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Abstract

Bird collisions with vehicles cause serious safety, financial and conservation con-
cerns worldwide, but the causes of such collisions are poorly described. We inves-
tigated how experience with vehicles influenced avian avoidance responses. We
trained three groups of vehicle-naive rock pigeons Columba livia with 32 near-miss
vehicle approaches over 4 weeks at 60 and 120 km h™', and also included individ-
uals that heard but did not see the approaches (control group). We subsequently
measured flight initiation distance (FID) and whether individuals ‘collided’ with a
virtual vehicle directly approaching at 120 or 240 km h™' using video playback.
We found that inexperienced individuals (i.e. the control group) had longer FIDs
than experienced birds, although only one of 90 individuals across groups success-
fully avoided virtual collision. Vehicle approach speed during video playback and
the interaction of approach speed and training group did not influence FID. Our
results suggest that a habituation-like effect based on repeated observations of pass-
ing vehicles could contribute to ineffective vehicle avoidance responses by birds
when collisions are imminent. Novel strategies should be developed to enhance
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Introduction

Aircraft collisions with birds pose serious safety and financial
threats worldwide (DeVault, Blackwell & Belant, 2013). Birds
are also frequently struck by automobiles (Loss, Will & Marra,
2014), and these road collisions can adversely impact popula-
tions (Mumme et al., 2000; Kociolek ef al., 2011). Birds
appear to use antipredator behaviors for vehicle avoidance
(Blackwell et al., 2012), although often unsuccessfully (Bern-
hardt et al., 2010; DeVault ez al., 2015). Recent investigations
have begun to describe how sensory mechanisms, cognitive
abilities and behaviors, all of which evolved in the context of
predator avoidance, are frequently inadequate for successful
vehicle avoidance, given the speed and size of modern aircraft
and automobiles. For example, avoidance responses vary
widely across species (Blackwell et al., 2009; Mgller, Erritzge
& Erritzge, 2011; Husby & Husby, 2014) and birds face a
higher risk of collision as vehicle speed increases (DeVault
et al., 2014, 2015). These and other efforts have offered
insights into the sensory and behavioral factors important to
antipredator responses, and how they might be exploited to
reduce bird-vehicle collisions (Blackwell et al., 2009, 2012;
Doppler er al., 2015). Still, several important questions
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avoidance responses to high-speed vehicles to minimize bird mortality.

regarding vehicle avoidance by birds remain inadequately
addressed, such as the role of experience in avoiding collisions
(Legagneux & Ducatez, 2013; Husby & Husby, 2014).

Birds that regularly observe fast-moving vehicles potentially
could learn to increase their flight initiation distances (FIDs) in
response to vehicles over those normally used to escape slower
predators, thereby increasing their likelihood of successful
avoidance compared to inexperienced birds. For example, FIDs
of European birds along roads were correlated with posted
vehicle speed limits, suggesting that birds might adjust avoid-
ance responses according to average vehicle speed (Legagneux
& Ducatez, 2013). Also, vehicle collision mortality for Florida
scrub-jays Aphelocoma coerulescens was lower for older and
experienced individuals than for inexperienced individuals
(Mumme et al., 2000). Finally, some wildlife managers at air-
ports recommend that resident hawks and other birds of prey
should not be removed or relocated, suggesting that these indi-
viduals are ‘airport savvy’ and thus unlikely to be struck by
aircraft, and that their territorial presence discourages the use
of airport lands by less experienced individuals (Solman, 1981;
Burger, 1985).

Alternatively, repeated exposure to stimuli perceived as non-
threatening, such as distant vehicles or those not on a collision
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Experience influences bird-vehicle collisions

course (e.g. birds viewing passing vehicles from the road mar-
gin or airport infields), could potentially lead to habituation
(Bejder et al., 2009), thereby reducing the likelihood of suc-
cessful escape when collisions are imminent (Lima et al.,
2015). Several studies have shown such habituation-like
responses to frequently encountered stimuli by various taxa.
Australian magpies Cracticus tibicen had shorter FIDs in
response to an approaching human in high pedestrian-traffic
areas than in areas with few pedestrians (Gravolin, Key & Lill,
2014). Li et al. (2011) found that yellow-bellied marmots Mar-
mota flaviventris decreased FIDs in response to an approaching
human as vehicle and pedestrian traffic increased. Also, elk
Cervus elaphus and pronghorn Antilocapra americana became
less likely to perform vigilance and escape-related behaviors as
vehicular traffic increased (Brown et al., 2012).

