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Research Article

Regional-Based Mitigation to Reduce
Wildlife–Vehicle Collisions

NATHAN P. SNOW ,1,2 Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA

ZHEN ZHANG,3 Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823, USA

ANDREW O. FINLEY, Departments of Forestry and Geography, Michigan State University, East Lansing, MI 48823, USA

BRENT A. RUDOLPH,4 Michigan Department of Natural Resources, Lansing, MI 48909, USA

WILLIAM F. PORTER, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA

DAVID M. WILLIAMS, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA

SCOTT R. WINTERSTEIN, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA

ABSTRACT Vehicular collisions with large ungulates pose serious challenges for managing and conserving
large ungulates throughout the world. Despite the global frequency, mitigation efforts are mostly limited to
localized hotspots and not effective on broad scales. Our goal was to determine whether dynamic, regional
attributes could inform broader focus for mitigation efforts. We applied a spatiotemporal dynamic model to
examine the regional influences on white-tailed deer (Odocoileus virginianus)–vehicle collisions (DVCs)
throughout theMidwest United States from traffic, abundance of deer, and composition and configuration of
the landscape during 2000–2011. The regions included eco-zones representing landscape dominated by
shelter-forage habitats with ubiquitous and abundant distribution of deer (i.e., forest-agriculture matrix),
landscape dominated by agriculture with sparse refugia (i.e., agriculture), and landscape dominated by forests
with seasonal migration for deer (i.e., northern forest). We found little fluctuation in the factors affecting
collisions through time but substantial differences among regions. In the forest-agriculture matrix eco-zone,
fragmentation of the landscape was the most important predictor of collisions. In the agriculture eco-zone,
traffic and abundance of deer best predicted collisions. In the northern forest eco-zone, the predictors of
collisions were variable and likely related to winter severity and deer migration. This research provides new
justification for broadening the focus of current mitigation measures to regional extents. In regions
dominated by forest and agriculture, new policies that reduce habitat fragmentation should be the primary
focus for reducing collisions. Reducing abundance of ungulates will have the most direct effect in regions
dominated by agriculture. Finally, a variety of seasonal and local mitigation measures will be most effective in
northern forests where large ungulates migrate. � 2018 The Wildlife Society.

KEY WORDS accident, collision risk, dynamic process, Odocoileus virginianus, road ecology, spatiotemporal model,
white-tailed deer.

Vehicular collisions with large ungulates such as deer
(Odocoileus spp.), moose (Alces alces), and elk (Cervus
canadensis) are widespread and increasingly pervasive
human–wildlife interactions throughout North America
and Europe (Bruinderink and Hazebroek 1996, Seiler 2004,
Bissonette et al. 2008, Conover 2010). Since 1990, human
fatalities from these collisions (mostly deer) have more than

doubled (Sullivan 2011). Numerous ungulates are killed,
with an estimated 92% mortality rate following collisions
(Allen and McCullough 1976). Additionally, wildlife–
vehicle collisions comprise one of the largest sources of
economic loss caused by wildlife, averaging $6,717 (USD)/
collision and $8 billion/year in property damage (Huijser
et al. 2008).
Most strategies for mitigating vehicular collisions focus on

reducing collisions at localized hotspots (Huijser et al. 2008).
These strategies include localized wildlife fencing, under-
passes and overpasses, animal detection systems, vegetation
management, wildlife hunting or culling, and dynamic or
static warning signs. These techniques have highly variable
effectiveness for reducing collisions at hotspots, ranging from
0–100% effective (Huijser et al. 2008). Despite decent
effectiveness in some areas, the regional odds for motorists
being involved in collisions with ungulates have remained
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high (e.g., for deer: State Farm1 https://www.statefarm.
com/about-us/newsroom/2015/09/14/deer-collision-data).
Recent studies have linked regional features of the

landscape (e.g., landscape connectivity) to wildlife–vehicle
collision (WVC) locations (Grilo et al. 2011, Girardet et al.
2015), but suggestions for regional mitigation strategies are
limited. Regional strategies for improving road infrastruc-
ture, such as road optimization by decommissioning some
roads, are being suggested to improve habitat quality for
ungulates (D’Amico et al. 2016), and may reduce WVCs.
Furthermore, predictive models have suggested that mitiga-
tion measures should be applied across large geographic
spaces to reduce WVCs throughout the world (Malo et al.
2004, Hothorn et al. 2012, Visintin et al. 2016), but these
measures may be regional-specific.
Vehicular collisions with white-tailed deer (O. virginianus;

