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Abstract

Background: Matching the frequency of the driving force to that of the system’s
natural frequency of vibration results in greater amplitude response. Thus we
hypothesize that applying ultrasound at the chondrocyte’s resonant frequency will
result in greater deformation than applying similar ultrasound power at a frequency
outside of the resonant bandwidth. Based on this resonant hypothesis, our group
previously confirmed theoretically and experimentally that ultrasound stimulation of
suspended chondrocytes at resonance (5 MHz) maximized gene expression of load
inducible genes. However, this study was based on suspended chondrocytes. The
resonant frequency of a chondrocyte does not only depend on the cell mass and
intracellular stiffness, but also on the mechanical properties of the surrounding
medium. An in vivo chondrocyte’s environment differs whether it be a blood clot
(following microfracture), a hydrogel or the pericellular and extracellular matrices of
the natural cartilage. All have distinct structures and compositions leading to
different resonant frequencies. In this study, we present two theoretical models, the
first model to understand the effects of the resonant frequency on the cellular
deformation and the second to identify the optimal frequency range for clinical
applications of ultrasound to enhance cartilage restoration.

Results: We showed that applying low-intensity ultrasound at the resonant frequency
induced deformation equivalent to that experimentally calculated in previous studies at
higher intensities and a 1 MHz frequency. Additionally, the resonant frequency of an in
vivo chondrocyte in healthy conditions, osteoarthritic conditions, embedded in a blood
clot and embedded in fibrin ranges from 3.5 − 4.8 MHz.

Conclusion: The main finding of this study is the theoretically proposed optimal
frequency for clinical applications of therapeutic ultrasound induced cartilage
restoration is 3.5 − 4.8 MHz (the resonant frequencies of in vivo chondrocytes).
Application of ultrasound in this frequency range will maximize desired bioeffects.

Keywords: Resonant frequency, Mechanical energy density, Cellular deformation

Background
Osteoarthritis and cartilage injuries are major biomedical burdens in the United States

that affect millions of Americans as cartilage is an avascular, aneural tissue with limited

capacity of self-repair. Currently, there are a variety of surgical procedures available to

treat articular cartilage, two common methods are microfracture and autologous

chondrocyte transplantation (ACI). Microfracture is the first-line treatment for smaller

cartilage lesions and involves perforating the subchondral plate to recruit mesenchymal
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cells (MSC) from the bone marrow [1, 2]. Although the procedure has demonstrated

excellent short-term clinical outcomes, the long-term durability of the tissue has shown

functional decline as a result of inefficient chondrogenesis of egressed MSCs [3]. ACI

and newer cell-based techniques (which include the use of MSCs) are preferred for

larger lesions and involves extracting cartilage/cells from the patient followed by re-

implantation [2–4]. However, the high cost of the procedure makes it less appealing.

Mechanical and structural cues delivered to the chondrocyte play a central role in

the tissue physiology [5]. Thus there is considerable research in techniques to affect the

functional adaptation of cartilage [6]. One method known to modulate chondrocytes’

metabolic activity is mechanical stimulus although the mechanisms are only partly

understood. The mechanical signals transmitted to the chondrocyte induce extracellu-

lar matrix synthesis and maintenance which alters the cartilage structure and compos-

ition [7]. A mechanical stimulus believed to trigger signal transduction and induce

bioeffects is cellular deformation [8]. Two techniques that have been shown to induce

cellular deformation are dynamic compression and ultrasound and both have also been

shown to stimulate proteoglycan and collagen II [9–14]. Thus, a beneficial sequential

step in all cartilage restoration techniques should involve method(s) to stimulate the

chondrocyte to increase the physical function of the restored tissue such as ultrasound.

Low-intensity ultrasound (LIUS) can be delivered using a handheld portable system

that can be easily applied in the comfort of patients’ homes. Ultrasound transmits

mechanical energy by perturbing cells around their equilibrium position [15] and has

been shown to induce cellular deformation in red blood cells, macrophages, MC3T3-

E1 and Human Airway Smooth Muscle cells at various frequencies with pressure am-

plitudes ranging from 12 kPa to 1000 kPa [14, 16–19]. During controlled compression

studies, [8] showed that cellular deformation is transmitted to the nucleus through the

cytoskeleton, specifically, actin microfilaments. While, [20] confirmed that ultrasound

was transmitted to the nucleus by studying the effects of ultrasound on chromatin re-

modeling. They showed that ultrasound induces chromatin remodeling in chondrocytes

and fibroblasts.

