mL, 

and 25-mL; dark plastic bottles, 2-L; plastic cuvettes, 4.5-mL, 1-cm light path (Daigger 

Scientific Inc., Vernon Hills, IL), Cary 60  UV-Visible spectrophotometer, (Varian Inc., 

Palo Alto, CA) and a computer with Cary WinUV software (Varian Inc., Palo Alto, CA). 

Reagents used were: reverse osmosis deionized (RODI) water (ASTM I grade of reagent 

water); sulfuric acid (H2SO4), concentrated, 36 N, trace pure grade; ascorbic acid; 
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molybdate solution (reagent A); reagent B, made by dissolving 2.112-g of ascorbic acid 

in 400 mL of reagent A; stock standard P solution (SSPS), 100.0 mg P L-1; working stock 

standard P solution (WSSPS) 10.0 mg P L-1; standard P calibration solutions (SPCS) 0.0, 

0.2, 0.4, 0.6 and 0.8 mg P L-1; a 0.1 mg P L-1 quality control solution and blanks.   

 2.5 grams of soil and 25-mL of RODI water were added to 50-mL centrifuge 

tubes. The samples were placed in a mechanical shaker for 30 minutes at 200 oscillations 

min-1 at room temperature. After shaking, the samples were centrifuged for 20 minutes at 

3000 rpm. The supernatant was decanted into a 10-mL syringe in which a syringe filter 

was attached. The plunger was inserted, and the solution was filtered into a cup. 2-mL of 

sample solution was pipetted into a plastic cup and 4-mL of reagent B and 19-mL of 

RODI water was added. The samples were allowed to sit for 20 minutes to let the color 

develop and then transferred to cuvettes. The spectrophotometer was set to 882-nm and 

auto-zeroed with the calibration blank (0.0 mg P L-1). The calibration curve was made 

with the SPCS standards. The minimum fit for calibration was 0.9900. The cuvettes were 

placed in the spectrophotometer and run with QC samples in between batches. Any 

samples that had readings outside of the calibration were diluted with extracting solution. 

The sample concentration was calculated from equation 12: 

(12)   𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = 𝑆𝑙𝑜𝑝𝑒 × 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛   

Conversion of extracted P (mg L-1) to soil P (mg kg-1) was according to equation 13: 

(13)   𝑆𝑜𝑖𝑙𝑃(𝑚𝑔𝑘𝑔−1) = [(𝐴 × 𝐵 × 𝐶1 × 𝐶2 × 𝑅 × 1000) 𝐸⁄ ] 

Where A is the sample extract reading (mg kg-1); B is extract volume (L); C1 is the 

dilution factor (125); C2 is the dilution factor (if required); R is the AD/OD ratio and E is 

the sample weight (g).  
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3.2.5 Cation Exchange Capacity 

Cation exchange capacity is the sum of negative charges per unit mass and is 

found by the sum of extractable bases, expressed as centimoles per kg (cmol(+) kg-1) and 

is performed by procedure 4B1a1a1a1. CEC was determined by saturating soil exchange 

sites with an index cation, ammonium (NH4
+), then an ethanol wash was used to remove 

excess cations from the soil solution. Finally, potassium chloride (KCl) was used to 

displace NH4
+ cations absorbed to exchange sites. CEC was measured by the amount of 

NH4
+ cations in solution by steam distillation and titration. Equipment used included: an 

electronic balance ±1.0-mg sensitivity; mechanical vacuum extractor, 24-place 

(SAMPLETEX, MAVCO Industries, Lincoln, NE); 60-mL polypropylene tubes (for 

extracting, reservoirs and tared extraction tubes), rubber tubing, 3.2 ID x 1.6 OD x 6.4 

mm; Kjeltec Auto 2300 Sampler System (Perstorp Analytical, Malö, Sweden); 250-mL 

straight neck digestion tubes; 0.45-μm syringe filters (Whatman); wash bottles; plastic 

vials and a Centra, GP-8 centrifuge (Thermo IEC, Needham Heights, MA). Reagents 

used included reverse osmosis deionized (RODI) water; 1 N, ammonium acetate solution 

(NH4OAc), pH 7.0; ethanol (CH3CH2OH), 95%, U.S.P.; Nessler’s reagent; 2 M 

potassium chloride solution; 4% (w/v) boric acid with bromocresol green-methyl red 

indicator (0.075 % bromocresol green and 0.05 % methyl red) (Chempure, Plymouth, 

MI); 0.1 N, standardized hydrochloric acid (HCl); and 1 M sodium hydroxide (NaOH).  

  2.5 g of soil were weighed to the nearest mg and placed into polypropylene 

extraction tubes. Tubes were placed on the extractor and connected to a tared extraction 

tube with rubber tubing. NH4OAc was used to remove cations from exchange sites. First, 

about 20-mL of NH4OAc were added to the sample in the extraction tube. Empty 
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reservoir tubes were then placed on top of the extraction tubes and allowed to stand for 

30 minutes. Then the NH4OAc solution was extracted until about 2 mL of solution was 

above the soil level. 40-mL of NH4OAc were added to the reservoir tubes and then 

allowed to extract overnight. The reservoir tubes and the tared extraction tubes were then 

removed from the extractor and the tared extraction tubes weighed. The extractant was 

shaken manually and dispensed into small plastic vials for analysis of extracted cations: 

Ca2+, Mg2+, K+, Na+ (procedure 4B1a1b1-4). The tared extraction tubes were reconnected 

to their respective extraction tubes. Ethanol was then used to remove NH4OAc from the 

soil solution. The extraction tubes were filled to the 20-mL mark with ethanol. Reservoir 

tubes were placed onto extraction tubes and allowed to stand for 30 minutes. The ethanol 

solution was extracted through the soil until about the solution was 2-mL above the soil. 

45-mL of ethanol were added to the reservoir tubes and extracted until 2-mL of solution 

remained above the soil. The tared extraction tubes were removed, and the ethanol 

discarded. The empty tared extraction tubes were replaced, and the process was repeated 

with another 55 mL of ethanol. After this rinsing, a sample of ethanol was taken and 

collected on a spot plate. Nessler’s reagent was used to test for any remaining NH4
+ in 

solution. If a yellow, red to reddish-brown precipitate forms, another rinse was 

performed.  A new tared extracting tube was then attached to the extraction tube on the 

extractor. 2 M KCl was then used to replace the NH4
+ on exchange sites. The extraction 

tube was filled to the 20-mL mark with KCl solution and allowed to stand for 30 minutes. 

The KCl solution was extracted through the soil until 2 mL of solution remained above 

the soil. Then 40 mL of KCl solution were added to the reservoir tube and extracted for 

another 45 minutes. The extracted KCl solution was transferred to a 250-mL digestion 
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tube for steam distillation using the Kjeltec autosampler. The distillation and titration 

were performed automatically. CEC was calculated by equation 14: 

   (14)    𝐶𝐸𝐶 = [𝑇𝑖𝑡𝑒𝑟 × 𝑁 × 100 × 𝑅] [𝐸]⁄  

where: CEC is cation exchange capacity (meq 100 g-1); Titer is titer of sample (mL); N is 

normality of HCl titrant; 100 is the conversion factor to 100 g basis; R is the AD/OD 

ratio, and E is the soil sample weight (g).  

3.2.6 Extractable Bases  

 Extractable bases (Ca+, Mg+, K+, Na+) extracted from an ammonium acetate 

(NH4Ac) extraction (procedure 4B1a1) were considered to be exchangeable bases from 

cation exchange sites. Determining extractable bases consisted of diluting the NH4Ac 

extract from the CEC procedure with an ionization suppressant, and then measured by 

atomic absorption spectrophotometry (AAS). Equipment used included: an electronic 

scale, ± 1.0-mg sensitivity; Analyst 300 atomic absorption spectrophotometer (AAS) with 

double-beam optical system (Perkin-Elmer Corp., Norwalk, CT); AS-90 autosampler 

(Perkin-Elmer Corp., Norwalk, CT); computer with AA WinLab software (Perkin-Elmer 

Corp., Norwalk, CT); single-stage regulator, acetylene; digital diluter/dispenser, with 

syringes 10000 and 1000 μL, gas tight, MicroLab 500 (Hamilton Co., Reno, NV); plastic 

test tubes, 15-mL, 16mm x 100; polyethylene containers; and a peristaltic pump. 

Reagents used included: 1:1 HCl:RODI; 1 N ammonium acetate solution (NH4OAc), pH 

7.0 (solution used to extract cations in previous procedure 4B1a1);  2 N ammonium 

acetate solution (NH4OAc), pH 7.0; 65,000 mg L-1 stock lanthanum ionization 

suppressant solution (SLISS); 2,000 mg L -1 working lanthanum ionization suppressant 

solution (WLISS); 1000 mg L-1: Ca, Mg, K and Na primary stock standards solutions 
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(PSSS), high purity; working stock mixed standards solution (WSMSS), High, Medium, 

Low, Very Low, and Blank; mixed calibration standard solutions (MCSS), High, 

Medium, Low, Very Low, and Blank; compressed air with water and oil traps; and 

acetylene gas, purity 99.6%. 

 The NH4OAc sample extract solutions were diluted with an ionization 

suppressant, WLISS, 1-part extract to 20 parts WLISS. 1 mL of diluted sample solutions 

were transferred to test tubes in the sample changer to be analyzed by the AAS. The AAS 

was calibrated using the MCSS solutions where fit rejection criteria is <0.99. If samples 

exceed calibration standard, then the samples were diluted with 1 N NH4Ac followed by 

a 1:20 dilution with WLISS. The MCSS was ran as a quality control standard every 12 

samples to ensure the instrument retained calibration. Analyte readings were recorded to 

the nearest 0.01 mg L-1 (extract concentration) and converted to meq 100 g-1 by equation 

15: 

(15)  𝐴𝑛𝑎𝑙𝑦𝑡𝑒𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑚𝑒𝑞100𝑔−1) =
[𝐴×[

(𝐵1−𝐵2)

𝐵3
]×𝐶×𝑅×100]

[1000×𝐸×𝐹]
 

where A is analyte (Ca, Mg, K, Na) concentration in extract (mg L-1); B1 is weight of 

extraction syringe and extract (g); B2 is weight of tared extraction syringe (g); B3 is the 

density of 1 N NH4OAc at 20º C (1.0124 g cm-3); C is the dilution, if required; R is the 

AD/OD ratio; 100 is the conversion factor to 100-g basis; 1000 is the mL to L 

conversion; E is the soil sample weight (g); and F is the equivalent weight (mg meq-1) 

where: Ca2+ = 20.04 mg meq-1; Mg2+ = 12.15 mg meq-1; K+ = 39.10 mg meq-1; and Na+ = 

22.99 mg meq-1. Extractable cations were reported to the nearest 0.1 meq 100 g-1. 

3.2.6 β-Glucosidase 
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 The β-glucosidase enzyme was measured according to procedure 6A5a1a1. 

Samples were divided into control and treatment sets. A buffer solution was added to 

both and p-nitrophenyl-β-glucoside (PNG) was then added to the treatment set. Both sets 

were incubated for an hour at 37° C. After incubation, the reactions were stopped, and the 

samples were analyzed on a spectrophotometer. Concentrations were determined by the 

difference in concentrations between the treatment and control samples. Equipment used 

included: an electronic balance, ±1.0 mg sensitivity; volumetric flasks (50-mL, 100-mL 

and 1-L); plastic amber bottles, 1-L; disposable plastic cups, 1 oz.; 0.45-μm syringe 

filters (Whatman); 50-mL centrifuge tubes, (Falcon); water bath; Cary 60 UV-Visible 

spectrophotometer (Varian Inc., Palo Alto, CA), vortexer; 10-mL syringes; cuvettes; 500-

mL beakers; pH meter; magnetic stir bars; and magnetic stir plate. Reagents used 

included: reverse osmosis deionized (RODI) water; 1 M sodium hydroxide (NaOH); 0.5 

M NaOH; 0.1 M hydrochloric acid; modified universal buffer (MUB) stock solution 

(prepared by dissolving 12.10 g tris(hydroxymethyl)aminomethane (THAM), 11.60 g 

maleac acid (C4H4O4), 14.00 g citric acid (C6H8O7), and 6.30 g boric acid (H3BO3) in 488 

mL 1 M NaOH in a 1-L volumetric flask and bringing to volume with RODI water); 

MUB working solution (pH 6.0) (prepared by placing 200 mL of MUB stock solution in 

a 500-mL beaker with a magnetic stir bar on a magnetic stirrer, while stirring, 0.1 M HCl 

was added until pH reached 6.0, then solution was transferred to a 1-L volumetric flask 

and brought to volume with RODI water); 0.05 M p-nitrophenyl-β-D-glucoside (PNG) 

(prepared by dissolving 1.308 g of PNG in 80 mL MUB working solution (pH 6.0) in a 

100 mL volumetric flask, and brought to volume with MUB working solution); 0.5 M 

calcium chloride dihydrate (CaCl2•H2O); 0.1 M 2-amino-2-(hydroxymethyl)-1-3-
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propanediol (THAM), pH 10; 0.1 M THAM, pH 12; p-nitrophenol stock standard 

solution (NPSSS), (prepared in a fume hood by dissolving 1.00 g p-nitrophenol in 700 

mL of RODI water in a 1-L volumetric flask and brought to volume with RODI water); 

p-nitrophenol working stock standard solution (NPWSS), (prepared in a fume hood by 

adding 1 mL NPSSS in a 100 mL volumetric flask and brought to volume with RODI 

water); and standard p-nitrophenol calibration solutions (NPCS), (prepared in 6 

centrifuge tubes by adding: 5 mL, 4 mL, 3 mL, 2, mL, 1 mL, and 0 mL NPWSS 

respectively, then 0 mL, 1mL, 2ml, 3mL 4mL, and 5 mL of RODI water were added, 

respectively. Then 0.5 M CaCl2 and 4.0 mL of THAM (pH 12) were added to each tube, 

capped and mixed).  

