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Contribution of Pentose Catabolism to
Molecular Hydrogen Formation by
Targeted Disruption of Arabinose
Isomerase (araA) in the
Hyperthermophilic Bacterium
Thermotoga maritima

Derrick White,a Raghuveer Singh,a Deepak Rudrappa,a Jackie Mateo,a

Levi Kramer,b Laura Freese,a Paul Bluma

School of Biological Sciencesa and Department of Chemical and Biomolecular Engineering,b University of
Nebraska—Lincoln, Lincoln, Nebraska, USA

ABSTRACT Thermotoga maritima ferments a broad range of sugars to form acetate,
carbon dioxide, traces of lactate, and near theoretic yields of molecular hydrogen
(H2). In this organism, the catabolism of pentose sugars such as arabinose depends
on the interaction of the pentose phosphate pathway with the Embden-Myerhoff
and Entner-Doudoroff pathways. Although the values for H2 yield have been deter-
mined using pentose-supplemented complex medium and predicted by metabolic
pathway reconstruction, the actual effect of pathway elimination on hydrogen pro-
duction has not been reported due to the lack of a genetic method for the creation
of targeted mutations. Here, a spontaneous and genetically stable pyrE deletion mu-
tant was isolated and used as a recipient to refine transformation methods for its re-
pair by homologous recombination. To verify the occurrence of recombination and
to assess the frequency of crossover events flanking the deleted region, a synthetic
pyrE allele, encoding synonymous nucleotide substitutions, was used. Targeted inac-
tivation of araA (encoding arabinose isomerase) in the pyrE mutant was accom-
plished using a divergent, codon-optimized Thermosipho africanus pyrE allele fused
to the T. maritima groES promoter as a genetic marker. Mutants lacking araA were
unable to catabolize arabinose in a defined medium. The araA mutation was then
repaired using targeted recombination. Levels of synthesis of H2 using arabinose-
supplemented complex medium by wild-type and araA mutant cell lines were com-
pared. The difference between strains provided a direct measurement of H2 produc-
tion that was dependent on arabinose consumption. Development of a targeted
recombination system for genetic manipulation of T. maritima provides a new strat-
egy to explore H2 formation and life at an extremely high temperature in the bacte-
rial domain.

IMPORTANCE We describe here the development of a genetic system for manipula-
tion of Thermotoga maritima. T. maritima is a hyperthermophilic anaerobic bacterium
that is well known for its efficient synthesis of molecular hydrogen (H2) from the fer-
mentation of sugars. Despite considerable efforts to advance compatible genetic
methods, chromosome manipulation has remained elusive and hindered use of T.
maritima or its close relatives as model hyperthermophiles. Lack of a genetic
method also prevented efforts to manipulate specific metabolic pathways to mea-
sure their contributions to H2 yield. To overcome this barrier, a homologous chro-
mosomal recombination method was developed and used to characterize the contri-
bution of arabinose catabolism to H2 formation. We report here a stable genetic
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method for a hyperthermophilic bacterium that will advance studies on the basic
and synthetic biology of Thermotogales.

KEYWORDS genetic systems, extremophiles, biohydrogen, homologous
recombination, anaerobes

Thermotoga maritima is a hyperthermophilic anaerobic bacterium that ferments
simple sugars to H2, acetate, lactate, and carbon dioxide (1). In complex medium

(CM) it grows optimally at 80°C with a generation time of 75 min (1). Because of its rapid
growth and aerotolerance, it has been the recipient of considerable investigative effort.
This included genome sequencing (2–6), comprehensive functional genomics for pro-
tein structural characterization (5, 7), and transcriptomic studies using oligonucleotide
arrays (8–16). However, in the absence of a genetic system for genome manipulation,
its use as a model hyperthermophile has not been realized.

There have been advances in genetic methods for T. maritima. Marker selection
strategies used the analog 2-deoxyglucose to recover resistant mutants in an effort to
use sugar utilization genes as a marker (17). Spheroplast-based transformation was
developed that removed the proteinaceous toga to promote DNA uptake using lipo-
somes (18). Finally, plasmids were evaluated that encoded heat-stable antibiotic resis-
tance for selection at elevated growth temperatures (18–21). Despite these approaches,
however, manipulation of the chromosome has remained elusive.

The impact of pentose metabolism on H2 synthesis is crucial for biohydrogenesis
applications using a fermentative organism such as T. maritima. This is because a
significant proportion of lignocellulosic plant feedstocks is made of 5-carbon sugars
such as xylose and arabinose. These sugars are metabolized via the pentose phosphate
pathway (PPP), which consists of oxidative and nonoxidative components. The main
function of the nonoxidative pathway is to generate C3 through C7 sugars from ribose
5-phosphate. These can be used for nucleic synthesis and can enter the oxidative
pentose phosphate pathway to support production of ATP and reductant. Pentose
metabolism has been studied only recently in Thermotoga species, where a H2 yield of
3.33 mol per mol of sugar was reported (22). To better understand the contribution of
arabinose to H2 formation through pentose catabolism, a method for homologous
chromosomal recombination was developed and used to inactivate catabolism of this
sugar by targeted mutation of araA, which is involved in the first step in arabinose
catabolism.

