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Genotype-Corrector: improved 
genotype calls for genetic mapping 
in F2 and RIL populations
Chenyong Miao1,2, Jingping Fang1, Delin Li   3, Pingping Liang1, Xingtan Zhang1, 
Jinliang Yang2, James C. Schnable   2 & Haibao Tang   1

F2 and recombinant inbred lines (RILs) populations are very commonly used in plant genetic mapping 
studies. Although genome-wide genetic markers like single nucleotide polymorphisms (SNPs) can 
be readily identified by a wide array of methods, accurate genotype calling remains challenging, 
especially for heterozygous loci and missing data due to low sequencing coverage per individual. 
Therefore, we developed Genotype-Corrector, a program that corrects genotype calls and imputes 
missing data to improve the accuracy of genetic mapping. Genotype-Corrector can be applied in a wide 
variety of genetic mapping studies that are based on low coverage whole genome sequencing (WGS) 
or Genotyping-by-Sequencing (GBS) related techniques. Our results show that Genotype-Corrector 
achieves high accuracy when applied to both synthetic and real genotype data. Compared with using 
raw or only imputed genotype calls, the linkage groups built by corrected genotype data show much 
less noise and significant distortions can be corrected. Additionally, Genotype-Corrector compares 
favorably to the popular imputation software LinkImpute and Beagle in both F2 and RIL populations. 
Genotype-Corrector is publicly available on GitHub at https://github.com/freemao/Genotype-Corrector.

With the availability of high-throughput sequencing (HTS) technology, it is now straightforward to identify and 
score large numbers of SNP variants segregating in mapping populations. Many methods combined with HTS 
have been used to discover and score genome-wide SNP markers, including reduced representation sequencing1, 
genotyping-by-sequencing (GBS)2,3, restriction site-associated DNA sequencing (RAD-seq)4,5, multiplexed shot-
gun genotyping (MSG)6, and whole-genome re-sequencing7. These genotyping protocols offer different trade-offs 
between marker numbers, accuracy, and cost-effectiveness, all of which influence the statistical power to resolve 
recombination events and compute genetic distances when constructing genetic maps.

In practice, missing data and incorrect genotype calls can both increase the level of difficulties of constructing 
a genetic map and decrease the accuracy of the end product. For methods based on WGS or targeted sequenc-
ing, large genome size and sub-optimal amounts of sequencing data generated per sample (as a result of limited 
budgets) can produce a relatively low depth of coverage at certain loci. Such low sequencing coverage often leads 
to inaccurate genotype calls, especially in heterozygous regions which require deeper coverage to identify both 
alleles8. Previous studies have shown that genotyping errors could lead to erroneous map orders and an inflation 
of map lengths, especially when marker density increases9. Similarly, high rates of missing data may also have a 
significant impact on the constructed maps10.

In order to improve genotype data quality, especially data that is collected using low-coverage WGS or GBS, 
many genotype imputation methods have been developed such as Beagle11 and IMPUTE12. These methods are 
very powerful and have been widely used in human population studies13–16. There are also some approaches 
designed specifically for plant studies. For example, LinkImpute17 and FILLIN18 are optimized for low-coverage 
sequencing data in plants19,20. All of this software uses robust statistical methods to address the missing data prob-
lem in diverse populations and can also be adapted to more structured populations such as F2 or RIL. However, 
very little efforts are devoted to addressing the problem of incorrect genotype calls.
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In the earlier days of application of HTS in population studies, there was a sliding-window-based method 
developed for high-throughput genotyping in a rice RIL population7. Although the method is now outdated 
with respect to genotype calling, the core idea of this method is applicable to the imputation of missing data and 
correction of wrong genotype calls for low-coverage sequencing data. However, the approach is constrained by a 
number of factors. First of all, the approach is not able to deal with heterozygous calls in the input data, limiting 
its utility to only advanced generation RIL populations, which typically require much more resources to gener-
ate. Secondly, it assumes reference genome sequences to be known for both parents, which was feasible for their 
particular rice population, but cannot be generalized to other plants. Thirdly, the approach assumes certain error 
rates for each type of genotype call prior to error correction, which can be difficult for researchers to determine 
beforehand. Finally, there is no publicly available software so ultimately there is a usability issue.