Finally, previous repeated exposure to passing vehicles
might have little effect on FIDs during situations where an
escape response is necessary to avoid collision. Birds can dif-
ferentiate between direct and tangential approaches of threaten-
ing objects (Wang & Frost, 1992; Lima & Bednekoff, 2011;
Mgller & Tryjanowski, 2014). Furthermore, Raderschall,
Magrath & Hemmi (2011) demonstrated that fiddler crabs Uca
vomeris that had been habituated to a threat approaching from
one direction reverted back to their initial antipredator response
when that same threat approached from a new direction. Like-
wise, birds facing a direct vehicle approach might quickly dif-
ferentiate such a threat from previous experience with passing
vehicles that did not pose an obvious risk of collision, and
thus use unmodified predator escape strategies for vehicle
avoidance (e.g. the FID would remain unchanged).

We explored the role of experience with vehicles traveling
at different speeds as it influences vehicle avoidance by birds.
Specifically, we exposed vehicle-naive, captive birds to differ-
ent levels of near-miss (tangential) vehicle approaches in a
field scenario over a 4-week period and then quantified their
FIDs in response to direct approaches of a virtual vehicle in a
video playback experiment. We sought to determine whether
previous, repeated exposure to passing vehicles increased,
decreased or had no effect on FIDs and the probability of suc-
cessful vehicle avoidance compared to inexperienced (naive)
birds when a collision was imminent. Following inferences by
Mumme et al. (2000) and Legagneux & Ducatez (2013), we
expected experienced birds to adjust avoidance responses
according to observed vehicle speed (i.e. increase FID), and
therefore improve their likelihood of successful avoidance.

Materials and methods

Study animals

We obtained 105 approximately 6-month old, farm-raised rock
pigeons Columba livia; (hereafter pigeons) from a commercial
breeder (K. C. Kennels and Lofts in Champaign County, Ohio,
USA) on 1 June 2015. Previous research indicated that pigeons
respond well to experiments involving approaching virtual
objects in a video playback scenario (Wang & Frost, 1992).
Our experimental birds were hatched and raised in a barn and
had never been approached by moving vehicles or experienced
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traffic before our experiment. We transported pigeons in cov-
ered cages via truck approximately 105 km to our holding
facility and video laboratory at the National Aeronautics and
Space Administration Plum Brook Station (PBS; DeVault
et al., 2015). Pigeons were held in three 3.6 x 3.6 x 2.0 m
cages in an indoor aviary illuminated with natural lighting
and provided with commercial pigeon food, water and grit
ad libitum. They were held for 14 days before vehicle-approach
training began.

Vehicle-approach training

We randomly separated pigeons into three groups of 35. Each
group was held together in separate cages throughout the
experiment. We exposed the three groups of pigeons to near-
miss vehicle approaches (passing within 2 m of the cages) to
give them different levels of experience with vehicles. The first
group (T120) was always trained with a vehicle approaching at
120 km h™", the second group (T60) with a vehicle approach-
ing at 60 km h™' and the third group (control) was prevented
from seeing any vehicle approaches, but was exposed to audi-
tory cues of the vehicle approaches during training of the other
two groups. We prevented pigeons from observing any other
vehicle approaches.

Training occurred on four consecutive days during four con-
secutive weeks (15 June through 10 July 2015), for a total of
16 training days. Each group was trained four times each day
during two of the four training days each week, totaling 32
vehicle approaches per group. On the morning of each training
day, we first moved pigeons (always keeping groups together)
from the holding cages to 1.8 x 1.8 x 1.6 m training cages
and covered the training cages with a visual barrier (fabric
screen) to prevent birds from experiencing visual cues from
vehicles during transport. We transported birds in the covered
training cages via truck and trailer approximately 2 km to a
straight, flat, single-lane, closed road at PBS. Training cages
were placed adjacent to each other on the side of the road in
mown grass at the edge of the pavement (Fig. 1). We removed
the visual barrier from the training cage in the front position
(holding either the T120 or T60 group), so that birds in that
group could observe the approaching vehicle during training.
When present, birds in the control group were always placed
in the rear position and completely shielded from the oncom-
ing vehicle and the visually exposed birds by the visual barrier
(Fig. 1). The control group was trained with the T120 group
during weeks 1 and 3, and with the T60 group during weeks 2
and 4.