 PNG solution, THAM (pH 10), and MUB working solution were placed in a 

water bath and warmed to 37° C. Centrifuge tubes were divided into control and 

treatment sets. 1 gram of soil sample was placed into a control tube and a treatment tube. 

4 mL of MUB working solution were added to both control and treatment tubes. 1 mL of 

PNG solution was then added to the treatment tubes. All the tubes were capped and 

mixed by vortex for about 1 second. All samples were then placed in the water bath for 1 

hour. 1 mL of 0.5 M CaCl2 and 4 mL of THAM (pH 12) were added to all samples and 

mixed to stop the reaction. To make the solution matrix the same between control and 

treatment tubes, 1 mL of PNG was added to the control tubes and vortexed. The caps 

were removed, and the samples allowed to rest for 5 minutes before filtering. Solutions 

were then aspirated out of the test tubes with a syringe. Syringe filters were attached to 

the syringes and the solutions were filtered into plastic cups. Samples were decanted into 

cuvettes and read on the spectrophotometer at 410 nm. The NPWSS solutions were used 
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to create the calibration curve. If the treatment sample exceeded the high standard, both 

the treatment and control samples were diluted with THAM (pH 10). A blank sample and 

soil standard were ran as a quality control. β-glucosidase activity was determined by 

equation 16:  

(16)    𝛽𝐺 = 𝑅 × [(𝐷𝑡 × 𝐴𝑡 𝐸𝑡⁄ ) − (𝐷𝑐 × 𝐴𝑐 𝐸𝑐⁄ )] 𝑇⁄       

where: βG is the p-nitrophenol concentration in the soil per hour (μg ∙ g-1 ∙ h-1); At is the 

amount of p-nitrophenol in treatment sample (μg); Ac is the amount of p-nitrophenol in 

the control sample (μg); Dt is the dilution factor of the treatment sample; Dc is the 

dilution factor of the control sample; Et is the sample weight of the treatment sample (g); 

Ec is the sample weight of the control sample (g); R is the AD/OD ratio; and T is the 

incubation time (h). 

 3.2.7 Calcium Carbonate 

 Calcium Carbonate is a part of the inorganic fraction of carbon and was measured 

according to procedure 4E1a1a. A soil sample was treated with HCl to test for the 

presence of carbonates (procedure 1B152b5) and if effervescence occurred, the sample 

was measured for carbonates by manometrically measuring the amount of carbonate 

converted to CO2 when reacted with HCl. Equipment used included: an electronic 

balance, ± 0.10-mg sensitivity; porcelain spot plate; 120-mL wide-mouth clear glass 

threaded weighing bottles; machined PVC caps for threaded weighing bottles, with hole 

drilled in center; O-rings, 3.2 x 50.8 x 57.2 mm; Flanged stopper, (No. 03-255-5, Fisher 

Scientific,); PLC-200 Series manometer (Omega Engineering, Stanford, CT); 23-gauge 

hypodermic needle; 10-mL size 11 gelatin capsules (Torpac Inc., Fairfield, NJ); and 

Eberbach 6140 mechanical rotating shaker (Everbach Corp., Ann Arbor, MI). Reagents 
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used included: reverse osmosis deionized (RODI) water; methyl red indicator; 3 N 

hydrochloric acid (HCl) (made by diluting 500 mL of concentrated HCl with 1500 mL 

RODI water with a few crystals of methyl red indicator); 1 N HCl; glycerin, USP; and 

CaCO3 assay dried basis 100.01% (Ultrex).   

  Samples to be tested for carbonates were first tested for an effervescent reaction 

when subject to HCl (procedure 1B1b2b5). A gram of soil was placed in a porcelain spot 

plate and mixed with RODI water. A few drops of 1 N HCl were added to the solution to 

check effervescence. When a sample was classified as having any degree of 

effervescence or had a 1:2 CaCl2 pH greater than 6.95, it was tested for carbonates. The 

manometer was calibrated using three replicates of CaCO3 standards (0, 0.025, 0.05, 0.1, 

0.2, 0.3, 0.4, 0.5, and 0.75 g) that had been dried in an oven at 110º C for 2 hours. Soil 

sample weight was determined by the degree of effervescence: 2-g for samples with Very 

slight to Slight effervescence; 1-g for Strong effervescence; and 0.5 g for Violent 

effervescence. The samples were placed in a 120-mL bottle. A gelatin capsule containing 

10 mL of 3 N HCl was placed in the bottle and capped. The initial pressure in the bottle 

was released by piercing the stopper with a hypodermic needle for 5 to 10 seconds. Once 

the HCl dissolved the gelatin capsule, the bottle was shaken at 140 rpm for 10 minutes. 

Samples stand for 40 minutes, then shaken for another 10 minutes. The HCl converts the 

carbonates in the soil into carbon dioxide (CO2) which was measured with the 

manometer. The manometer was auto-zeroed before readings were taken. Readings were 

recorded to the nearest mm Hg. Manometer readings were corrected according to 

equation 17: 

(17)    𝐶𝑅 = (𝑀𝑅 − 𝐵𝑅) 
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where: CR is the corrected reading in (mm Hg); MR is the manometer reading (mm Hg); 

and BR is the blank reading (mm Hg) obtained by the average of three blanks. The 

corrected reading of the standards was used to create the regression equation for 

estimating CaCO3 % from equation 16: 

(18)    𝐶𝐶𝐸 = [(𝐶𝑅 × 𝑆𝑙𝑜𝑝𝑒 + 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) 𝐸⁄ ] × 𝑅 

where: CCE is the calcium carbonate equivalent (%); CR is the corrected reading (mm 

Hg); E is the sample weight; and R is the AD/OD ratio. The calculated CCE was the 

percentage of carbonate per oven-dry gram of soil. 

3.2.8 Total Carbon and Nitrogen  

 Total C and N were measured to get the total concentrations of carbon and 

nitrogen (both organic and inorganic forms) in the soil by dry combustion (procedure 

4H2a1-3) by measuring the amounts of carbon dioxide (CO2) and nitrogen gas (N2) from 

combustion. Equipment used included: Elementar varioEL/Elementar varioEL III 

(Elementar Analysensysteme GmbH, Hanau, Germany); combustibles: quartz ash finger 

(quartz), quartz bridge, combustion tube, reduction tube, gas purification (U-tube, GL 

18), support tube (65 mm) protective tube, O2 lance (150 mm rapid N), tin boats (4 x 4 x 

11 mm), and tin foil cups (Elementar Americas Inc., Mt. Laurel, NJ; Alpha Resources 

Inc., Stevensville, MI); and computer with varioEL software (Elementar 

Analysensysteme GmbH, Hanau, Germany). Reagents used included: sulfanilic acid 

calibration standard (41.6% C, 4.1% H, 8.1% N, 27.7% O, and 18.5% S); copper sticks; 

corundum balls, high purity, alumina spheres (3-5 mm); cerium dioxide (1-2 mm); 

tungsten oxide powder; tungsten trioxide granulate; quartz wool; silver wool; phosphorus 
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pentoxide, Sicapent (Elementar America, Inc., Mt. Laurel, NJ); helium carrier gas 

(99.996% purity); and oxygen combustion gas (99.995% purity). 

 Soil samples were first finely ground to < 180 μm. A 0.100 g of tungsten oxide 

powder was placed in tin foil and then the soil sample (0.100-0.05 g) was packed into the 

foil and placed into the carousel of the automatic sample feeder of the elemental analyzer. 

The sample weight was recorded by the computer and the combustion process begins. 

The carbon and nitrogen in the sample were measured by the amount of CO2 and N2 after 

combustion. A quality control sample was performed every 35 to 40 samples. Total C 

was calculated by equation 19: 

(19)    𝐶 = 𝐶𝑖 × 𝑅 

where, C is the total carbon percent on an oven-dry basis, Ci is the carbon percent read by 

the machine, and R is the AD/OD ratio. Total nitrogen was calculated from equation 20: 

(20)    𝑁 = 𝑁𝑖 × 𝑅 

where, N is the total nitrogen percent on an oven-dry basis, Ni is the nitrogen percent read 

by the machine, and R is the AD/OD ratio. Total C was recorded to the nearest 0.01% 

and total N was recorded to the nearest 0.001%.  

3.2.9 Total Phosphorus  

 Total phosphorus was determined by the Major Element analysis (procedure 

4H1b1a1a1-11) where samples undergo microwave acid digestion, and elements were 

analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). 

Equipment used included: an electronic balance, ±0.1-mg sensitivity; 10-mL  pipettes 

(Omnifit Corp.,); 100-mL Nalgene volumetric flasks; 60-mL polypropylene bottles with 

cap; CEM Mars 5 microwave, with 14 position-HP500 PLUS vessels and rotor (CEM 
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Corp., Mathews, NC); desiccator; disposable aluminum-weighing dishes; 500-mL 

polypropylene volumetric flask; 500-mL polypropylene containers, with screw caps; 

electronic digital pipettes, 2500 μL and 10 mL, (Rainin Instrument Co., Woburn, MA);  

Perkin-Elmer Optima 3300 Dual View ICP-AES (Perkin-Elmer Corp., Norwalk, CT); 45-

MHz free running RF generator (Perkin-Elmer Corp., Norwalk, CT); computer with 

WinLab software (Perkin-Elmer Corp., Norwalk, CT ); compressed gases of argon 

(99.996% purity) and nitrogen (99.999% purity); AS-90 autosampler (Perkin-Elmer 

Corp., Norwalk, CT); quartz torch, part no. N069-1662 (Perkin-Elmer Corp., Norwalk, 

CT); and an alumina injector (2.0 mm I.D.), part no. N069-5362 (Perkin-Elmer Corp., 

Norwalk, CT). Reagents used included reverse osmosis deionized (RODI) water; calcium 

sulfate desiccant; 48 % hydrofluoric acid (HF), low trace metal content; 12 N 

concentrated hydrochloric acid (HCl), trace pure grade; 16 N concentrated nitric acid 

(HNO3), trace pure grade; 4.5% boric acid solution; 1.9% boric acid solution; and 

primary standards, 1000 mg P L-1 (High Purity Standards, Charleston, SC).  

 A 250 mg sample of finely ground soil (<75 μm) was weighed into a 100-mL 

Teflon vessel in which 9.0 mL of HNO3 and 3.0 mL of HCl were then added. 4.0 mL of 

HF was added, and the vessels were placed in sleeves, covered and placed in a rotor. The 

digestion rotor was placed in a microwave oven and digested at 1200 Watts at 100% 

power for 10 minutes at 180º C, then 1200 Watts at 70% power for 9.5 minutes at 180º C 

and then cooled and vented for 15 minutes. After venting, the vessels were removed from 

oven and 20 mL of H3BO3, 4.5%, was added. The vessels were then re-digested in 

microwave oven at: 1200 Watts, 100% power at 160º C, then maintained 160º C for 10 

minutes, and allowed to vent and cool for 15 minutes. Then digestate were transferred to 
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100-mL nalgene volumetric flasks in which 1.9 % H3BO3 was added to achieve a 

concentration of 2.1% H3BO3. The flasks were mixed and allowed to stand overnight to 

dissolve any metal fluorides. Then flasks were filled to volume with 1.9 % H3BO3, mixed 

and decanted into polypropylene containers. Working standards included blanks, 

reference soil sample and a National Institute of Standards and Technology (NIST) 

standard reference. Instrument alignment and gas pressures were checked prior to use to 

obtain optimum readings and to maximize signal to noise ratio. Detection limits were 

calculated by using 3 times the standard deviation of 10 readings of the blank standard 

solution and was considered the lower detection limits for each element. Any readings 

below detection were set to zero. Blank standard solution was used to dilute samples that 

exceeded the high concentration standard and the diluted sample was rerun for all 

elements. The calculation of element concentration (mg kg-1) from solution concentration 

(mg L-1) was determined from equation 21: 

(21)    𝐴𝑛𝑎𝑙𝑦𝑡𝑒𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = [𝐴 × 𝐵 × 𝐶 × 𝑅 × 1000] 𝐸⁄   

where, analyte concentration is the element concentration in the soil (mg kg-1); A is the 

sample extract reading (mg L-1); C is the dilution, if performed; R is the AD/OD ratio; 

1000 is the conversion factor to kg-basis; and E is the sample weight. 