Here, we describe our software, Genotype-Corrector, based on the sliding window approach that addresses 
many of the issues described above. Genotype-Corrector offers an easy-to-use command line interface and can 
be applied in both F2 and RIL populations. We also developed a pipeline based on Genotype-Corrector and util-
ity scripts to simplify genetic map construction. Our results showed that Genotype-Corrector can improve the 
accuracy of segregation datasets in F2 and RIL populations genotyped by mainstream genotyping methods. The 
constructed linkage groups using our corrected genotype data are much cleaner compared to the original linkage 
groups and any significant distortions were corrected as a result of running the software.

Results
Accuracy of Genotype-Corrector in synthetic datasets.  We evaluated the accuracy of Genotype-
Corrector by using a simulated F2 population and a Medicago truncatula RIL population. The simulated F2 pop-
ulation was composed of 120 individuals, with six diploid chromosomes containing 1200, 1200, 1080, 1000, 640 
and 600 SNP markers respectively. The number of recombination breakpoints in each chromosome was simulated 
according to a Poisson distribution with λ = 1 which meets the general expectation of one cross-over per chro-
mosome per generation. Following the initial simulation, the percentage of the three genotypes ‘A’ (homozygous 
locus where the allele is inherited from one parent), ‘X’ (heterozygous locus with alleles from both parents), and 
‘B’ (alternative homozygous locus where the allele is inherited from the other parent) were 24.3%, 50.3%, and 
25.4% respectively, consistent with the expectation of genotype ratios in a typical F2 population. The genotype 
data of the RIL population was derived from the Medicago truncatula genome project3. This RIL population 
included 139 individuals sequenced using GBS technology and 12,002 SNP markers were called. We masked all 
missing data and corrected false genotype calls based on the reported recombination breakpoints. The percentage 
of ‘A’, ‘X’, ‘B’ were 47.8%, 4.4%, and 47.8% respectively, consistent with the expectation of a typical RIL population 
advanced to the F5 or F6 generations.

Missing calls and false heterozygous calls are two types of noise that were artificially introduced into these 
datasets. Missing calls are the cases in which no genotype calling is made for a given SNP site in an individual, 
often due to lack of read coverage. False heterozygous calls are those loci where genotypes are heterozygous but 
are falsely called as homozygous because only one of the two alleles are present. These two issues are the most 
common problems encountered in constructing genetic maps using genotype calls from low coverage sequencing 
data. Both the missing data and heterozygous errors, ranging from 0–100% in steps of 2.5%, were introduced into 
the F2 and RIL genotype datasets. In total, we generated 1600 (40 × 40) genotype datasets in F2 and RIL popula-
tions for testing.

We ran Genotype-Corrector on each dataset and calculated the true positive rate (TPR), true negative rate 
(TNR) and accuracy (ACC), defined as:

=
.

.
TPR No of false genotypes corrected

No of false genotype calls before correction (1)

TNR No of true genotypes unchanged
No of true genotype calls before correction (2)

=
.

.

=
.

.
ACC No of true genotypes after correction

Total no of genotype calls (3)

TPR, TNR and ACC represent sensitivity, specificity and accuracy respectively.
Our results show that the performance of Genotype-Corrector is good across a range of false genotype rates in 

heterozygous regions without introducing missing data both in simulated F2 and Medicago truncatula RIL popu-
lations (Fig. 1C and D). In the simulated F2 and Medicago truncatula RIL populations, the accuracy is consistently 
over 95% when the missing data rates stay less than 40% in F2 and 45% in Medicago truncatula RIL populations. 
This suggests that Genotype-Corrector can tolerate more missing data in a RIL population than an F2 population 
because of more heterozygous genotypes in the F2 population (Fig. 1A,B,E and F).

