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Commercially available poly(propylene)imine (DAB-Am-32 and DAB-Am-64)
dendrimers were used as single-molecule templates to tailor the porosity of silicas via
a nonacidic sol-gel method. X-ray diffraction on both the as-prepared (oven-dried at
373 K) and the calcined (833 K) materials revealed that modest contraction took place
on template removal and that the cavities created did not achieve three-dimensional
ordering under the current synthesis conditions. Transmission electron microscopy of
“Pt-stained” samples supported this picture. A modified Horvath–Kawazoe analysis of
the argon adsorption isotherms indicated that DAB-Am-64 is a much more effective
template than DAB-Am-32. Pyrolysis and oxidation protocols for template removal are
also presented.

I. INTRODUCTION

The use of micelles as templates to impart mesoporos-
ity in silicas and aluminosilicates1,2 and other oxides3–8

is well documented. Based on the vast majority of avail-
able literature on the subject, it appears that alkylamine
micelles are arguably the most suitable candidates for
this task. From a fundamental viewpoint, it seems inter-
esting to attempt similar materials syntheses using single
polyamine-type macromolecules as porogenic agents.
Molecular imprinting is a particularly difficult to task
with inorganic substrates. There is some evidence for the
imprinting of silica,9 Al3+-doped silicas,10,11 and tita-
nia.12 Effective compounds to produce molecular im-
prints generally have stiff functional groups (aromatic,
carbonyl); that is, multiple bonds that hinder internal ro-
tations making the structure rather rigid and thus suitable
for imprinting. Templates, on the other hand, are not
required to produce molecular recognition sites. Rather,
it is the generation of cavities and/or channels of con-
trolled size that is considered sufficient to achieve “tem-
plate” status.

This paper presents and discusses data on the use of
poly(propylene)imine (DAB-Am-n) dendrimers as
single-molecule porogens for sol-gel-derived silicas.

Based on an extensive literature search, we found no
precedent for the use of DAB-Am-n dendrimers to pro-
duce silicas with controlled pore sizes. Poly(amido-
amine)dendrimers (PAMAMs), on the other hand, have
been used for self-assembly purposes in oxide, hybrid
(organic/inorganic), and metallic materials.13–18 In fact,
we have recently reported on the use of PAMAM 4.0 as
a template to produce porous silicas.18 However,
PAMAM 4.0 collapses upon heating, which results in
pores that are significantly smaller than the PAMAM
template diameter.18 Additives of small molecular sizes
such as D-glucose have also been used effectively to
impart mesoporosity in sol-gel materials.19 Very re-
cently, Kriesel and Tilley20 produced carbosilane den-
drimer sol-gels. The high silicon content of the
dendrimers used by Kriesel and Tilley should prevent the
generation of pores by high-temperature calcination, be-
cause Si atoms cannot be removed by oxidative thermal
treatments. On the other hand, when a dendritic molecule
that consists of only C, N, and H atoms is used as tem-
plate, only gaseous products should be expected during
the combustion process. Thus, our strategy is to use a
silicon alkoxide, such as tetraethylorthosilicate (TEOS),
as the Si source to generate the pore walls, and a com-
bustible dendrimer as the template material.

Figure 1 shows a planar depiction of the so-called
DAB-Am-32 poly(propylene)imine dendrimer. It has a
1-4 diaminobutane core (referred to as the “generation 0”a)Address all correspondence to this author.
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center), which branches out through its terminal nitrogen
atoms via addiction of –(CH2)3N4difunctional building
blocks. DAB-Am-32 is a “generation 4” poly(propyl-
ene)imine dendrimer; i.e., there are four generations of
branches, and the outermost shell is composed of 32
primary amino groups. In a recent communication, we
reported on the use of the largest commercially available
member of this dendrimer family, namely DAB-Am-64,
for the preparation of mesoporous silica with TEOS as
the source of Si, and HCl (0.12 N) as the water/
hydrolysis-catalyst source.21 The DAB-Am-64 molecule
having a total of 126 N atoms (64 primary amino groups
in its outermost shell), the low acidity levels adopted in
our original preparation protocol21 (approxiately one pro-
ton per dendrimer molecule) suggest that the hydrolysis
of the Si alcoxide should proceed via basic catalysis, as
a result of the intrinsic basicity of the soluble polyamine
macromolecules. Thus, a synthetic route in which no acid
is added was adopted in this study to confirm that similar
materials can be synthesized without the aid of HCl or
any other acid source. This contribution, in addition to
demonstrating that DAB-Am-n-based mesoporous mate-
rials can be prepared in the absence of an acid catalyst,
also introduces detailed characterization of the materials
by mass spectrometry and electron microscopy. Both
DAB-Am-32 and DAB-Am-64 are used as templates in
this study, and the resulting pore diameters are discussed
in light of x-ray diffraction (XRD), argon physisorption
at low temperatures, and transmission electron micros-
copy (TEM) of “platinum-stained” samples. In this con-
tribution, the pyrolysis and oxidation behavior of these
new materials is also introduced for the first time.