RESULTS
Isolation and characterization of T. maritima pyrE mutants. The development of

a T. maritima genetic system required a series of components, including a genetic
marker, a marker-compatible medium, a specialized host strain, a suicide vector, an
effective transformation method, and a chromosomal recombination event. A genetic
marker that conferred pyrimidine prototrophy was developed through the isolation of
spontaneous pyrE mutants. A defined solid medium was needed for clonal isolation of
mutants to determine their genetic stability and to recover recombinants. A defined
liquid medium was needed to verify strain phenotypes and, in some cases, to enrich for
rare recombinants. Uracil auxotrophs were recovered by the selection of isolates
resistant to 5-fluoroorotic acid (5-FOA) (23) using a solid medium. This occurred at a
frequency of 10�7 at an 5-FOA concentration of 400 �g/ml. DNA sequence analysis of
pyrE (THMA_RS01695) and pyrF (THMA_RS01700) from 10 resistant isolates indicated
that all encoded loss-of-function mutations in pyrE, whereas pyrF remained unaffected.
These isolates all encoded the same pyrE mutation (pyrE-64) that consisted of a
2-nucleotide (nt) deletion (�TG) at chromosomal positions 351792 (�T) and 351793
(�G), 155 nt from the 3= end of pyrE (Fig. 1A). This mutation resulted in a premature
stop codon (TGA) 64 nt before the natural stop codon and therefore reduced the length
of orotate phosphoribosyl transferase by 21 amino acids (aa) from the original 187 aa.
An auxotrophic phenotype for this isolate was not confirmed by growth in a defined
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medium without uracil supplementation. The pyrE-64 mutation reverted at a frequency
of 10�7 as a result of several types of mutations. These included a 2-nt insertion located
at chromosomal positions 351792 (T) and 351793 (G) (pyrE-64R1) that restored the
original reading frame (Fig. 1A). A second reversion mutation consisted of repair of the
original 2-nt deletion by reinsertion of the missing bases combined with a second 2-nt
insertion located at chromosomal positions 351783 (A) and 351784 (A) (pyrE-64R2). This
mutation also shifted the reading frame and resulted in a premature stop codon (TGA)
89 nt before the natural stop codon that truncated the protein length by 30 aa (from
an original 187 aa). A third reversion mutation consisted of a single-nucleotide deletion
at chromosomal position 351791 (G), along with the original 2-nt deletion (pyrE-64R3),
thereby restoring the natural reading frame (Fig. 1A) and truncating the protein length
to 186 aa from an original 187 aa.

While pyrE-64 was relatively stable, a nonreverting mutation was pursued to im-
prove the likelihood of recovery of recombinants. In this case, additional 5-FOA-
resistant mutants were isolated from 10 independent cultures. PCR amplification of pyrE
from one of these isolates produced a smaller amplicon consistent with deletion

FIG 1 Genotypic analysis, DNA sequence, and growth curve of the pyrE-129 mutant. (A) DNA sequence
of the pyrE-64 mutant, its revertants, and the pyrE-129 mutant. The highlighted and boxed nucleotide
sequence indicates sites of the deletion and insertion events in mutant strains. The numbers indicate the
location of the deletion and insertion within the pyrE gene in all five strains. (B) PCR amplification of the
pyrE allele using genomic DNA from the pyrE-129 mutant (lane 1) and the wild type (lane 2). (C) Growth
of the pyrE-129 mutant, the wild type, and the repaired pyrE-129 mutant in a defined medium (DM) with
or without uracil supplementation. The image of the gel was modified by cropping intervening lanes.
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formation (Fig. 1B). DNA sequence analysis indicated it encoded a 129-nt deletion of
pyrE located at the 5= end of the gene at nt 37 that spanned chromosomal positions
351423 to 351552 (Fig. 1A). This in-frame mutation was called pyrE-129, and it reduced
protein length by 42 aa. An auxotrophic phenotype was confirmed by demonstrating
growth in a defined medium was dependent upon uracil supplementation (Fig. 1C).
Reversion analysis demonstrated pyrE-129 had improved genetic stability, with a
reversion frequency of �10�8. It was therefore more suitable for use as a recipient to
develop targeted chromosomal recombination.

Homologous chromosomal recombination in T. maritima. A second required
component for the genetic system was a properly designed recombinogenic DNA
molecule. The initial design for this molecule considered both its length and topology.
(Fig. 2A). The 1,128-bp molecule encoded 500 bp on both sides of the pyrE-129
deletion, whereas the 764-bp allele encoded 137 bp of homology 5= to the deletion and
498 bp 3= to the deletion. The 564-bp allele encoded 37 bp of homology 5= to the
deletion and 398 bp 3= to the deletion. Successful enrichment for prototrophic cells,
followed by the formation of prototrophic colonies, was observed only for circular
forms of the 1,128- and 764-bp molecules.

Transformation using various lengths of methylated and unmethylated linear pyrE
DNA did not result in liquid enrichment. These results indicated that these two
components could not be distinguished without an autonomously replicating vector.
Since such vectors have not been reported for T. maritima, transformation and recom-
bination were measured together, arising from change in the allelic state of the pyrE
genetic marker. An initial transformation procedure used spheroplasts as described
previously (18). These cells lack at least portions of the toga (outer membrane and
proteinaceous wall) and therefore were permeable to DNA transport. They were
evident by their spherical morphology rather than normal elongated rod shape (1). The
use of spheroplasts was replaced subsequently during this study by the use of natural
transformation as described previously for related Thermotoga species (19–21). The
relative efficiency of recombination using spheroplasts was 1 � 104/�g of DNA,
whereas that for natural transformation was 5 � 106/�g of DNA. In contrast to the
longer DNA molecules, the shorter 564-bp molecule failed to produce recombinants
using spheroplasts or natural transformation despite repeated attempts that followed
identical procedures. This suggested a more extended length of DNA homology was
required for recombination. Purified isolates recovered using both transformation
methods were tested for prototrophic growth relative to controls, and the pyrE locus

FIG 2 Schematic representation of the pyrE locus and wild-type pyrE DNAs for repair of the pyrE-129
mutant. (A) Genomic environment of the pyrE-129 mutation. The gray bar indicates the location of the
129-nt deletion in pyrE. The scale bar indicates 500-bp increments across the pyrE locus and the various
lengths of wild-type DNA fragments used for allele replacement. (B) PCR analysis of pyrE� recombinants
with a forward primer complementary to wild-type sequence absent in pyrE-129. Lane 1, wild type; lane
2, pyrE-129; lane 3, no DNA; lanes 4 to 8, pyrE� recombinants.
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was examined by PCR and DNA sequencing (Fig. 2B). All subsequent genetic crosses
used the natural transformation procedure because of its improved efficiency.