Most published in vivo and in vitro cartilage restoration applications use the empiric-

ally derived low-intensity pulsed ultrasound (LIPUS) regimens for bone, 1.0–1.5 MHz,

and thus leads to variable results [21–25]. To optimize the regime for cartilage repair

[26] theoretically determined that suspended chondrocytes have a primary resonance of

5.2 ± 0.8 MHz. Resonance occurs when there is a match between the ultrasound fre-

quency and the elastic properties of the material which generates an increase in the

amplitude of displacement [27]. Therefore at this frequency ultrasound will increase

the oscillating displacement amplitude in the cell and maximize the mechanical energy

coupled to the cell [26]. These findings were further extended to experimental valid-

ation using a monolayer of cells and measuring load-inducible gene expression (c-fos,

c-jun and c-myc) which showed that ultrasound applied at the resonant frequency of

5 MHz, compared to 2 and 8 MHz, resulted in increased gene expression [26].

Additional experiments, also using a monolayer of cells, confirmed these findings and

showed enhanced cellularity and increased matrix and protein synthesis at this reson-

ant frequency [28, 29]. Thus ultrasound maximizes bioeffects when applied at reson-

ance. However, the theoretical model developed to calculate this resonant frequency

lacks the biomechanical environment of the in vivo chondrocyte.
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The mechanical environment of the chondrocyte plays an important role in cartilage

homeostasis. An in vivo chondrocyte following a microfracture procedure is embedded

in a blood clot while that following an ACI procedure could be embedded in a hydrogel

[30] or native cartilage. An in vivo chondrocyte in native cartilage is embedded in the

extracellular matrix (ECM) and surrounded by a narrow region termed the pericellular

matrix (PCM) that has a distinct structure and composition that differs from the chon-

drocyte and ECM [31]. Although the role of the PCM is not fully understood, theoret-

ical models have shown that it plays a major biomechanical role in cell-matrix

interactions and serves as a mechanical transducer [32–35]. The contribution of a

blood clot, hydrogel or the ECM and PCM may cause a shift in the resonant frequency

of an in vivo chondrocyte from that of a suspended chondrocyte. Additionally, osteo-

arthritis results in degeneration of cartilage and alters the internal structure and mater-

ial properties [36]. As the resonant frequency is highly dependent on the mass and

stiffness, osteoarthritis can also cause a shift in the optimal frequency.

In this study we first present a theoretical model of a suspended chondrocyte to show

the effects of continuous ultrasound applied at resonance on cellular deformation.

Second, theoretical models of a chondrocyte embedded in a blood clot, embedded in a

fibrin hydrogel and surrounded by the PCM and embedded in the ECM are presented

to calculate the resonant frequencies of in vivo chondrocytes in different mechanical

environments. A range of parameters for the PCM and ECM are reported throughout

literature, thus we identify the resonant frequency over a range of mechanical proper-

ties and for those properties identified in an osteoarthritis environment.

Methods: Mathematical modeling
Ultrasound induced cellular deformation

To theoretically study the effects of frequency on ultrasound induced deformation, the

response of a suspended chondrocyte was modeled using the finite element method

and facilitated by COMSOL Multiphysics’ built-in Acoustics-Poroelastic Waves Inter-

face (COMSOL Inc., Burlington, MA, USA). Biot’s theory is used to model the cyto-

plasm and nucleus which is the basis of the governing equations in the Poroelastic

Waves Module [37, 38]. Time-harmonic dependence, p(x, t) = p(x)eiωt is assumed which

is the case for the application of continuous ultrasound stimulation. The governing

equations are given by eqns. 1–2.

− ρav−
ρ2f

ρc ωð Þu
 !

