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One of the most important and complex diseases of modern society is metabolic syndrome. This syndrome has not been completely
understood, and therefore an effective treatment is not available yet. We propose a possible stem cell mechanism involved in the
development of metabolic syndrome. This way of thinking lets us consider also other significant pathologies that could have similar
etiopathogenic pathways, like lipodystrophic syndromes, progeria, and aging. All these clinical situations could be the consequence
of a progressive and persistent stem cell exhaustion syndrome (SCES). The main outcome of this SCES would be an irreversible loss
of the effective regenerative mesenchymal stem cells (MSCs) pools. In this way, the normal repairing capacities of the organism
could become inefficient. Our point of view could open the possibility for a new strategy of treatment in metabolic syndrome,
lipodystrophic syndromes, progeria, and even aging: stem cell therapies.

1. Introduction

Metabolic syndrome is recognized today as one of the most
important causes of morbidity and mortality in the modern
world [1, 2]. Metabolic syndrome is characterized by a
variety of symptoms such as obesity with abundant vis-
ceral fat, dyslipidemia, carbon hydrates intolerance, insulin
resistance and eventually type 2 diabetes, development of
arterial hypertension, fat liver disease, sleep apnea, and

atherosclerosis with high incidence of myocardial infarction
and stroke [3–5]. Although many and different preventive
and pharmacological strategies have been applied during the
last two decades, the mortality rate of metabolic syndrome
continues to be unacceptably high [6, 7]. Then, the central
point to consider would be that its critical physiopathogenic
pathway has not been discovered yet. As a consequence, it
has not been possible so far to design the most appropriate
and definitive treatment for it. In this context, it is essential
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to generate a new framework that could explain the main
mechanism of this syndrome development and persistence,
allowing then to an effective and enduring cure.

2. The Cellular Perspective

We propose to consider all these issues from a cellular
perspective, which could open a pioneering vision for the
interpretation and treatment of complex clinical situations
such as metabolic syndrome, between many others. It is
not generally known that metabolic syndrome is linked
to lipodystrophies as much as to obesity [8, 9]. Congen-
ital lipodystrophies (Berardinelli Seip syndrome, Emery-
Dreifuss muscular dystrophy, and Dunnigan-type familial
partial lipodystrophy) and acquired lipodystrophies (HIV-
associated lipodystrophy, cachexia associated with neo-
plasias, among others) are characterized indeed by the
loss of adipose tissue and also by insulin resistance, fat
liver disease, dyslipidemia with hypertriglyceridemia, and
many other manifestations of the metabolic syndrome [10–
12] (Figure 1). In lipodystrophies, there is a continuous
and severe loss of adipocytes by apoptosis leading to an
inadequate metabolism of free fatty acids, generating severe
organic consequences like lipotoxicity, which are closely
related to development of metabolic syndrome [13, 14]. On
the other hand, in obesity, there is also cellular damage
but mainly produced by lipotoxicity, directly related to an
excessive ingestion of calories and fats from the diet and by
an overwhelmed system incapable of properly metabolizing
them [15]. In this situation, hypertrophy and/or hyper-
proliferation of adipocytes would be the only physiological
alleviating mechanism only for a short period of time [16].
Metabolic syndrome, lipodystrophies, and even progeria
and aging could be more accurately explained by cellular
mechanisms rather than by molecular and biochemical ones.

3. The Emergence of Adipocytes and
the Perpetuation of Fat

The adipose tissue comprises one of the largest organs in
the body. Even lean adult men and women have at least
3.0–4.5 kg of adipose tissue, and in individuals with severe
obesity, adipose tissue can constitute 45 kg or more of
body weight. The adipose organ is complex, with multiple
depots of white adipose tissue involved in energy storage,
hormone (adipokine) production, and local tissue archi-
tecture, as well as small depots of brown adipose tissue,
required for energy expenditure to create heat (nonshivering
thermogenesis) [17]. The potential to acquire new fat cells
appears to be a permanent phenomenon in both animals and
humans, before or after birth [18]. Therefore, proliferative
adipocyte precursor cells must stand as ready to respond to
increased demand for energy storage [19]. How adipocytes
(fat cells) develop and where their progenitors come from,
and for how long and under which circumstances they
can provide sufficient support for more fat to be formed
while maybe participating in other body functions, is a