Analysis of recombination using synthetic donor DNA. The occurrence of puta-
tive pyrE recombinants exhibiting a prototrophic phenotype might arise by contami-
nation from wild-type (WT) cells. To exclude this possibility, a synthetic pyrE allele
containing two synonymous substitution mutations located at chromosomal positions
531939 and 531754 was used to repair uracil auxotrophy. These substitutions flanked
the pyrE-129 deletion and were positioned 27 nt from the deletion endpoints. However,
initial attempts to recover recombinants using this molecule failed. Because the syn-
thetic DNA was shorter than the previously successful molecules encoding the wild-
type pyrE allele, longer versions of the synthetic DNA were tested that had extended
chromosomal homology. One molecule had the addition of 300 bp 5= to the pyrE-129
deletion but did not produce recombinants. The other molecule included both the 5=
extended region and an additional 530 bp 3= to the pyrE-129 deletion. This symmet-
rically extended molecule produced recombinants. To assess the relative frequency of
crossover events, 10 independent isolates obtained from 10 separate transformation
reactions were recovered and analyzed. Of these, seven encoded both synonymous
changes, and three encoded only one synonymous change, all located 3= to the
pyrE-129 deletion (Fig. 3). Because the addition of the 3=-extended region enabled
recovery of recombinants, this region was examined more closely for recombinogenic
sequences. A homolog of the Bacillus subtilis Chi site consensus sequence, AGCGG, was
evident and was located at genome coordinates 351704 and 351977 (upstream of pyrE)
at the 3= end of pyrE. In B. subtilis, during recombination, the Chi sequence is recognized
by the ATP-dependent helicase/nuclease AddA. THMA_RS1263 may be an AddA ho-
molog with low identity (22%) to the firmicute sequence; however, an AddB homolog
that typically associates with AddA was not apparent in T. maritima (24).

Construction and characterization of a T. maritima selectable marker. Having
demonstrated the occurrence of homologous recombination at the pyrE locus, a
genetic marker was developed that would allow targeted disruption of other T.
maritima genes without interference from recombination at the native pyrE locus. Two
components were required: a divergent allele of pyrE lacking homology to the native
T. maritima pyrE and a strong promoter to drive expression of the divergent pyrE allele.
The divergent pyrE was obtained from Thermosipho africanus OB7 (DSMZ 5309) (25). A
nucleotide Blast analysis of the T. africanus pyrE against T. maritima pyrE showed no
significant matches, with only 8 nt of contiguous homology. This sequence was
selected as preferable to pyrE genes from more closely related Thermotoga species
because of its greater degree of divergence. A synthetic allele of the T. africanus pyrE
gene was designed by codon optimization to match the codon preference of T.
maritima. The T. maritima groES promoter (PgroES) was selected for this purpose because

FIG 3 Recombination at the pyrE locus. The genomic region of the pyrE-129 mutation is indicated by tick
marks with coordinates. The gray box indicates the location of the 129-nt deletion. The small black tick
lines within the three lines indicate the locations of the synonymous codon changes in the pyrE locus of
the recombinants. The three X symbols indicate the recombination events resulting in three recombi-
nation outcomes when using the synthetic pyrE allele.
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it had been shown previously to be expressed constitutively during growth of the
organism at 80°C (14). The groES promoter was 196 nt in length and fused to the T.
africanus codon-optimized pyrE. The resulting divergent genetic marker was called
PgroES pyrETaf.

Targeted disruption of T. maritima chromosomal genes. Inactivation of araA
(THMA_001415) was then pursued using PgroES pyrETaf. Natural transformation of the
pyrE-129 mutant was performed using the disruption plasmid, pBN1322, containing 5=
and 3= regions of araA, flanking the genetic marker and positioned in a divergent
direction relative to the marker (Fig. 4A). Uracil prototrophs were recovered by liquid
enrichments, followed by clonal isolation on selective medium plates. PCR analysis
using genomic DNA from three isolates, with primers that were complementary to
sequences external to the araA segments present in plasmid pBN1322, produced
amplicons for all isolates that were larger than the wild-type araA allele and consistent
with the insertion of the genetic marker (Fig. 4B). This prediction was confirmed by DNA
sequence analysis that verified the presence of a 763-bp insertion of the PgroES pyrETaf

genetic marker at genome coordinate 290557 within araA. Phenotypic analysis dem-
onstrated the putative araA disruption mutants had lost the ability to catabolize
L-arabinose but not maltose relative to the parental strain supplemented with uracil or
the unsupplemented wild-type strain (Fig. 4D). One of these isolates, PBL3022, was
examined further. To confirm that the mutant phenotype arose specifically as a result
of mutation of araA, genetic repair of the mutation was necessary. Since an autono-
mously replicating plasmid-based complementation system for T. maritima was not
available, repair of the disrupted araA allele was conducted using targeted recombi-