deer) exemplify the pervasive problem of widespread WVCs
without an effective means of mitigation (Conover 2010).
An estimated >1 million deer–vehicle collisions (DVCs)
occur each year throughout the United States (Conover et al.
1995) and are rising (Huijser et al. 2008). The Midwest
region of the United States experiences the highest rates of
DVCs, and therefore some states manage for publicly
tolerable levels of DVCs. For example, Illinois implemented
a deer-management objective in 2008 to keep the rate of
DVCs at �207 DVCs/billion kilometers traveled (Univer-
sity of Illinois Extension 2013), although success of this
management is uncertain.
We hypothesized that regional attributes of the landscape,

abundance of deer, and anthropogenic factors are associated
with widespread extents of DVCs, and these associations
vary by region. For instance, increased abundances of deer
have resulted from changes in landscape structure and
wildlife management during the past several decades
(Coulson 1999), and led to increases in DVCs. Meanwhile,
human populations have increased and dispersed away from
centralized cities (i.e., suburbanization; Jordan et al. 1998,
Alig et al. 2004, Baum-Snow 2007). These partially
developed, suburban environments maintain high abundan-
ces of deer by providing food, shelter, and refuge from
hunting (Cornicelli et al. 1996, Lovely et al. 2013). In
addition, agricultural activities throughout the Midwest
continue to maintain high densities of deer (Roseberry and
Woolf 1998) especially when coupled with interconnected
patches of forests (Walter et al. 2009). The current trajectory
of suburbanization (Alig et al. 2004), agriculture, and
reduced winter severity from climate change (Thompson
et al. 1998) are all likely to influence DVCs across regional
scales; therefore, a broader understanding of these factors is
needed to develop broader solutions for reducing DVCs.
Two unanswered questions have limited our ability to

understand variation in the frequency of DVCs across large
regional extents. Is the frequency of DVCs influenced by the
temporally dynamic nature of environmental predictors at
regional extents? Do environmental predictors influence the
frequency of DVCs differently across large regions? Our
objectives were to answer each of these questions by
examining the spatiotemporal influences on DVCs using

12 years of data in 3 eco-zones throughout the Midwest
United States (i.e., forest-agriculture matrix, agriculture, and
northern forest). Specifically, we examined changes in the
regional factors influencing DVCs through time and across
space. We hypothesized that mitigation measures for DVCs
could be region-specific, providing broader guidance for
reducing collisions with large ungulates at large spatiotem-
poral scales.

STUDY AREA
The study area (584,493 km2) was comprised of 355 counties
from Illinois, Iowa, Michigan, andWisconsin, USA (Fig. 1).
The area was generally classified as a humid continental
climate with cold winters and warm to hot, wet summers
(Kottek et al. 2006), and topography that was gently rolling
to flat with elevation ranging from 85–603m above sea level.
This area contained varying land uses and land covers,
primarily dominated by agriculture, forests, or both (Table 1).
The most ubiquitous and abundant ungulate in this region
was white-tailed deer (Kays and Wilson 2009). Overall, this
region included approximately 981,765 km of roads for an
overall road density of 1.68 km/km2.

Figure 1. Study area for examination of dynamic, space-time influences of
white-tailed deer–vehicle collisions at the county level throughout the
Midwest, USA, 2000–2011.

Table 1. Proportion of reclassified land-cover and land-use types for 3 eco-
zones in the Midwest United States from the 2001 and 2006 National Land
Cover Databases.