fundamental biological question with important ramifica-
tions for human health and disease. An increase in fat mass
associated with obesity could only result from recruitment
and differentiation of adipocyte progenitor cells. Despite the
recognition of distinct progenitor populations in adipose
tissue, it has been assumed that all white adipocytes and
their progenitors arise solely from cells of mesenchymal
origin [20]. Accumulating evidence suggests that adipocyte
progenitors could proceed from bone marrow cells of mes-
enchymal lineage [21, 22]. Visceral adipose tissue associated
with Metabolic Syndrome is a chemotactic niche, whereby
mesenchymal stem cells can home to and differentiate into
adipocytes to perpetuate its tissue formation [20]. The
intertwined epidemics of obesity and diabetes demands an
improved understanding of adipocytes and its progenitor
cell biology. Adipose tissue mass can expand throughout
adult life. Mesenchymal stem cells with a multilineage
potential have been isolated from human adipose tissue.
Their adipocyte differentiation has been thoroughly studied,
and differentiated cells exhibit the unique feature of human
adipocytes [22]. One paradigm supports the notion that
adipocytes arise from mesenchymal stem cells (MSCs) by
a sequential pathway of differentiation. When triggered by
appropriate developmental cues, MSCs become committed
to the adipocyte lineage. A better knowledge of MSC’s
differentiation pathways will surely allow the design of new
therapeutic strategies for reconstruction of damaged tissues
and for the control or prevention of risks associated with
obesity in humans [17, 23, 24]. This process can be divided
into two related steps: (1) determination, when multipotent
mesenchymal stem cells commit to preadipocytes (these cells
exhibit similar morphology compared to stem cells, but they
are committed to the adipogenic lineage and are no longer
able to transform into osteoblasts, myocytes, or chondrocytes
and (2) differentiation, when preadipocytes become mature
fat cells. This mechanism is tightly regulated at a molecular
level by several transcription factors. Several members of
the MAPKinases, bone morphogenic proteins, wingless-
type MMTV integration site (Wnt) proteins, hedgehogs,
delta/jagged proteins, fibroblastic growth factors, insulin,
insulin-like growth factors, and transcriptional regulators
of adipocyte and osteoblast differentiation including per-
oxisome proliferator-activated receptor-gamma and runt-
related transcription factor 2 (Runx2) families have been
shown to modify the steps of adipogenesis [23]. Despite
the well-documented differences in the metabolic and bio-
chemical properties among anatomically distinct depots of
fat, the visceral fat contains adult mesenchymal stem cells
with developmental potential similar to those isolated from
subcutaneous fat in humans [21]. Thus, adipose precursors
cells consist of fibroblast mesenchymal like multipoten-
tial stem cells generally termed adipose-derived stem cells
(ASCs) and exhibit preadipocyte characteristics. They can
be isolated, propagated in vitro, and induced to differentiate
into adipocytes [25–27]. The adipose vasculature appears
to function as a progenitor niche and may provide signals
for adipocyte development. Stromal-vascular cells of adipose
tissue are adipose precursor and its differentiation in vitro
correspond to the sequence: adipoblast (unipotential cells),
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Berardinelli-Seip congenital
lipodystrophy:
Hypercholesterolemia, insulin resistance,
diabetes, cardiac hypertrophy, 
muscular stiffness.

Lipodystrophies

Genetic
Acquired

Emery-Dreifuss muscular dystrophy:
Joint contracture, muscle
weakness, dilated cardiomiopathy. 

Familial partial lipodystrophy of the
Dunningan type:
Atherosclerosis, Type 2 Diabetes, 
insulin resistance, 
Hypertriglyceridaemia.

Mandibulo-acral dysplasia:
Mandibular problems, insulin resistance,
articular contracture.

Hutchinson-Gilford Progeria syndrome:
Premature ageing, defects of the
mesenquimal tissue, heart attack, and stroke.

Lipodystrophy syndrome
asociated with antiretroviral
therapy:
Hypercolesterolemia, insulin
resistance, loss of peripheral fat.

Caquexia associated to cancer:
Anorexia, anemia, fat
mobilization.

