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Effects of scale of movement,
detection probability, and true
population density on common
methods of estimating population
density

David A. Keiter!, Amy J. Davis?, Olin E. Rhodes, Jr.3, Fred L. Cunningham*, John C. Kilgo®,
Kim M. Pepin? & James C. Beasley?

Knowledge of population density is necessary for effective management and conservation of wildlife,
yet rarely are estimators compared in their robustness to effects of ecological and observational
processes, which can greatly influence accuracy and precision of density estimates. In this study, we
simulate biological and observational processes using empirical data to assess effects of animal scale
of movement, true population density, and probability of detection on common density estimators.
We also apply common data collection and analytical techniques in the field and evaluate their ability
to estimate density of a globally widespread species. We find that animal scale of movement had the
greatest impact on accuracy of estimators, although all estimators suffered reduced performance
when detection probability was low, and we provide recommendations as to when each field and
analytical technique is most appropriately employed. The large influence of scale of movement on
estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or
use of methods that implicitly account for spatial variation. In particular, scale of movement impacted
estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.)
must reflect movement characteristics of the focal species to reduce bias in estimates of movement and
thus density.

Knowledge of population density is essential to the field of wildlife ecology, providing a foundation for effective
planning of management and conservation and for basic ecological research. As such, numerous density esti-
mators have been developed for broad and species- or situation-specific use® 2. Because every density estimator
operates according to a set of assumptions (e.g. capture-mark-recapture [CMR] estimators generally assume that
marks are not lost or overlooked), which may be comparatively robust or weak, these estimators are likely to differ
in their susceptibility to the effects of 1) ecological processes, such as animal movement, 2) observational pro-
cesses, such as baseline detection rates, 3) ecosystem characteristics, such as underlying population density, and
4) the interactions of these factors. For this reason, evaluation of potential impacts of these processes on accuracy
and precision of estimators is necessary.

Density, or abundance per unit area, is often the parameter of interest in wildlife studies, as it allows compar-
ison among studies which might not have sampled the same size area and provides spatial context to resulting
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information®*. However, there are many challenges inherent to estimating density of wildlife populations. A
well-established issue is variability in the observational process resulting in a detection probability (p) of <1.0;
thus, jointly estimating detection with density is necessary®. One of the simplest estimators to account for imper-
fect detection of animals is the 2-sample Lincoln-Petersen estimator (LPE), which uses a ratio of marked to
unmarked animals to estimate p and abundance®. More complex CMR estimators that explicitly model covariates
affecting p and thereby refine estimates of density or abundance have since been developed™’, as have non-CMR
methods®. Many of these techniques, however, do not explicitly account for movement of animals in estimating
animal abundance. Conversion of resulting estimates of abundance to density, an inherently spatial metric,
requires some knowledge of the scale of animal movement to determine the area to which inference about popu-
lations can be applied. The size of an animal’s home range relates to the scale at which an animal moves (i.e. a
larger home range denotes that an animal has larger scale movements than one with a smaller home range). The
general scale of movement for a population may greatly affect abundance estimates through changes in the avail-
ability of an animal to be sampled (i.e. an animal that is only present on a sampling grid for a short duration of the
sampling period may not be detected as readily or frequently as one that is present on the sampling grid at all
times?). This lack of geographic closure caused by animal movement is often addressed through ad-hoc estima-
tion of the effective area sampled by a particular data collection method.

One common technique to determine the effective area sampled by abundance estimators is to buffer the
convex polygon of the sampling grid by the mean maximum distance moved (MMDM) or half mean maxi-
mum distance moved (HMMDM) by animals during the study period!®!!. In contrast to post-hoc calculation
of effective area sampled, spatially explicit capture-recapture (SECR) models allow for direct inference on effec-
tive sample area by accounting for spatial variability in the detection process, potentially resulting in improved
inference about density of wildlife populations over traditional capture-recapture approaches®. Recent research
has compared spatially explicit density estimators with non-spatial estimators (i.e. those that use an ad-hoc
approach to estimate the effective area sampled)'*-"?, but few studies have evaluated the accuracy and precision
of tested estimators (but see refs 13, 18, 19). Further, while studies frequently compare analytical techniques
in their ability to estimate population density without bias, a greater understanding of the effects of the scale
of animal movement, an underlying mechanistic ecological process, on estimator performance is necessary to
guide estimator choice. In addition to animal scale of movement, population and environmental characteristics
can affect overall detection rates, thereby influencing accuracy and precision of density estimators. Evaluation
of both the effects of these processes and their interactions with animal movement on accuracy and preci-
sion of common density estimators and field-based comparison of density estimation techniques will allow
researchers and managers to choose the most appropriate and applicable density estimator for their research
conditions.