FIG 4 Disruption of araA. (A) Schematic representation of homologous recombination at the araA locus
with the expected size for the araA mutant and the wild type using primers within or external to the araA
locus. The genetic marker was PgroES::pyrETaf (shown as PgroES TafpyrE in panel A and PgroES::TafpyrE in panel
D). (B) PCR amplification of the disrupted araA allele. Lane MW, molecular weight standards; lane 1,
wild-type araA locus; lanes 2 to 4, araA mutant locus. (C) PCR amplification of the repaired araA allele.
Lane MW, molecular weight standards; lane 1, araA mutant; lane 2, wild type; lanes 3 to 7, repaired
mutant araA loci. (D) Growth curve of the araA mutant, wild-type, and araA WT repair strains in defined
medium with maltose or arabinose. Maltose was used as a positive control for growth.
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nation. araA DNA spanning coordinates 289793 to 291283 was cloned in pBN1323,
which was introduced into the araA mutant using natural transformation, and enrich-
ment for arabinose utilization was imposed. In addition, FOA was used to inhibit the
growth of Pyr� cells encoding the PgroES pyrETaf transgene (26, 27). After transformation,
the arabinose enrichment culture was plated onto CM plates supplemented with
arabinose and 5-FOA, and five isolates were recovered and used for genotypic analysis
by PCR. The resulting strains contained the repaired wild-type araA allele compared to
the araA mutant and wild-type controls, as indicated by PCR (Fig. 4C). In addition, the
PCR amplicons for three of the five isolates were sequenced and found to be identical
to the parental araA allele. These same three isolates also regained the ability to
catabolize arabinose in liquid culture using a defined medium. Disruption and repair
(knock-in and knockout) of araA demonstrate the feasibility of targeted chromosomal
recombination in T. maritima.

Contribution of arabinose catabolism to H2 formation. Pentose catabolism offers
an important route for fermentative H2 formation since those sugars can be derived
from lignocellulosic plant biomass. Although such yields have been predicted using
thermodynamic considerations (28) and experimentally by cultivation of wild-type
Thermotoga species on pentose sugars (8, 10, 22), it has not been shown whether the
pentose phosphate pathway (PPP) was the primary route for this process. To measure
directly the importance of the PPP for H2 formation by fermentation of arabinose, it was
necessary to use cell lines in which this metabolic pathway had been inactivated, such
as through inactivation of araA, the gene responsible for the first committed step in the
PPP for catabolism of this sugar. Yields of H2 were determined for the araA mutant and
its Ara� parent cultivated in a complex medium containing added amounts of
L-arabinose. Complex medium was used to support cell growth at a moderate level and
to ensure that a lack of H2 production did arise from metabolic inactivity. In addition,
a correction for H2 production arising from fermentation of conventional complex
medium additives (yeast extract and tryptone) was made, and this showed that the
correct ratio of H2 per mole of arabinose was 2.97. H2-mediated growth inhibition (1)
was avoided by increasing the culture headspace relative to the culture volume based
on experimental reconstructions (22). At L-arabinose concentrations ranging up to 0.1%
(wt/vol), the AraA� parental strain produced H2 relative to added sugar at a molar ratio
of 3.3, whereas no detectable H2 was produced by the araA mutant (Fig. 5). The
differences observed in H2 production between the araA mutant and its AraA� parent
across these concentrations of added sugar verify in vivo that isomerization of
L-arabinose to L-ribulose catalyzed by L-arabinose isomerase is the primary route of

FIG 5 Analysis of H2 production in the araA mutant. H2 production by the araA mutant and parental
strain cultivated with various amounts of arabinose was measured. The solid straight line with the closed
circles indicates H2 production by the araA mutant. The solid line with the open circle indicates H2

production by the wild type. The H2 values are shown as the means of the results from three replicates,
with the error bars representing the standard deviations. The dashed line without symbols indicates the
theoretical H2 yield for growth on pentose sugar.
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arabinose catabolism leading to H2 formation. The apparent ratio of H2 formed to sugar
added was consistent with values predicted by the combination of the oxidative and
nonoxidative pentose phosphate pathways (22, 29).

DISCUSSION

The establishment of a chromosome engineering method for Thermotoga maritima
realizes the promise of extensive investments in structural biology and genomics of this
organism (2–5, 7, 30). This is important because T. maritima may contribute to efforts
to create renewable biohydrogen synthesis due to its rapid growth at high tempera-
ture. We report here a stable genetic method for a hyperthermophilic bacterium that
will advance studies on the basic and synthetic biology of Thermotogales. Here, a suite
of essential methods, including several predicated on prior studies (18–21), were
combined to generate an allele replacement by targeted homologous recombination in
Thermotoga. In addition to the repair of deleted and disrupted genes and the insertion
of synthetic alleles, the specific role of a metabolic pathway toward H2 synthesis was
established.

Pentoses, including xylose and arabinose, are major constituents of lignocellulosic
material. Evaluation of arabinose catabolism using a genetic approach demonstrates
the importance of the nonoxidative pentose phosphate pathway and its susceptibility
for manipulation to perturb H2 formation. Metabolism of pentoses by T. maritima and
T. neapolitana resulting in H2 values close to theoretical yields have been reported (22,
29, 31). Here, using a genetic approach, it could be shown directly that arabinose
catabolism contributes to H2 production. H2 produced in the presence of added sugar
was normalized to background levels produced in the absence of added sugar.

This study demonstrates that homologous recombination can be used to modify the
T. maritima genome. It is therefore interesting to reflect on the native hybrid recom-
bination system in this organism. In particular, T. maritima encodes an archaeal/
eukaryal Mre11 nuclease instead of the bacterial RecBCD enzymes. Moreover, while T.
maritima does not encode a eukaryote-like RAD50 homolog, it does encode homologs
of eukaryotic RadA (THMA_RS01030) and RadB (TMMA_RS01890) (2). It has been shown
that MRE11 can be associated with RAD50 to actively bind DNA. This complex forms a
catalytic head that contains an ATP-stimulated nuclease and DNA binding activity that
indicates its potential role in processing DNA double-stranded breaks in T. maritima (2,
30, 32, 33). It was also found here that a minimum of 100 nt was required for
recombination and that a putative recombinogenic sequence (AGCGG) located at the
3= end of pyrE and upstream region of pyrE may play a role in recombination at that
locus. This sequence may constitute a native Chi-like sequence. In addition, since
mutations in both pyrE and araA were repaired precisely, the presence in T. maritima of
hybrid eukaryotic-bacterial recombination components does not shift the apparent
preference for homologous recombination. Finally, recovery of the synthetic pyrE allele
encoding synonymous codon changes offers more flexibility in future efforts for
engineering the T. maritima genome and perhaps an experimental strategy for explor-
ing the biochemistry of this unusual hybrid recombination system.