Proportions of land use and land cover by year

Northern
forest

Forest-agriculture
matrix Agriculture

Class 2001 2006 2001 2006 2001 2006

Agriculture 0.16 0.16 0.56 0.56 0.78 0.78
Forest 0.68 0.67 0.24 0.24 0.10 0.10
Developed 0.05 0.05 0.13 0.13 0.08 0.08
Rangeland 0.05 0.05 0.02 0.02 0.03 0.03
Wetlands 0.02 0.02 0.01 0.01 0.00 0.01
Water 0.03 0.03 0.02 0.02 0.01 0.01
Other 0.00 0.00 0.00 0.00 0.00 0.00
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We divided the region into 3 eco-zones: forest-agriculture
matrix, agriculture, and northern forest based on the
province divisions of ecoregions for the United States
(Bailey 1983, 1995). The forest-agriculture matrix eco-zone
was within the eastern broadleaf forest (continental)
ecosystem province. The land cover and land use of this
province was a mix of oak (Quercus spp.)–hickory (Carya
spp.) stands with maples (Acer spp.) and American beech
trees (Fagus grandifolia), and corn, soybean, wheat, and
livestock production. The agricultural eco-zone was within
the prairie parkland (temperate) ecosystem province. This
province was dominated by corn, soybean, and livestock
production, and intermixed patches of native grasslands such
as big bluestem (Andropogon gerardii), little bluestem (A.
scoparius), switchgrass (Panicum virgatum), and Indian grass
(Sorghastrum nutans). The northern forest eco-zone was
within the Laurentian mixed forest ecosystem province. The
land cover and land use of this province was dominated by
stands of conifers, deciduous trees, and mixed conifer-
deciduous trees, such as balsam fir (Abies balsamea), pines
(Pinus spp.), black spruce (Picea mariana), eastern white
cedar (Thuja occidentalis), maples, yellow birch (Betula
alleghaniensis), and American beech.
For the purposes of this study, each eco-zone was

representative of differences in ungulate ecology based on
regional attributes. The forest-agriculture matrix was
associated with ubiquitous distribution and use of deer
(Alverson et al. 1988, Roseberry and Woolf 1998). The
juxtaposition of forests and agriculture provide ample
refugia, foraging, and edge habitats that deer prefer
(Williamson and Hirth 1985), and therefore generate
high population abundances. The agriculture eco-zone
was dominated by a single type of land use, agriculture,
and therefore provided sparse forests for refugia. In this
landscape, the distribution and movements of deer are largely
reflective of the sparsely located forests (Nixon et al. 1991,
Brinkman et al. 2005). The northern forest eco-zone was
associated with primarily forested land covers with small
intermixed agriculture. Deer undergo seasonal migration to
winter deeryards (Verme 1973, Van Deelen et al. 1998)
located in the southern portions of this eco-zone, dependent
on climatic conditions (Brinkman et al. 2005).

METHODS

Data Collection
We collected data from several sources, which were compiled
annually at the county level for the states of Illinois, Iowa,
Michigan, and Wisconsin during 2000–2011 (Appendix 1).
We excluded Menominee County, Wisconsin because no
reports of DVCs were obtained.We considered DVCs as the
reported numbers of traffic accidents involving deer during
each year. Counts of DVCs were biased low because not all
collisions were reported. Reporting rates of DVCs have been
estimated to be 42–50% (Decker et al. 1990, Romin and
Bissonette 1996, Marcoux and Riley 2010), but statistical
models of DVCs were reported to be robust with only�30%
of collisions being reported (Snow et al. 2015); therefore, we

did not expect reporting rates to be problematic. We used the
reported number of DVCs per county to represent an index
of the true frequency of collisions. Collisions with deer were
reported when a human injury or death occurred, or the
amount of property damage exceeded a certain amount. The
amounts of property damage varied by state and year
(Appendix 1), but the average amount of damage from
DVCs exceeded the minimum amounts required for
reporting in all cases (Huijser et al. 2008).
We compiled records of antlered and antlerless deer

harvested in each county each year. Fewer restrictions were
placed on the number of individuals allowed to purchase
licenses to hunt antlered deer, which the majority of hunters
prefer to harvest (Fawley and Rudolph 2014). Therefore, in
the absence of consistently developed annual deer popula-
tions at the county level, we used the number of antlered deer
harvested during year t as an index to represent the
abundance of deer during year t (abundance). Antlerless
permits were more regulated with intent to remove a number
of female deer to achieve desired effects on population
abundance (Brown et al. 2000). Therefore, we used the
number of antlerless deer harvested during year t�1 as an
index for the effect of management on the population of deer
during year t (antlerless lag).
We compiled shapefiles depicting locations of all roads in