ω2u−∇∙ c : ε−αBpf I
� �

¼ ρf
ρc ωð Þ∇pf ð1Þ

∇∙ −
1
ρc

∇p−ω2ρf u
� �� �

−
k2eqp

ρc
¼ ω2αB∇∙u ð2Þ

Eqns. 3–5 define ρav, the average density, ρc, the complex density and keq, the wave-

number. u is the displacement vector, ω is angular frequency, c is the elasticity tensor,

ε is the strain tensor and p is pressure.

ρav ¼ ρd þ �Pρf ð3Þ

ρc ¼
τ∞ρf
�P

þ μf
iωkP

ð4Þ
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k2eq ¼ �Pχ f þ
αB−�P
Kd

1−αBð Þ
� �

ω2ρc ð5Þ

Louw [26] calculated the resonant frequency of suspended chondrocytes, thus the

variables and values used in [26] and defined in Table 1 are used for this study.

Following [26] the cell was modeled as four concentric spheres; the nucleus,

cytoplasm, nuclear envelope and cellular membrane. The cell and nuclear radii were

6.5 and 3.5 μm, respectively [39, 40], and thicknesses of the plasma membrane and nu-

clear envelope were 15 and 40 nm, respectively [41]. Each domain was modeled as a bi-

phasic medium [39, 42–46]. The geometry consists of a suspended cell in a cylinder

(well of a culture plate) filled with growth media. The ultrasound source was positioned

below the cell, as shown in Fig. 1a, and the cell’s position is dependent on frequency to

ensure the location of the cell was at an antinode. This forces the pressure amplitude at

the chondrocyte’s position to remain constant between frequencies to allow for direct

comparison. Water properties are used for the growth media and two pressure ampli-

tudes were studied, the amplitude used in [26], 14 kPa, and the amplitude used in [14],

170 kPa. Two boundary conditions were used in this study, a sound hard boundary

layer which assumes zero for the normal component of acceleration and cylindrical

wave radiation where the outgoing wave leaves with minimal reflection [38].

Table 1 Material properties used in the Biot theory

Cytoplasm

Bulk Medium

Bulk Modulus (Pa) Kd 500 [26]

Poisson’s Ratio ν 0.38 [42]

Bulk Density (kg/m3) ρd 300 [57]

Permeability (m2) kp 7 x 10−19 μf =ω [53]

Porosity єp 0.75 [57]

Biot-Willis Coefficient αB 0.9999 1-K/Ks

Tortuosity Factor τ∞ 1.2 [58]

Fluid Phase

Density (kg/m3) ρf 992.52 [59]

Vicosity (Pa∙s) μf 0.7 x 10−3 [60]

Compressibility (1/Pa) χf 4.35 x 10−10 1/Kf

Nucleus

Bulk Medium

Bulk Modulus (Pa) Kd 2 x 103 [39]

Poisson’s Ratio ν 0.38 [26]

Bulk Density (kg/m3) ρd 400 [26]

Permeability (m2) kp 7 x 10−19 μf =ω

Porosity єp 0.65 [61]

Biot-Willis Coefficient αB 0.9996 1-Kd/Ks

Tortuosity Factor τ∞ 2 [58]

Fluid Phase

See cytoplasm fluid phase
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To minimize the degrees of freedom and computational cost, the geometry was re-

duced to a height of 3λ/4 and a width of λ/2, where λ is the wavelength. (At 5 MHz in

water λ = 300μm which is approximately 30 cell diameters.) The geometry was meshed

using a tetrahedral element which resulted in 40,000–50,000 elements (varies per fre-

quency) and solved on an Intel Core i5 desktop computer with 16 GB RAM. A forma-

tion of a standing wave occurred as a result of the geometry dimensions and the water/

air interface which is also seen in in vitro experimental setups as a result of the air/

polystyrene interface when sonicated from above the cell and the water/air interface

when sonicated from below the cell.

Modeling resonant frequency

The deformation induced by the ultrasound results in the transmission of elastic energy

(stored mechanical energy) into the cell. [26] showed that an increase in this stored

energy resulted in an increase in load inducible gene expression. Therefore the goal

should be to maximize the energy coupled to the cell which occurs if the ultrasound is ap-

plied at the chondrocyte’s resonant frequency. The final aim of the study was to calculate

the resonant frequency of an in vivo chondrocyte in a blood clot, fibrin hydrogel and

under a range of properties for the PCM and ECM. The frequency at which the stored

mechanical energy is maximized is the resonant frequency. The stored mechanical energy,

U, of a cell in an ultrasound field is defined by eq. 6 and has been calculated for both the

nucleus and cytoplasm over a range of frequencies (1 MHz – 8 MHz).