Wildlife population estimation methods have evolved over the last several decades to meet the challenges
inherent in monitoring natural systems. Data collection for these methods may be noninvasive, in which capture
and handling of animals is not required, potentially minimizing disturbance to populations®; or invasive, in
which animals are captured. Common noninvasive methods include use of camera traps'é, fecal pellet counts?!,
and collection of hair or scat for genetic testing®. Analytical techniques such as mark-resight*? and genetic CMR*
have been developed to estimate density from noninvasive data. Examples of invasive data gathering techniques
include live-trapping and marking for analysis in a CMR framework’, use of biomarkers and a recapture event*
for analysis by LPEs*, and lethal removal or harvest of animals for analysis by removal models®. Each data col-
lection technique has unique advantages and disadvantages that may make it more or less susceptible to effects
of ecological processes and underlying ecosystem characteristics, yet it is rare that multiple combinations of field
and analytical techniques are compared in their ability to estimate density?*%’.

In this study, we had two objectives: 1) to evaluate the robustness of a suite of common density estimators to
changes in the scale of animal movement, underlying population density, probability of detection, and the inter-
actions between these processes, and 2) to provide recommendations as to when application of each estimator is
appropriate based upon simulation results and the observed practicality and feasibility of field implementation
of each. We accomplish these objectives by employing common invasive and noninvasive field techniques and a
suite of analytical techniques to estimate population density of a globally widespread species Sus scrofa, the wild
pig, at three study sites (Table 1), and using the gathered data to parameterize simulations for evaluation of esti-
mator robustness to changes in ecological and observational processes.

Results

Density Estimates. Density estimates from the five analytical techniques ranged from 0.91-2.60 adult
animals/km? in the three study sites tested (Fig. 1). Camera SECR and trap SECR models generally produced
higher estimates of density than other methods. Estimates across study sites were similar within a given method
(Fig. 1). Numbers of animals marked or captured by each field method in the three study sites are presented
in the Supplementary Information (Appendix S1). In calculating false-positive and false negative rates of mark
determination for the biomarker LPE, we found uncertainty in both the capture and recapture occasion. We,
therefore, present a sensitivity analysis of the potential effects of this uncertainty on resulting density estimates
in Appendix S2. Movement rates used to calculate buffer sizes for abundance estimators varied among habitat
types (range of MMDM: 326-896 m), meaning the effective area sampled differed between study sites. Additional
discussion of results specific to each field technique can be found in Appendix S1.

Simulation. Simulations showed scale of movement often influenced the scaled bias of estimators more than
probability of detection or true density for all estimators (Fig. 2). We found that LPEs were biased high when the
scale of movement was high (Fig. 2a,c), biased low when scale of movement was low (Fig. 2a,c), and performed
more poorly at low detection probabilities (Fig. 2a,b). Camera SECR and trap SECR models exhibited similar
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Analytical Technique Field Data Used Implementation Citation
Biomarker data,

Biomarker LPE camera data, Simple function written in R* or Excel 6,7
corral trap data

Camera LPE Camera data, Simple function written in R or Excel 6,7
corral trap data

Camera SECR Camera data Package secr in R 42,50

Trap SECR Camera data, Package secr in R 42,50
corral trap data

Hierarchical Bayesian model using custom
Removal Corral trap data MCMC code weitten in R 8

Table 1. Data sources, implementation, and references for tested density estimators, Savannah River Site, South
Carolina, USA, 2015.