Additional essential features of the T. maritima genetic system include the natural
transformation of a genetic marker and a constitutive promoter for genetic marker
expression. To further simplify the recombination method, concerted efforts estab-
lished the existence of natural transformation in T. maritima, in contrast to a previous
report (20). Since natural transformation was evident, it is worth noting the presence in
T. maritima of genes likely to encode competence functions, including homologs of the
B. subtilis comEA and comFC H. influenzae DNA processing (dprA) and type IV secretion
system (pilA). The pyrE gene was obtained from T. africanus because this species is also
hyperthermophilic, thus ensuring that the encoded protein would be thermostable,
and to reduce sequence identity and thereby avoid unwanted recombination between
respective pyrE sequences (25). Current applications of the T. maritima genetic system
concern both metabolic and nonmetabolic targets. They benefit from extensive com-
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prehensive prior studies about the biology, molecular biology, biochemistry, and
metabolism of this bacterial extremophile.

MATERIALS AND METHODS
Strains and cultivation. Unless otherwise indicated, T. maritima MSB8 (ATCC 45389, GenBank

accession number NZ_CP011107) was cultivated at 80°C under anaerobic conditions (4, 34). Strains of T.
maritima are listed in Table 1. A complex medium (CM) was prepared as described previously (34). A solid
medium was prepared using 6 g of gellan gum (Sigma-Aldrich)/liter. A defined medium (DM), prepared
as described previously (34), lacked complex medium additives and contained Wolfe vitamins (35), and
the pH was adjusted to 7.0. For the cultivation of uracil auxotrophs; 50 �g of uracil/ml was added to the
DM medium as described previously (34). Uracil auxotrophs were isolated as described previously (23)
with modifications. Spontaneous 5-FOA-resistant mutants were obtained from independent cultures
using CM plates containing 5-FOA (0.4 mg/ml) and uracil (50 �g/ml). Uracil auxotrophy was evaluated by
cultivating 5-FOA-resistant mutants in DM with or without uracil supplementation. All growth curves
were conducted three times using biological replicates.

T. maritima transformation. The final components for the genetic system were DNA transformation
and chromosomal recombination. Two types of transformation methods were used in this study. Artificial
transformation used electroporation and spheroplasts. For the preparation of spheroplasts, 50-ml
cultures were processed as described previously (18), with the following modifications. DOTAP liposomal
reagent (Roche, USA) was removed, a final concentration of 10 mg of proteinase K (MP Biomedicals, USA)
was added to the spheroplast mixture, and 50 �l of spheroplast mixture was used for transformation.
One microgram of plasmid DNA was added to 50 �l of spheroplast mixture (108 cells/ml), electroporated
as described previously (19), inoculated into 10 ml of CM, and allowed to recover for 18 to 24 h. Cells
were collected by centrifugation and transferred to selective medium. Cultures were incubated at 80°C
for 2 to 3 days and then transferred to a selective solid medium to recover clonal isolates. For the
preparation of cells for natural transformation, the cells were processed as described previously (20), with
modifications. A mixture of exponentially growing cells and plasmid DNA was added to 10 ml of CM,
followed by incubation at 80°C for 18 h. The cells were collected by centrifugation, resuspended in 1 ml
of DM, and adjusted to a cell density of 109 cells/ml by dilution. The cells (108/ml) were then inoculated
into selective medium for enrichment and plated on defined medium plates to recover recombinants.
For the recovery of araA WT recombinants, transformed cells were plated onto complex medium plates
supplemented with arabinose and 5-FOA, as described previously (26, 27).

Plasmid and strain construction. Repair of the pyrE-129 mutant (PBL3004) was performed using
native and synthetic alleles of pyrE. The native allele varied in length and included fragments 1,120, 764,
and 564 bp in length. In addition, a 977-bp synthetic codon-optimized T. maritima pyrE allele contained
two synonymous codon changes flanking the pyrE-129 deletion. All native pyrE DNA fragments were
cloned into pUC19 at SphI and/or PstI restriction sites and verified by sequencing. Linear DNAs and their
circular forms encompassed the pyrE open reading frame and included 1,128 bp spanning coordinates
351285 to 352413, 764 bp spanning coordinates 351286 to 352049, and 564 bp spanning coordinates
351386 to 351949. A divergent pyrE allele for use as a genetic marker was designed using the
Thermosipho africanus pyrE gene that was codon optimized for T. maritima and fused transcriptionally to
the T. maritima groES promoter, resulting in the PgroES pyrETaf construct. The promoter-fused T. africanus
pyrE allele was cloned into the BamHI site of pUC19 (a list of plasmids is provided in Table 1). This insert
was flanked by araA coding sequences. A 5= araA fragment (746-bp sequence) was cloned at the pUC19
EcoRI/KpnI restriction site, and a 3= araA fragment (745-bp sequence) was cloned at the pUC19 SalI/SphI

TABLE 1 Thermotoga maritima strains and plasmids

Strain or plasmid Description Source

Strains
PBL3001 Thermotoga maritima MSB8 ATCC 45389 (1)
PBL3002 pyrE-64 PBL3001
PBL3003 pyrE-64R1 PBL3002
PBL3004 pyrE-129 PBL3001
PBL3005 pyrE-64R2 PBL3002
PBL3006 pyrE-64R3 PBL3002
PBL3020 pyrE� recombinant PBL3004
PBL3021 pyrE� recombinant (synthetic pyrE) PBL3004
PBL3022 araA 3=::PgroES pyrETaf::araA 5= mutant PBL3004
PBL3028 araA� recombinant PBL3022