U ¼ 1
T

Z T

0

1
2
σ tð Þ : ε tð Þdt ð6Þ

T is the period and σ(t) the stress tensor. To further reduce the degrees of free-

dom and computational cost to conduct the parametric sweep over the range of

Fig. 1 Model Geometry: a) A suspended cell (indicated by the small sphere) immersed in growth media. The
ultrasound source (14 kPa) is positioned at the bottom and is indicated by the blue dotted line. The cell
position is frequency dependent to ensure the position remains at an antinode. b A chondron (indicated by
the sphere) embedded in the extracellular matrix (indicated by the cylinder) and immersed in growth media.
The ultrasound source is positioned at the bottom (blue dotted line). The cell position is frequency dependent
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frequencies the cell was represented as two concentric spheres representing the nu-

cleus and cytoplasm as opposed to four concentric spheres used in the deformation

study. Four concentric spheres were used in the deformation study to show the ef-

fects of the contribution of the membranes. In the resonance study the aim is to

identify the frequency at which the stored mechanical energy is maximized which

requires the calculation over a range frequencies and has a higher computational

cost. Trials were conducted using four concentric spheres to confirm the resonant

frequency did not change. Additionally, an optimization study was conducted to

verify the mesh was appropriate and that the resonant frequency did not shift. The

mathematical formation for both was the same as that described for the deform-

ation study, detailed above with a pressure amplitude of 14 kPa. The blood clot, fi-

brin hydrogel, PCM and ECM were assumed to be isotropic biphasic medium. The

acoustic properties of blood clots and fibrin are obtained from [47] and shown in

Table 2. The mechanical properties of the ECM is known to be depth dependent

and the Young’s modulus has been reported to range from approximately 100 kPa

to 2 MPa where the middle zone is approximately 500 kPa and deep zone 2 MPa

[35, 48, 49]. The material properties of the PCM have been experimentally shown

to be approximately constant throughout the tissue depth, however a range of

values from 20 to 265 kPa for PCM’s Young’s modulus has been reported [33, 35,

50–52]. The range could be a result of the species, type of sample used, age or

measuring technique [31]. Thus this study includes a range of parameters for both

the PCM and ECM, listed in Table 2, to study the effects of the mechanical prop-

erties on the resonant frequency. The osteoarthritic Young’s modulus was 60% of

the normal conditions and the hydraulic permeability is assumed to be homoge-

neous and isotropic [35].

The geometry as shown in Fig. 1b, mimics an explant in the well of a culture

plate. The ultrasound source was positioned below the tissue and the cell’s position

is frequency dependent to allow a direct comparison between frequencies. The

ECM was modeled as a cylinder plug with a height of 65 μm and a radius of

32.5 μm which is in agreement with the microscale biphasic model developed by

[53] to analyze cell-matrix interactions. Larger heights and widths were also exam-

ined to verify the resonant frequency remained the same. Based on [13] measured

chondron cross-sectional areas, [25] calculated the typical PCM thickness values to

range from 2 to 6 μm, thus the resonant frequency was calculated using the prop-

erties listed in Table 2 at 2.5, 6 μm and a 50% increase in thickness for the osteo-

arthritic conditions [51].

Table 2 Mechanical Properties

Mechanical Properties Blood Clot Fibrin ECM PCM

Normal Osteoarthritis Normal Osteoarthritis

Young’s Modulus (kPa) 500–2000 200–600 1–500 25

Bulk Modulus (Pa) 350.8 475.4

Shear Modulus (Pa) 228.6 312.5

Permeability (m4/Ns) 1 × 10−12 6 × 10−15 1 × 10−15 2 × 10−15 4 × 10−17 13 × 10−17

Poisson’s Ratio 0.04 0.04 0.04 0.04
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Results
Cellular deformation

Ultrasound induced cellular deformation is displayed in Fig. 2. Figure 2a-c are the results of

ultrasound application with an initial pressure amplitude of 14 kPa. Figure 2d-f are the results

of ultrasound induced cellular deformation with an initial pressure amplitude of 170 kPa.