3.2.10 Soil Organic Carbon  

 Soil organic carbon was not measured directly but was calculated by subtracting 

the inorganic carbon fraction (procedure 4E1a1a) from the total carbon content of the soil 

(procedure 4H2a1). SOC was calculated from equation 22: 

(22)    𝑆𝑂𝐶 = %𝑇𝐶 − 0.12 ×%𝐶𝑎𝐶𝑂3 



 

 

 

 

42 

where, SOC is the soil organic carbon percentage; %TC is the total carbon content 

percentage (4H2a1); 0.12 is the percent of carbon in carbonate; and %CaCO3 is the 

percent of carbonates in the sample.  

3.2.11 Particle Size Distribution Analysis 

 Particle size analysis was performed for each site on samples from the central 

pedon or from a satellite if the central pedon did not have enough sample. This was done 

to see if clay content correlated with other soil properties. Clay content and sand content 

were determined according to procedure 3A1a1a. 

  



 

 

 

 

43 

3.3 Collection of Spectra 

3.3.1 Vis-Near Infrared Spectroscopy 

 VNIR spectra were collected on dry ground (<2 mm) samples. Soil samples were 

pressed into a sample holder and scanned 100 times and averaged to obtain the 

reflectance spectra. Equipment used were: LabSpec® 2500 spectrometer with a spectral 

range of 350-2500 nm range with 4 nm and 10 nm spectral resolution in the visible and 

near-infrared, respectively.(Analytical Spectral Devices (ASD) Inc., Boulder, CO); 

spectrometer light source, Muglight, Tungsten Quartz Halogen bulb, with sample tray 

(ASD Inc., Boulder, CO); fiber optic cables; fiber optic magnifying glass, Fiber Checker 

(ASD Inc., Boulder CO); sample pucks; Spectralon white reference panel (Labshpere, 

North Sutton, NH); wavelength standard (); sample press; number 7 rubber stopper; 

wavelength verification software; Indico Pro software (ASD Inc., Boulder, CO), spatula; 

oil-less air compressor; microfiber cloth; and isopropyl alcohol, 70 %.  

Prior to spectral scans, the fiber optic cable was checked for any breaks by 

attaching one end of the fiber optic cable to the magnifying glass and holding the other 

end up to a light source. The light source was warmed for 3 hours before any scans were 

taken. Sample pucks and puck with white reference/wavelength standard were cleaned 

with a microfiber cloth and isopropyl alcohol before being used. The spectrometer was 

checked for accuracy with the wavelength verification software by collecting the baseline 

with the white reference and then scanning the wavelength standard. Soil samples were 

loaded loosely into sample pucks. Excess soil was scraped off the sample puck with the 

spatula. The sample puck face was placed down onto the number 7 rubber stopper and 

then the soil was pressed into the puck at about 46 psi. The white reference panel was run 

before scans to create a baseline and after every 10 samples, creating a new baseline to 
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reduce any effects of instrument drift. Spectra produced were the average of 100 

reflectance scans (figure 3.2).  

 

The Labspec 2500 contains 3 detectors, with each operating in its own spectral 

range, 350 to 1000 nm, 1000-1830 nm and 1830-2500 nm. There was a shift in values at 

1000 nm and 1830 nm that was corrected by linear interpolation. The “spliceCorrection” 

function in the “prospectr” package (Stevens & Ramirez-Lopez., 2013) in R (R Core 

Team., 2017) was used to correct the spectra (figure 3.3).  

The VNIR reflectance spectra were converted to absorbance by equation 23:  

(23)    𝐴 = 𝑙𝑜𝑔(1 𝑅⁄ ) 

where, A is absorbance (Au) and R is reflectance. The wavelengths below 400 nm were 

cut due to noise (figure 3.4). 

Figure 3.2 VNIR raw reflectance spectra (350-2500 nm) of 156 samples collected with LabSpec 2500 

spectrometer. 
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Figure 3.3 Example of VNIR spectra at 1000 nm before and after splice 

correction. 
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Figure 3.4 VNIR raw absorbance transformed spectra (400-2500 nm) of 156 samples collected. 

 

3.3.2 Mid-Infrared Spectroscopy 

 MIR spectra were obtained on dry ground (<180 μm) samples. Four sub-samples 

were pressed into small pucks in a sample tray, scanned 100 times each and averaged. 

The resulting MIR spectra came from the average of the 4 sub-samples, however, one 

sample had a significant outlier between the spectral scans and was removed prior to 

averaging. Equipment used were: Vertex 70 spectrometer, with XTS sample port, spectral 

range of 7498-600 cm-1 and 2 cm-1 resolution (Bruker Corp., Billerica, MA); sample tray; 

press; Opus software (Bruker Corp., Billerica, MA); and inert cooling gas, nitrogen.  

 The spectrometer scans the built-in white reference in the sample tray prior to 

scanning a sample. Each MIR spectrum was the average of each puck which in turn was 

the average of 100 scans (figure 3.5). The NIR region between 7498 and 4000 cm-1 were 
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removed from the spectra and the MIR region from 4000-600 cm-1 was retained. 

 

Figure 3.5 MIR raw absorbance spectra (7498 to 600 cm-1) of 156 samples collected with Vertex 70v FTIR 

spectrometer. 

 

3.4 Statistical Analyses 

 Basic descriptive statistics were performed for all soil properties to determine 

mean, range, standard deviation, and skew. Pearson’s correlation coefficient was 

determined to see if there were relationships between the spectrally active soil properties 

(total carbon, nitrogen, soil organic content, and clay content) and the remaining soil 

properties. 

3.4.1 Spectral Preprocessing 

 Different spectral preprocessing techniques were applied to the spectra before 

modeling. Preprocessing techniques used to improve spectral signal and scatter correction 

were: multiplicative scatter correction (MSC), standard normal variate (SNV), spectral 
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detrending (Detrend), Savitsky-Golay smoothing (Smooth), 1st and 2nd derivatives 

performed after Savitsky-Golay smoothing (1-D and 2-D), MSC performed after 

Savitsky-Golay smoothing (SG + MSC), and SNV performed after Savitsky-Golay 

smoothing (SG + SNV). These were done using the statistical software R (version 3.4.3) 

(R Core Team., 2017) and the code can be found in Appendix A. Packages used for 

preprocessing were, “pls” (Mevik et al., 2016) and “prospectr” (Stevens & Ramirez-

Lopez., 2013).    

3.4.2 Model Creation and Validation 

  Three different calibration sampling strategies were tested, random sampling 

(RS), stratified sampling (SS), and Kennard Stone sampling (KSS). For each sampling 

method, the samples were first grouped by soil profile to avoid pseudo-replication. For 

the RS, a random seed generator in R was used to randomly select 75% of the samples 

into the training set while the other 25% were allocated to the test set. SS allocated all of 

the samples from the satellite pedons into the training set and the central pedons into the 

test set. The KSS algorithm projected the spectra into principal component space and 

sampled spectra based on furthest distance or dissimilarity from neighbor. The furthest 

neighbor was allocated into the test set and removed from the sample set, then the next 

furthest neighbor was removed and placed into the sampling set. This was done 

iteratively until the desired number of samples were selected. The spectra were projected 

into 20 dimensions via principal component analysis and the dissimilarity metric was 

determined by the Mahalanobis distance using the “KenStone” function from the 

“prospectr” package (Stevens & Ramirez-Lopez., 2013), allocating 81 samples to the 

training set and 75 samples to the test set. Within each calibration sampling scheme, the 9 
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different preprocessing techniques (raw absorbance, MSC, SNV, detrended, smoothed, 

smoothed + MSC, smoothed + SNV, SG 1st D, and SG 2nd D) were tested. Partial least 

squares regression models were built on the training set of each calibration sampling 

scheme and each of the above preprocessing techniques with the “pls” package in R 

(Mevik et al., 2016). The test set was then used to validate the model and to choose the 

number of latent variables retained. The number of latent variables chosen for the model 

was based on the number of components that had the lowest RMSEP when the test set 

was fitted. To reduce over complicating the model and overfitting, the number of 

components was restricted to a maximum of 20.  

3.4.3 Model Performance and Selection 

 The criterion used to evaluate models were based on the coefficient of 

determination (R2), the ratio of performance deviation (RPD) and bias. RPD values were 

calculated by dividing the root mean square error of cross-validation (RMSECV), also 

known as RMSEP, from the standard deviation of the test set (equations 24 and 25), 

(24)    𝑅𝑀𝑆𝐸𝐶𝑉 = √∑
(𝑦𝑖̂−𝑦𝑖)

2

𝑚
𝑚
𝑖=1  

(25)    𝑅𝑃𝐷 =
𝜎

𝑅𝑀𝑆𝐸𝐶𝑉
  

where; m is the number of samples in the test set; ŷi is the predicted value, yi the observed 

value, and σ is the standard deviation of the soil property in the test set (Bellon-Maurel et 

al., 2010). Bias of the models were also calculated to determine the trueness or accuracy 

of the models and calculated from equation 26: 

(26)    𝐵𝑖𝑎𝑠 = 𝑦̄ − 𝑦̄ 
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where, y bar hat is the mean of the predicted values and y bar is the mean of the actual 

values. Models with a bias close to 0 were preferred, indicating more accuracy (Bellon-

Maurel et al., 2010). 

The threshold RPD values used to test model performance in this study were ones 

developed by Chang et al., (2001), where excellent models have RPD > 2, fair models 

have RPD from 1.4-2, and non-reliable models were considered RPD < 1.4. Assessment 

of model performances were qualitatively defined by combining threshold values of RPD 

described by Chang et al. (2001) and R2 values adapted from Reeves and Smith (2009) 

(seen in table 3.1). RPD was given more weight than R2 values because it is a 

standardized metric that allows for comparing models across different study areas. 

Selection of the best models for each soil property within each calibration sampling 

method were first determined by RPD then by R2 value if RPD values were the same. 

 

 

 

 

  

  

Table 3.1 Qualitative model performance based on RPD and R2.  

R2 RPD < 1.4 1.4 < RPD < 2 RPD > 2 

< 0.7 Very poor Poor - 

0.7-0.8 Poor Fair Good 

0.8-0.9 - Good Very good 

> 0.9 - - Excellent 
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CHAPTER 4. RESULTS 

 

4.1. Basic Soil Properties 

 The basic statistics of the measured soil properties for the 156 samples are shown 

in table 4.1. Measured soil reference data can be found in Appendix B. Most soil 

properties had slightly skewed distributions and can be seen in figure 4.1. EC, extractable 

Na+, and CaCO3 displayed highly skewed distributions, were most samples had 

undetectable concentrations and there were relatively few samples with high 

concentrations. Table 4.2 and figures 4.2-4.3 show the correlations between spectrally 

active soil properties and the other measured soil properties. βG had the highest 

correlations with spectrally active properties related to carbon and nitrogen (r > 0.7). 

CEC had strong correlation with both clay content (r = 0.94) and total N (r =0.74). Clay 

content had moderate correlations with Ca2+ (r = 0.52) and total P (r = 0.62 All soil 

properties had very poor relationships associated with CaCO3, except for EC, Ca2+ and 

Na+ which were moderately correlated. The full correlation table for all measured soil 

properties and scatter plots showing the relationship between spectrally active and the 

remaining soil properties can be found in Appendix C. Table 4.3 and Table 4.4 show the 

model performances of the best calibration models for each soil property and indicate 

which calibration sampling strategy and spectral preprocessing technique was used for 

VNIR and MIR respectively.  
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Table 4.1 Descriptive statistics of measured soil properties for 156 soil samples in this study 

Property Mean Median Std. Dev Min Max Range Skew 

EC (dS m-1 ) 0.40 0.28 0.53 0.05 5.62 5.57 6.73 

1:1 H2O pH 6.16 6.00 0.90 4.44 8.58 4.14 0.75 

1:2 CaCl2 pH 5.70 5.49 0.96 3.94 8.29 4.35 0.69 

CEC (cmol(+) kg-1) 18.52 19.58 9.30 2.21 40.46 38.25 -0.04 

Ca2+ (cmol(+) kg-1) 16.77 14.93 13.03 1.55 65.19 63.64 1.52 

Mg2+ (cmol(+) kg-1) 3.00 2.50 2.43 0.30 15.76 15.46 2.44 

Na+ (cmol(+) kg-1) 0.18 0.00 1.19 0.00 11.69 11.69 7.97 

K+ (cmol(+) kg-1) 1.04 0.98 0.82 0.00 4.88 4.88 1.47 

H2O P (mg kg-1) 1.01 0.90 0.34 0.73 3.23 2.51 3.10 

Total P (mg kg-1) 476.20 481.47 214.56 44.01 1041.29 997.28 0.07 

Total C (%) 2.03 1.71 1.25 0.24 6.99 6.75 1.07 

SOC (%) 1.97 1.63 1.82 0.22 5.13 4.91 0.81 

CaCO3 (%) 0.50 0.04 1.83 0.00 16.83 16.83 6.29 

β-glucosidase (μg g-1 h-1) 103.93 80.00 84.85 0.00 434.00 434.00 1.04 

Total N (%) 0.20 0.17 0.11 0.03 0.51 0.48 0.81 

Clay (%)* 24.29 25.31 12.85 2.86 50.10 47.24 -0.15 

Sand (%)* 31.99 19.12 32.34 1.04 95.82 94.78 0.85 

 * Analyses were performed on samples from central pedons, n = 53. 