each state to identify public roads using ArcGIS (version
10.1; Environmental Systems Research Institute, Redlands,
CA, USA). We used National Functional Classification
categories to exclude private roads. We calculated the length
of roads and road density for each county (km/km2) using the
Geospatial Modeling Environment program (version
0.7.2.1, Spatial Ecology LLC). We used estimates of annual
vehicle kilometers traveled (traffic) compiled from the
Department of Transportation for each state to measure
the intensity of motorists on roadways in each county during
each year. We also examined traffic2 to identify any non-
linear effects from traffic. We considered the interaction
(traffic� abundance) to examine the interacting relation-
ships between the volume of traffic and the abundance of
deer on the frequency of DVCs. Lastly, we compiled the
numbers of registered vehicles in each county (vehicles
registered) to provide an additional index of the number of
motorists on roads.
We used ArcGIS to reclassify the 2001 and 2006 National

Land Cover Database (Homer et al. 2007, Fry et al. 2011)
from 16 to 7 classes (i.e., agriculture, forest, rangeland,
developed, wetlands, water, and other; Table 1) that
represented important land cover and land use classes for
deer (Anderson et al. 1976). We used the 2001 database to
represent the time 2000–2005, and the 2006 database to
represent 2006–2011. We calculated 5 landscape metrics
using program FRAGSTATS (version 4.1, University of
Massachusetts, Amherst, MA, USA) to quantify important
land covers and configurations for deer in each county. We
calculated the proportions of agriculture (agriculture), forest
(forest), and developed (developed) land covers in each
county. The contrast-weighted edge density (edge density)
represented the sum of the borders between cover types
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multiplied by a corresponding contrast weight (i.e., weight
¼ 1 for agriculture, rangeland, and forest cover types, and
weight¼ 0 for all other cover types) divided by the area of the
county (km/km2). We used contagion as an index of the
spatial aggregation and interspersion of similar patch types.
A contagion value of 0 represented a highly fragmented and
intermixed landscape, whereas a value of 100 represented a
landscape comprised of a single patch.

Study Design and Data Analysis
Counties and years were our spatial and temporal units of
observation, respectively. Each county was associated with an
annual response variable (count of DVCs), 10 main effects
(traffic, traffic2, abundance, antlerless lag, vehicles registered,
agriculture, forest, developed, edge density, and contagion),
and 2 interactions (traffic� abundance, and contagion�
abundance). We standardized the main effects before
calculating the interaction and quadratic terms. We
conducted an intercorrelation analysis of the data and
excluded the predictor(s) that were less correlated with
DVCs from any correlated pair of predictors from our
models (i.e., |r|� 0.60; Program R version 2.15.1; R
Development Core Team, Vienna, Austria). We used all
remaining predictors in subsequent models.
We used a hierarchical Bayesian modeling framework to

develop a dynamic, space-time model for each eco-zone
(e¼ 1, 2, . . ., E) to examine influences on DVCs at the
county level. For our model, we used the counts of DVCs
observed in each county (s¼ 1, 2, . . ., N) during each year
(t¼ 1, 2, . . ., T) as the response variable using MATLAB
(version R214a; The MathWorks, Natick, MA, USA). We
incorporated the offset Os,t of area (km2) of each county to
account for differences in areas of counties. The model was
structured as:

ys;t � Poisson Os;t ehs;t
� �

;

hs;t ¼ x0s;tbe;t þ ws;t ; ð1Þ

for county s in eco-zone e, where x0s;t is comprised of columns
vectors x1s;t ; . . . xps;t

� �
for p regressors including the

intercept (x1s;t � 1Þ with fixed effect be;t ; ws;t represents
observation-level random effects to model potential spatial
correlation and overdispersion for count response (Harrison
2014). The temporal structure for the coefficients and spatial
random effects followed:

be;t ¼ be;t�1 þ ue;t ; ue;t � N 0;
X

u

� �
;

ws;t ¼ ws;t�1 þ vs;t ; ð2Þ

so that the priors of be;t and ws;t were dynamically informed
by the posteriors of be;t�1 and ws:t�1, respectively. We
assumed the increment vs;t admits the conditional
autoregressive (CAR) structure (Besag et al. 1991), which
is frequently adopted to capture the spatial correlation for
areal data. We employed the CAR specification
with a spatial dependence parameter (Castro
et al. 2015) to alleviate spatial confounding:
vs;t � N 0;t2t M � gtWð Þ�1