In vivo resonant frequency

The resonant frequency of a chondrocyte does not only depend on the cell mass and

intracellular stiffness, but also on the mechanical properties of the surrounding

medium. An in vivo chondrocyte’s environment differs whether it be a blood clot (fol-

lowing microfracture), a hydrogel or the pericellular and extracellular matrices of the

natural cartilage. All have distinct structures and compositions leading to different res-

onant frequencies. The resonant frequencies of a chondrocyte embedded in a blood

clot, which would be the case following microfracture procedures, is shown in Fig. 3a.

The effects of the presence of the PCM, with varying properties, surrounded by a blood

clot is also shown in Fig. 3a. The resonant frequencies of a chondrocyte embedded in a

fibrin hydrogel, which is a type of hydrogel used in ACI procedures [54, 55], is shown

in Fig. 3b. The effects of the presence of the PCM, with varying properties, surrounded

by a fibrin hydrogel is also shown in Fig. 3b. The effects of the PCM’s mechanical prop-

erties for suspended healthy and osteoarthritic chondrons are shown in Fig. 4.

The mechanical properties of the ECM is known to be depth dependent and the

Young’s modulus has been reported to range from approximately 100 kPa to 2 MPa

where the middle zone is approximately 500 kPa and deep zone 2 MPa [35, 48, 49].

Thus the effects of the ECM’s mechanical properties on chondrocytes’ resonant fre-

quencies are shown in Figs. 5 and 6.

Fig. 2 Ultrasound induced cellular deformation, the color represents displacement in nanometers. The frequency
and pressure amplitude was varied a) 1 MHz; 14 kPa, b) 5 MHz; 14 kPa, c) 6.5 MHz; 14 kPa, d) 1 MHz; 170 kPa, e)
5 MHz; 170 kPa, f) 6.5 MHz; 170 kPa. (The knobby appearances in A and D are exaggerated to visually see the
displacement. The displacement magnitude is depicted by color and is not depicted to scale in the figures)
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Discussion
Cellular deformation

Mizrahi et al. [14] showed that ultrasound applied at 1 MHz with an intensity ampli-

tude of 170 kPa induced an oscillating amplitude of approximately 30 nm in Human

Airway Smooth Muscle cells. Figure 2d shows approximately the same deformation in

chondrocytes sonicated at the same amplitude of 170 kPa. Comparing the deformation

induced by an ultrasound applied at an intensity of 14 kPa, Figs. 2a-c, to the deform-

ation induced by an ultrasound intensity amplitude of 170 kPa, Figs. 2d-f, confirms that

increasing the pressure amplitude will increase the deformation. However, if the ultra-

sound is applied at the resonant frequency the deformation induced by a 14 kPa pres-

sure amplitude, Fig. 2b, is approximately the same as that induced by ultrasound

applied at a frequency outside of the resonant bandwidth with an intensity of 170 kPa,

Fig. 2d and f. The theoretical model supports the frequency hypothesis theory where

Fig. 3 Resonant frequency of a chondrocytes in a blood clot and fibrin. a A suspended cell, a chondrocyte
surrounded by a PCM with a thickness of 2.5 μm and a Young’s modulus of 1 kPa and a chondrocyte
surrounded by a PCM with a thickness of 2.5 μm and a Young’s modulus of 500 kPa embedded in a blood
clot. b A suspended cell, a chondrocyte surrounded by a PCM with a thickness of 2.5 μm and a Young’s
modulus of 1 kPa and a chondrocyte surrounded by a PCM with a thickness of 2.5 μm and a Young’s
modulus of 500 kPa embedded in fibrin

Fig. 4 Resonant frequency of chondrons with varying parameters. a PCM thickness of 2.5 μm with a
Young’s modulus of 40 kPa, 300 kPa and osteoarthritic conditions. b PCM thickness of 6 μm with a Young’s
modulus of 40 kPa, 300 kPa and osteoarthritic conditions
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ultrasound application at the resonant frequency, even at low-intensities, will cause an

even higher deformation than that induced by an ultrasound frequency outside of the

resonant bandwidth. This deformation induced by the ultrasound results in the trans-

mission of elastic energy (stored mechanical energy) into the cell. The reader is referred

to [56] for additional details on the deformation magnitude of both the nucleus and

cytoplasm using a nonlinear model.