We made four consecutive vehicle approaches with a 2002
white Ford Ranger pickup truck, starting from a distance of
1.0 km away, during each training day. During each approach,
the driver quickly accelerated to the speed (120 or 60 km h™")
corresponding to the group (T120 or T60) placed in the front
cage position. The driver maintained that speed until passing
beyond the rear cage. The approach vehicle always passed
within 2 m of the cage(s). The driver then circled around to
the start point (out of view of the birds) and repeated the pro-
cess until four identical approaches were conducted. The four
consecutive approaches generally took about 20 min to

Journal of Zoology 301 (2017) 17-22 © 2016 The Zoological Society of London
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Training approach beginning
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Training approach end

1.0 km approach distance T60 or T120|
) )

Visual barrier

Figure 1 Diagram of vehicle-approach training for three groups of pigeons (T60, T120 and control). Each group was exposed to 32 near-miss

vehicle approaches over a 4-week period.

complete. After the four vehicle approaches, the front training
cage was re-covered with the visual barrier and all pigeons
were transported to their holding cages in the aviary.

Video playback

We quantified avoidance responses from 13 to 16 July 2015
using video playback methodology (D’Eath, 1998). Video
playback allowed us to measure FIDs and survival probabilities
of the animals without causing physical harm, using direct
(head-on) vehicle approaches. Direct vehicle approaches were
essential to meet the objectives of our study, because many
birds respond more strongly to direct approaches (Mgller &
Tryjanowski, 2014; Lima et al., 2015), and some neurons elic-
iting escape behaviors in response to oncoming (looming)
objects in pigeons are activated only when objects approach on
a collision course (Wang & Frost, 1992). Video playback also
allowed us to simulate vehicle speeds faster than those which
we could safely achieve using real vehicles. Although we used
a different stimulus during training (real vehicle approaches)
and measurement of avoidance responses (simulated vehicle
approaches), we stress that the only difference across the three
groups of pigeons (T120, T60 and control) was exposure to
vehicles during training, thus any differences in avoidance
responses observed during video playback could be attributed
to different levels of experience with passing vehicles.

To generate the videos used during playback, we video-
recorded approaches of the same truck used during training
with a Sony high definition (HD) Handycam video camera.
The video camera was placed on the pavement in the middle
of the road and we drove directly over the camera from
1.0 km away while recording at 30 frames per second. These
recordings were played back at double speed during our play-
back experiment (see below) such that birds viewed video
images at 60 frames per second. We made recordings of the
truck approaching at 60 and 120 km h™', so that during play-
back at double speed, the truck appeared to approach at either
120 or 240 km h™'. Truck approaches were recorded on a
calm, sunny day (8 July 2015) on the same road section where
cages were placed during training and at about the same time
of day as when training occurred. As a result, when birds
viewed videos of the approaching vehicle during video

Journal of Zoology 301 (2017) 17-22 © 2016 The Zoological Society of London

playback, they observed the same landscape, viewing angle
(i.e. from ground level) and truck as they observed during
training.

Video playback procedures largely followed DeVault ef al.
(2015). Pigeons were placed individually into an indoor viewing
chamber with three walls (61 x 152 cm) and a ceiling
(122 x 152 cm) of solid, composite material painted flat gray, a
mesh floor (122 x 152 cm) to allow pass through of waste, and
a fourth wall consisting of a 61 x 102 x 117 cm backlit, HD
Samsung television monitor. A black, mesh screen similar to the
holding cage material (62 x 102 cm) was positioned 50 cm
from the monitor to separate birds from the monitor and thus
reduce the use of non-pictorial depth cues. The top, rear and side
walls of the chamber included openings for placement of video
cameras used to record behavior. Lighting within the chamber
was supplied by the monitor and an overhead compact fluores-
cent bulb producing a near-continuous light (>1000 Hz).

Upon placing a bird in the viewing chamber, the video was
paused with the truck positioned at the start point 1.0 km away
for 10 min to allow acclimation to the chamber. We then
started the video and the truck approached at a consistent
speed until it (virtually) collided with the bird. Thirty birds
from each of the three groups were used (90 total trials). Fif-
teen birds from each of the three groups (50%) were shown
videos of the truck approaching at 120 km h™'; the other 15
were shown videos of the truck approaching at 240 km h™".
The faster approach allowed us to test escape responses to
vehicles traveling at speeds faster than those for which the
pigeons were experienced. Because of difficulties in accurately
reproducing sound cues during vehicle approach, all video
playbacks were silent and tested responses only to visual cues
(see also DeVault et al., 2015). After each video presentation
of the oncoming vehicle, the experimental bird was removed
from the viewing chamber, returned to a holding cage and a
new bird was placed in the viewing chamber. Thus, during
video playback, individual birds viewed only a single video of
a directly approaching vehicle.