Ectopic fat.
Selective loss of adipose tissue.
Insulin resistance. 
Hypertriglyceridaemia.
Diabetes II.
Cerebrocardiovascular risk.

Figure 1: Lipodistrophic syndromes.

“Stem cell exhaustion
syndrome hypothesis” 

Progressive loss of MSCs 

Impairment of normal
regeneration 

Irreversible damage of organs
and tissues 

Development of ageing and
disease 

Figure 2: Stem cell exhaustion syndrome hypothesis.

commitment preadipose cell (preadipocyte), terminal differ-
entiation immature adipose cell, and terminal differentiation
mature adipose cell (adipocyte) [28]. Also bone marrow
progenitor- (BMP-) derived adipohematopoietic cells via
the myeloid lineage have been mentioned as the adipocyte

progenitors cells. In any way, these BMP-derived adipocytes
could accumulate with age and occur in higher numbers
in visceral than in subcutaneous fat, and in female versus
male mice. BMP-derived adipocytes may, therefore, account
in part for adipose depot heterogeneity and detrimental
changes in adipose metabolism and inflammation with aging
and adiposity [29]. The development of obesity not only
depends on the balance between food intake and caloric
utilization but also on the balance between white adipose
tissue (WAT), which is the primary site of energy storage,
and brown adipose tissue (BAT), which is specialized for
energy expenditure. Considerable evidence now supports the
view that BAT and WAT are distinct organs. In addition,
some sites of white fat storage in the body are more closely
linked than others to the metabolic complications of obesity,
such as diabetes. White areas contain a variable amount
of brown adipocytes, and their number varies with age,
strain, and environmental conditions. Recent data have
stressed the plasticity of the adipose organ in adult animals.
Indeed, under peculiar conditions fully differentiated, white
adipocytes can transdifferentiate into brown adipocytes, and
vice versa. The ability of the adipose organ to interconvert its
main cytotypes in order to meet changing metabolic needs
is highly pertinent to the physiopathology of obesity and
related to therapeutic strategies. The differentiation between
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MSCs
bone marrow

pool

Fat pool

Endometrial
pool 

Peripheral 
blood pool

Endothelial 
vascular pool 

Amniotic
fluid  pool  

Other tissue
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cord pool  

Figure 3: Mesenchymal stem cells pools as a coordinated network.

white adipocyte and brown adipocyte lineages occurs in the
earliest steps of the fetal development, and both phenotypes
are acquired independently [30–33]. Fetal mesenchymal
stem cells (fMSCs) can differentiate into brown and white
adipocytes. The expression of key adipocyte regulators and
markers during differentiation is similar to that in other
human and murine adipocyte models, including induction
of PPARγ2 and FABP4. The preadipocyte marker, Pref-
1, is induced early in differentiation and then declines
markedly as the process continues, suggesting that fMSCs
first acquire preadipocyte characteristics as they commit
to the adipogenic lineage, prior to their differentiation
into mature adipocytes. After adipogenic induction, some
stem cell isolates differentiated into cells resembling brown
adipocytes and others into white adipocytes. Importantly,
these cells exhibited elevated basal UCP-1 expression. Thus,
fMSCs represent a useful in vitro model for human adipo-
genesis and provide opportunities to study the stages prior
to commitment to the adipocyte lineage. They also offer
invaluable insights into the characteristics of human brown
fat [34].

4. The Stem Cell Exhaustion Syndrome

In order to self-repair, living organisms have stem cells in
central and peripheral locations which can be attracted to
sites of injured tissues by “alarm signals” [35]. In this way,
these cells proliferate, migrate, and accumulate in those dam-
aged sites [36]. If this situation of “alarm” perpetuates, stem
cells could be permanently exhausted from their original
locations leading to irreversible disease (Figure 2). Basically,
it could be a matter of stem cell quantity and effective
availability mainly related to production and consumption
in a certain time point when active regeneration is needed.
The expected consequences of this situation could be the
lack of an appropriate number of stem cells for further
tissue replacement and regeneration and eventually the
development of disease and aging. It is not completely clear
yet if there could be a possible established, coordinated
network or a dynamic connection as well as a biological
equilibrium between all of these locations. This could finally
lead to a constant traffic and exchange of stem cells among
all of them in order to provide a perfect mechanism of stem
cell provision and replenishment for normal repairment and