Comparison with Beagle and LinkImpute.  We compared Genotype-Corrector to Beagle (v4.1)11 and 
LinkImpute (v1.1.3)17 that are both popular imputation tools. While both Beagle and LinkImpute are capable 
of imputing missing data, they do not have the ability to correct false genotype calls. To calculate the accuracy 
of each method under different scenarios, we performed the comparison in the simulated F2 population across 
varying factors: missing data rates in the genotype dataset from 0.2 to 0.5 with a step of 0.1 and heterozygous error 
rates from 0.1 to 0.6 with a step of 0.1. Then we ran Genotype-Corrector, Beagle, and LinkImpute all with their 
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default settings. We calculated the accuracy [Equation 3] and compared the performance of these three software 
packages [Fig. 2].

When the missing data rates are below 40%, Genotype-Corrector consistently outperforms Beagle and 
LinkImpute [Fig. 2A–C]. When the missing data rate is higher than 40%, Beagle and LinkImpute start to outper-
form Genotype-Corrector when the heterozygous error rate is less than 40% [Fig. 2D]. Without introducing false 
genotypes calls, unsurprisingly, Beagle and LinkImpute have similar performances and both have high accuracy 
in various missing rates, reflecting their robust methods to impute missing data. Although Genotype-Corrector is 
sensitive to high rates of missing data, it has the greatest performance across all levels of false heterozygous error 
rates when missing data rates stay below 40%.

Maize IBM RIL population.  To test how the Genotype-Corrector improves the quality on real genotype 
datasets, we collected genome-wide SNP data of 230 RIL from the maize IBM (Intermated B73 and Mo17) popu-
lation21. The genotypes were called with tGBS data which can provide higher sequencing coverage in heterozygous 

Figure 1.  Accuracy of Genotype-Corrector on synthetic datasets. Accuracy of Genotype-Corrector with 
different proportions of missing data on (A) the simulated F2 population and (B) the RIL population. Accuracy 
of Genotype-Corrector with different heterozygous error rates on (C) the simulated F2 population and (D) the 
RIL population. Accuracy of Genotype-Corrector with various missing rates and heterozygous error rates on 
(E) the simulated F2 population and (F) the RIL population. Sensitivity is defined as true positive rate (TPR) and 
specificity is defined as true negative rate (TNR).
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regions than the standard GBS technology22. Four sets of genotype calls: Homo1, Homo2, Homo3, and Homo4 
were generated from the raw SNP data. The 4 genotype datasets represent varying degrees of homozygous call 
stringency. In Homo1, homozygous genotypes were called when at least one read was observed to support the 
calling. In Homo2, at least 2 reads were required to support the homozygous genotype calls, which means that 
when there was only one read at a certain locus, it would be treated as missing data in the Homo2 dataset. Homo3 
and Homo4 were generated similarly but they required a minimum of 3 and 4 reads respectively to call homozy-
gous genotypes. After the initial genotype calls, we filtered the markers in each dataset according to these criteria: 
(1) the missing rate higher than 50%, (2) the minor allele frequency (MAF) lower than 10% and (3) the hete-
rozygous rate was more than 20%. Lowering the required numbers of reads to make a homozygous genotype 
call increases the total number of genotype calls, but also decreases the accuracy of genotype calls [Table 1]. To 
evaluate how Genotype-Corrector increases the informative content in each genotype dataset, a genotype dataset 
including 68 RILs which is a subset of IBM population with RNA-Seq genotyping method was used as the ground 
truth23.

The accuracy was computed by calculating the concordance rate between the tGBS genotype calls and the 
ground truth [Equation 4].

Accuracy No of concordant sites between tGBS and ground truth
No of shared sites between tGBS and ground truth (4)

=
.

.

Figure 2.  Comparison of Genotype-Corrector to LinkImpute and Beagle under different missing data rates 
and heterozygous error rates. Accuracy of Genotype-Corrector (brown squares), Beagle (green pentagons), 
and LinkImpute (pink circulars) in scenarios with different degrees of missing data (from 20% to 50%) and 
heterozygous error rates (from 10% to 60%).