We recorded birds with four video cameras and examined
each of the 90 video recordings frame-by-frame. We defined
an avoidance (flight) response as an obvious attempt to avoid
the vehicle by running or flying toward the walls of the
viewing chamber. We recorded the time to the nearest 1/15 s
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that an individual exhibited an avoidance response relative to
the time of virtual collision. We then calculated FID by multi-
plying the time-to-collision at initiation of the flight response
(TTCigny) by the virtual vehicle approach speed (km hfl) and
a conversion factor (0.2778) used when FID is expressed in m.
When pigeons exhibited no flight response prior to virtual col-
lision, FID was scored as zero.

Estimating collision mortality

Following DeVault et al. (2015), we conducted a field experi-
ment to measure the time needed for pigeons to travel 3 m
(roughly the width of one lane in a standard road) from a sta-
tionary position. This time served as our estimate of the mini-
mum time necessary for pigeons to avoid a collision with an
oncoming vehicle.

Fifteen pigeons were captured at a nearby airport on
4 February 2016 in a walk-in trap baited with corn and trans-
ferred to our aviary at PBS by truck where they were provided
commercial pigeon food and water ad libitum. In contrast to
the main experiment, we used wild pigeons to measure flight
speed because farm-raised birds held in captivity might have
less muscle mass and not fly as quickly as wild birds, and also
because naiveté to vehicles was not required for this test.

We used five groups of three pigeons each. On 5 February
2016, we released each group into a 24 x 3.5 x 85 m
(height x width x length) outdoor flight cage. A sturdy, woo-
den sawhorse was placed inside the flight cage 1 m from one end
to serve as a perch. A camera and video recorder system (the
same as used in the video chamber) was positioned at one side of
the flight cage to record the flights of each group. To measure
flight distance, we marked the side of the flight cage at 0.5-m
intervals. One person was hidden in a blind located approxi-
mately 2 m from the end of the flight cage that contained the
perch. After an acclimation period of 3 min, another observer
located out of sight of the pigeons (monitoring the video feed)
signaled to the person hidden in the blind when all three birds
were first located together on the perch. The person in the blind
then quickly emerged and fired a starter pistol, causing the
pigeons to fly in the opposite direction, presumably at top speed.
Our intent here was not to mimic conditions associated with
vehicle approach and avoidance, but only to estimate the time
needed by pigeons to fly a 3-m horizontal distance. We examined
the resulting videos and measured the time necessary (to the
nearest 1/15 s) for each pigeon to fly 3 m (from the perch to the
opposite end of the flight cage), starting at the instant when
pigeons began their flights. Four of the five groups of pigeons
behaved as expected, immediately flying from the perch and
away from the person firing the starter pistol. Pigeons in the last
group did not immediately fly and were not used in our analysis;
thus, we obtained video footage sufficient to measure flight speed
for 12 of the 15 pigeons used in the test. Our estimate for pigeons
to fly 3 m was 0.96 + 0.08 (sp) s.

Analyses
We used a general linear model (IBM Corporation 2014, IBM

SPSS Statistics for Windows, Version 23.0; IBM, Armonk,
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NY, USA) to explore the effects of training group (T120, T60
or control), virtual vehicle approach speed (120 or 240 km
h™!) and their interaction on the avoidance response (FID) as
measured in the video playback experiment. FID was square-
root transformed to meet model assumptions. Post hoc analysis
was conducted with LSD tests.

Results

During training, pigeons generally loafed or foraged in the
grass through the bottom of the cage and most birds showed
no visible reaction to vehicle approach, despite the truck pass-
ing within 2 m at 60 or 120 km h™'. However, during the
video playback experiment, pigeons attempted to avoid the
directly approaching (virtual) vehicle before the point of colli-
sion during 83 of the 90 trials (Table 1).

Table 1 Flight initiation distances (m) of pigeons in response to video
playback of a directly approaching vehicle

Virtual vehicle
approach speed

Training group (ke h™") Mean SD
Control 120 13.46 10.47
240 15.27 9.84
T60 (60 km h™") 120 5.88 1.98
240 10.63 5.70
T120 (120 km h™") 120 6.89 4.67
240 8.96 9.00

Birds were previously exposed to 32 near-miss vehicle approaches in
a field scenario (n =15 individuals for each training group-vehicle
approach speed combination).

Vittual vehicle approach
speed (km h™")

4
120
T 240

:
) on |

Square root of FID
H

60 km h~" 120 km h-?