One additional advantage of polyamine dendrimers
that we will exploit in the future is that they are macro-
chelating agents for a number of metals with strong af-
finity for amine ligands, such as Pt, Cu, Pd, Co, etc.
Thus, we view them as excellent vehicles for the synthe-
sis of glasses with metal, or metal oxide nanoparticles
with well-defined diameters.

II. EXPERIMENTAL

XRD measurements were carried out on a computer-
interfaced Rigaku (The Woodlands, TX) instrument with
a Cu Ka source. Electron microscopy studies were con-
ducted in the bright-field mode with a JEOL JEM2010
(Sheboygan, WI) microscope at 200-keV beam energy.

The Ar adsorption isotherms were obtained at 77 K on
a computer-interfaced custom-built adsorption line at Po-
rous Materials, Inc., Ithaca, NY. We did not perform
desorption hysteresis studies because, as shown later, our
materials have average pore sizes that are at the lower
limit of those required for such analysis. Thus, a more
accurate model that takes into account localized adsorp-
tion phenomena was adopted. Data analysis was done
using the equations proposed by Chen and Yang22 in
the form of a Fortran 77 code to model the adsorption
of gases in spherical pores by a modified Horvath–
Kawazoe23 approach. A coverage-dependent term, as
proposed by Chen and Yang,22 was incorporated into the
modeling of spherical cavities. Polarizability and mag-
netic susceptibility data for both Ar and the oxide ion
were taken from the literature.22 In our data analysis
procedure, the only parameter that was slightly changed
was the Ar polarizability (from 1.63 × 10−24 to 1.0 ×
10−24 cm3) to reproduce accurate pore sizes of zeolite
reference samples such as 5A and Y.

TEOS (1.02 g) was contacted with 1.60 g of a 1-pro-
panol/DAB-Am-64 (or 1-propanol/DAB-Am-32) mix-
ture consisting of 0.25 g of dendrimer per gram of
solution. Anhydrous methanol (0.57 g) was also incor-
porated into the TEOS/dendrimer/1-propanol mixture
prior to adding 0.25 g of deionized water. Once placed in
a closed container at 343 K, the aging time for this mix-
ture was set at 12 h. The resulting precipitate was oven
dried at 373 K for 20 h. Approximately 0.3 g of solid
were heated in a1⁄2-in-inner diameter (ID) quartz U-tube
under flowing nitrogen for 1 h at 803 K. After allowing
the sample to reach room temperature again in a He
atmosphere, the solid was heated under flowing air from
room temperature to 833 K. This temperature was main-
tained for another 2 h. The resulting white powders made
from DAB-Am-64 and DAB-Am-32 were labeled as
NU-1 and NU-2, respectively. Our selection of pretreat-
ment temperatures was based on extensive preliminary
work, by means of mass spectrometric detection of de-
composition gases (as discussed in Sec. III), to address the

FIG. 1. A fourth-generation amine dendrimer structure (DAB-Am-
32). Outer N-shell is saturated with hydrogen as terminal amino groups
(not shown).
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issue of efficient removal of all carbonaceous matter
from the materials surface without the unnecessary use of
unreasonably high temperatures. For TEM analysis,
about 30 mg of the calcined materials were impregnated
to incipient wetness with a saturated H2PtCl6 aqueous
solution, and subsequently reduced under flowing hydro-
gen in a1⁄4-in-ID quartz U-tube at 723 K for 2 h. The
resulting (Pt-stained) powdered sample was suspended in
isopropanol, and a drop of this suspension was allowed to
evaporate onto a standard TEM holey carbon grid.