the perpetuation of complex living organisms on Earth.
Although there is not a definitive evidence for a possible
alteration of this dynamic, involving an abnormal stem
cell depletion kinetic mechanism, it could be interesting to
hypothesize about these cell pathways that could open a
new era of understanding of disease and therapeutics. For
example, we could think that any alteration of this stem
cell homeostasis by constant and repetitive trauma, physical
hyperactivity, and chronic disease could provoke a persistent
disequilibrium inside all these reserve locations. This could
promote an irreversible and premature stem cell exhaustion
syndrome (SCES), being impossible then for the organism to
self-repair and survive.

5. MSCs: The Exhausted Stem Cell?

Tissue and organ damage is constantly taking place in
living organisms as a consequence of life itself, diseases,
and trauma [37]. A decrease in the endogenous pools of
progenitor cells, such as CD34 stem cells and endothelial
progenitor cells (EPCs), has been demonstrated to contribute
and accelerate the course of cardiovascular disease seen
in metabolic syndrome. Several experimental studies have
indicated a relevant contribution of these progenitor cells
in reendothelization at sites of endothelial injury and in
neovascularization at sites of ischaemia. The extent of the
EPC pool negatively correlates with cumulative indexes of
cardiovascular event risk, such as the Framingham risk
score, and multiple risk factors act synergically in reducing
EPC, increasing the risk for cardiovascular disease [38–
40]. Mesenchymal stem cells (MSCs) are probably the most
important specialized repairing cells [41, 42]. MSCs are adult
stem cells with the capacity and potential of differentiation
towards multiple tissue lineages such as adipose, bone,
muscle, cartilage, skin, nervous system, and endothelium
between many others [43, 44]. They can produce a large
variety of growth factors, and they have immunomodulatory
properties that allow them to avoid the immune rejection
response when transplanted intra- and even interspecies
[45, 46]. Although they reside mainly in the bone marrow
(BM) and share with hematopoietic stem cells a similar
microenvironment, they are phenotypically very different to
them [47, 48]. Also, during the last few years, it has been pos-
sible to isolate them from many other sites, like dental pulp,
endometrium, peripheral blood, umbilical cord, adipose tis-
sue, and even amniotic fluid [49, 50]. Recent studies have also
obtained MSCs from vascular vessels, being proposed that
they could be found in the perivascular space throughout the
whole body [51]. We will refer to all these precise anatomical
locations where MSCs are stored as “MSCs pools,” being
the bone marrow the central MSCs pool and the others
the peripheral ones (Figure 3). In these pools, MSCs usually
stay in a quiescent and undifferentiated state until they are
called to proliferate and mobilize by “alarm signals” such
as proinflammatory cytokines like INF-α and IL-6 among
others and many growth factors like GM-CSF [52–54]. Then,
it is possible to think that because of the supercaloric food
intake of obese patients with metabolic syndrome, a high
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Lipotoxicity

Metabolic  syndrome

Obesity:
overconsumption

of MSCs

Lipodystrophy:
apoptosis of MSCs

Figure 4: Metabolic syndrome in obesity and lipodistrophy.

degree of proinflammatory substances could be produced
and released in different microenvironments, specially the
abdominal visceral fat one [55]. This could only lead to
the perpetuation of this inflammatory state with a constant
emission of “alarm signals,” proliferation, mobilization, and
finally an endless sequestration of MSCs into the visceral fat
depot [56]. Recently, a research group has found evidence
of this adipotaxis phenomenon in an animal model, where
the MSCs of the BM migrated attracted to the fat depot by
TNF-Alfa [57]. This mechanism could give support to the
idea of an abnormal migration of MSCs, in patients with
metabolic syndrome, leading at some point to the mentioned
irreversible impairment of tissue repairment (Figure 4).