patterns to each other (Fig. 2d-i). Under some simulated conditions SECR models were not able to estimate
density based on the sparseness of encounters (Fig. 2d-i), although trap SECR models, which employed greater
amounts of data, were less affected (Fig. 2g,i). Camera SECR and trap SECR models tended to be biased high
at high scales of movement and were unable to produce results when scales of movement were low (Fig. 2d-i).
The removal estimator was more affected by the density parameter than the scale of movement or detection
parameters, as shown by greater changes in the scaled bias as a result of change in density rather than the other
parameters (Fig. 2k,1); removal models were biased high at low densities and biased low when scale of movement
was low (Fig. 2j-1). Buffer choice to estimate effective area sampled had a substantial impact when converting
abundance estimates to density. In particular for removal models when a naive buffer was employed models
performed poorly, but when an appropriate buffer based upon prior information (e.g. MMDM) was employed,
the bias caused by animal movement was minimized (Appendix S1). We found MMDM buffers performed better
than other buffer choices (i.e. HMMDM, naive) in converting estimates of abundance to density (Appendix S1).

In terms of precision, LPEs exhibited poor performance at low detection probabilities and low scales of move-
ment (Fig. 3a-c). Further, when true variation was accounted for, inconsistent patterns in precision of LPEs
emerged (Appendix S1). When data were sufficient to allow parameter estimation, camera SECR and trap SECR
models were fairly consistent in estimating precision, and were most imprecise at low scales of movement and low
abundances (Fig. 3d-i). The removal model was most imprecise at low densities and exhibited increased impreci-
sion with increased scales of movement when detection rates were low (Fig. 3j-1; Appendix S1).

Discussion

We employed and compared five methods of density estimation under field conditions and used simulations of
ecological (e.g., scale of animal movement) and observational processes (e.g., baseline probability of detection) in
lieu of known abundances to compare population density estimators under known conditions and evaluate their
accuracy and relative strengths. Comparison of field methods to estimate animal density provides essential infor-
mation for managers planning conservation or management programs and yet is infrequently conducted. Further,
assessment of the accuracy of metrics is often impossible to perform in field conditions (but see refs 13, 18, 19),
leading many studies to use indices or minimum population sizes as a metric of comparison?® 2,

The range of our density estimates (0.91-2.60 adult pigs/km?) is consistent with published estimates of
wild pig density in the southeastern US (i.e. 1.07-2.74 pigs/km?)?, suggesting that severe overestimation or
underestimation by field application of the tested density estimators did not occur. Our results suggest that
the ecological process resulting in scales of movement can have a large effect on density estimates, as shown
by higher rates of scaled bias across scale of movement ranges (Fig. 2); highlighting the importance of using
effective post-hoc approaches to convert estimates of abundance to density! or using techniques that implic-
itly consider spatial variation to estimate density. It should be noted, however, that the movement metrics
observed from field data fell within a reasonable range for estimating density with fairly low bias from simu-
lations (Fig. 2). In general, estimators performed exhibited greater bias and imprecision when scales of move-
ment were low, which may partially be a result of fewer detections of individual animals at different detectors.
Therefore, sampling design to maximize detections of individuals at multiple detectors, and thereby improve
measurements of scale of movement will likely improve accuracy of density estimates. This might be imple-
mented by placing detectors closer together for animals that generally exhibit lower movement rates and far-
ther apart for species that tend to move larger distances. When capture rates were low as a result of extremely
low baseline probabilities of detection or densities, all estimators suffered reduced performance, regardless
of movement parameter values. Our simulations also suggest that MMDM, rather than HMMDM, should
be used to convert estimates of abundance to density for greatest accuracy, similar to previous research!> 1
(Appendix S1). It should be restated, however, that there is no theoretical basis for use of MMDM as an appro-
priate buffer'®, and that variation surrounding this estimate of an appropriate buffer size is not incorporated
into the overall variation around the estimate of population density.