Temperature-programmed pyrolysis and oxidation
(TPP and TPO) studies were conducted using a
computer-interfaced MKS Residual Gas Analyzer. A to-
tal of 12 m/e signals were followed The oven-dried pow-
der (50 mg) was placed in a1⁄4-in-ID quartz U-tube, and
sandwiched between two quartz wool plugs. The quartz
U-tube also contains a preheating bed comprised of low
surface area, inerta–Al2O3 (1–2 m2/g) granules placed
upstream to the sample. Linear temperature ramps were
applied. A K-type thermocouple was inserted through a
septum secured by a Cajon-type fitting at the U-tube
outlet. The tip of the thermocouple remained in contact
with the outermost quartz wool plug, which is about
2 mm above the sample. Flowing ultrahigh-purity helium
was used for the TPP cycle. The temperature was ramped
from 298 to 803 K in 3 h, followed by a plateau of 1 h at
the same temperature. Instrument-grade air was used for
the TPO cycle. This was carried out after the pyrolyzed
sample was cooled to room temperature under He. On
switching to air and flushing the sample flow cell for a
few minutes, the temperature was ramped again from
ambient to 833 K in 3 h, and subsequently kept at the
same value for another 2 h. The TPP and TPO protocols
mimic those used for the materials gas treatments, and
their main goal is to allow us to gain some insight into the
decomposition patterns of the template-loaded precursors.

III. RESULTS AND DISCUSSION

Figures 2 and 3 show the mass spectrometric analysis
of the TPP and TPO gaseous effluent for these materials.
The NU-2 and NU-1 materials produce remarkably simi-
lar TPP and TPO patterns, and it is therefore unnecessary
to show results for the two TPP and the two TPO runs.
Figure 2 shows all the detectable TPP signals.

After drying at 373 K, a sol-gel material is normally
expected to retain a fraction of unreacted alkoxy
groups.24 This typically leads to reactive desorption of
alkoxy moieties, as evidenced by m/e 41 (allyl cation
fragment, olefins), and 28 (carbon monoxide). Water also
accompanies the formation of olefins, because the former
is a co-product of the alkoxy elimination process. The
issue of TPP patterns of sol-gel-derived glasses and the
m/e assignments is discussed in more detail elsewhere.24

M/e 41 primarily tracks olefins larger than ethylene (this
is shown by the occurrence of m/e 27). The sol-gel sur-
face undergoes transetherification, despite the fact that
the Si alkoxide precursor employed contains only ethoxy
groups, because propanol and methanol are also present
during gelation. Reversibly adsorbed water desorbs at
around 470 K, but it takes the full ramp-plateau cycle to
produce a stable (pyrolyzed) material. Nonreactive alco-
hol desorption appears to be of relatively minor impor-
tance (m/e 31 is typically the strongest alcohol signal).
M/e 30 is not representative of any conventional hydro-
carbon cation formed at the mass spectrometer (MS) quad-
rupole. Rather, this species must correspond to either
nitrous oxide, or to the CH24N+H2 fragment from the
dendritic structure. Nitrous oxide formation would in-
volve a bimolecular decomposition process, because the
only sources of oxygen atoms are the unreacted alkoxy
moieties. Regardless of the identity of the desorbed ni-
trogen-containing species, our results indicate that nitro-
gen from the dendrimer template is lost prior to
calcination. Desorption of saturated carbonaceous resi-
dues (m/e 29) seems rather negligible, which implies that
olefin signals also arise from the decomposition of the
dendrimer template.

FIG. 2. Temperature-programmed pyrolysis of NU-2.
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In summary, the chemical pathways shown below
summarize our observations from Fig. 1 on the pypro-
lytic decomposition of our materials:

∼O–CH2–CH2–R (surface alkoxy groups, R: alkyl, H)→
CH24CH–R (olefins) , (1)

∼O–CH2–CH2–R (surface alkoxy groups, R: alkyl, H)→
CO (from autoredox reactions) , (2)

DAB-Am-n dendrimer→ CH3NH2 and/or NO . (3)

During the TPO cycle, only carbon dioxide and water
were detected. Again, the full oxidation cycle is required
to remove all carbon-containing matter. Pyrolysis and
oxidation cycles involving lower temperatures are thus
not recommended.