6. MSCs Exhaustion and Aging

Metabolic syndrome incidence increases with the advance-
ment of age [58, 59]. Human aging is another example
of organ and tissue deterioration that could have a stem
cell deficiency, very similar to that observed in metabolic
syndrome. The classical human model of premature aging
is the Hutchinson-Gilford Progeria syndrome (HGPS) [60,
61]. Progeria manifestations start at 18 months of age
approximately, with alopecia, skeletal defects, distinctive
facial appearance, and lipodystrophy [62, 63]. These patients
also develop dyslipidemia and arterial hypertension [64].
Almost all of them have atherosclerosis as well as cardio and
cerebrovascular disease by 13 years of age with premature
death [65]. Progeria is produced by a mutation in the gene
that codes for the protein of nuclear membrane Lamin A
[66]. This mutation makes MSCs sensitive to apoptosis [67].
This issue could explain why many tissues of mesenchymal
origin are specially affected in these patients [68]. HGPS is a
pathology of segmental nature, in which the different tissues
and organs exposed to a variety of different conditions such
as mechanical stress are affected differently [69]. Tissues with
different turnover rates would require a different number of
stem cells for replacement. For example, hair and muscle cells
should need to be replenished by MSCs more frequently than
central nervous system ones [70]. In patients with progeria,
stem cells are at least in principle irreversible damaged,
suffering from early apoptosis [71]. Young peripheral tissues,
especially those in continuous turnover, are probably more
restricted of new replacing stem cells. In this way, progeria
patients usually suffer as it was said from alopecia, vascular

Obesity

Ageing Progeria

Lipodistrophy

Stem cell exhaustion
syndromes?

Figure 5: Pathologies propably caused by a stem cell exhaustion
syndrome.

damage, and premature death by myocardial infarction
or stroke [72, 73]. On the other hand, tissues with a
slower turnover rate, such as central nervous system, suffer
less notorious and more prolonged deterioration. Their
pathology is not seen at all in progeria patients as they
do not live long enough to be able to evidence damage of
these tissues [74, 75]. An excessive cell turnover without the
possibility of a concomitant cell replenishment mechanism,
could lead to a slow but progressive deterioration usually
seen in living organisms and known as “normal ageing”
[76]. From this perspective, all these phenomena could
be very similar to those observed in metabolic syndrome,
lipodystrophic syndromes, and progeria. There is evidence
that TNF-alfa progressively increases with age in adipose
tissue which also rearranges itself and becomes dysfunctional
with an inadequate response to insulin and increased
production of cytokines [77]. This de novo proinflammatory
generated environment is followed by a highly sensitive
state of adipocytes to lipotoxicity [78] and a possible
sequestration of a large number of MSCs especially from
the BM central pool, which at the same time becomes
progressively exhausted with the passing of time. “Normal
aged” BM can be seen infiltrated by fat depots with a very
reduced number of MSCs, having the significance of this
phenomenon still unknown to date [79] (Figure 5). In other
words, all these clinical situations could be explained by a
stem cell exhaustion syndrome (SCES) causing an impaired
regenerative potential.