  

Table 4.2 Correlation with spectrally active properties. 

 Total C SOC CaCO3 Total N Clay %* 

EC 0.52 0.45 0.56 0.48 0.14 

1:1 H2O pH 0.20 0.14 0.38 0.15 0.21 

1:2 H2O pH 0.27 0.20 0.47 0.22 0.24 

CEC 0.66 0.68 0.07 0.72 0.94 

     Ca2+ 0.59 0.50 0.64 0.54 0.52 

     Mg2+ 0.41 0.35 0.45 0.41 0.47 

     Na+ 0.28 0.19 0.56 0.20 0.02 

     K+ 0.39 0.37 0.25 0.46 0.44 

H2O P 0.27 0.31 -0.08 0.35 0.07 

Total P 0.49 0.48 0.16 0.54 0.62 

βG 0.70 0.72 0.11 0.74 0.31 

*Correlations with central pedon samples. 
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Figure 4.1 Distribution and range of measured soil properties for 156 samples (n = 53 for Clay% and 

Sand%). 
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Figure 4.2 Scatterplots showing the relationships between total C and measured soil properties for 156 

samples (n = 53 for Clay% and Sand%). 
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Figure 4.3 Scatterplots showing the relationships between total C and measured soil properties for 156 

samples (n = 53 for Clay% and Sand%). 
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Table 4.3 Goodness of fit summary for overall best VNIR models. 

Property Train R2 RMSE Test R2 RMSECV RPD Bias Method 

EC 0.83 0.24 0.60 0.24 1.60 -0.03 SS 

1:1 H2O pH 0.69 0.51 0.70 0.46 1.83 0.01 KSS 

1:2 CaCl2 pH 0.79 0.45 0.73 0.47 1.93 0.00 KSS 

CEC 0.94 2.23 0.82 4.11 2.39 -0.28 RS 

     Ca2+ 0.86 4.58 0.81 6.28 2.29 -0.47 SS 

     Mg2+ 0.93 0.54 0.75 1.15 2.06 -0.03 SS 

     Na+ 0.83 0.50 0.63 0.67 1.65 -0.02 SS 

     K+ 0.74 0.42 0.69 0.45 1.81 0.02 SS 

H2O P 0.70 0.18 0.54 0.23 1.49 0.01 RS 

Total P 0.41 154.90 0.58 157.20 1.57 -5.47 RS 

Total C 0.87 0.43 0.84 0.55 2.49 -0.16 RS 

SOC 0.84 0.44 0.85 0.53 2.62 -0.16 RS 

CaCO3 0.77 0.77 0.48 1.46 1.40 -0.15 KSS 

βG 0.72 42.85 0.67 52.51 1.75 6.45 SS 

Total N 0.79 0.05 0.88 0.04 2.92 -0.01 RS 

 

Table 4.4 Goodness of fit summary for overall best MIR models. 

Property Train R2 RMSE Test R2 RMSECV RPD Bias Method 

EC 0.98 0.09 0.63 0.19 1.66 -0.02 RS 

1:1 H2O pH 0.85 0.39 0.81 0.33 2.29 -0.02 KSS 

1:2 CaCl2 pH 0.98 0.15 0.91 0.25 3.35 0.02 KSS 

CEC 1.00 0.57 0.99 1.01 8.82 0.15 KSS 

     Ca2+ 0.99 1.43 0.96 1.99 5.10 -0.09 KSS 

     Mg2+ 0.95 0.45 0.89 0.77 3.07 -0.01 SS 

     Na+ 0.62 0.76 0.50 0.78 1.42 0.21 SS 

     K+ 0.67 0.49 0.83 0.25 2.48 -0.01 RS 

H2O P 0.43 0.25 0.50 0.24 1.43 -0.04 RS 

Total P 0.52 145.70 0.72 116.90 1.90 -16.06 SS 

Total C 0.99 0.11 0.98 0.21 6.70 -0.04 RS 

SOC 0.99 0.10 0.98 0.18 7.72 -0.04 RS 

CaCO3 1.00 0.12 0.88 0.44 2.86 -0.14 KSS 

βG 0.86 29.91 0.86 39.44 2.33 -5.89 SS 

Total N 0.98 0.01 0.96 0.02 5.15 -0.00 RS 
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4.1.1 Electrical Conductivity 

 

 EC ranged from 0.05 to 5.62 dS m-1 and had a mean of 0.40 dS m-1. The best 

observed VNIR model, sampled by SS and preprocessed by detrending the spectra was 

considered poor (RPD = 1.60 and R2 = 0.60). The best MIR model, sampled by RS and 

preprocessed by the 2nd derivative, was considered poor (RPD = 1.66 and R2 = 0.63). 

Both models performed similarly, while the MIR model had a better training fit and 

smaller errors overall. Calibration models are shown in figure 4.4.     

 

Figure 4.4. Goodness of fit plots showing relationship of PLS predicted EC values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 

 

4.1.2 Soil pH 

1:1 H2O pH ranged from 4.44 to 8.58 and had a mean of 6.16. The best VNIR 

model, sampled by KSS and preprocessed by SNV, was considered fair (RPD = 1.83 and 

an R2 = 0.70). The best MIR model, sampled by KSS and preprocessed by SG-smoothing 

+ MSC, was considered good (RPD = 2.29 and R2 = 0.81). MIR performed better than 
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VNIR, however, both had significant outliers in the training set that failed to be fitted and 

resulted in higher RMSE than RMSECV values. Both models had a tendency to 

overpredict at low pH and underpredict at high pH. Calibration models are shown in 

figure 4.5. 

 

Figure 4.5. Goodness of fit plots showing relationship of PLS predicted 1:1 H2O pH values from VNIR and 

MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set 

(black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 

 

1:2 CaCl2 pH ranged from 3.94 to 8.29 and had a mean of 5.7. The best VNIR 

model, sampled by KSS and preprocessed by SNV, was considered fair (RPD = 1.93 and 

R2 = 0.73). The best MIR model, sampled by KSS and preprocessed by detrending, was 

considered excellent (RPD = 3.35 and R2 = 0.91). MIR had very good training and test 

fits, while VNIR had a few notable outliers in the training set. The MIR model had 

prediction errors of a quarter pH unit while VNIR errors were less than half a pH unit. 

Calibration models are shown in figure 4.6. 
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Figure 4.6. Goodness of fit plots showing relationship of PLS predicted 1:2 CaCl2 pH values from VNIR 

and MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training 

set (black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 

 

4.1.3 Cation Exchange Capacity and Exchangeable Cations  

CEC ranged from 2.21 to 40.46 cmol(+) kg-1 and had a mean of 18.52 cmol(+) kg-

1. The best VNIR model, sampled by RS and no preprocessing of spectra, was considered 

very good (RPD = 2.39 and R2 = 0.82). Calibration models are shown in figure 4.7. The 

best MIR model, sampled by KSS and the first derivative, was considered excellent (RPD 

= 8.82 and R2 = 0.99). Both models performed well, with the MIR model having a much 

better fit and lower errors. VNIR had outliers that were generally underpredicted. 

Calibration models are shown in figure 4.7. 
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Ca2+ ranged from 1.55 to 65.19 cmol(+) kg-1 and had a mean of 16.77 cmol(+) kg-

1. The best VNIR model, sampled by SS and preprocessed by SG-smoothing, was 

considered very good (RPD = 2.29 and R2 = 0.81). The best MIR model, sampled by KSS 

and preprocessed by detrending, was considered excellent (RPD = 5.10 and R2 = 0.96). 

While both models performed well, the MIR model had a much better fit. The VNIR 

model had error values three times as high as the MIR errors and had notable outliers in 

the training and test set. Samples tended to be underpredicted at high concentrations and 

a few samples were predicted as having negative concentrations in both the training and 

test sets with the VNIR model. Calibration models are shown in figure 4.8. 

 

 

 

 

Figure 4.7. Goodness of fit plots showing relationship of PLS predicted CEC values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 
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 Mg2+ ranged from 0.30 to 15.76 cmol(+) kg-1 and had a mean of 3.00 cmol(+) kg-

1. The best VNIR model, sampled by SS and preprocessed by smoothing + SNV, was 

considered good (RPD = 2.06 and R2 = 0.75). The best MIR model, sampled by SS and 

preprocessed by detrending, was considered very good (RPD = 3.01 and R2 = 0.89). Both 

VNIR and MIR models performed well and had similar fit and error values in the training 

set. The MIR model had better predictive ability, with better observed test set fit and 

error values. However, the MIR model had a few outliers that were underpredicted. The 

VNIR model had outliers that were both over and underpredicted, and like MIR, tended 

to underpredict samples at higher concentrations. Calibration models are shown in figure 

4.9. 

Figure 4.8. Goodness of fit plots showing relationship of PLS predicted Ca2+ values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 
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Figure 4.9. Goodness of fit plots showing relationship of PLS predicted Mg2+ values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 

 

Na+ ranged from 0.00 to 11.69 cmol(+) kg-1 and had a mean of 0.18 cmol(+) kg-1. 

The best VNIR model, sampled by SS and preprocessed by SNV, was considered poor 

(RPD = 1.65 and R2 = 0.63). The best MIR model, sampled by SS and preprocessed by 

the 2nd Derivative, was considered poor (RPD = 1.42 and R2 = 0.50). VNIR had better 

training fit than MIR and subsequently had slightly better predictions than MIR. Both 

VNIR and MIR had significant outliers in the training set, where both VNIR and MIR 

failed to fit the same samples by either over predicting or under predicting. Likewise, 

predictions of the test sets were poor, with samples having no measurable concentrations 

of Na+ both being under and overpredicted. Calibration models are shown in figure 4.10.   
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Figure 4.10. Goodness of fit plots showing relationship of PLS predicted Na+ values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 

 

K+ ranged from 0.00 to 4.88 cmol(+) kg-1 and had a mean of 1.04 cmol(+) kg-1. 

The best VNIR model, sampled by SS and preprocessed by SG-smoothing + SNV, was 

considered poor to fair (RPD = 1.81 and R2 = 0.69). The best MIR model, sampled by RS 

and preprocessed by detrending, was considered very good (RPD = 2.47 and R2 = 0.83). 

The VNIR model had a better training fit than the MIR model (R2 = 0.74 and R2 = 0.68 

for VNIR and MIR respectively) but had poorer predictions when the test set was fitted, 

while the MIR test set was better fit than the training set. Both VNIR and MIR training 

sets tended to underpredict K+ at higher concentrations with. Calibration models are 

shown in figure 4.11. 
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Figure 4.11. Goodness of fit plots showing relationship of PLS predicted K+ values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 

 

4.1.4 Phosphorus  

Water soluble P ranged from 0.73 to 3.23 mg kg-1 and had a mean of 1.01 mg kg-

1. The best VNIR model, sampled by RS and preprocessed by SG-1st derivative, was 

considered poor (RPD = 1.49 and R2 = 0.54). The best MIR model, sampled by RS and 

preprocessed by SG-2nd derivative, was considered poor (RPD = 1.43 and R2 = 0.50). 