� �
, where W is the binary

adjacency matrix, M is the diagonal matrix with number
of adjacent counties for individual county, t2t captures
unmodeled sources of variation by Poisson distribution to
account for overdispersion, and gt measures the spatial
dependence (0¼ no dependence). We assumed both
parameters t2t and gt to be year-specific as the increments
vs;t can vary by scale across a different year t. To identify the
most parsimonious model for making inference, we
compared 4 models for best fit using 5 predictive scoring
rules for count data (i.e., logarithmic, quadratic, spherical,
ranked probability, and Dawid-Sebastiani score) and root
mean squared error (definitions provided in Czado et al.
2009). These scoring rules represent unique summary
measures to evaluate the probability forecasts from the
models based on predictive distributions and observed data
(Czado et al. 2009). We selected the top performing model
as the model with the best fit from the majority of the
scoring rules:

Model 1: log(offset)þ state effectþ intercept
Model 2: log(offset)þ state effectþ interceptþmain effects

Table 2. Annual averages and standard errors for white-tailed deer–vehicle collisions (DVCs) and associated predictors for counties within 3 eco-zones in the
Midwest United States during 2000–2011.

Northern forest Forest-agriculture matrix Agriculture

Number of counties 78 140 137
DVCs �x 358.3 471.0 158.9

SE 9.9 38.4 30.2
Road density (km/km2) �x 1.5 2.2 1.3

SE 0.1 0.1 0.02
Human density (people/km2) �x 20.7 85.1 26.7

SE 3.9 20.0 3.6
Abundance of deer (antler harvest) �x 2,748.8 1,736.9 575.2

SE 149.6 119.4 31.8
Traffic (million km traveled) �x 552.6 1,766.3 622.9

SE 62.2 328.7 69.3
Proportion of agriculture �x 17.7 56.8 77.2

SE 2.1 1.5 1.0
Contagion (fragmentation) �x 63.3 62.9 72.6

SE 1.0 0.6 0.7
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Model 3: log(offset)þ state effectþ interceptþmain effects
þ quadratic
Model 4: log(offset)þ state effectþ interceptþmain effects

þ quadraticþ interactions

We also compared each of these models with spatial and
nonspatial random effects.We included a state effect for each
model to account for differences among DVC reporting
requirements for each of the 4 states, with Iowa considered
the state of reference. We assessed model performance using
10-fold cross validation by randomly partitioning the
N¼ 355 observations for the last year (2011) into 10 bins
containing 10% of the observations for each state.
We examined 3 Markov chain Monte Carlo (MCMC)

runs of 20,000 iterations with burn-ins of 15,000 and
thinned by 5 iterations. We examined the median and 95%
credible intervals (CrIs) from the distributions of the
estimated regression coefficients to identify influences
from the environmental predictors on the frequency of
DVCs. Specifically, we examined any overlap of zero by the
95% CrIs to indicate influences on the count of DVCs. We
used the final year of the analysis (2011) to examine effect
plots for each of the environmental predictors. The final year
included the most information from the time-evolving
priors, and was most pertinent for current management
strategies.

RESULTS
Overall, 1,387,948 DVCs were reported during our 12-year
study averaging 115,662 DVCs/year. The average count of
DVCs was highest in the forest-agriculture matrix, followed
by the northern forest and then agriculture eco-zones
(Table 2). We excluded antlerless lag, vehicles registered,
developed, edge density, and forest from analysis because of
collinearity with other predictor variables. The remaining
predictors examined were traffic, abundance, agriculture, and
contagion.
Each of the 4 models had better model fit when the spatial

random effects were included (Table 3). Model 2 with the
spatial random effects, including the main effects without the
quadratic or interaction terms, was considered the top
performing model. We therefore used model 2 to make
subsequent inferences. The estimates of regression coef-
ficients and 95% CrIs were stable throughout the 12 years for
each eco-zone (Fig. 2), although in some cases the estimates
changed between overlapping zero or not.
Traffic had a positive effect in the northern forest eco-zone

(during the first 7 years), and a smaller positive effect in the
agriculture eco-zone (Fig. 2). Traffic had minimal influence
in the forest-agriculture matrix eco-zone where the values of
traffic were largest (Fig. 3). Agriculture had a positive effect
on the frequency of DVCs in the eco-zone with the least
amount of agriculture (i.e., northern forest) only during the

Table 3. Comparison of model validation metrics for 4 models not including spatial random effects (NS) and including spatial random effects (SP) for
predictive models of white-tailed deer–vehicle collisions (DVCs) by counties within 3 eco-zones in the Midwest United States during 2000–2011. Values with
asterisks represent the top competing model for each metric.