Genotype dataset SNPs No. Missing Rate Accuracy

Homo1 33,131 28.5% 84.9%

Homo2 18,182 26.4% 93.5%

Homo3 13,730 26.2% 95.7%

Homo4 11,394 26.5% 96.5%

Table 1.  Comparison of four genotype datasets in IBM RIL population. Four genotype datasets Homo1 to 
Homo4 were generated based on different criteria to make a homozygous genotype call. Accuracy is defined as 
the concordance rate [Equation 4].
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Each genotype dataset was corrected by Genotype-Corrector and imputed by Beagle11 with their default 
parameters. Our results show that Genotype-Corrector increased the concordance rate for each genotype dataset, 
especially when fewer reads were required for a homozygous call [Fig. 3A]. At the same time, Genotype-Corrector 
imputed most missing data while retaining high concordance rates after correction for each dataset [Fig. 3B]. In 
contrast, Beagle imputed all the missing data but yielded a lower concordance rate [Fig. 3B and C], suggesting that 
false genotype calls in the data have misled Beagle to generate erroneous results. Overall, Genotype-Corrector 
increased the accuracy of the genotype dataset Homo2 to an equivalent rate to that of Homo4. At the same time, 
the overall missing data rate in Homo2 drops from 26.2% to 6.7%.

Using the corrected genotypes by Genotype-Corrector, a maize genetic map containing 10 linkage groups was 
successfully constructed using ASMap24 [Figure S1]. To illustrate the effect of genotype correction, we have exten-
sively compared linkage groups constructed on 3 Homo2 genotype datasets (raw, imputed by Beagle, and cor-
rected by Genotype-Corrector) in the IBM RIL population. The raw genotype dataset with the same parameters 
in ASMap yielded a map that contains a large number of errors, for example, both chromosome 1 and 7 were split 
into two groups. Additionally, there are synteny disruptions as well as noisy placement of markers in the recon-
structed linkage groups from the raw genotypes. In comparison, the genetic map is visibly improved by imputa-
tion from Beagle, especially on chromosome 1, 6 and 10 [Figure S2]. However, while using the imputed genotypes 
by Beagle fixed the main problem for chromosome 1, it failed to incorporate the split groups on chromosome 7, 
as well as still showing a large number of noisy and distorted markers [Fig. 3]. Compared to Beagle, the linkage 
groups constructed based on corrected genotypes by Genotype-Corrector fixed the major issues on chromosome 
7 and also showed substantially fewer noisy and misplaced markers. Overall, 4 out of 10 chromosomes included 
in Fig. 4 showed substantial improvements. The comparisons between the raw, imputed, and corrected set have 
illustrated that Beagle improved the quality of linkage groups over raw data, and that Genotype-Corrector fixed 

Figure 3.  Concordance rates for corrected and uncorrected genotype datasets in maize IBM RILs. (A) 
The concordance rate between tGBS genotype calls and the ground truth before correction (raw) and after 
correction using Genotype-Corrector. Each dot represents a maize RIL. Green, brown, purple, and pink dots 
represent the genotype calls generated from raw SNP data by requiring at least 1, 2, 3, and 4 aligned reads to 
make a homozygous genotype call. (B) Comparison of concordance rates in 4 datasets after applying Genotype-
Corrector (pink) and Beagle (brown). The green line indicates the concordance rates before performing 
correction or imputation. (C) Comparison of missing rates in 4 genotype datasets after applying Genotype-
Corrector (pink) and Beagle (brown). The green one indicates the missing data rates in raw genotypes calls.
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even more errors than imputation by Beagle. The complete comparisons including all 10 chromosomes can be 
found in [Figure S2]. All three genotype datasets and the corresponding linkage groups are available in the addi-
tional files25.

Papaya F2 population.  In order to test how Genotype-Corrector facilitates genetic map construction in real 
F2 populations which contain more heterozygous loci than RIL populations, we generated a dataset of 93 papaya 
(Carica papaya) F2 individuals developed from cultivars Sunset and Au9. A total of ~1.2 Gigabytes(Gb) of whole 
genome re-sequencing data which is equivalent to ~3x coverage of the genome was generated for each individ-
ual26. In this study, a new draft genome of Sunset was used and the contig N50 was about 395Kb [Additional 
files25]. SNPs were called using Freebayes27 and further filtration was performed on the raw genotype calls [See 
methods].