Both models performed similarly but VNIR had better training fit and slightly better 

predictions than MIR. Both VNIR and MIR models tended to underpredict H2O P at 

higher concentrations. Calibration models are shown in table 4.12. 
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Figure 4.12. Goodness of fit plots showing relationship of PLS predicted H2O P values from VNIR and 

MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set 

(black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 

 

Total P ranged from 44 to 1041.3 mg kg-1 and had a mean of 476.2 mg kg-1. The 

best VNIR model, sampled by RS and preprocessed by SNV, was considered poor (RPD 

= 1.57 and R2 = 0.58). The best MIR model, sampled by SS and preprocessed by SG-2nd 

derivative, was considered fair (RPD = 1.90 and R2 = 0.72). The MIR model performed 

better than the VNIR model, but both had poor fit of the test set with many outliers. The 

VNIR model predictions tended to be overpredicted at low to mid concentrations and 

underpredicted at higher concentrations. The MIR model showed a similar trend but was 

not as extreme. Calibration models are shown in figure 4.13. 
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Figure 4.13. Goodness of fit plots showing relationship of PLS predicted Total P values from VNIR and 

MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set 

(black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 

 

4.1.5 Carbon 

 Total C ranged from 0.24 to 6.99 % and had a mean of 2.03 %. The best VNIR 

model, sampled by RS and no preprocessing, was considered very good (RPD = 2.49 and 

R2 = 0.84). The best MIR model, sampled by RS and preprocessed by MSC, was 

considered excellent (RPD = 6.70 and R2 = 0.98). Total carbon was well predicted by 

both VNIR and MIR, with MIR predictions significantly better, with prediction error 

values of 0.20%, half that of those observed with VNIR. Calibration models are shown in 

figure 4.14. 
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Figure 4.14. Goodness of fit plots showing relationship of PLS predicted Total C values from VNIR and 

MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set 

(black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 

 

SOC ranged from 0.22 to 5.13 % and had a mean of 1.97%. The best VNIR 

model, sampled by RS and no preprocessing, was considered very good (RPD = 2.62 and 

R2 = 0.85). The best MIR model, sampled by RS and preprocessed by detrending, was 

considered excellent (RPD = 7.80 and R2 = 0.98). MIR predictions for SOC were better 

than those for VNIR. The VNIR model performed well and had SOC predictions within 

half a percent. VNIR predictions tended to be underpredicted at higher concentrations. At 

low SOC concentrations, both VNIR and MIR tended to underpredict. Calibration models 

are shown in figure 4.15.    
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Figure 4.15. Goodness of fit plots showing relationship of PLS predicted SOC values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 

 

 CaCO3 ranged from 0.00 to 16.83 % and had a mean of 0.50 %. The best VNIR 

model, sampled by KSS and preprocessed by SG-1st derivative, was considered very 

poor (RPD = 1.40 and R2 = 0.48). The best MIR model, sampled by KSS and 

preprocessed by the 2nd derivative, was considered very good (RPD = 2.86 and R2 = 

0.88). MIR significantly had better predictions than VNIR, were observed predictions for 

CaCO3 were within a half of a percent. Most of the error occurred at low concentrations 

or when there was no measurable CaCO3. VNIR had poor fit and many outliers in the 

training set and tended to underpredict CaCO3 concentrations. Calibration models are 

shown in figure 4.16. 
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Figure 4.16. Goodness of fit plots showing relationship of PLS predicted CaCO3 values from VNIR and 

MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set 

(black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 

 

4.1.6 β-Glucosidase 

 βG activity ranged from 0.00 to 434 µg g-1 h-1 and had a mean of 103.93 µg g-1 h-

1. The best VNIR model, sampled by SS and no preprocessing, was considered poor to 

fair (RPD = 1.75 and R2 = 0.67). The best MIR model, sampled by SS and preprocessed 

by detrending, was considered very good (RPD = 2.47 and R2 = 0.83). MIR performed 

better than VNIR and had better training set fit. However, the training set had a few 

notable outliers that were underpredicted. The VNIR model also underpredicted the same 

samples as MIR. In the test set, VNIR tended to overpredict low βG activity and MIR 

underpredicted. Both VNIR and MIR underpredicted βG activity at high activity. 

Calibration models are shown in figure 4.17. 
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Figure 4.17. Goodness of fit plots showing relationship of PLS predicted βG activity from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 

 

4.1.7 Nitrogen 

 Total N ranged from 0.03 to 0.51 % and had a mean of 0.20 %. The best VNIR 

model, sampled by RS and preprocessed by SG-smoothing, was considered very good 

(RPD = 2.92 and R2 = 0.88). The best MIR model, sampled by RS and no preprocessing, 

was considered excellent (RPD = 5.15 and R2 = 0.96). Predictions for total N were very 

good with both VNIR and MIR, with MIR having better predictions. The training set for 

VNIR was not fit as well as MIR and resulted in more outliers. However, the test set for 

VNIR was fit better and had lower errors. Calibration models are shown in figure 4.18. 
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Figure 4.18. Goodness of fit plots showing relationship of PLS predicted Total N values from VNIR and 

MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set 

(black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross-validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 

 

4.2 Calibration Sampling 

 The three model calibration schemes had varying degrees of success in creating 

useful prediction models, where the performance of the calibration model was often 

dependent on the soil property of interest. For many of the spectrally active soil 

properties, the RS calibration scheme provided the best predictions due to many training 

samples. When the soil property had highly skewed distributions or was only present in a 

few locations, the SS calibration scheme worked better. KSS sampling worked best on 

spectrally active soil properties that tended to be location dependent. 

4.2.1 Random Sampling  

 The random sample calibration performance, created by a randomly assigning 

75% of the samples to the training set and 25% of samples to the test set, can be seen in 

table 4.5-6 and scatter plots of calibration models can be found in Appendix D. The RS 
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calibration method had the best prediction performance for both VNIR and MIR for 

predicting CEC, H2O P, SOC and total N, compared to the other calibration sampling 

methods. The VNIR models had a wide range of fit (R2) values for the test set, ranging 

from -84.09 to 0.88 and likewise RPD values (0.11-3.46). MIR models were improved 

but still showed equally varied performance (R2 -31.84 to 0.98 and RPD 0.18 to 8.14, 

respectively).  

 Both VNIR and MIR models had very good to excellent performance for 

predicting CEC, total N and total C (R2 > 0.82 and RPD > 2.39). VNIR predictions for 

CEC were very good (R2 = 0.82 and RPD = 2.39). MIR performed better and had 

excellent model performance (R2 = 0.99 and RPD = 8.54) for CEC but had a slightly 

higher bias than VNIR (0.34 vs -0.28, for MIR and VNIR respectively). Predictions for 

total N with VNIR were very good (R2 = 0.88 and RPD = 2.92) but MIR predictions were 

better (R2 = 0.96 and RPD = 5.15). Total C predictions are considered very good  

for VNIR (R2 = 0.84 and RPD = 2.49) and excellent for MIR (R2 = 0.98 and RPD =  

6.70). Organic carbon was also well predicted by both VNIR and MIR (R2 = 0.85, RPD  

=2.62 and R2 = 0.98, RPD = 7.72, for VNIR and MIR respectively). Despite total C and 

SOC showing good predictions, carbonate failed to be modeled with VNIR (R2 = -1.12) 

and had poor fit with MIR (R2 = 0.66). βG was poorly predicted with VNIR (R2 = 0.66 

and RPD = 1.74) and was improved with MIR and considered good (R2 = 0.74 and RPD 

= 2.00). The extractable cations had the most varied performance for both VNIR and  

MIR. Na+ had the poorest predictive ability and could not be modeled by VNIR (R2 = - 

84.09) or MIR (R2 = -32.49). Ca2+ predictions were considered excellent (R2 = 0.94 and 

RPD = 4.20) with MIR while VNIR had poor predictive ability (R2 = 0.54 and RPD = 
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1.49). VNIR had poor predictive ability for Mg2+ (R2 = 0.60 and RPD =1.60) and K+ (R2 

= 0.60 and RPD = 1.60) while MIR had good predictive ability (R2 = 0.77, RPD = 1.86; 

R2 = 0.83, RPD = 2.48, for Mg2+ and K+, respectively). Electrical conductivity was also 

poorly predicted for both VNIR and MIR (R2 = 0.57 for VNIR and R2 = 0.63 for MIR). 

Of the two pH methods, 1:2 CaCl2 pH was better predicted than 1:1 H2O pH. VNIR pH 

models were poor overall, with CaCl2 pH slightly higher (R2 = 0.68, RPD =  

1.78; R2 of 0.56, RPD = 1.53, for CaCl2 pH and H2O pH respectively). MIR predicted  

CaCl2 pH with very good performance (R2 = 0.86 and RPD = 2.71) but had similarly  

poor predictions for H2O pH (R2 = 0.66 and RPD = 1.74) as VNIR. Both VNIR and MIR 

poorly predicted H2O P (R2 < 0.54 and RPD <1.49). MIR had the best prediction for total 

P but was still considered poor (R2 = 0.68 and RPD = 1.80).  

  

 

Table 4.5 Goodness of fit statistics for VNIR with random sampling.  

Property Train R2 RMSE Test R2 RMSECV RPD Bias LVs Preprocessing 

EC 0.56 0.39 0.57 0.20 1.54 -0.02 6 SG + MSC 

1:1 H2O pH 0.61 0.56 0.56 0.58 1.53 -0.23 3 1-D 

1:2 CaCl2 pH 0.48 0.71 0.68 0.49 1.78 -0.03 1 Detrend 

CEC 0.94 2.23 0.82 4.11 2.39 -0.28 18 Raw 

Ca2+ 0.82 5.83 0.54 6.89 1.49 0.61 7 SG + MSC 

Mg2+ 0.84 0.94 0.60 0.93 1.60 0.06 9 SG + SNV 

Na+ 0.07 1.32 -84.09 0.38 0.11 0.15 1 Raw 

K+ 0.70 0.47 0.60 0.39 1.60 0.09 9 MSC 

H2O P 0.70 0.18 0.54 0.23 1.49 0.01 13 1-D 

Total P 0.41 154.90 0.58 157.20 1.57 -5.47 6 SNV 

Total C 0.87 0.43 0.84 0.55 2.49 -0.16 14 Raw 

SOC 0.84 0.44 0.85 0.53 2.62 -0.16 14 Raw 

CaCO3 0.70 1.14 -1.12 0.79 0.70 -0.05 8 MSC 

βG 0.61 54.01 0.66 45.78 1.74 -8.14 8 SG + SNV 

Total N 0.79 0.05 0.88 0.04 2.92 -0.01 14 Smooth 
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4.2.2 Stratified Sampling  

 

  The stratified sampling scheme, using the satellite soil profiles to train the models 

and the central soil profiles as the test set had very good performance with MIR and 

moderate performance with VNIR, as seen in tables 4.7-8. Additional scatter plots of the 

calibration models can be found in Appendix D. SS performed better than the other 

sampling methods for Mg2+, Na+, and βG with both VNIR and MIR. MIR models for 

predicted CEC, Ca2+, total C, and SOC are considered excellent (R2 > 0.96 and RPD > 

5.01), while the best prediction for VNIR was very good (R2 = 0.81 and RPD = 2.29 for 

Ca2+). VNIR outperformed MIR in predicting EC and Na+, however the models were still 

poor (R2 = 0.60, RPD = 1.60; R2 = 0.63, RPD = 1.65, for EC and Na+ respectively). 

Models for pH were poor for VNIR (R2 from 0.59-0.62 and RPD from 1.58-1.64 for H2O 

Table 4.6 Goodness of fit statistics for MIR with random sampling.  

Property Train R2 RMSE Test R2 RMSECV RPD Bias LVs Preprocessing 

EC 0.98 0.09 0.63 0.19 1.66 -0.02 18 2-D 

1:1 H2O pH 0.97 0.16 0.66 0.51 1.74 -0.23 19 2-D 

1:2 CaCl2 pH 0.94 0.25 0.86 0.32 2.71 -0.15 11 2-D 

CEC 0.99 0.93 0.99 1.15 8.54 0.34 14 Raw 

Ca2+ 0.98 1.88 0.94 2.45 4.20 0.84 10 1-D 

Mg2+ 0.97 0.38 0.77 0.80 1.86 0.29 16 1-D 

Na+ 0.70 0.76 -32.49 0.24 0.18 -0.03 6 1-D 

K+ 0.67 0.49 0.83 0.25 2.48 -0.01 5 Detrend 

H2O P 0.43 0.25 0.50 0.24 1.43 -0.04 7 2-D 

Total P 0.80 89.31 0.68 137.04 1.80 -18.38 20 SG + SNV 

Total C 0.99 0.11 0.98 0.21 6.70 -0.04 20 Detrend 

SOC 0.99 0.10 0.98 0.18 7.72 -0.04 20 Detrend 

CaCO3 0.85 0.80 0.66 0.31 1.78 -0.01 5 2-D 

βG 0.94 22.05 0.74 39.71 2.00 -1.75 19 2-D 

Total N 0.98 0.01 0.96 0.02 5.15 -0.00 20 Raw 
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pH and CaCl2 pH, respectively) and good to very good for MIR (R2 from 0.77-0.86 and 

RPD from 2.11-2.69 for H2O pH and CaCl2 pH, respectively). VNIR predicted CEC and 

Ca2+ about the same as MIR and are considered good to very good (R2 from 0.78-0.81 

and RPD from 2.14-2.29 for CEC and Ca2+ respectively). MIR had excellent models for 

CEC (R2 = 0.97 and RPD = 6.10) and Ca2+ (R2 = 0.96 and RPD = 5.01). Predictions for 

Mg2+ and K+ with VNIR were fair to good (R2 = 0.75, RPD = 2.06; R2 =0.69, RPD = 1.81 

for Mg2+ and K+, respectively) while MIR predictions are very good (R2 = 0.89, RPD = 

3.07; R2 = 0.82, RPD =2.36 for Mg2+ and K+, respectively ).  Predictions for P were 

varied, with R2 from 0.03-0.72. H2O P was not predicted by either VNIR (R2 =0.03) or 

MIR (R2 = 0.12). Total P had fair model performance with MIR (R2 = 0.72 and RPD = 

1.90) and poor performance with VNIR (R2 = 0.57 and RPD = 1.55). Total C and SOC 

models performed poor to fair with VNIR (R2 = 0.70, RPD =1.84 for total C and R2 = 

0.66, RPD = 1.72 for SOC). MIR had excellent predictions for both total C (R2 = 0.96 

and RPD = 5.05) and SOC (R2 = 0.97 and RPD = 5.76). Carbonate content was modeled 

poorly with MIR (R2 = 0.57) and very poorly with VNIR (R2 = 0.17). βG had very good 

predictions with MIR (R2 = 0.81 and RPD = 2.33) and had poor predictions with VNIR 

(R2 = 0.67 and RPD = 1.75). Total N was poorly predicted by VNIR (R2 = 0.65 and RPD 

= 1.71) and had very good predictions with MIR (R2 = 0.89 and RPD = 2.98). 
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Table 4.7 Goodness of fit statistics for VNIR with stratified sampling. 