Plasmids
pBN1167 pUC19; WT pyrE� (564 bp) This study
pBN1183 pUC19; WT pyrE� (1,120 bp) This study
pBN1290 pUC19; synthetic pyrE� (977 bp) This study
pBN1293 pUC19; WT pyrE� (764 bp) This study
pBN1322 pUC19; araA 3=:: PgroES pyrETaf::araA 5= This study
pBN1333 pUC57; WT araA� (1,491 bp) This study
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restriction site, resulting in plasmid pBN1322 (Table 1). The araA disruption mutant (PBL3022) was
constructed by integration of the groESp::pyrETaf construct flanked by araA sequences at the chromo-
somal araA locus, using the pyrE-129 mutant as the recipient, combined with selection for uracil
prototrophy. Genomic DNA obtained from independent isolates cultivated in CM without selecting for
uracil prototrophy was used to screen for the disrupted araA allele by PCR. To repair the araA disruption,
the full-length wild-type araA allele was amplified by PCR and cloned at the EcoRI/SphI restriction site in
pUC57.

Hydrogen production. Molecular hydrogen (H2) was analyzed using a Gow-Mac 400 series gas
chromatograph equipped with a molecular sieve column (Gow-Mac, USA). Standard curves were
prepared by injecting known amounts of H2 with a bridge current of 90 mA. The temperatures used for
the column, injector, and detector were 70, 90, and 90°C, respectively. Nitrogen (N2) was used as the
carrier gas at a flow rate of 30 ml/min. The H2 in culture headspace was analyzed in triplicate, and the
errors are indicated. The molar yield of H2 was calculated using the ideal gas law equation (PV � nRT)
at the standard temperature and pressure. Growth variation among different cell lines in small batch
cultures led to H2 values being normalized to 108 cells/ml.

ACKNOWLEDGMENTS
Funding for this study was provided by the Department of Energy and the UNL Cell

Development Facility.

REFERENCES
1. Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB,

Stetter KO. 1986. Thermotoga maritima sp. nov. represents a new genus
of unique extremely thermophilic eubacteria growing up to 90°C. Arch
Microbiol 144:324 –333.

2. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK,
Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek
JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA,
Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White
O, Salzberg SL, Smith HO, Venter JC, Fraser CM. 1999. Evidence for lateral
gene transfer between Archaea and Bacteria from genome sequence of
Thermotoga maritima. Nature 399:323–329. https://doi.org/10.1038/
20601.

3. Latif H, Lerman JA, Portnoy VA, Tarasova Y, Nagarajan H, Schrimpe-
Rutledge AC, Smith RD, Adkins JN, Lee D-H, Qiu Y, Zengler K. 2013. The
genome organization of Thermotoga maritima reflects its lifestyle. PLoS
Genet 9:e1003485. https://doi.org/10.1371/journal.pgen.1003485.

4. Singh R, Gradnigo J, White D, Lipzen A, Martin J, Schackwitz W,
Moriyama E, Blum P. 2015. Complete genome sequence of an evolved
Thermotoga maritima isolate. Genome Announc 3:e00557-15. https://
doi.org/10.1128/genomeA.00557-15.

5. Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy
RT, Nelson KE, Nesbø CL, Doolittle WF, Gogarten JP, Noll KM. 2009. On
the chimeric nature, thermophilic origin, and phylogenetic placement of
the Thermotogales. Proc Natl Acad Sci U S A 106:5865–5870. https://
doi.org/10.1073/pnas.0901260106.

6. Blum P, Rudrappa D, Singh R, McCarthy S, Pavlik B. 2016. Experimental
microbial evolution of extremophiles, p 619 – 636. In Rampelotto HP (ed),
Biotechnology of extremophiles: advances and challenges. Springer In-
ternational Publishing, New York, NY. https://doi.org/10.1007/978-3-319
-13521-2_22.

7. Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A, Sprag-
gon G, Klock HE, McMullan D, Shin T, Vincent J, Robb A, Brinen LS, Miller
MD, McPhillips TM, Miller MA, Scheibe D, Canaves JM, Guda C, Jarosze-
wski L, Selby TL, ElsligerM-A, Wooley J, Taylor SS, Hodgson KO, Wilson IA,
Schultz PG, Stevens RC. 2002. Structural genomics of the Thermotoga
maritima proteome implemented in a high-throughput structure deter-
mination pipeline. Proc Natl Acad Sci U S A 99:11664 –11669. https://
doi.org/10.1073/pnas.142413399.

8. Chhabra SR, Shockley KR, Conners SB, Scott KL, Wolfinger RD, Kelly RM.
2003. Carbohydrate-induced differential gene expression patterns in the
hyperthermophilic bacterium Thermotoga maritima. J Biol Chem 278:
7540 –7552. https://doi.org/10.1074/jbc.M211748200.

9. Conners SB, Montero CI, Comfort DA, Shockley KR, Johnson MR, Chhabra
SR, Kelly RM. 2005. An expression-driven approach to the prediction of
carbohydrate transport and utilization regulons in the hyperthermo-
philic bacterium Thermotoga maritima. J Bacteriol 187:7267–7282.
https://doi.org/10.1128/JB.187.21.7267-7282.2005.

10. Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM.
2006. Microbial biochemistry, physiology, and biotechnology of hyper-

thermophilic Thermotoga species. FEMS Microbiol Rev 30:872–905.
https://doi.org/10.1111/j.1574-6976.2006.00039.x.