As expected, at a relatively low coverage of re-sequencing, our genotype dataset included a total of 101,962 
SNP markers and the percentages of ‘A’, ‘X’, and ‘B’ were 26.1%, 35.5%, and 25.8% respectively. The missing data 
rate was 12.6%. Since substantially fewer heterozygous genotypes (X’s) were observed than expected, approx-
imately 8,361 (101,962 × [(1–12.6%) × 50% − 35.5%] ≈ 8,361) heterozygous genotypes could be falsely called 
as homozygous. Without correction, working initially only with the raw genotype dataset, we attempted to bin 

Figure 4.  Comparison of 4 linkage groups constructed on 3 genotype datasets (raw, imputed by Beagle, 
corrected by Genotype-Corrector) in maize IBM RIL population. Each dot indicates the physical position 
of a single SNP marker on the chromosome (x-axis) versus the genetic map locations (y-axis). N: Number 
of markers involved in the linkage group; ρ: Spearman’s rank-order correlation measuring the concordance 
between the physical and genetic distances with values in the range of −1 to 1 (values closer to −1 or 1 indicate 
near-perfect collinearity). All linkage group results are available in the additional files25 and comparisons 
including all 10 chromosomes can be found in [Figure S2].
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markers and construct a genetic map but failed, resulting in only one amalgamated linkage group using MSTMap 
with different levels of P-value cutoffs. We also tried JoinMap (v4.1)28,29 but still failed to generate satisfactory 
results due to a large number of errors and missing data present in the raw genotype dataset.

After performing Genotype-Corrector, the percentages of ‘A’, ‘X’ and ‘B’ were 23.8%, 51.2%, and 21.4% respec-
tively, which more closely approximates the theoretical ratio of 1:2:1 than the raw data. The missing data rate also 
dropped substantially from 12.6% to 3.5%. Feeding the corrected genotype data to MSTMap, a papaya genetic 
map was successfully constructed with 15 linkage groups where 8 of them have at least 100 binned markers 
[Additional files25]. We also built a pipeline based on Genotype-Corrector to facilitate the genetic map con-
struction. Several customized scripts involved in the pipeline can be used to preprocess genotype datasets before 
correction and post-process corrected genotypes [Figure S3]. Finally, we performed ALLMAPS30 to compute the 
ordering of contigs using the constructed genetic map as evidence [Fig. 5]. After anchoring of the genetic map, the 
contig N50 of papaya draft genome was increased from 395 Kb to 690 Kb [Additional files25].

Conclusion and Discussion
For the construction of modern high-density genetic maps, researchers tend to sequence a relatively low depth 
of coverage for mapping individuals. This can lead to high rates of missing data and a large proportion of wrong 
genotype calls, especially for the heterozygous genotypes which require deeper coverage to identify both alleles. 
High missing rates and false genotype calls present challenges for the construction of genetic maps. To improve 
the quality of genotypes, researchers usually impute the missing data using imputation tools such as Beagle11 and 
LinkImpute17 before performing the genetic map construction. However, the issue of false genotype calls cannot 
be resolved by imputation only. Therefore, we developed a software package called Genotype-Corrector based on 
an improved sliding window approach7. In order to evaluate our approach in different situations, we tested the 
performance of Genotype-Corrector in both synthetic and real datasets. In the synthetic dataset, we found the 
proportion of missing data was a main factor influencing the accuracy of Genotype-Corrector. Since the correc-
tion is largely dependent on the non-missing data within a sliding window, the density of missing data has a major 
impact on the performance by affecting the calculation of the expected genotype probabilities (Fig. 1E and F).

By comparing Beagle, LinkImpute, and Genotype-Corrector in the simulated F2 and the real maize IBM RIL 
populations, the results indicated that Genotype-Corrector is more accurate compared to other traditional impu-
tation tools when the missing rate is lower than 40% in both F2 and RIL populations [Figs 2 and 3C]. To evaluate 
whether the corrected genotypes improve the quality of the final genetic map construction, we compared the 
linkage groups constructed based on raw, imputed, and corrected genotype datasets using ASMap. Our results 