Property Train R2 RMSE Test R2 RMSECV RPD Bias LVs Preprocessing 

EC 0.83 0.24 0.60 0.24 1.60 -0.03 9 Detrend 

1:1 H2O pH 0.68 0.50 0.59 0.58 1.58 -0.07 4 1-D 

1:2 CaCl2 pH 0.74 0.50 0.62 0.57 1.64 -0.12 4 1-D 

CEC 0.85 3.49 0.78 4.58 2.14 -0.21 12 Smooth 

Ca2+ 0.86 4.58 0.81 6.28 2.29 -0.47 12 Smooth 

Mg2+ 0.93 0.54 0.75 1.15 2.06 -0.03 16 SG + SNV 

Na+ 0.83 0.50 0.63 0.67 1.65 -0.02 10 SNV 

K+ 0.74 0.42 0.69 0.45 1.81 0.02 10 SG + SNV 

H2O P 0.25 0.32 0.03 0.24 1.03 0.14 5 SNV 

Total P 0.63 127.70 0.57 143.90 1.55 26.28 11 SG + MSC 

Total C 0.88 0.44 0.70 0.69 1.84 0.01 14 SG + SNV 

SOC 0.93 0.30 0.66 0.71 1.72 -0.00 19 Smooth 

CaCO3 0.57 1.32 0.17 1.27 1.11 -0.21 5 Detrend 

βG 0.72 42.85 0.67 52.51 1.75 6.45 11 Raw 

Total N 0.86 0.04 0.65 0.07 1.71 -0.05 14 SG + SNV 

Table 4.8 Goodness of fit statistics for MIR with stratified sampling. 

Property Train R2 RMSE Test R2 RMSECV RPD Bias LVs Preprocessing 

EC 0.40 0.46 0.50 0.27 1.42 0.01 2 Detrend 

1:1 H2O pH 0.55 0.59 0.77 0.43 2.11 0.01 5 MSC 

1:2 CaCl2 pH 0.87 0.36 0.86 0.35 2.69 -0.13 7 MSC 

CEC 0.99 0.91 0.97 0.97 6.10 0.49 11 2-D 

Ca2+ 0.99 0.89 0.96 2.87 5.01 -0.11 20 1-D 

Mg2+ 0.95 0.45 0.89 0.77 3.07 -0.01 13 Detrend 

Na+ 0.62 0.76 0.50 0.78 1.42 0.21 5 2-D 

K+ 0.70 0.45 0.82 0.34 2.36 0.00 6 Raw 

H2O P 0.25 0.32 0.13 0.23 1.08 0.12 3 SNV 

Total P 0.52 145.70 0.72 116.90 1.90 -16.06 4 2-D 

Total C 0.99 0.11 0.96 0.25 5.05 -0.10 15 MSC 

SOC 0.99 0.14 0.97 0.21 5.76 -0.05 10 1-D 

CaCO3 0.61 1.25 0.57 0.91 1.55 -0.25 2 Detrend 

βG 0.86 29.91 0.81 39.44 2.33 -5.89 20 Detrend 

Total N 0.98 0.02 0.89 0.04 2.98 -0.01 10 2-D 
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4.2.3 Kennard Stone Sampling 

 Predictions using the KSS algorithm are shown in tables 4.9-10 and Appendix D. 

KSS calibrations had the best performance over the other sampling techniques for pH. 

MIR predictions overall, were better than those of VNIR. MIR had excellent predictions 

for 1:2 CaCl2 pH, CEC, Ca2+, total C, SOC, and total N (R2 > 0.91 and RPD > 3.35). 

VNIR’s predictive ability was relatively poor, where the best model had fair performance 

(R2 = 0.74 and RPD = 1.98 for Ca2+). Total C had fair prediction performance (R2 = 0.72 

and RPD = 1.91) with VNIR, while MIR had excellent performance (R2 = 0.98 and RPD 

= 6.44). VNIR had poor performance predicting SOC (R2 = 0.68 and RPD = 1.79) while 

MIR had excellent predictions (R2 = 0.98 and RPD = 6.95). Carbonate was very poorly 

predicted by VNIR (R2 = 0.48 and RPD = 1.40), while MIR had very good performance 

(R2 = 0.88 and RPD = 2.86). βG was modeled poorly by both VNIR (R2 = 0.57 and RPD 

= 1.54) and MIR (R2 = 0.68 and RPD = 1.78). Total N model for VNIR had poor fit (R2 = 

0.69) but good prediction performance (RPD = 1.80) while MIR had excellent fit and 

prediction performance (R2 = 0.95 and RPD =4.47). VNIR had fair model performance 

with CEC, Ca2+, 1:1 H2O pH, and 1:2 CaCl2 pH (R2 > 0.70 and RPD >2.83). MIR had 

better predictive ability than VNIR for these properties, with models considered very 

good to excellent (R2 > 0.81 and RPD > 2.29). VNIR and MIR had fair and good 

predictions for Mg2+ (R2 = 0.74, RPD = 1.97; R2 =0.89, RPD = 3.07 for VNIR and MIR 

respectively). K+ was poorly predicted with VNIR (R2 = 0.63 and RPD = 1.65) and had 

good predictions with MIR (R2 = 0.77 and RPD = 2.09). VNIR could not predict Na+ (R2 

= -1.03) and MIR likewise had very poor predictions for Na+ (R2 = 0.47 and RPD = 
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1.39). EC was also very poorly predicted by both VNIR (R2 = 0.24) and MIR (R2 = 0.16). 

Total P and H2O P were not modeled well by MIR (R2 < 0.63) or VNIR (R2 < 0.49). 

 

Table 4.9 Goodness of fit statistics for VNIR with Kennard Stone sampling. 

Property Train R2 RMSE Test R2 RMSECV RPD Bias LVs Preprocessing 

EC 0.91 0.21 0.24 0.24 1.15 -0.06 11 MSC 

1:1 H2O pH 0.69 0.51 0.70 0.46 1.83 0.01 9 SNV 

1:2 CaCl2 pH 0.79 0.45 0.73 0.47 1.93 0.00 9 SNV 

CEC 0.89 3.35 0.71 4.44 1.88 0.66 12 Raw 

Ca2+ 0.86 5.52 0.74 5.30 1.98 -0.36 10 Raw 

Mg2+ 0.83 0.97 0.74 1.01 1.97 0.08 7 1-D 

Na+ 0.91 0.48 -1.03 0.56 0.71 0.05 10 2nd Derivative 

K+ 0.85 0.30 0.63 0.51 1.65 -0.18 15 SG + SNV 

H2O P 0.79 0.11 0.40 0.31 1.30 -0.07 19 SG + MSC 

Total P 0.79 106.50 0.49 138.60 1.41 25.02 13 Raw 

Total C 0.83 0.59 0.72 0.50 1.91 -0.04 10 Raw 

SOC 0.79 0.61 0.68 0.54 1.79 -0.02 9 Raw 

CaCO3 0.77 0.77 0.48 1.46 1.40 -0.15 8 1-D 

βG 0.75 45.27 0.57 50.83 1.54 -6.25 9 MSC 

Total N 0.80 0.05 0.69 0.05 1.80 -0.01 10 Raw 

Table 4.10 Goodness of fit statistics for MIR with Kennard Stone sampling. 

Property Train R2 RMSE Test R2 RMSECV RPD Bias LVs Preprocessing 

EC 0.79 0.31 0.16 0.21 1.10 0.07 8 1-D 

1:1 H2O pH 0.85 0.39 0.81 0.33 2.29 -0.02 11 SG + MSC 

1:2 CaCl2 pH 0.98 0.15 0.91 0.25 3.35 0.02 16 Detrend 

CEC 1.00 0.57 0.99 1.01 8.82 0.15 20 1-D 

Ca2+ 0.99 1.43 0.96 1.99 5.10 -0.09 17 Detrend 

Mg2+ 0.98 0.32 0.89 0.59 3.07 -0.09 20 2-D 

Na+ 0.71 0.54 0.47 0.97 1.39 -0.02 6 2-D 

K+ 0.78 0.44 0.77 0.33 2.09 0.03 8 Smooth 

H2O P 0.24 0.34 0.42 0.20 1.31 0.02 5 SG + SNV 

Total P 0.87 79.18 0.63 123.95 1.65 8.55 20 SG + MSC 

Total C 0.99 0.12 0.98 0.16 6.44 0.02 16 MSC 

SOC 0.99 0.11 0.98 0.15 6.95 0.03 16 MSC 

CaCO3 1.00 0.12 0.88 0.44 2.86 -0.14 20 2-D 

βG 0.84 35.72 0.68 44.28 1.78 11.68 12 MSC 

Total N 0.99 0.01 0.95 0.02 4.47 0.00 17 MSC 
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CHAPTER 5. DISCUSSION & CONCLUSION 
 

5.1 General Soil Properties 

 Due to the large study area, many of the soils were dissimilar, portraying wide 

ranges of analyte values. Generally, it is considered good to have a wide range of analyte 

values because it can increase a model’s predictive performance and make the model 

more robust but in cases of greater skewness in the analyte’s distribution, the model’s 

performance can be weakened (Minasny et al., 2009). A few properties had elevated 

skewness, most notably CaCO3, extractable Na+, and EC. The high skew in the CaCO3 

was expected considering samples were collected from surface horizons where 

carbonates are generally not present in these soils. Additionally, the soils within the 

sampling area are under different moisture regimes where conditions are wetter in the 

east and much drier in the west. While CaCO3 has been effectively modeled from other 

studies (Reeves and Smith, 2009) due to its specific absorption bands in both the VNIR 

and MIR, the skewed distribution likely made carbonates difficult to model in this study. 

Extractable Na+ and EC also exhibited skewness, and the two properties unsurprisingly 

were correlated (0.83). This skewness may have led to the inability to predict these 

properties.  

5.1.1 Electrical Conductivity 

 Soil electrical conductivity models had slight predictive ability. MIR was found to 

have slightly more predictive ability than VNIR for predicting EC, similar to findings by 

Viscarra Rossel et al. (2006). The distribution of EC values in the sample set was very 

skewed and supports Minasny et al., (2009) that suggested poor EC predictions are due to 

a poorly distributed samples and that good predictions for EC are dependent on a large 



 

 

 

 

80 

range of values. Additionally, there was no correlation with CEC (r = 0.17) or any of the 

spectrally active soil components, making predictions of EC indirectly from CEC 

unlikely. The highly skewed and poor distribution of EC values in the samples were 

likely the reason predictions were not better. 

5.1.2 Soil pH 

 MIR models for pH were altogether better than models from VNIR and 1:2 CaCl2 

pH was much better than 1:1 H2O pH. In the training sets of both VNIR and MIR models 

for 1:1 H2O pH, two samples failed to fit. One surface sample, in particular, was 

underpredicted by both, having a measured pH of 7.81 and predicted pH of 6.33 and 5.84 

by VNIR and MIR respectively. This sample had measurable carbonates but also had a 

high SOC of 4.51%, which likely accounts for the underpredicted value as carbonates 

were generally modeled poorly. Predictive ability of pH depends on correlation with soil 

organic carbon (Sarathjith et al., 2014), soil organic acids and carbonates (Reeves, 2010), 

however water pH in these samples was poorly correlated (r < 0.30), leading to poor 

predictions.  

1:2 CaCl2 pH in these samples had slight correlation with carbonates (r = 0.47) 

and poor correlation with SOC (r = 0.20). The lack of correlation between soil organics 

and pH in these samples is likely the reason that VNIR could not predict pH as well as 

MIR. Despite having a weak correlation with the soil organic fraction and carbonates, 

MIR had good predictions for pH. Minasny et al., (2009) hypothesized that the ability of 

MIR to predict pH is due to its relationship with exchangeable cations. The observed 

correlation between pH and extractable Ca2+ was strong (r > 0.74), supporting this 

hypothesis. Given the high correlation with pH and Ca2+, it is possible that MIR is 
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indirectly correlating pH with the clay mineralogy. However, pH and CEC had lower 

correlation (r = 0.30) than pH and Ca2+, suggesting that MIR is correlating pH with 

carbonates and CEC combined. There is not enough information on the samples’ clay 

mineralogy to conclude this, these findings and those by Minansy et al., (2009) suggest 

that MIR may be capable of predicting pH without a strong correlation with soil organics. 

While both VNIR and MIR models for 1:2 CaCl2 pH were improved over 1:1 H2O pH, 

only the MIR model is considered useful for predictions.    

5.1.3 Cation Exchange Capacity and Extractable Cations 

 MIR was much better at predicting CEC than VNIR for every calibration scheme. 

These findings are supported by those of Viscarra Rossel et al., (2006) and indicate that 

MIR has a higher sensitivity to clay mineralogy and organic matter. VNIR models for 

CEC were still good and are comparable to findings by Chang et al., (2001) using VNIR. 

The VNIR model predicted a few samples as having negative values. However, these 

samples were extremely sandy (> 90 %) and may have increased noise due to light 

scatter.  