Figures 4 and 5 show the XRD patterns of NU-1 and
NU-2 before and after calcination. The absence of
higher-order reflections suggests that the formation of a
three-dimensional arrangement of uniform cavities did
not take place. On the other hand, it is interesting to
compare the Bragg x-ray coherent lengths derived from

the centroids of the low-angle XRD reflections, and data
on experimental and theoretical diameters of DAB mol-
ecules in diluted D2O solutions25 (see Table I). Unlike
PAMAMs, DAB-Am-n dendrimers do not appear to ag-
gregate in solution.25 “Stretched-out,” or “dense-shell,”

FIG. 3. Temperature-programmed oxidation of pyrolyzed NU-1.

FIG. 4. XRD patterns of NU-1 and NU-2 prior to pyrolysis and
calcination.

FIG. 5. XRD patterns of pyrolyzed NU-1 and NU-2 after calcination
at 833 K.
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conformations are obtained by molecular-dynamics
simulations at the consistent valence force field “repul-
sive” (CVFFREP) level of theory. Figure 1 is indeed a
dense-shell representation of DAB-Am-32; i.e., the den-
drimer branches extend toward the “shell,” or the outer
surface of the molecule, reaching their maximum length
because their C,N backbones adopt an all-anti conforma-
tion. The net effect is that terminal groups crowd the
shell. On the contrary, when extensive back folding of
the branches takes place, the dendrimer molecule de-
creases its diameter and increases its density toward the
center. The so-called “dense core” structure is thus formed.

The CVFFREP results shown in Table I from Ref. 25
only consider repulsive forces between nonbonding
atoms. On the other hand, structures much closer to the
so-called dense core limit arise from calculations using
the consistent valence force field “complete” (CVFFC)
approach. Indeed, rather broad radial density distribution
functions for these dendritic species are predicted by
theory.25 This is a key property of DAB-Am-n dendrim-
ers; it is likely impossible that the sol-gel-trapped den-
drimers adopt either a dense shell or a dense core
conformation exclusively. Thus, the flexibility of den-
drimers should ultimately broaden the pore-size distribu-
tions (PSDs) of the calcined materials. However, it
appears that once trapped in a sol-gel matrix, conforma-
tions close to the dense core limit are preferred, judging
from our XRD and adsorption (see below) results. Ex-
perimental data on the effective diameter of these two
dendrimers in solution25 also cluster at or above the pre-
dicted XRD distances in the NU-1 and NU-2 materials
that still have the dendritic molecules trapped in the
alcogel. The importance of a comparison between theo-
retical and experimental data on DAB-Am-n diameters in
solution, and XRD coherent lengths and pore diameters,
lies in that the exercise represents a check for the ability
of these molecules to utilize their molecular volume ef-
fectively to imprint well-defined cavities of in oxide ma-
terials. On pyrolysis and calcination, gel densification
and loss of organic matter appears to cause further
shrinkage, and XRD predicts that cavities with diameter
around 3 Å smaller than those of the trapped dendrimers

are formed. Interestingly, we noticed no significant dif-
ference in light of XRD data between this NU-1 prepa-
ration, and that reported earlier using HC1 as catalyst for
alkoxide hydrolysis. As mentioned above, the influence
of adding roughly one proton per dendrimer molecule on
template diameter is expected to be very small. A broad
XRD signal around 2u ∼ 22° (not shown) is indicative of
the amorphous nature of these materials.

The Ar Brunauer–Emmett–Teller analysis (BET)–
specific surface areas of NU-1 and NU-2 were found to
be 767.4 and 585.1 m2/g, respectively. A blank material
(i.e., a sample prepared in the absence of dendrimers) had
a BET-specific surface area of 241.0 m2/g, and a very
broad pore-size distribution in the 8 to 16 Å range. The
Ar adsorption isotherms, and the modified Horvath–
Kawazoe PSD curves for NU-1 and NU-2 are shown in
Figs. 6 and 7, respectively. The scattering of data in the
first derivative curves is due to the fact that a good num-
ber of isotherm data points were taken too close to each
other, thereby exaggerating the error associated with dif-
ferentiation. Nevertheless, two features in Fig. 7 are im-
mediately apparent. First, for Ar adsorption under the
adopted modified Horvath–Kawazoe formalism, the PSD
of NU-1 peaks at about 27 Å. This is approximately 2 Å
above the value predicted by XRD, but it must be real-
ized that the constraint imposed by the requirement of
strict adherence of the adsorption data to a spherical pore
model could well be responsible for this small discrep-
ancy. Second, NU-2 has a broader PSD, which roughly
centers at about 17 Å. There is apparently little doubt
that the largest dendrimer effects the formation of meso-
sized cavities. The PSD curve of NU-1 lies well above
those expected for microporous silicas, which are nor-
mally centered around 16 Å.26 On the other hand, the
breath of the PSD of NU-2 suggests that DAB-Am-32,
being more flexible than its larger counterpart, with a
sterically less-impeded (crowded) outermost shell, is
relatively less effective as template under the current
synthesis conditions. The net effect of adding one more
“generation” of branches to DAB-Am-32 (see Fig. 1) to
form DAB-Am-64 would be the crowding or densifica-
tion of the outer shell. The low-angle XRD pattern of