We found that LPEs generally estimated lower densities than other field techniques with relatively high pre-
cision; however, our simulations suggest that these estimates may be disputable. One assumption of LPEs is that
marks are not lost or overlooked®, which was violated in the case of the biomarker LPE, and is likely to have
affected the accuracy of density estimates (Appendix S2). It has previously been suggested that LPEs may be rela-
tively unbiased when different methods of capture and recapture are implemented to reduce effects of individual
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Figure 1. Estimated densities of wild pigs (Sus scrofa) at three study sites at the Savannah River Site using five
analytical techniques, South Carolina, USA, 2015. Error bars represent 95% confidence intervals.
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heterogeneity®, which may explain the apparent accuracy of LPEs in our simulations. The relative accuracy of
LPEs in simulations may also be partially accounted for by the fact that LPEs are known to perform well when
home ranges are circular'!, as implemented in our simulations. However, LPEs often had poor ability to correctly
estimate error (Fig. 3) and do not accommodate model selection approaches, which may limit their utility in
determining effects of specific covariates on density estimates’. LPEs were able to estimate densities even with
low amounts of data, although the accuracy and precision of these estimates might be questionable. Overall, use
of LPE:s is likely most preferable when 1) a computationally simple method is necessary, 2) an assumption of cir-
cular home ranges is acceptable, 3) scale of movement and detection rates are fairly high, and 4) the researcher or
manager is comfortable with some degree of inaccuracy and/or imprecision.

Camera SECR and trap SECR methods resulted in the highest density estimates and performed similarly
under field conditions and in simulations. It is not unexpected that this would be the case, as corral trap data did
not significantly change the models, but simply represented additional data that could be used to estimate scale of
movement and detection parameters to better inform density estimates. Trap SECR models were generally more
accurate and precise than camera SECR models as a result of this additional data. Spatially explicit models had
the additional benefit of allowing incorporation of covariates to better account for underlying mechanisms that
influenced the detection process (e.g. scale of movement), although these models also required a greater amount
of data than other methods tested, and failed to run when insufficient data were available. This implies additional
effort may be necessary to implement SECR methods in the field compared to the other tested techniques, par-
ticularly when movement rates are low. Similar to other studies, SECR models were relatively imprecise under
field conditions (Fig. 1), likely due to their incorporation of spatial variation into the estimation process'®. Despite
this, our simulations suggest that SECR models will be relatively precise when density, scales of movement, and/
or detection rates are high, criteria that were not fully met by field data. Accuracy and precision of SECR models
could be additionally improved by better tailoring the sampling grid design to reduce mismatches between per-
ceived and actual movements, as discussed in ref. 30. It should, however, be noted that our SECR models were
based upon an assumption of stationary home range centroids as our camera trapping study period was less than
two weeks. However, if we had a longer study period, transience of animals through the study area could affect
our results, although SECR model estimates should be generally robust to transience’!. Based upon our results,
we recommend SECR approaches be employed when 1) recaptures at multiple spatial locations are likely, 2) fairly
accurate and precise density estimates are required, and 3) mismatches between grid size and movement patterns
of animals are unlikely or can be minimized.

Development of removal models suggests that they can generate robust estimates of abundance®, however
they do not inherently consider space, necessitating estimation of the effective area sampled by this technique
through external data sources (e.g. use of remote cameras, telemetry) to allow density estimation. As expected,
the buffer used for conversion to density must be realistic and preferably based on site-specific observations in
order for good estimates to be obtained. While the removal models were somewhat biased when density and
scales of movement were low, they exhibited high accuracy when population density was large and capture rates
were sufficiently high. As expected based upon simulations, this estimator performed poorly for the mixed study
site, where capture rates were extremely low. This technique also had the lowest data requirements, needing only
a simple count of animals removed during the study period and the effort required to remove them (here, trap
nights). We believe that removal estimators will be most effectively employed when 1) population densities are
fairly high and a reasonable capture rate can be attained?, 2) a simple method of data collection is preferred,
3) the target population is already being managed by culling, and 4) data on movements of animals in the study
area can be gathered or inferred.
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Figure 2. Effects of scale of movement, probability of detection, and density on scaled bias ((estimated
density — true density)/true density) of tested analytical techniques from simulations. Parameter values at which
models did not run are displayed in gray.