Figure 5.  Ordering and orientations of the reconstructed papaya scaffold using ALLMAPS. (A) Left 
map contains 709 binned markers is the third papaya linkage group that we constructed. Right map is the 
reconstructed chromosome with physical scaffolds stitched together which include 50 contigs. Adjacent contigs 
within the reconstructed scaffold are shown as boxes with alternating shades. Cyan lines connect the physical 
positions on the reconstructed chromosome and the genetic map positions. (B) Scatter plot between the genetic 
map and reconstructed chromosome. The cyan dots represent physical positions on the chromosome (x-axis) 
versus the genetic map locations (y-axis). The Spearman’s ρ on the scatter measures the concordance between 
the genome assembly and the linkage map, with values in the range of −1 to 1 (values closer to −1 and 1 
indicate near-perfect collinearity).
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show that the linkage groups based on corrected genotypes contain much less noise, and have almost no apparent 
distortions compared to the genetic maps based on raw and imputed genotype datasets. In addition, there are 
more markers anchored to linkage groups, smoother genetic distance estimates and higher collinearity between 
physical and genetic positions were achieved with corrections by Genotype-Corrector, which indicates genotypes 
corrected by Genotype-Corrector can substantially improve the genetic map quality [Fig. 4, Additional files25].

In the more complex papaya F2 population, the percentage of the three genotypes in the corrected data-
set more closely approximates the theoretical ratio of 1:2:1 than the uncorrected dataset, suggesting that the 
Genotype-Corrector can effectively correct wrong genotype calls in the heterozygous region. In order to construct 
the final genetic maps from the raw SNP calls, we developed an end-to-end pipeline covering pre-processing and 
post-processing steps [Figure S3]. This pipeline illustrates how components of Genotype-Corrector could be 
chained together to facilitate genetic map construction. Using this pipeline, a papaya genetic map with 15 linkage 
groups was successfully constructed [Additional files25]. Taking advantage of the constructed genetic map, the 
contig N50 of the papaya draft genome was increased from 395 Kb to 690 Kb using ALLMAPS, suggesting that 
the constructed genetic map could effectively guide the genome assembly in a de novo genome sequencing project 
[Fig. 5, Additional files25].

There are two main parameters in Genotype-Corrector: the error rate of the homozygous genotype calls, and 
the size of the sliding window. Huang et al.7 had suggested that this approach is robust to relatively high homozy-
gous genotype error rates. For example, they estimated the error rates for two homozygous genotypes in the rice 
RIL population were 4.12% and 0.71%. Based on these two error profiles they achieved 99% accuracy. However, a 
similar accuracy result can be achieved by increasing one of the error rates to 16%.

We also found empirically that while different genotype error rates do affect the calculation of the exact prob-
ability for each genotype, these error rates often do not have a big impact on the selection of the genotype with 
the highest probability since the SNP error rates affect each individual probability similarly, as long as these error 
rates are set within a reasonable range (as dominated by sequencing errors).

The sliding window size parameter controls the granularity of the correction procedure and it largely depends 
on the SNP density. Although we did not control the imbalance of SNP distributions, Genotype-Corrector works 
well in all tested datasets with the default window size (n = 15). We also tested window sizes from 11 to 17 on 
maize Homo2 datasets and yielded nearly identical results [Figure S4]. In the previous study, researchers arrived 
at a similar conclusion by testing different window sizes from 15 to 35 as long as the SNPs density is over 25 per 
Mb in rice RIL population7. It is now routine to identify over hundreds of thousands of SNPs at reasonable costs, 
which also significantly weakens the influence of uneven SNP distributions.

In summary, our results suggest that Genotype-Corrector is widely applicable in whole-genome genetic map-
ping studies in F2 or RIL mapping populations. Outputs from Genotype-Corrector are compatible with popular 
genetic mapping software, such as MSTMap31, ASMap24, R/QTL32, and JoinMap28. Users can also generate an 
intermediate file where each corrected genotype is highlighted with an asterisk for debugging purposes or if users 
wish to further validate the automated corrected genotype calls. Although F2 and RIL populations are currently 
supported due to the availability of our test datasets, it would be straightforward to expand this approach to 
include more population types such as F3 or BC1F1 in the future.

Methods
Genotype-Corrector implementation.  Prior to the genotype correction, the sequence data of hundreds 
of F2 individuals or RILs are mapped to a reference genome and SNPs are identified. The genotypes are coded 
as ‘A’, ‘X’, and ‘B’. In order to solve the phasing problem, when none of the two founders of the population is the 
reference line, one of the founders’ genotypes in each SNP site should be provided to distinguish the origin of 
alleles in each individual.