TABLE I. Calculated XRD distances (L) and experimental and theoretical DAB-Am-32 and DAB-Am-64 diameter (D).

Material L373K L833K DSANS
a Dm

b DCVFFC
c DCVFFREP

d

NU-1 27.7 24.8 ??? ??? ??? ???

DAB-Am-64 ??? ??? 27.8 39.6 25.0 31.8
NU-2 23.4 20.3 ??? ??? ??? ???

DAB-Am-32 ??? ??? 23.2 31.2 20.0 25.8

All parameters reported in angstroms. Experimental values for pure dendrimers are in diluted D2O solutions.
aSmall-angle neutron scattering, from Ref. 25.
bHydrodynamic (viscosity) measurements, from Ref. 25.
cConsistent valence force field (CVFF) in which both coulombic and van der Waals interactions between nonbonding atoms are considered (data from Ref.25).
dCVFF in which only repulsive forces between nonbonding atoms are considered (data from Ref. 25).
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NU-2 probes only a fraction of the pores, namely those of
uniform size, which are the only ones capable of gener-
ating the occurrence of x-ray coherent lengths. In addi-
tion, note that the low-angle XRD peak in NU-2 is
weaker and broader than that of NU-1, both before and
after calcination. Figure 8 suggests an explanation for
this observation: unlike NU-1, the PSD of NU-2 is not
necessarily dominated by the template.

A representative TEM image of Pt-loaded NU-1 is
shown in Fig. 8. The NU-1 particles were found to be
globular, with diameters in the order of 200 to 500 nm.
As mentioned earlier,21 unless a high-Z element “stain”
is used, it is very difficult to obtain information about the
pore structure of these materials by TEM. The cavities
generated by the template effect would have to align in a
single file to form regions of high contrast. This was not
found to be the case. In our previous work,21 we incor-
porated Cu ions during synthesis and TEM imaged the

FIG. 7. Modified Horvath–Kawazoe PSDs of calcined NU-1 and NU-2. FIG. 8. TEM image of Pt-loaded (calcined) NU-1.

FIG. 6. Ar adsorption isotherms of calcined NU-1 and NU-2 at 77 K.
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oven-dried alcogel, which showed highly uniform
Cun

m+/dendrimer complexes trapped in the NU-1 matrix.
In this work, we have used a different approach for a few
reasons, the most important one being our desire to im-
age the materials after calcination. In Fig. 8, trapped Pt
clusters of about the same size as those of the cavity
diameters derived from XRD and physisorption meas-
urements are observed. In a few cases (not shown), we
observed the formation of a small number of larger Pt
particles that had migrated out of the pores and were the
result of relatively unimpeded surface mobility and sin-
tering. Nevertheless, the pore network in these materials
should be relatively open because pyrolysis and oxida-
tion products, as well as Pt species, appear to have dif-
fused well through the NU-1 gel particles.

IV. CONCLUSIONS

In conclusion, a nonacidic sol-gel route for the syn-
thesis of dendrimer-mediated mesoporous silica is dem-
onstrated. To produce a mesoporous material from
DAB-Am-64 with a disordered network of rather uni-
form pores, effective pyrolytic and oxidative decompo-
sition cycles for the resulting dendrimer/sol-gel com-
posites are described. The calcined materials are ideal
guests for well-dispersed transition metal clusters, which
can be produced by conventional incipient wetness of
metal precursors, followed by chemical reduction under
hydrogen at high temperatures. The potential of
dendrimer-loaded sol-gels (i.e., prior to template removal
by calcination) as carriers for occluded metal ion aggre-
gates (synthesis of glasses with optical and magnetic
properties, heterogeneous catalysts, etc.), the use of hy-
drothermal (zeolitelike) materials synthesis routes, and
the extent of pore connectivity, are all important issues
that remain to be addressed.
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