Comparison of model validation metrics

Model 1 Model2 Model 3 Model 4

Measure NS SP NS SP NS SP NS SP

Logarithmic 6.5906 6.5569 6.5439 6.5287	 7.3996 7.6072 7.5020 7.7089
Quadratic �0.0053 �0.0059	 �0.0046 �0.0047 �0.0045 �0.0047 �0.004 �0.0041
Spherical �0.0922 �0.0937	 �0.0899 �0.0905 �0.0893 �0.0901 �0.0872 �0.0877
Ranked probability 22.0500 21.9025 21.2988 21.2248	 23.6649 23.8274 24.4949 24.7695
Dawid-Sebastiani 12.1613 12.0577 11.9941 11.9772	 13.3603 13.6344 13.5387 13.8105
Root mean squared error 40.4243 40.3410 38.0943 38.0550	 48.1740 49.9735 49.4911 51.5529

Figure 2. Estimates of regression coefficients and 95% credible intervals from dynamic models for examining the influences of environmental predictors on the
frequencies of white-tailed deer–vehicle collisions at a county level throughout the Midwest, USA, 2000–2011. Contagion is an index of fragmentation among
land covers per county per year where lower values represent more fragmented landscapes.
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last 4 years (Figs. 2–3). Similarly, abundance had a positive
effect in the eco-zones with the lowest index of deer (i.e.,
northern forest and agriculture eco-zones) only for 3 years.
Contagion had a negative effect in the eco-zone with the
most fragmentation (i.e., forest-agriculture matrix) during all
12 years, and during a few years in the other eco-zones.
We found obvious differences in reporting of DVCs by

state, necessitating the inclusion of the state effect into the
models. Michigan had the strongest positive effect on the
frequency of DVCs, followed by Illinois (Fig. 4). Reporting
of DVCs was similar in Iowa and Wisconsin. The posterior
median with 95% credible interval of the spatial dependence
parameter suggested positive effects during 9 of the 12 years,
indicating that the spatial arrangement of counties influ-
enced where DVCs occurred. For most counties, the best-
fitting model (Table 2) predicted the count of DVCs during
2011 with a high degree of accuracy from 10-fold cross
validation (Fig. 5). In Iowa the model predicted less well
where there was little variation in the ubiquitously low counts
of DVCs reported across the state, and therefore influential
trends for DVCs were difficult and detect and predict at this
regional scale.

DISCUSSION

Results provide empirical evidence that the determinants of
vehicular collisions with wildlife, such as large ungulates, are
dependent on broader-scale ecological processes than
previously realized and managed. Localized investigations
also found similar factors influence DVCs (Sudharsan et al.
2005, Farrell and Tappe 2007), and moose–vehicle collisions
(Seiler 2004) on smaller-scales but have not associated
larger-scale patterns across eco-zones. Our analysis reveals
that the effectiveness of mitigation measures is dependent on
the regional characteristics of eco-zones.
The highest frequency of DVCs was reported in the eco-

zone with the most abundant deer (i.e., forest-agriculture
matrix), which also had the highest volume of traffic. The
only detectable influence on DVCs was increasing landscape
fragmentation, which corresponded with more collisions.
Fragmentation in this landscape is attributed to a mosaic of
land covers and land uses, mostly from intermixed forest and
agriculture. These landscapes are associated with the
ubiquitous use and distribution of deer (Alverson et al.
1988, Roseberry and Woolf 1998) and also with high

Figure 3. Predicted counts of deer–vehicle collisions (DVCs) in counties throughout 3 eco-zones in the Midwest, USA during 2010 using the best fitting
model. Solid lines indicate that the relationship was identified as being statistically influential in that eco-zone. Traffic is represented as annual average vehicle
kilometers traveled. Contagion is an index of fragmentation among land covers per county per year where lower values represent more fragmented landscapes.