In vivo resonant frequency

Blood clot

Microfracture techniques involve perforating the subchondral plate to promote blood

flow in order to recruit MSCs from the bone marrow [1, 2]. Differentiation of MSCs to

chondrocytes follow, thus chondrocytes would be embedded in a blood clot following a

microfracture procedure. The presence of a blood clot results in a slight shift to the left

of the resonant frequency from 5.2 MHz to approximately 4.8 MHz, as shown in Fig.

3a. A sequential step would involve the formation of the PCM. The presence of the

Fig. 5 Resonant frequency of chondrons embedded in an ECM with Young’s modulus of 500 kPa with
PCM varying parameters. a PCM thickness of 2.5 μm with a Young’s modulus of 40 kPa, 300 kPa and
osteoarthritic conditions. b PCM thickness of 6 μm with a Young’s modulus of 40 kPa, 300 kPa and
osteoarthritic conditions

Fig. 6 Resonant frequency of chondrons embedded in an ECM with Young’s modulus of 2 MPa with PCM
varying parameters. a PCM thickness of 2.5 μm with a Young’s modulus of 40 kPa, 300 kPa and osteoarthritic
conditions. b PCM thickness of 6 μm with a Young’s modulus of 40 kPa, 300 kPa and osteoarthritic conditions
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PCM with properties closer to the cell causes a greater shift, however a PCM with

properties closer to native cartilage results in a 1 MHz shift to the left, with a resonant

frequency of 4.2 MHz. Ultrasound applied in the range of 4.2–4.8 MHz would be the

optimal frequency for ultrasound enhanced cartilage restoration when applied following

a microfracture procedure.

Fibrin hydrogel

ACI and newer cell-based techniques may involve cells suspended in hydrogels. There-

fore, the hydrogel serves as the chondrocyte’s initial mechanical environment. The use

of fibrin gels have been shown to serve as a long-term stable hydrogel for cartilage res-

toration [54, 55], thus we modeled a suspended chondrocyte in a fibrin hydrogel. The

presence of a hydrogel shifted the resonant frequency to approximately 3.7 MHz,

shown in Fig. 3b. Modeling the cell surrounded by a PCM with a Young’s modulus

similar to native cartilage and embedded in the fibrin hydrogel resulted in the same

resonant frequency, however, properties closer to the cell resulted in a higher resonant

frequency of 4.1 MHz. Therefore, the optimal ultrasound frequency range for ultra-

sound induced cartilage restoration in conjunction with strategies involving fibrin

hydrogels would be 3.7–4.1 MHz.

Chondron

A suspended chondron, which includes the chondrocyte and the surrounding

PCM, was first modeled separately to see how the presence of the PCM effects the

resonant frequency. As shown in Fig. 4 the presence of the healthy PCM causes

the chondrocyte’s resonant frequency to shift to the left (a decrease in the resonant

frequency). Lower frequencies are beneficial in the application of ultrasound for

cartilage restoration as higher frequencies attenuate faster leading to lower inten-

sities at the defect site.

Alexopoulos [51] showed that the Young’s modulus of non-osteoarthritic PCM is ap-

proximately 40 kPa. With this modulus, the resonant frequency of a healthy chondron

with a thickness of 2.5 μm is approximately 4.9 ± . 1 MHz and 4.5 ± . 1 MHz for a chon-

dron with a thickness of 6 μm. The larger the PCM thickness the greater the shift in

the resonant frequency. Since the thickness of the chondron is not uniform throughout

the cartilage structure or in vivo experiments, sonicating suspended chondrons at a fre-

quency within the range of 4.5 − 4.9 MHz should maximize the beneficial bioeffects

when treating chondrocytes embedded in healthy matrices. However, osteoarthritic

chondrons have a greater impact on the resonant frequency with a larger decrease in

the resonant frequency. Thus knowledge of the patient’s specific properties or condition

is important in designing a specific patient ultrasound regime.

