

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Papers in Biomolecular Engineering

Chemical and Biomolecular Engineering Research and Publications

5-27-2006

Efficient, Thermally Stable, Second Order Nonlinear Optical Response in Organic Hybrid Covalent/Ionic Self-Assembled Films

Kevin E. Van Cott University of Nebraska-Lincoln, kvancott2@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/chemeng_biomolecular

Part of the Biochemical and Biomolecular Engineering Commons

Van Cott, Kevin E., "Efficient, Thermally Stable, Second Order Nonlinear Optical Response in Organic Hybrid Covalent/Ionic Self-Assembled Films" (2006). *Papers in Biomolecular Engineering*. 2. https://digitalcommons.unl.edu/chemeng_biomolecular/2

This Article is brought to you for free and open access by the Chemical and Biomolecular Engineering Research and Publications at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Biomolecular Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Efficient, Thermally Stable, Second Order Nonlinear Optical Response in Organic Hybrid Covalent/Ionic Self-Assembled Films

Abstract

A covalent/electrostatic layer-by-layer self-assembly method was used to achieve polar ordering of a water soluble, reactive dye in the fabrication of nonlinear optical (NLO) films. We observed a quadratic relationship between the second harmonic intensity $I^{2\omega}$ and bilayer number for all films made with Procion Brown MX-GRN, demonstrating that the polar ordering of the chromophores is consistent in each successive bilayer. As the ionic strength of the dye deposition solution was increased to 0.5 M NaCl, the χ_{777} ⁽²⁾ of the films increased by approximately 250% to 50×10^{-9} esu, with a corresponding average chromophore tilt angle of 38°. This was attributed to increase shielding of the dye charges which led to higher chromophore density in the bilayers. The electrooptic coefficient for films of 50 bilayers fabricated at 0.5 M NaCl was $14 \pm 2 \text{ pm/V}$. Importantly, these films exhibited excellent thermal stability, with only a 10% decrease in $(I^{2\omega})^{1/2}$ after 36 h at 85 °C and then 24 h at 150 °C. Furthermore, the $(I^{2\omega})^{1/2}$ recovered completely upon cooling to room temperature. These results with a commodity textile dye point to the potential value of this class of reactive chromophores and this selfassembly method for fabrication of electrooptic materials at ambient conditions from aqueous solutions.

Comment: This paper was originally published in the Journal of "Langmuir" Volume 22. and Issue No.11, May 27 2006 Pages 5723-5727 .All the copy rights © of this paper belongs to American Chemical Society.

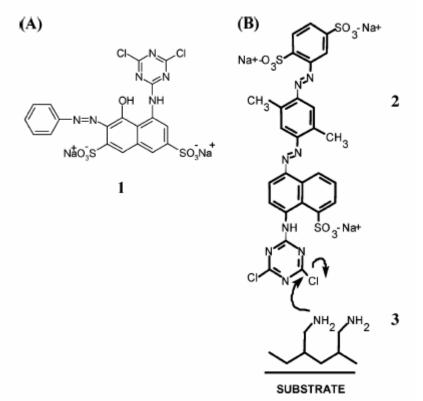
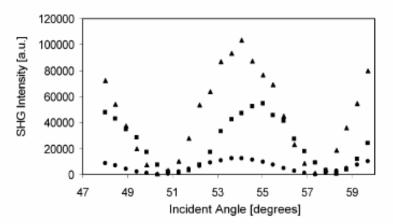
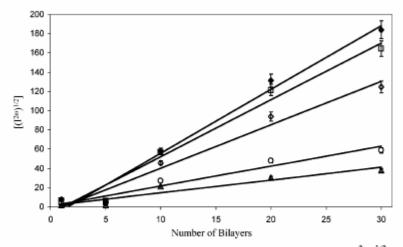




Figure 1. (A) Procion Red MX-5B (1). (B) Covalent deposition of Procion Brown MX-GRN (2) onto an adsorbed layer of poly-(allylamine hydrochloride) (3).

Figure 2. Second harmonic intensity as a function of incident angle for Procion Brown/PAH films consisting of 20 (\bullet), 40 (\blacksquare), and 60 (\blacktriangle) bilayers made at [NaCl] = 0.5 M. The shifts in angular position of the peaks is due to differences in substrate thickness.

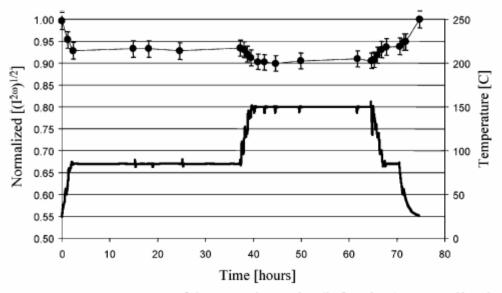


Figure 3. Square root of the second harmonic intensity $[(I^{2\omega})^{1/2}]$ as a function of the number of bilayers deposited for various NaC1 concentrations: $\blacklozenge = 1.0 \text{ M}; \square = 0.5 \text{ M}; \diamondsuit = 0.25 \text{ M}; \bigcirc = 0.1 \text{ M}; \triangle = \text{no} \text{ added NaC1}.$

Table 1. Procion Brown MX-GRN Film Properties as a Function of NaCl Concentration in the Deposition Solutions

[NaC1] (M)	bilayer thickness (nm)	absorbance/bilayer $(\times 10^{-3})^a$	absorbance/nm (×10 ⁻³) $^{\flat}$	$\langle\psi angle$ (degrees)	$\chi^{(2)}_{222}$ (10 ⁻⁹ esu)
0	0.27 ± 0.01	$1.0 (R^2 = 0.94)$	3.7	43 ± 2	20 ± 2
0.10	0.32 ± 0.01	$1.4 (R^2 = 0.97)$	4.4	41 ± 2	28 ± 2
0.25	0.42 ± 0.02	$2.2 (R^2 = 0.99)$	5.2	39 ± 2	49 ± 2
0.50	0.57 ± 0.03	$2.9 (R^2 = 0.99)$	5.1	38 ± 2	50 ± 2
1.00	0.71 ± 0.03	$4.0 (R^2 = 0.99)$	5.6	39 ± 2	42 ± 2

^{*a*} Calculated from slopes determined from linear regression of absorbance vs bilayer number data; R^2 values for each are reported. ^{*b*} Calculated from (abs/bilayer)/(bilayer thickness)

Figure 4. Square root of the SHG intensity (left axis, ●, normalized to 1.0 at the beginning of the experiment) of a Procion Brown/PAH film as a function of time and temperature (right axis, —) during a heating cycle.