11. Johnson MR, Montero CI, Conners SB, Shockley KR, Bridger SL, Kelly RM.
2005. Population density-dependent regulation of exopolysaccharide
formation in the hyperthermophilic bacterium Thermotoga maritima.
Mol Microbiol 55:664 – 674.

12. Montero CI, Lewis DL, Johnson MR, Conners SB, Nance EA, Nichols JD,
Kelly RM. 2006. Colocation of genes encoding a tRNA-mRNA hybrid and
a putative signaling peptide on complementary strands in the genome
of the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol
188:6802– 6807. https://doi.org/10.1128/JB.00470-06.

13. Nanavati DM, Thirangoon K, Noll KM. 2006. Several archaeal homologs
of putative oligopeptide-binding proteins encoded by Thermotoga ma-
ritima bind sugars. Appl Environ Microbiol 72:1336 –1345. https://
doi.org/10.1128/AEM.72.2.1336-1345.2006.

14. Pysz MA, Ward DE, Shockley KR, Montero CI, Conners SB, Johnson MR,
Kelly RM. 2004. Transcriptional analysis of dynamic heat-shock response
by the hyperthermophilic bacterium Thermotoga maritima. Extremo-
philes 8:209 –217. https://doi.org/10.1007/s00792-004-0379-2.

15. Shockley KR, Scott KL, Pysz MA, Conners SB, Johnson MR, Montero CI,
Wolfinger RD, Kelly RM. 2005. Genome-wide transcriptional variation
within and between steady states for continuous growth of the hyper-
thermophile Thermotoga Maritima. Appl Environ Microbiol 71:
5572–5576. https://doi.org/10.1128/AEM.71.9.5572-5576.2005.

16. Johnson MR, Conners SB, Montero CI, Chou CJ, Shockley KR, Kelly RM.
2006. The Thermotoga maritima phenotype is impacted by syntrophic
interaction with Methanococcus jannaschii in hyperthermophilic cocul-
ture. Appl Environ Microbiol 72:811– 818. https://doi.org/10.1128/
AEM.72.1.811-818.2006.

17. Galperin MY, Noll KM, Romano AH. 1996. The glucose transport system
of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana.
Appl Environ Microbiol 62:2915–2918.

18. Yu JS, Vargas M, Mityas C, Noll KM. 2001. Liposome-mediated DNA
uptake and transient expression in Thermotoga. Extremophiles 5:53– 60.
https://doi.org/10.1007/s007920000173.

19. Han D, Norris SM, Xu Z. 2012. Construction and transformation of a
Thermotoga-E. coli shuttle vector. BMC Biotechnol 12:1–9. https://
doi.org/10.1186/1472-6750-12-1.

20. Han D, Xu H, Puranik R, Xu Z. 2014. Natural transformation of Thermo-
toga sp. strain RQ7. BMC Biotechnol 14:1–10. https://doi.org/10.1186/
1472-6750-14-1.

21. Xu H, Han D, Xu Z. 2015. Expression of heterologous cellulases in
Thermotoga sp. strain RQ2. Biomed Res Int 2015:293570. https://doi.org/
10.1155/2015/293570.

22. Eriksen NT, Riis ML, Holm NK, Iversen N. 2011. H2 synthesis from pen-
toses and biomass in Thermotoga spp. Biotechnol Lett 33:293–300.
https://doi.org/10.1007/s10529-010-0439-x.

23. Vargas M, Noll KM. 1994. Isolation of auxotrophic and antimetabolite-
resistant mutants of the hyperthermophilic bacterium Thermotoga nea-

White et al. Applied and Environmental Microbiology

February 2017 Volume 83 Issue 4 e02631-16 aem.asm.org 10

https://doi.org/10.1038/20601
https://doi.org/10.1038/20601
https://doi.org/10.1371/journal.pgen.1003485
https://doi.org/10.1128/genomeA.00557-15
https://doi.org/10.1128/genomeA.00557-15
https://doi.org/10.1073/pnas.0901260106
https://doi.org/10.1073/pnas.0901260106
https://doi.org/10.1007/978-3-319-13521-2_22
https://doi.org/10.1007/978-3-319-13521-2_22
https://doi.org/10.1073/pnas.142413399
https://doi.org/10.1073/pnas.142413399
https://doi.org/10.1074/jbc.M211748200
https://doi.org/10.1128/JB.187.21.7267-7282.2005
https://doi.org/10.1111/j.1574-6976.2006.00039.x
https://doi.org/10.1128/JB.00470-06
https://doi.org/10.1128/AEM.72.2.1336-1345.2006
https://doi.org/10.1128/AEM.72.2.1336-1345.2006
https://doi.org/10.1007/s00792-004-0379-2
https://doi.org/10.1128/AEM.71.9.5572-5576.2005
https://doi.org/10.1128/AEM.72.1.811-818.2006
https://doi.org/10.1128/AEM.72.1.811-818.2006
https://doi.org/10.1007/s007920000173
https://doi.org/10.1186/1472-6750-12-1
https://doi.org/10.1186/1472-6750-12-1
https://doi.org/10.1186/1472-6750-14-1
https://doi.org/10.1186/1472-6750-14-1
https://doi.org/10.1155/2015/293570
https://doi.org/10.1155/2015/293570
https://doi.org/10.1007/s10529-010-0439-x
http://aem.asm.org


politana. Arch Microbiol 162:357–361. https://doi.org/10.1007/
BF00263784.

24. Chédin F, Ehrlich SD, Kowalczykowski SC. 2000. The Bacillus subtilis
AddAB helicase/nuclease is regulated by its cognate Chi sequence in
vitro. J Mol Biol 298:7–20. https://doi.org/10.1006/jmbi.2000.3556.