Middle zone ECM (Young’s modulus = 500 kPa)

The frequency versus stored energy density of a chondron embedded in the extracellu-

lar matrix with a stiffness of 500 kPa is shown in Fig. 5. The presence of the ECM

causes an even greater shift towards lower frequencies when compared to a suspended

chondron (Fig. 4) and a suspended chondrocyte. The thickness of the PCM has min-

imal effect on the resonant frequency. It is important to note that linear models, which

is used in this study, results in an infinite peak at the resonant frequency. Although
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there does appear to be an increase in the amount of energy coupled to the cell versus

that of a suspended chondrocyte in Figs. 4, 5 and 6 a nonlinear analysis must be con-

ducted to determine the true limits of the resonant bandwidth and peak. Therefore, the

peak magnitudes will not be discussed further.

Deep zone ECM (Young’s modulus = 2 MPa)

The frequency versus stored energy density of a chondron embedded in an ECM with a

stiffness of 2 MPa is shown in Fig. 6. The thickness of the PCM has a greater effect on

normal healthy cartilage at lower Young’s modulus. A PCM thickness of 2.5 μm leads

to a larger shift to the left than that with a thickness of 6 μm. The thickness does not

impact the resonant frequency in the osteoarthritic conditions. From Figs. 5 and 6, one

concludes that the stiffness of the ECM has minimal effect on the resonant frequency

(comparing mechanical environments of 500 kPa to 2 MPa).

As observed in Figs. 4 and 5 there are peaks in the stored mechanical energy in the

range of 1–1.5 MHz that appear to be dampened in stiffer matrices as seen in Fig. 6.

The stiffness of the ECM increases with depth of articular cartilage and the modulus of

the deep zone is approximately 2 MPa [48, 51]. Thus lower frequencies applied under

the typical ultrasound regime for cartilage restoration would affect the middle zone of

cartilage and have minimal impact on chondrocytes embedded in the deep zone. This

could explain the variable results observed in vivo.

An optimal patient ultrasound regime should be based on the patient specific cartil-

age mechanical properties which is dependent on the surgical techniques involved.

However, the properties are not always available and to physically determine them

would be time consuming. Without the knowledge of the patient specific properties,

applying ultrasound within the range 3.5 − 4.1 MHz for native cartilage should

maximize the ultrasound induced bioeffects throughout the entire depth of the cartil-

age. If a microfracture procedure was conducted than the optimal range would be 4.2–

4.8 MHz, however, if a surgical technique involving fibrin hydrogel was used then the

optimal range is 3.7–4.1 MHz.

The Biot theory involves mechanical properties that are generally not found in literature

such as the drained Young’s modulus, thus the solid phase properties were used when not

available. As a result a parameter analysis was conducted to understand the sensitivity of

the resonant frequency to parameter values. The porosity and radius had the greatest im-

pact on the resonant frequency. The lower the porosity the greater the shift to the left of

the resonant frequency and the larger peaks in the lower frequencies. The larger the ra-

dius the greater the shift to the left of the resonant frequency. However, the smaller the

radius, the greater the peaks are at the lower frequencies as shown in Fig. 7.

Conclusions
We have theoretically proved the resonant frequency hypothesis for cellular de-

formation. LIUS applied at the resonant frequency of the cell will induce deform-

ation magnitudes on the order of those induced by high intensity ultrasound

applied outside the resonant bandwidth. Additionally, we theoretically determined

for the first time the resonant frequency of an in vivo chondrocyte embedded in

its mechanical environment. Throughout literature there is a range of properties

for the PCM and ECM reported, thus the resonant frequency was identified for a
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range of parameters and osteoarthritic conditions. Without the knowledge of

patient specific mechanical properties an ideal frequency range for ultrasound

application to induce maximum bioeffects would be 3.5 − 4.1 MHz in native cartil-

age, 4.2–4.8 MHz when used in conjunction with microfracture techniques or 3.7–

4.1 MHz if a fibrin hydrogel is used.
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