Figure 4. Estimates of regression coefficients and 95% credible intervals for random state effects and random spatial effects for examining the spatial influences
of environmental predictors on the frequencies of white-tailed deer–vehicle collisions at a county level throughout the Midwest, USA, 2000–2011.
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frequencies of DVCs (Bashore et al. 1985, Finder et al. 1999,
Farrell and Tappe 2007), suggesting the risk of DVCs is
widespread throughout this eco-zone. In the forest-agricul-
ture matrix eco-zone, we detected no effects from traffic,
proportion of agriculture, or abundance of deer. In particular,
a lack of effect from traffic is contrary to other studies on
smaller scales (Farrell and Tappe 2007, Ng et al. 2008) and
likely stems from the mixture of high volumes of traffic and
high abundance of deer that were characteristic throughout
this region. We expect that this mixture generated an
underlying high frequency of DVCs across the region, and
any localized variations in these predictors did not change
this frequency in a detectable manner.
Within the eco-zone dominated by agriculture, DVCs

were highest in counties with more traffic volume and deer
abundance. Therefore, for a region that is mostly comprised
of a single type of land use used by ungulates for foraging,
variation in traffic and abundance are better predictors of
DVCs than composition of the landscape. However, within
this region counties with more forest and riparian land covers
have higher localized abundances of deer, especially after
crops are harvested (Vercauteren and Hygnstrom 1998),
which may influence DVCs. These results corroborate the
findings of a similar study in Arkansas, USA that exhibited
similar characteristics as this eco-zone (Farrell and Tappe
2007). We found no relationship between DVC and the
proportion of agriculture, suggesting that the underlying
frequency of DVCs is not related to county-specific
variations in the amount of agriculture.
Within the eco-zone with seasonally migrating deer (i.e.,

northern forest), DVCs were highest in counties with higher
traffic volume, proportion of agriculture, deer abundance,
and landscape fragmentation. Collisions were highest in the
southern counties with more agriculture and landscape
fragmentation, likely because these landscapes sustain more
deer (Alverson et al. 1988). However, the seasonal move-
ments of ungulates in this region could be influencing the
frequencies of collisions. For instance, relationships between
the predictors and DVCs somewhat varied throughout time,
more so than other in eco-zones. One possible explanation is
that less severe winters result in less migration into the
southern counties of this eco-zone, therefore lessening the

impact that agriculture and fragmentation have on DVCs.
Examination of the relationship between climate and inter-
annual DVCs in the northern forest represent a line of
important future research.
Temporally, the influences on collisions with deer were

mostly stable during the last 12 years. Previous studies
identified spatial patterns to DVCs (Huijser et al. 2008, Ng
et al. 2008, Danks and Porter 2010, Snow et al. 2014) but
none have linked findings to any temporal trends. Twelve
years may not be sufficient to observe major shifts in the
distributions of DVCs, especially considering a large-scale
analysis of influences. Anthropogenic changes to the
landscape have occurred during much of the last century
(Harris 1943); therefore, long-term collection of collision
data is needed to relate with those changes. However, our
findings indicate that the frequencies of collisions with large
ungulates are unlikely to diminish in any regions in the
absence of effective mitigation.

MANAGEMENT IMPLICATIONS
Our results confirm that permanent mitigation strategies
specific to each eco-zone are best for widespread reduction in
collisions. Specifically, in the forest-agriculture matrix with
ubiquitous distributions of ungulates, roads, and collisions,
policies and planning that reduce habitat fragmentation
should be the primary focus for reducing collisions. In the
highly agricultural landscapes, reducing the abundance of
ungulates will have the most direct effect for reducing
collisions. In the northern forest eco-zone, mitigation
strategies will need to be most dynamic, including reduction
of traffic, reduction of ungulate abundance, and enhanced
policies that reduce habitat fragmentation particularly from
agriculture. Regardless of the eco-zone, our results corrobo-
rate that upfront investments in mitigation measures should
result in long-term reductions in collisions because regional
influences are temporally stable. In turn, these investments
may unlock long-term safety for motorists and economic
gains (Schwabe et al. 2002, Huijser et al. 2009). Indeed, a
national commitment has been proposed for development of
wildlife crossing structures on large scales demonstrating
these benefits (ARC Solutions 2017). Finally, our results
exhibit the importance of consistent reporting of WVCs to