25. Huber R, Woese CR, Langworthy TA, Fricke H, Stetter KO. 1989. Thermo-
sipho africanus gen. nov., represents a new genus of thermophilic
eubacteria within the “Thermotogales.” Syst Appl Microbiol 12:32–37.

26. Cha M, Chung D, Elkins JG, Guss AM, Westpheling J. 2013. Metabolic
engineering of Caldicellulosiruptor bescii yields increased hydrogen pro-
duction from lignocellulosic biomass. Biotechnol Biofuels 6:1– 8. https://
doi.org/10.1186/1754-6834-6-1.

27. Lipscomb GL, Conway JM, Blumer-Schuette SE, Kelly RM, Adams MWW.
2016. A highly thermostable kanamycin resistance marker expands the tool
kit for genetic manipulation of Caldicellulosiruptor bescii. Appl Environ Mi-
crobiol 82:4421–4428. https://doi.org/10.1128/AEM.00570-16.

28. Reungsang A, Saripan AF. 2013. Biohydrogen production by Thermoan-
aerobacterium thermosaccharolyticum KKU-ED1: culture conditions opti-
mization using mixed xylose/arabinose as substrate. Electron J Biotech-
nol 16:1–17.

29. Ngo TA, Nguyen TH, Bui HTV. 2012. Thermophilic fermentative hydrogen
production from xylose by Thermotoga neapolitana DSM 4359. Renew-
able Energy 37:174 –179. https://doi.org/10.1016/j.renene.2011.06.015.

30. Das D, Moiani D, Axelrod HL, Miller MD, McMullan D, Jin KK, Abdubek P,
Astakhova T, Burra P, Carlton D, Chiu H-J, Clayton T, Deller MC, Duan L, Ernst
D, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski
L, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Marciano D, Morse
AT, Nigoghossian E, Okach L, Paulsen J, Reyes R, Rife CL, Sefcovic N, Tien HJ,

Trame CB, van den Bedem H, Weekes D, Xu Q, Hodgson KO, Wooley J,
Elsliger M-A, Deacon AM, Godzik A, Lesley SA, Tainer JA, Wilson IA. 2010.
Crystal structure of the first eubacterial Mre11 nuclease reveals novel fea-
tures that may discriminate substrates during DNA repair. J Mol Biol 397:
647–663. https://doi.org/10.1016/j.jmb.2010.01.049.

31. de Vrije T, Bakker RR, Budde MA, Lai MH, Mars AE, Claassen PA. 2009.
Efficient hydrogen production from the lignocellulosic energy crop Mis-
canthus by the extreme thermophilic bacteria Caldicellulosiruptor sac-
charolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:1–15.
https://doi.org/10.1186/1754-6834-2-1.

32. Lammens K, Bemeleit Derk J, Möckel C, Clausing E, Schele A, Hartung S,
Schiller-Christian B, Lucas M, Angermüller C, Söding J, Strässer K,
Hopfner K-P. 2011. The Mre11:Rad50 structure shows an ATP-dependent
molecular clamp in DNA double-strand break repair. Cell 145:54 – 66.
https://doi.org/10.1016/j.cell.2011.02.038.

33. Frock AD, Notey JS, Kelly RM. 2010. The genus Thermotoga: recent
developments. Environ Technol 31:1169 –1181. https://doi.org/10.1080/
09593330.2010.484076.

34. Chhabra SR, Shockley KR, Ward DE, Kelly RM. 2002. Regulation of
endo-acting glycosyl hydrolases in the hyperthermophilic bacterium
Thermotoga maritima grown on glucan- and mannan-based polysac-
charides. Appl Environ Microbiol 68:545–554. https://doi.org/
10.1128/AEM.68.2.545-554.2002.

35. Rinker KD, Kelly RM. 1996. Growth physiology of the hyperthermophilic
archaeon Thermococcus litoralis: development of a sulfur-free defined
medium, characterization of an exopolysaccharide, and evidence of
biofilm formation. Appl Environ Microbiol 62:4478 – 4485.

Development of a Genetic System for T. maritima Applied and Environmental Microbiology

February 2017 Volume 83 Issue 4 e02631-16 aem.asm.org 11

https://doi.org/10.1007/BF00263784
https://doi.org/10.1007/BF00263784
https://doi.org/10.1006/jmbi.2000.3556
https://doi.org/10.1186/1754-6834-6-1
https://doi.org/10.1186/1754-6834-6-1
https://doi.org/10.1128/AEM.00570-16
https://doi.org/10.1016/j.renene.2011.06.015
https://doi.org/10.1016/j.jmb.2010.01.049
https://doi.org/10.1186/1754-6834-2-1
https://doi.org/10.1016/j.cell.2011.02.038
https://doi.org/10.1080/09593330.2010.484076
https://doi.org/10.1080/09593330.2010.484076
https://doi.org/10.1128/AEM.68.2.545-554.2002
https://doi.org/10.1128/AEM.68.2.545-554.2002
http://aem.asm.org

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2-2017

	Contribution of Pentose Catabolism to Molecular Hydrogen Formation by Targeted Disruption of Arabinose Isomerase (araA) in the Hyperthermophilic Bacterium Thermotoga maritima
	Derrick White
	Raghuveer Singh
	Deepak Rudrappa
	Jackie Mateo
	Levi Kramer
	See next page for additional authors
	Authors


	Isolation and characterization of T. maritima pyrE mutants.
	Homologous chromosomal recombination in T. maritima.
	Analysis of recombination using synthetic donor DNA.
	Construction and characterization of a T. maritima selectable marker.
	Targeted disruption of T. maritima chromosomal genes.
	Contribution of arabinose catabolism to H2 formation.
	DISCUSSION
	MATERIALS AND METHODS
	Strains and cultivation.
	T. maritima transformation.
	Plasmid and strain construction.
	Hydrogen production.

	ACKNOWLEDGMENTS
	REFERENCES