Training group

Control

Figure 2 Pigeons that observed 32 near-miss vehicle approaches at
60 or 120 km h™" over a 4-week period exhibited shorter flight
initiation distances (FID; square-root transformed) than birds exposed
only to the sound of the passing vehicle (control group). FID (m) was
measured in response to a directly approaching virtual vehicle in a
video playback scenario. Means + 1 st are shown.
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Our model indicated that virtual vehicle approach speed
(F1g4 =199, P=0.162) and the interaction of speed and
training group (F, g4 = 0.51, P = 0.602) did not influence FID.
However, training group influenced FID significantly
(Fp84 = 7.63, P =0.001). Contrary to our expectation, the
control group (naive birds) had longer FIDs than birds exposed to
vehicles traveling at 60 km h™' (P = 0.011) and 120 km h™'
(P <0.001) during training (Fig. 2). We found no significant
difference between the T60 and T120 groups (P = 0.217).

Although naive individuals exhibited longer FIDs compared
to experienced individuals, they were not more likely to sur-
vive collision with the virtual vehicle. Only one of the 90
pigeons across training groups had a TTCgign = 0.96 s, our
estimate of the time needed for avoidance. We tried modeling
this response with a generalized linear model, but the model
did not converge due to the large proportion of virtual
collisions (98.9%).

Discussion

Our study used vehicle-naive birds and a structured training
regimen to determine how experience with repeated near-miss
vehicle approaches affected avoidance behavior when a collision
was imminent with a directly approaching vehicle. As such, our
experiment was similar to situations in which birds using airfield
or roadside habitats regularly view passing vehicles that usually
do not pose an immediate threat. In contrast to inferences from
recent empirical findings (Legagneux & Ducatez, 2013), we
found that inexperienced birds had longer FIDs in response to
direct vehicle approaches than individuals that had repeatedly
observed passing, fast-moving vehicles. However, even the
heightened avoidance response of inexperienced birds was
inadequate to cope with the high vehicle speeds tested, as nearly
all birds failed to avoid virtual collision.

Given that birds vary across species with regard to avoid-
ance of approaching threats (Blackwell et al., 2009; Mgller
et al., 2011; Husby & Husby, 2014), pigeons might adapt
antipredator behaviors to vehicle avoidance differently than the
suite of bird species studied by Legagneux & Ducatez (2013).
In our study, experienced pigeons ostensibly learned that pass-
ing vehicles did not pose a threat, as evident by the shorter
FIDs exhibited during video playback experiments compared
to inexperienced birds. Furthermore, differences in behavior
shown by pigeons during training (i.e. no visible reaction to
the passing vehicle) and video playback (i.e. avoidance
response shown in 92% of trials) may partially reflect their
ability to accurately differentiate between tangential and direct
approaches (Raderschall et al., 2011), which is acute in
pigeons (Wang & Frost, 1992).

The high rate of virtual collision found during video play-
back might suggest that vehicle noise is used by pigeons (per-
haps as an early warning signal) to avoid vehicles, which was
absent during video playback in our study. Alternatively, the
high vehicle speeds we tested (120 and 240 km h™') might
have overwhelmed the sensory or cognitive mechanisms used
by pigeons to avoid oncoming objects, as was found in an ear-
lier study with brown-headed cowbirds (Molothrus ater;
DeVault ez al., 2015). Irrespective of the mechanism, pigeons
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would have needed to increase their flight speed by a factor of
3.7 (for 120 km h™" vehicle approaches) or 5.7 (for 240 km h!
vehicle approaches) to avoid the oncoming vehicle in our video
playback tests based on the mean FIDs we observed. This
highlights the challenges of mitigating bird-vehicle collisions,
given the evolutionary constraints inherent to the antipredator
behavior of some species.

We cannot definitively conclude that some individuals in our
study became habituated to vehicle approach because we did not
take multiple measurements of escape behaviors for individuals
over time (Bejder et al., 2009). However, of the four explana-
tory mechanisms that could account for evidence of habituation-
like responses (learning, displacement, physiology and ecology;
Bejder et al., 2009), learning seems the most likely explanation
for the increased tolerance (i.e. shorter FIDs) shown by the
groups visually exposed to vehicle approaches during training in
our controlled experiment, which suggests that habituation was
occurring (see also Sztarker & Tomsic, 2011).

Across much of the developed world, birds observe many
vehicles each day. These vehicles rarely, if ever, pursue the
birds, but instead travel predictably along roads, flight lines
and railroad tracks. Our findings suggest that (1) habituation
could contribute to many of the mortalities associated with
vehicle collisions, and (2) even birds with heightened avoid-
ance responses (i.e. individuals that rarely have been exposed
to vehicles) may be vulnerable to collisions with high-speed
vehicles that are common worldwide. Future research should
investigate the degree to which systems designed to elicit ear-
lier avoidance responses (e.g. aircraft lights) can counteract this
effect (Blackwell et al., 2012; Blackwell & Fernandez-Juricic,
2013; Doppler et al., 2015).
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