 Of the extractable cations, Ca2+ was most easily predicted followed by Mg2+ and 

K+.  Na+ was not predicted well in most cases. Ca2+, Mg2+, and K+ were all better 

predicted with MIR. The predictability of the cations increased when cations were 

correlated with CEC (r = 0.62, 0.50, 0.47, and 0.5 for Ca2+, Mg2+, K+, and Na+, 

respectively), indicating that the cations are predicted by their relationship with clay 

mineralogy. As the range of values increased, the predictive ability for both VNIR and 

MIR increased, supporting the idea that model performance and robustness are improved 

by having a greater range in values (Minasny et al., 2009). Na+ had a very skewed 
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distribution and was not correlated with any spectrally active soil properties or 

secondarily active properties making it difficult to achieve good predictions.  

5.1.4 Phosphorus 

 H2O P was not predicted well by either VNIR or MIR. This may be due to not 

having any correlation with spectrally active soil properties and having a small range of 

values (2.51 mg kg-1) and a skewed distribution. H2O P predictions were slightly better 

than those observed by Cohen et al., (2005), who had very poor results (R2 = 0.37 and 

RPD =1.20) with wetland samples using VNIR. Cohen et al., (2005) also observed a 

similarly small range of values (0.94 mg kg-1). Janik et al., (2009) showed good results 

for H2O P with MIR (R2 = 0.84). Janik et al., (2009) had a 16 h extraction time for H2O 

P, allowing for more soluble P to come into equilibrium and therefore had a much greater 

range (898 mg kg-1) of soluble P values. The results cannot be compared directly but 

indicate longer extraction times for soluble P should be explored further to see if range 

plays a major role in its prediction of P. Neither VNIR nor MIR models were robust 

enough to predict H2O P. 

Total P had better predictions when modeled with MIR than with VNIR, which 

supports findings by Reeves and Smith (2009). Total P predictions observed with VNIR 

were not as good as those previously seen in the literature with R2 > 0.89 (Bogrekci & 

Lee, 2005; Todorova et al., 2011). This may be due to differences in sample size and 

sample range. Todorova et al., (2011) had a total sample range 5 times greater than the 

sample range in this study.  

Total P models performed better than H2O P models. This increase in 

performance is likely due to the forms of P measured. Water soluble P relates to the P in 
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the soil solution whereas total P also includes forms of P within clay structures. Total P 

showed some correlation with CEC and clay (r = 0.62 for both CEC and clay) whereas 

H2O P did not (r = 0.20 and r = 0.07 for CEC and clay, respectively). Abdi et al., (2012) 

also observed better performance with total P models than H2O P and suggested that this 

was due to the fraction of organic P in the soil correlated with organic matter. Observed P 

correlations with total N may support Abdi et al., (2012), where correlations with total P 

were better than those of H2O P (r =0.54 vs 0.35).   

5.1.5 Carbon 

 Total C, SOC, and CaCO3, were better predicted by MIR than VNIR. The 

fundamental absorption bands in the MIR are better predictors than the overtones of these 

bands in the VNIR region (Bellon-Maurel and McBratney, 2011). Knox et al. (2015) 

reported similar findings, showing that MIR outperformed VNIR for both total C and 

SOC. VNIR predictions for total C in this study were comparable to VNIR predictions 

observed by Chang et al. (2001) over the coterminous U.S. (R2 = 0.87 and RPD = 2.79). 

Predictions for total C performed better and had lower errors than those for SOC with 

VNIR. The opposite was observed with MIR, where SOC models outperformed Total C 

models but both models for total C and organic C were excellent with MIR and very good 

with VNIR. CaCO3 prediction was not as good as expected, as all VNIR models 

performed very poorly (R2 < 0.48). MIR models exhibited a wide range of fit (R2 from 

0.58-0.87) and had poor to very good predictive ability. The overall poor predictive 

performance can be attributed to having only surface soil samples where carbonates are 

unlikely to form, resulting in a heavily skewed distribution of carbonates in the samples.       
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5.1.6 β-Glucosidase 

 βG had better predictions with MIR than with VNIR. The training set for MIR had 

a better fit and fewer outliers than VNIR. One sample was consistently predicted at 

having lower βG activity with both VNIR and MIR, however this may be due to 

measurement error. βG had strong correlations with SOC (r = 0.72), Total C (r = 0.70), 

and Total N (r = 0.74), all of which were better predicted with MIR. βG’s relationship 

with soil organic matter allows it to be predicted better with MIR. The VNIR models 

performed as well as those in other studies. Cohen et al., (2005) observed good results 

(R2 = 0.79 and RPD = 2.64) with VNIR. Zoronoza et al., (2008) had very good results 

(R2 = 0.96 and RPD = 2.64) when just using the NIR region between 1372-2272 nm. 

Likewise, Dick et al., (2013) had improvements in model performance when using the 

NIR region (1100-2498 nm) over the VNIR (400-2498 nm) and attributed this to more 

background noise present in the visible region.  

5.1.7 Total Nitrogen 

 MIR had excellent predictions for Total N in all sampling schemes while VNIR 

had only one model that could be considered very good. The best MIR model for total N 

performed as well as MIR models by Reeves et al., (2001) (R2 =0.95) but better than MIR 

models observed by Minasny et al., (2009) (R2 = 0.76 and RPD = 2.0). VNIR models 

performed slightly better than NIR (1000-2500 nm) models (R2 = 0.73 and RPD = 2.20) 

from Abdi et al., (2012) but were in agreement with Todorova et al., (2011) who 

observed similar results using the NIR spectra between 1001-2500 nm (R2 = 0.91 and 

RPD = 2.3).  Nitrogen is a big component of soil organics and had a strong correlation 



 

 

 

 

85 

with SOC (r=0.97). Total N was also found to have a good correlation with CEC (r = 

0.72) possibly making it easier to predict with MIR.  

5.2 Calibration Sampling 

 The calibration sampling used for creating prediction models can play a large role 

in model performance. A significant number of samples are needed to train the model and 

still have enough independent samples left over to test the model performance. Although 

the number of samples can be considered large (n=156), they are not all independent 

from each other considering 2 samples were taken from the same soil profile. This 

effectively cut the number of independent samples in half, making an appropriate 

calibration sampling scheme vital to avoid pseudoreplication and over-fitting the models.  

5.2.1 Random Sampling 

 The random sampling scheme generally provided the best predictions except in 

cases when the soil properties had a skewed distribution. The increase in performance is 

likely due to a larger number of samples used to train the model compared to the rest of 

the calibration schemes, and thus cannot be directly compared with the other calibration 

schemes. When the soil component had a skewed distribution, samples may not have 

been representative between training and test sets, resulting in poorer models. In the case 

of Na+, the test set contained samples with a Na+ concentration of zero, except for one 

sample. This sampling scheme was able to predict the one sample with Na+ with an error 

of 0.08 cmol(+) kg-1 but failed to predict a majority of samples as having zero 

concentrations of Na+. Random sampling for calibration models is often used because of 

its simplicity and many authors report good calibration results for spectrally active soil 

properties (Estienne et al., 2001; Van Groenigen et al., 2003; Dick et al., 2013).  
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5.2.2 Stratified Sampling 

 The stratified sampling scheme did not perform as well as RS for many 

properties, despite the advantage of having an even distribution of sites in the training 

and test sets. The SS scheme predicted Mg2+, Na+, and βG concentrations the best 

because there was less variation of these properties within site location. Two of the 27 

sites had measurable amounts of Na+, which may explain why Na+ predictions were most 

improved with this scheme. Wijewardane et al., (2016) found that SOC models stratified 

by soil textural class and land use class outperformed global models. While the SS 

scheme in this study is not the same as Wijewardane et al., (2016), it attempts to create an 

even distribution of samples with the same soil textural classes and land use class in both 

the training and test sets. This increased the model performance for soil properties that 

were spatially dependent by having comparable ranges of values in the training and test 

sets, which is important for good calibrations according to Davies and Fearn, (2006).   

5.2.3 Kennard-Stone Sampling 

 Of all properties evaluated, only CaCO3 was best modeled with the Kennard-

Stone sampling scheme. This makes sense due to CaCO3 being spectrally active, where 

KSS selects training and testing samples based on dissimilarity between spectra, allowing 

for a uniform distribution in training and test sets. KSS did not significantly outperform 

the other calibration sampling techniques for the rest of the soil properties, despite other 

authors finding it an effective method for calibration sampling of spectral data (Liu et al., 

2014; Zhang et al., 2017). Liu et al. (2014) found KSS sampling to be the best calibration 

sampling scheme for their study area, which consisted of mixed land use classes 

(cropland, forest, and meadows) and had a smaller study area and finer sampling 
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resolution than this study. Wetterlind et al., (2013) found that KSS worked well in 

capturing the variation in datasets when the sampling size is large. The average 

performance of KSS in this study may be attributed to the large spatial distribution of the 

study area, coarse sampling resolution and a relatively small number of independent 

samples. This suggests that KSS may not be an optimal calibration sampling scheme for 

small datasets with coarse sampling resolutions.  

5.3 Conclusions and Further Work 

 Infrared spectroscopic methods paired with PLSR can be a useful tool for rapidly 

predicting certain soil properties. MIR and VNIR proved useful in predicting spectrally 

active soil properties such as total C, SOC and total N, and secondary properties like 

CEC and pH. MIR models were more robust than VNIR models for these properties and 

could potentially be used as a surrogate for traditional laboratory analyses or ground 

truthing/validation for airborne and satellite remote sensing platforms. VNIR models for 

these properties were good but had more error and may not be a suitable replacement for 

laboratory analyses when accuracy is important. However, they could prove useful for 

qualitative analysis when traditional techniques are timely, such as CEC. Although MIR 

had better predictions than VNIR in most instances, VNIR outperformed MIR under 

certain calibration sampling schemes, although predictions for both these properties were 

considered poor. 

Soil properties with little correlation to spectrally active properties, such as P, 

Na+, and EC, or those that had highly skewed distributions in the sample set (CaCO3) 

tend to be modeled poorly by both VNIR and MIR. A greater sample size/density could 

improve these models, especially for underrepresented soil properties that had low range 

or heavily skewed distributions. Likewise, further research should be done to validate 
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both MIR and VNIR models with independent sites to test the robustness of the models in 

predicting these soil properties at the regional scale.  

Standardization or normalization of non-normally distributed properties should be 

considered if sample size cannot be easily increased, as many of these techniques assume 

normally distributed data. Additional calibration sampling techniques such as leave-one-

out cross-validation or selecting calibration samples for the training set based on the 

highest and lowest values for each property should be tested. Due to the differences in 

training set and test set sizes between the tested calibration sampling methods, direct 

comparisons cannot be made as to which method is best. While finding the optimal 

calibration sampling schemes is important and plays a vital role in model validation, that 

is beyond the scope of this thesis, where the objective was to compare the predictive 

ability of VNIR and MIR spectroscopic methods. Likewise, this thesis only looked at 

PLS regression, a classical multivariate statistical technique, for modeling complex soil 

properties, when more advanced machine learning algorithms such as artificial neural 

networks and regression trees have been used with much success. This study indicates 

that that the MIR spectrum contains more attainable and useable information than VNIR 

with the use of classical statistical techniques for predicting soil properties over a 

regional area with coarse sampling resolution.  

MIR spectrometers are costlier than VNIR spectrometers, involve more sample 

preparation (finer grinding of sample), but predictions tend to be much more accurate. 