Figure 5. Observed and predicted number of white-tailed deer–vehicle collisions (DVCs), and measure of model uncertainty (i.e., spread of 95% credible
intervals), for model validation in the Midwest, USA, 2011. Red stars indicate counties where the observed number of DVCs was outside of the predicted 95%
credible intervals.
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enhance the development of larger-scale and more efficient
mitigation strategies. More consistent reporting is needed
across larger geographic scales.
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APPENDIX 1
Description and sources of data used to examine the dynamic, space-time influences of white-tailed deer–vehicle collisions
(DVCs) throughout the Midwest, USA, 2000–2011.

aThe response variable was the number of DVCs per county per year. Explanatory predictors were the numbers of antlered
deer harvested per county per year as an index of deer population, annual vehicle kilometers traveled (traffic) per county per year
as an index of traffic volume, number of registered vehicle per county per year as an index of the number of motorists, maps of all
public roads for each county to calculate the densities of roads per county (km/km2), maps of the boundaries of counties, and
maps of the land cover and land use for each county.

Location Dataa Description Data source

IL DVCs Vehicle crashes involving deer with >$500 in
property damage (2000–2009), >$1,500 for
insured drivers and >$500 for uninsured drivers
(2009–2012), or bodily injury

Illinois Department of Transportation

Deer harvest Estimated number of antlerless and antlered deer
harvested by firearm and archery

Illinois Department of Natural Resources

Traffic Estimated annual vehicle kilometers traveled on
roads by all vehicles

Illinois Department of Transportation

Registered vehicles Number of registration counts Illinois Secretary of State
Roads 2011 shapefile of roads with federal functional

classification representing public roads
Illinois Department of Transportation

IA DVCs Vehicle crashes involving deer with >$1,000 in
property damage (2000–June 2010), >$1,500
(July 2010–2012), or bodily injury

Iowa Department of Natural Resources

Deer harvest Estimated number of antlerless and antlered deer
harvested by firearm and archery

Iowa Department of Natural Resources

Traffic Estimated annual vehicle kilometers traveled on
roads by all vehicles

Iowa Department of Transportation

Registered vehicles Number of registration counts Iowa Department of Transportation
Roads 2006 shapefile of roads with federal functional

classification representing public roads
Iowa Department of Natural Resources

Geographic
Information Systems Library

MI DVCs Vehicle crashes involving deer with >$400 in
property damage (2000–2003), >$1,000 (2003–
2012), or bodily injury

Michigan State Police

Deer harvest Estimated number of antlerless and antlered deer
harvested by firearm and archery

Michigan Department of Natural
Resources

Traffic The estimated total number of kilometers traveled
annually by motor vehicles on Michigan
trafficways

Michigan Department of Transportation

Registered vehicles Number of registration counts excluding trailers and
trailer coaches

Michigan State Police, Office of Highway
Safety Planning

Roads 2012 shapefile of roads with national functional
classification representing public roads

Michigan Center for Geographic
Information

WI DVCs Vehicle crashes involving deer with >$1,000 in
property damage (2000–2012) or bodily injury

Wisconsin Department of Transportation

Deer harvest Estimated number of antlerless and antlered deer
harvested by firearm and archery

Wisconsin Department of Natural
Resources

Traffic The estimated total number of kilometers traveled
annually by motor vehicles on Wisconsin
trafficways

Wisconsin Department of Transportation

Registered vehicles Numbers of current and non-expiring registrations Wisconsin Department of
Transportation, Bureau of Vehicle
Services

Roads 2013 shapefile of roads with roadway categories
representing public roads.

Wisconsin Department of Transportation

Region County boundaries 2010 seamless national file with no overlaps or gaps
between parts, designed to stand alone as an
independent data set, or can be combined to cover
the entire nation

U.S. Census Bureau (TIGER/Line
Shapefile)

Land-cover and land-use maps 30-m resolution land use and land cover maps for the
conterminous United States generated from
remote sensing with 79% (2001) and 78% (2006)
overall accuracy

U.S. Geologic Survey (2001 and 2006
National Land Cover Database)
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