For F2 or RIL populations with no errors or contamination, genomic regions that are homozygous should 
contain mostly homozygous calls from one parental haplotype with some missing data. However, heterozygous 
loci may be misidentified as homozygous due to an insufficient number of reads to support both alleles at low 
sequencing coverage. When the sequencing coverage is low, it is common that two types of homozygous gen-
otypes are distributed among a heterozygous region in a random fashion3. To correct false genotype calls and 
impute missing data resulting from low sequencing or alignment errors, a sliding window covers consecutive 
SNPs with a step size of one marker and the genotype with the highest expected probability was called in each 
window [Equations 5–7].

When we consider possible errors for each genotype call, in each window, the probability of finding k times of 
genotype ‘B’ for each genotype follows a binomial distribution. The probability of observing k times of genotype 
‘B’ in a sliding window of size n can be calculated separately as the following:

P k E E( ) ( ) (1 ) (5)A k
n

A
k

A
n k= × × − −

P k E E( ) ( ) (1 ) (6)B k
n

B
k

B
n k= × − × −

P k E E( ) ( ) 1
2

1
2 (7)X k

n X
k

X
n k

= ×




+ 

 ×





− 



−

where EA, EB, and EX are SNP error rates of the three genotypes. By incorporating the estimated proportions of 
three genotypes, the genotype with the maximum probability within the window is selected:
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P k P k P k P k( ) max { ( ) , ( ) , ( ) } (8)A A B B X Xmax λ λ λ= × × ×

where the three priors – λA, λB, and λX are the expected Mendelian segregation ratios in the population, which 
can be deduced based on the population type. The expected genotype ratios within F2 population is 1(‘A’): 2(‘X’): 
1(‘B’), with each advanced RIL reducing the expected number of heterozygotes (number of ‘X’s) by half. The pro-
cess described above is repeated with several iterations until the corrected genotypes converge.

When multiple segregating SNPs appear within a short genomic interval, multiple consecutive heterozygous 
loci (‘X’s) can be miscalled as homozygotes of the same haplotype (‘A’s or ‘B’s) [Fig. 6]. This phenomenon often 
occurs within a short genomic region covered by only a few reads. In practice, this apparent bias of consecutive 
homozygous genotypes in a heterozygous region may lead to mis-corrections when using the sliding window 
method. To eliminate such bias, markers that have the same consecutive homozygous genotypes within a single 
read length (a configurable parameter) are binned into one representative marker. This step is implemented in an 
independent Python script distributed with the Genotype-Corrector software package.

Genetic map construction in maize IBM population.  The Homo2 genotypes in maize IBM population 
was corrected by Genotype-Corrector and imputed by Beagle (v4.1) with default parameters. The raw, imputed, 
and corrected genotypes were converted to the corresponding ‘cross’ object which is a particular data format for 
R/qtl and ASMap packages. The linkage maps were constructed by using the function ‘mstmap.cross’ in ASMap 
with parameters: ‘p.value = 1e-13’, ‘trace = TRUE’, ‘mvest.bc = TRUE’, ‘detectBadData = TRUE’ on all three geno-
type datasets. Since small linkage groups without enough markers are difficult to compare between methods, only 
linkage groups with over 100 markers were included for comparison. Details of input data, linkage group results 
and scripts are available at Figshare25.

Genetic map construction in Papaya F2 population.  The papaya Sunset genome was sequenced using 
PacBio sequencing and assembled on the SMRT Portal using HGAP.3. The assembled genome size is around 
341 Mb [Additional files25]. 93 papaya F2 samples were sequenced on Illumina HiSeq. 2500 with the read length 
2 × 150 bp. The reads from all available samples were aligned to the draft genome using ‘bwa mem’ (v0.7.12) with 
default parameters33. Then the alignments were further processed by sorting, selecting the unique alignments, 
and removing the PCR duplicates. The genotype calling was performed by feeding the preprocessed alignments 
to Freebayes with parameters: ‘–min-alternate-count = 2’, ‘–min-alternate-fraction = 0.1’. In order to control the 
genotypes quality, we removed SNPs with a quality score below 30 and a missing rate over 40%. We also discarded 
loci with segregation distortions, where the ratio of ‘A’:‘B’ did not follow the 1:1 (χ2-test, P-value < 0.01). We chose 
1:1 to test the ‘A’:‘B’ ratio instead of using 1:2:1 to test the ratio of ‘A’:‘X’:‘B’ because a substantial proportion of 
heterozygous genotypes were called as homozygous incorrectly due to a frequent failure to recover both alleles in 
the heterozygous regions.