The MIR region of a soil spectra contains distinctive adsorption peaks related to 

fundamental bond vibrations that can be used to detect clays, minerals and organic 

compounds, which can be visually observed in the spectra whereas the VNIR region is 
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complex and requires chemometric analysis to access useful information. Due to the need 

for quantitative information, this minimizes the differences between the spectral regions, 

where chemometric methods are required to create predictive models. The VNIR 

spectrum combined with multivariate analysis techniques can predict useful predictions 

of these soil properties with minimal processing, whereas MIR is capable of more 

accurate predictions, but at the cost of more sample processing and time. Ultimately, the 

choice between these two techniques becomes a tradeoff between instrumentation cost 

and accuracy.  
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APPENDIX A: R CODE 

Sample R code and output 

Required libraries 

library(readxl)       #to read excel files  
library(ggplot2)      #to make plots 
library(pls)          #to perform partial least squares regression 

library(prospectr)    #to perform spectral preprocessing 

VNIR 

Reading in VNIR data and inital processing 
#import reference data 
ref <- read_xlsx(path = "/home/jg8s/Dropbox/ref_data.xlsx", sheet = 1, 
col_names = TRUE) 
 
#import vnir files 
vnir_spec <- read_xlsx(path = 
"/home/jg8s/Dropbox/Spectra/VNIR/All_spectra.xlsx", sheet = 2, 
col_names = TRUE) 
 
# transpose spectral files-> samples as rows, wavelengths as columns 
Wavelength <- vnir_spec$Wavelength 
vnir_spec <- data.frame(t(vnir_spec)) 
colnames(vnir_spec) <- Wavelength ## Set wavelength as colnames 
vnir_spec <- vnir_spec[-1,] ## Remove first redundant first row 

# Plot reflectance 
xax <- "Wavelength, nm " ## Set x-axis title 
yax <- "Reflectance"     ## Set y-axis title 
matplot(x= Wavelength, y = t(vnir_spec), xlab = xax, ylab = yax, type = 
"l", lty = 1) 
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Splice correction between detectors 
# Splice correction at 1000 nm and 1830 nm 
corrected_spc <- spliceCorrection(X = vnir_spec, wav = Wavelength, 
splice = c(1000,1830)) 

Reflectance to Absorbance Conversion 
# Transform to absorbance ( log(1/R) 
abs_spec <- log10(1/corrected_spc) 
matplot(x= Wavelength, y = t(abs_spec), xlab = xax, ylab = "Absorbance, 
(Au)", type = "l", lty = 1) 
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Remove spectra below 400nm 
raw_abs <- abs_spec[,51:2151] 
matplot(x= colnames(raw_abs), y = t(raw_abs), xlab = xax, ylab = 
"Absorbance, (Au)", type = "l", lty = 1) 
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MIR 

Reading in MIR data 
#import reference data 
ref <- read_xlsx(path = "/home/jg8s/Dropbox/ref_data.xlsx", sheet = 1, 
col_names = TRUE) 
#import MIR files 
mir_spec <- read_xlsx(path = "/home/jg8s/Dropbox/Pedometrics 
code/working_dir/mir_avg.xlsx", col_names = TRUE) 
 
# transpose -> samples as rows, wavelengths as columns 
Wavelength <- mir_spec$Wavelength 
mir_spec <- data.frame(t(mir_spec)) 
colnames(mir_spec) <- Wavelength 
mir_spec <- mir_spec[-1,] 
 
# Plot Absorbance 
matplot(x= (Wavelength), y = t(mir_spec), xlab = "Wavenumber, (cm^-1)", 
ylab = "Absorbance (Au)", type = "l", lty = 1, xlim = rev(c(600,7500))) 
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# remove Wavelengths below 4000 1/cm 
mir_trim <- mir_spec[,1814:3578] 
matplot(x= colnames(mir_trim), y = t(mir_trim), xlab = "Wavenumber, 
(cm^-1)", xlim = rev(c(600,4000)), ylab = "Absorbance, (Au)", type = 
"l", lty = 1) 
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Spectral Preprocessing 

Examples given from VNIR spectra but are the same for MIR. 

Mulitplicative Scatter Correction 
msc <- msc(raw_abs, reference = NULL) 
matplot(x= colnames(msc), y = t(msc), xlab = xax, ylab = "MSC", type = 
"l", lty = 1) 
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Standard Normal Variate 
snv <- standardNormalVariate(X = raw_abs)  
matplot(x= colnames(snv), y = t(snv), xlab = xax,  type = "l", lty = 1) 

 



 

 

 

 

103 

Detrending 
wav <- as.numeric(colnames(raw_abs)) ## set wavelengths 
det <- detrend(raw_abs, wav)  
matplot(x= colnames(det), y = t(det), xlab = xax, ylab= "Detrend", type 
= "l", lty = 1) 

 

Savitzky-Golay smoothing 
# Note:preprocessing performed on full spectra before trimming. This 
process trims the ends of the spectra by half the window size. 
# Window size = 15, derivative = 0, polynomial = 0 
smooth_spec <- savitzkyGolay(X = abs_spec, m = 0, p = 0, w = 15) 
smooth_abs <- smooth_spec[,44:2137] ## remove wavelengths below 400nm 
matplot(x= colnames(smooth_abs), y = t(smooth_abs), xlab = xax, ylab = 
"Absorbance", type = "l", lty = 1) 
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SG smoothing + MSC 
# Note:preprocessing performed on full spectra before trimming. This 
process trims the ends of the spectra by half the window size. Spectra 
is smoothed, then transformed by MSC and then trimmed. 
# Window size = 15, derivative = 0, polynomial = 0 
smooth_spec <- savitzkyGolay(X = abs_spec, m = 0, p = 0, w = 15) 
msc2 <- msc(smooth_spec, reference = NULL) 
msc2 <- msc2[,44:2137] ## Remove spectra below 400nm 
matplot(x= colnames(msc), y = t(msc), xlab = xax, ylab = "Smooth + 
MSC", type = "l", lty = 1) 
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SG smoothing + SNV 
# Note:preprocessing performed on full spectra before trimming. This 
process trims the ends of the spectra by half the window size. Spectra 
is smoothed, then transformed by SNV and then trimmed. 
# Window size = 15, derivative = 0, polynomial = 0 
smooth_spec <- savitzkyGolay(X = abs_spec, m = 0, p = 0, w = 15) 
snv2 <- standardNormalVariate(smooth_spec) 
snv2 <- snv2[,44:2137] ## Remove spectra below 400nm 
matplot(x= colnames(snv), y = t(snv), xlab = xax, ylab = "Smooth + 
SNV", type = "l", lty = 1) 
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Savitsky-Golay 1st Derivative 
# Note:preprocessing performed on full spectra before trimming. This 
process trims the ends of the spectra by half the window size. Spectra 
is smoothed and transformed by taking the first derivative and then 
trimmed. 
# Window size = 15, derivative = 1, polynomial = 1 
smooth_spec <- savitzkyGolay(X = abs_spec, m = 1, p = 1, w = 15) 
smooth_1d <- smooth_spec[,44:2137] 
matplot(x= colnames(smooth_1d), y = t(smooth_1d), xlab = xax, ylab = 
"1st Derivative", type = "l", lty = 1) 
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Savitsky- Golay 2nd Derivative 
# Note:preprocessing performed on full spectra before trimming. This 
process trims the ends of the spectra by half the window size. Spectra 
is smoothed and transformed by taking the first derivative and then 
trimmed. 
# Window size = 15, derivative = 2, polynomial = 2 
smooth_spec <- savitzkyGolay(X = abs_spec, m = 2, p = 2, w = 15) 
smooth_2d <- smooth_spec[,44:2137] 
matplot(x= colnames(smooth_2d), y = t(smooth_2d), xlab = xax, ylab = 
"2nd Derivative", type = "l", lty = 1) 
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Calibration Sampling Schemes 

Combine Reference and Spectral data 
soil_dat <- cbind(ref[,!(colnames(ref) %in% 
as.character(colnames(raw_abs)))]) ## create new data frame; insert 
preprocessed spectra spectra here.  
soil_dat$spec <- raw_abs ## adds raw spectra as a vector for each 
sample; insert preprocessed spectra here. 

Random Sampling 
# plot_id contains unique soil profiles and will be used to create 
independent sets 
 
n_profiles <- nlevels(as.factor(soil_dat$plot_id)) 
# randomly sample 75% of profiles for calibration 
set.seed(4556) 
cal_profile_id <- sample(x= levels(as.factor(soil_dat$plot_id)), size = 
n_profiles *0.75) 
 
cal1 <- soil_dat[soil_dat$plot_id %in% cal_profile_id,] ## training set 
val1 <- soil_dat[!soil_dat$plot_id %in% cal_profile_id,] ## test set 

Stratified sampling 
# Central pedons -> test; Satellites -> train 
cal2 <- soil_dat[54:156,] ## last 2/3 of samples are from satelliete 
pedons 
val2 <- soil_dat[1:53,] ## First 53 samples are from central pedons 
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Kennard-Stone Sampling 
# KSS will sample spectra based on PC scores 
set.seed(7823) 
# choose sample size for calibration set = 81, based on Mahalanobis 
distance in 20d principle component space, and grouped by soil profile.  
kss <- kenStone(X= soil_dat$spec, k = 81, metric= "mahal", pc = 20, 
group = as.factor(soil_dat$plot_id)) 
 
cal3 <- soil_dat[kss$model,] ## training 
val3 <- soil_dat[kss$test,]  ## test 

Partial least squares regression and prediction models 

PLS model example for CEC using raw VNIR spectra and Random sampling. 
## pls model built using the training set 
pls_CEC <- plsr(CEC ~ spec, data = cal1 ) 
## visualize component with smallest error 
validationplot(pls_CEC, val.type = "RMSEP", newdata = val1, ncomp = 
1:20, type = "b") 

 

## choose number of latent variables to use from above 
n_comp <- 18 
## validate model by fitting test set 
CEC_predicted <- predict(pls_CEC, ncomp = n_comp, newdata = val1) 
## root mean square error  
RMSEP(pls_CEC, estimate = "all",newdata = val1, ncomp= n_comp) 
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##        (Intercept)  18 comps 
## train        9.042     2.229 
## test         9.932     4.110 

## fit 
R2(pls_CEC, estimate = "all", newdata = val1, ncomp = n_comp) 

##        (Intercept)  18 comps 
## train       0.0000    0.9392 
## test       -0.0435    0.8213 

## prediction plots 
predplot(pls_CEC, ncomp = n_comp, which = c("train","test"), newdata = 
val1, line = TRUE) 

 

#Bias 
mean(CEC_predicted) - mean(val1$CEC) 

## [1] -0.2759712 

#RPD 
cec.sd <-sd(val1$CEC) 
cec.rmsep <- sqrt((sum((CEC_predicted-val1$CEC)^2))/nrow(val1)) 
RPD <- cec.sd/cec.rmsep 
RPD 

## [1] 2.395048 
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ggplot graphs 

CEC_train <- predict(pls_CEC, ncomp= n_comp) 
 
x <-  val1$CEC 
y <-  CEC_predicted 
cec<- cbind(x,y) 
write.csv(cec, file = "VNIR_cec.csv") ##write to .csv allows one to get 
slope and intercept after export to excel, used below. 
 
VNIR_cec <- ggplot(data = NULL)+ 
  geom_point(aes(x= cal1$CEC, y= CEC_train))+ 
  geom_point(aes(x= val1$CEC, y= CEC_predicted, color= "red"), 
show.legend = FALSE ) + 
  geom_abline()+ 
  geom_abline(slope = 0.8299, intercept = 2.6197, color= 'red')+   
labs(x= "Measured CEC (cmol(+)/kg)", y= "Predicted CEC (cmol(+)/kg)", 
title= "VNIR")+ 
  scale_x_continuous(limits= c(-3,45))+ 
  scale_y_continuous(limits = c(-3,45))+ 
  theme_classic() 
   
VNIR_cec   

 

ggsave(filename = "vnir_cec.png", plot=VNIR_cec, path = 
"/home/jg8s/Dropbox/Thesis/Plots/", width = 3, height = 3, units = 
"in")  ## exports and saves as .png in directory. 
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APPENDIX B: SOIL REFERENCE DATA 
 

Collected soil reference data and spectra can be downloaded from: 

https://github.com/josh-g8s/MS-thesis 
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APPENDIX C: SOIL PROPERTY CORRELATIONS  
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Figure C1 Scatter plot matrix of SOC relationship with the remaining measured soil 

properties. 
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Figure C.2 Scatter plot matrix of Total N relationship with the remaining measured soil 

properties. 
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Figure C.3 Scatter plot matrix of CaCO3 relationship with the remaining measured soil 

properties. 
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APPENDIX D: MODEL SCATTER PLOTS 
 

Scatterplots are shown below for VNIR and MIR models with the best predictive ability 

within each calibration sampling scheme by measured soil property.  
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Figure 4.4. Goodness of fit plots showing relationship of PLS predicted EC values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 
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Figure 4.5. Goodness of fit plots showing relationship of PLS predicted 1:1 H2O pH values from VNIR and 

MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set 

(black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 
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Figure 4.6. Goodness of fit plots showing relationship of PLS predicted 1:2 CaCl2 pH values from VNIR 

and MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training 

set (black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 
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Figure 4.7. Goodness of fit plots showing relationship of PLS predicted CEC values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 
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Figure 4.8. Goodness of fit plots showing relationship of PLS predicted Ca2+ values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 
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Figure 4.9. Goodness of fit plots showing relationship of PLS predicted Mg2+ values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 
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Figure 4.10. Goodness of fit plots showing relationship of PLS predicted Na+ values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 



 

 

 

 

136 

 

Figure 4.11. Goodness of fit plots showing relationship of PLS predicted K+ values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 
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Figure 4.12. Goodness of fit plots showing relationship of PLS predicted H2O P values from VNIR and 

MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set 

(black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 
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Figure 4.13. Goodness of fit plots showing relationship of PLS predicted Total P values from VNIR and 

MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set 

(black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 
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Figure 4.14. Goodness of fit plots showing relationship of PLS predicted Total C values from VNIR and 

MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set 

(black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 
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Figure 4.15. Goodness of fit plots showing relationship of PLS predicted SOC values from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 
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Figure 4.16. Goodness of fit plots showing relationship of PLS predicted CaCO3 values from VNIR and 

MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set 

(black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 
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Figure 4.17. Goodness of fit plots showing relationship of PLS predicted βG activity from VNIR and MIR 

versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set (black), 

test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), RMSECV 

(root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs (number of 

PLS latent variables). 
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Figure 4.18. Goodness of fit plots showing relationship of PLS predicted Total N values from VNIR and 

MIR versus traditional laboratory methods. Showing 1:1 line (black), regression slope (red), training set 

(black), test set (red), R2 (coefficient of determination), RMSE (root mean square error of training set), 

RMSECV (root mean square error of cross validation), RPD (ratio of performance to deviation), and LVs 

(number of PLS latent variables). 
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