7. The New Paradigm: Cell Therapy

Stem cell restoration has already demonstrated therapeutic
activities in certain systems. For example, it is known that
after a stroke, endogenous stem cells are mobilized from
the bone marrow in an attempt to heal the damaged
neural tissue. Most interestingly, a recent study demonstrated
that stroke patients who exhibit a high level of stem cell
mobilization have better functional outcomes as opposed to
patients with a lower mobilization [80]. Restoration of stem
cell function has been studied in aging, in which senescent
endothelium can be replaced by the addition of young
endothelial progenitor cells. In animal models, this has
been shown to “reverse” endothelial aging [81]. In patients
administered GM-CSF in order to mobilize autologous bone
marrow stem cells, improvements in endothelial function,
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as demonstrated by increased responsiveness of flow, have
also been proven [82]. More “natural” means of mobilizing
stem cells into the periphery include the use of food
supplements. It has been reported that administration of
“StemEnhance,” a commercially available food supplement
made from cyanobacterium Aphanizomenon flos-aquae,
induces a transient 18% increase in circulating CD34 cells
over the period of one hour after consumption [83].
Another commercially available food supplement, “Stem-
Kine,” has been demonstrated to induce a 50–100% increase
of CD34 and endothelial progenitor cells in circulation
for the observation period of over 2 weeks [84]. Given
that similar increases in circulating stem cells have been
associated with “health-inducing” activities such as exercise
[85] and smoking cessation [86], it may be rationale to
examine therapeutic effects of these supplements using
functional endpoints. One critical point to consider is
whether mobilization would accelerate exhaustion of stem
cells in the bone marrow compartment. Given expression
of telomerase in the bone marrow hematopoietic stem cells
and its ability to be modulated by nutritional [87] and
antioxidant interventions [88], it appears that this problem
may be at least theoretically addressed. If a stem cell depletion
kinetic abnormality (MSCs exhaustion syndrome) is true,
then a stem cell therapy approach could be feasible. For
instance, ex vivo expansion and reinfusion of MSCs from
the patient’s own or from allogeneic donors, as evidence
shows that MSCs are not immunogenic at all [44], have been
already tested in many clinical trials for different pathologies
[89–93]. In the best case scenario, MSCs therapy could retard
the onset of irreversible lesions associated with metabolic
syndrome or at least partially improve those already present
in the organism. Also, the development of bioartificial
implants such as in the way of a fat transplant (autologous,
allogeneic, or even xenogeneic) could be envisioned [94–96].
This could be an innovative way to provide a new pool of
MSCs to the patients [17, 97]; a permanent fat transplant
such as the one proposed here could also be enriched with
ex vivo expanded MSCs, or even those previously made
differentiated into brown adipocytes, becoming in this way
an immune privileged niche for the cotransplantation and
implantation of different kind of allogeneic cells, tissues, and
organs needed for the better functioning and regeneration
of living organisms, without the danger of rejection or the
need of prolonged administration of immunosuppressive
drugs [44, 98–101]. Adipose tissue transplantation has
primarily been used as a tool to study physiology and
for human reconstructive surgery [102]. Transplantation
of adipose tissue is, however, now being explored as a
possible tool to promote the beneficial metabolic effects of
subcutaneous white adipose tissue and brown adipose tissue,
as well as adipose-derived stem cells [103]. Data suggest
that the upregulation of brown adipose tissue activity can
contribute to a lean and metabolically healthy phenotype in
humans; these findings also suggest that the transplantation
or stimulation of brown adipose tissue might be used
as a therapeutic approach to increase energy expenditure
and lower white adipose tissue mass and improve the
overall metabolism, also is used as a potential induction

of beneficial metabolic effects and treatment of diseases,
such as obesity, lipodystrophy, or cardiovascular disease. As
the amount of endogenous brown adipose tissue is very
limited, identification and manipulation of critical regulators
of brown adipose tissue differentiation have been used to
engineer brown adipose tissue in order to induce beneficial
effects [104, 105]. Ultimately, the clinical applicability of
adipose tissue transplantation for the treatment of obesity
and metabolic disorders will reside in the achievable level
of safety, reliability and efficacy compared with other
treatments [17]. In this way, cell therapy undoubtedly will
be the most promising therapeutic strategy of this century
not only for metabolic syndrome, but also probably for
lipodystrophies, progeria, aging, and many other diseases
[106–110]. Finally, beyond generating new pharmacological
and natural healthy nutritional regimens, we should start
thinking in the provocative frontiers of stem cell mechanisms
that we must necessarily explore in order to decrease, in the
next few years, the deleterious effects of the above-mentioned
pathologies. If a “stem cell exhaustion syndrome” could be
the cause of all these morbid states, we will surely be able to
generate the best modalities to prevent and treat them. Also,
may be defeating at last, the erroneous idea of irreversible
aging.
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[10] J. Capeau, J. Magré, O. Lascols et al., “Diseases of adipose
tissue: genetic and acquired lipodystrophies,” Biochemical
Society Transactions, vol. 33, no. 5, pp. 1073–1077, 2005.

[11] K. A. Lichtenstein, “Redefining lipodystrophy syndrome:
risks and impact on clinical decision making,” Journal of
Acquired Immune Deficiency Syndromes, vol. 39, no. 4, pp.
395–400, 2005.

[12] V. Simha and A. Garg, “Inherited lipodystrophies and
hypertriglyceridemia,” Current Opinion in Lipidology, vol. 20,
no. 4, pp. 300–308, 2009.

[13] J. Capeau, C. Vigouroux, J. Magré, O. Lascols, M. Caron,
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