Figure 6.  An example region illustrating the consecutive false homozygous calls within a heterozygous region. 
Genotype calls for markers within an interval on chromosome 1 of Medicago truncatula for 139 RILs extracted 
from the dataset in3. The vertical dark red frame marks a heterozygous region in an individual. Black circles and 
blue horizontal frames indicate that heterozygous genotypes (X’s) were incorrectly called as a stretch of identical 
homozygous genotypes (A’s or B’s) in a short genomic region.
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Prior to the correction, the filtered genotypes were further processed by compressing the identical stretches 
of homozygous loci (‘A’s or ‘B’s) within the distance of the read length (150 bp) in heterozygous regions to avoid 
over-counting stretches of false calls. This step was implemented by the script ‘preprocess_markers.py’ distributed 
with Genotype-Corrector package. Then the preprocessed genotypes were corrected using Genotype-Corrector 
with default parameters. To obtain the genotype dataset of a size which was manageable by other software, 
corrected genotypes were binned, resulting in a decrease from 46,974 markers into 6,615 bins using our script 
‘bin_corrected_markers.py’. The linkage groups were constructed using MSTMap on binned genotypes with 
parameters: ‘cut_off_p_value = 1e-16’, ‘distance_function = kosambi’, ‘objective_function = COUNT’. To use 
ALLMAPS anchoring contigs to scaffolds using constructed genetic map, the format of the genetic map generated 
from MSTMap was converted to BED format which is the standard input for ALLMAPS. This process was imple-
mented by using the function ‘merge’ in ALLMAPS package. The converted BED file and the original contigs 
FASTA file were then used as the input for the ‘path’ command in ALLMAPS [Additional files25].

Data availability.  All the key intermediate, final results and running codes are available on Figshare (https://
doi.org/10.6084/m9.figshare.6179231.v1).
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Figure S1. Maize genetic map after applying Genotype-Corrector. genotype dataset requiring at least 2 reads (Homo2)
for the homozygous calls was used to construct genetic map. This dataset contains 14,638 SNPs and 230 individuals and was
corrected using Genotype-Corrector with default parameters. After correction, the corrected data was fed to ASMap and 10
chromosomes as expected were generated successfully.
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Figure S2. Comparison of 10 linkage groups constructed on 3 genotype datasets (raw, imputed by Beagle, corrected
by Genotype-Corrector) in maize IBM RIL population. Each dot indicates the physical position of a single SNP marker on
the chromosome (x-axis) versus the genetic map locations (y-axis). N: Number of markers involved in the linkage group; ρ:
Spearman’s rank-order correlation measuring the concordance between the physical and genetic distances with values in the
range of -1 to 1 (values closer to -1 or 1 indicate near-perfect collinearity).
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Figure S3. The work flow for constructing the papaya genetic map using Genotype-Corrector. First, the genotype
dataset was preprocessed using ‘preprocess markers.py’. This script removed identical stretches of homozygous loci (‘A’s or
‘B’s) within very short (read-length) distance in heterozygous regions to avoid over-counting stretches of false calls. Second,
the genotype data was corrected using ‘Genotype-Corrector.py’. For optimal computational efficiency, corrected genotypes
were combined using ‘bin markers.py’. Finally, the corrected and binned genotype data was consumed by MSTMap and 15
linkage groups were constructed.
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Figure S4. The effect of sliding window size on accuracy in maize RIL population. Four genotype datasets from the
maize RIL population were corrected by Genotype-Corrector using different values of the window size parameter. The
accuracy was measured by the concordance rate.
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