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Free α-Oxiranyl Amino Acids

David B. Berkowitz and Michelle L. Pedersen
Department of Chemistry, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0304

Analogues of natural amino acids, in which the α-proton is replaced by an unsubstituted 

epoxide ring, are potential mechanism-based inhibitors for pyridoxal phosphate dependent 

enzymes.1 Yet, free α-oxiranyl amino acids have remained elusive until now. The synthesis 

of an α-(phenyl-substituted)oxiranyl amino ester has been reported. However, the 

accessibility and stability of the corresponding free, zwitterionic α-oxiranyl amino acid 

remained an open question.9

Herein we report the first synthesis of members of this class of unnatural amino acids. These 

compounds possess an additional β-stereocenter and so can exist as two diastereomers, 

erythro and threo, defined as illustrated in Figure 1.10 Our goal was, therefore, to develop a 

general synthesis of α-oxiranyl amino acids, that would provide access to each pure 

diastereomer, for a given R group. Our synthetic strategy was to generate α-oxiranyl amino 

acids via the epoxidation of suitably protected α-vinyl amino acids, followed by 

deprotection of the amino and carboxyl groups. We reasoned that benzyl (carboxyl) and 

benzyloxycarbonyl (amino) protecting groups would be ideal for this purpose as they might 

be removed in a single, relatively mild, hydrogenolytic operation. Initially, we developed a 

convenient and quite general procedure for the synthesis of α-vinyl amino acids from the 

parent amino acids.11 More recently, we discovered that the free α-vinyl amino acids 

thereby obtained could be globally protected with hydrogenolytically removable protecting 

groups in a one pot operation.12

These protected α-vinyl amino acids are easily epoxidized with MCPBA in CH2Cl2 

(Scheme 1). Both the erythro and threo diastereomers are obtained. The threo diastereomer 

is marginally favored in each case (1.3–1.5:1 ratios).13 However, separation of these 

diastereomeric protected, α-oxiranyl amino acids via conventional chromatography proved 

possible only for the valine analogues 2a and 2b. For the alanine analogues 1a and 1b, 

HPLC provided access to the homogeneous diastereomers. But attempts to separate the 

diastereomeric α-oxiranyl phenylalanines using HPLC with normal and reverse phase 

(C-18) columns and a variety of eluents met with little success.

This led us to examine alternative procedures for synthesizing α-oxiranyl amino acids via 

diastereomeric intermediates that might be more easily separated chromatographically. In 

fact, dihydroxylation of protected α-vinylphenylalanine leads to two diastereomeric diols 4a 
and 4b, that are readily separated by flash chromatography.16 For each diastereomer, 
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selective mesylation of the primary hydroxyl group, followed by deprotonation of the 

secondary hydroxyl group with LDA, induces nucleophilic cyclization to afford the desired 

epoxide (Scheme 2). Thus, this indirect epoxidation approach provides a practical solution 

to the diastereomer separation problem in the phenylalanine series.

The relative stereochemistry of each of the α-oxiranyl amino acids synthesized could be 

deduced from cyclization experiments performed on the protected vicinal diols produced in 

the osmylation step. Thus, treatment of diols 7a and 4a with NaH in DMF yields the bicyclic 

oxazolidinones 10a and 11a, respectively (Scheme 3). Two cyclizations had occurred, 

leading to the formation of both a γ-lactone and an oxazolidinone ring with the release of 

two molecules of benzyl alcohol. On the other hand, treatment of the diastereomeric diols 7b 
and 4b with NaH in DMF produced the monocyclic lactones 13b and 14b, with the release 

of one molecule of benzyl alcohol. In the alanine series, at the dihydroxylation step, the 

threo-diol 6b was isolated, but the erythro-diol was obtained in monocyclized form, as the 

corresponding γ-lactone 8a. Treatment of 8a with NaH in DMF produced the bicyclic 

oxazolidinone 9a, whereas 6b produced only monocyclic γ-lactone 12b, under the same 

conditions.

From these experiments, one can deduce that the a series compounds have the erythro 
relative stereochemistry, which permits formation of the 5, 5-cis-fused oxazolidinone 

lactones 9a–11a. The b series compounds, on the other hand, must possess the threo relative 

stereochemistry, as bicyclic oxazolidinone lactones are not formed here, because these 

would necessarily be highly strained, 5, 5-trans-fused systems.17 Therefore, one observes 

only a single cyclization to the monocyclic γ-lactones 12b–14b, in these cases. On the basis 

of these results, the relative stereochemistry of each of the α-oxiranyl amino acids 

synthesized can also be deduced, as these have been chemically correlated with the 

corresponding vicinal diols.18 We note also that, although all compounds were synthesized 

in racemic form in this work, all four stereoisomeric α-oxiranyl amino acids (Figure 1) 

could, in principle, be obtained, by starting from enantiomerically pure α-vinyl amino acids.
19

Most importantly, hydrogenation of each of the protected, diastereomerically homogeneous, 

erythro and threo, α-oxiranyl analogues of alanine, valine, and phenylalanine (1a–3a and 

1b–3b) cleanly yields the corresponding free α-oxiranyl amino acid (15a–17a and 15b–17b, 

respectively). Additionally, the stability of threo-α-oxiranylvaline (16b) was studied, as a 

function of pH (actually pD in these NMR experiments). Interestingly, 16b is stable (i) in 

D2O for weeks; (ii) at pD 3 (DC1/100 mM NaPO4 buffer) for one week; and (iii) at pD 12 

(100 mM NaPO4 buffer) for days, as judged by 1H NMR. Further studies on the properties 

of these and related α-branched amino acids will be reported in due course.
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Figure 1. 
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Scheme 1. 
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Scheme 2. 
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Scheme 3. 
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Scheme 4. 
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