When choosing the most appropriate method to monitor populations, understanding the strengths and weak-
nesses of each technique is necessary. While we were able to individually identify animals of this species using
photographs, the proportion of naturally marked and identifiable animals is likely to differ across regions and
species. When unidentifiable individuals are present in the population, spatially explicit mark-resight methods
that account for the proportion of unidentifiable individuals captured in photographs might offer a solution® *.
Camera traps are already commonly used in many control programs for invasive and harvested species to
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Figure 3. Effects of scale of movement, probability of detection, and density on the coeflicients of variation
(CV) of density of tested analytical techniques from simulations. The upper bound of CV values represents any
values >2.0. Parameter values at which models did not run are displayed in gray.

assess presence and composition of populations prior to implementation of management strategies, suggesting
camera-based methods could be an efficient technique for management applications.

A challenge with the biomarker-based method was that it was difficult to determine from camera-trap data
whether individuals had consumed sufficient biomarker to be marked. This led to uncertainty in the number
of marked animals within each study site, which could influence population estimates (Appendix S2). Using
greater concentrations of biomarker, requiring less consumption by each individual to generate a mark, and/or a
shorter marking period, as in*%, may improve results. However, higher concentration of some biomarkers could

SCIENTIFIC REPORTS | 7: 9446 |

DOI:10.1038/s41598-017-09746-5


http://S2

www.nature.com/scientificreports/

" . North Carolina b

N

- South Carolina

Georgia

= Camera traps
¢ Corral traps

A, w . 024 8 12 16
N 4 3 b
03060 120 180 240 N A\ e ———
RO — km ! 3

Figure 4. Location of the Savannah River Site (a) and distribution of detectors in the selected study sites (b),
South Carolina, USA, 2015. Maps were created in ArcMap®.

reduce palatability of bait or make consumption unsafe for non-target species, requiring further modifications
of bait matrix for success. We also found uncertainty in the recapture occasion of this technique, which may be
due to variation in biomarker consumption among animals. Thus, as currently implemented, the biomarker
technique likely needs further development to reduce observational error for effective implementation in den-
sity estimation.

Trapping is a commonly used technique to manage invasive and harvested species®, and use of trapping to
estimate density, such as in the removal model, biomarker LPE, camera LPE, or trap SECR method we employed,
is attractive as it may complement management programs®. To better estimate the area sampled by detectors and
further refine density estimates from methods using trapping data, researchers might consider collecting external
telemetry data to estimate the amount of time spent by individuals in a sampling area'’. This will allow improved
density estimation by techniques that do not explicitly consider movement and space, and may improve estimates
of those that do.

Although we conducted this study over a relatively short period of time, the age structure of populations
differed dramatically between study sites (Appendix S1). Estimates of density that include young could change
greatly within a few months in species that exhibit birth pulses, or across space in species that breed year
round, necessitating careful interpretation of results or increased planning to account for temporal and spatial
variation in births. We also believe future studies of social species, such as wild pigs, should investigate the
independence of adult animals within the same group to ensure independence of samples or assess the neces-
sity of modification to density estimation techniques. In addition, improved information about reproductive
parameters, such as the proportion of animals reproducing and average litter size, could be used to incorporate
non-independent juveniles into estimates. To our knowledge, no study has extensively evaluated the degree
to which wild pigs of the same social group are spatially independent (i.e., the amount of time that animals
of the same group do not spend together and might be detected independently). Development of methods to
incorporate spatial auto-correlation at the individual level might be valuable for future studies of this and other
social species.

Methods

Study Species. Wild pigs (Sus scrofa) and wild boar, from which they are descended, are found on every
continent except Antarctica®. This species is often harvested recreationally and lethally controlled in locations
where it is invasive. There is well-recognized bias in capture probabilities of different demographic components
of wild pigs through conventional trapping® and it is likely that movement rates of this species differ between
habitat types.

Study Area. We conducted this research at the Savannah River Site (SRS), a 78,000 ha United States
Department of Energy (DOE) facility on the border of South Carolina and Georgia (33°20'N, 81°44 W; Fig. 4).
Approximately 68% of habitat at the SRS consists of upland pine, while an additional 22% is comprised of swamp
and riparian bottomland habitat (described in ref. 35). Additional areas, hereafter mixed habitat, are dominated
by upland pine, but include riparian habitat. We selected a study site in each of these three broad habitat matri-
ces (i.e. bottomland hardwood, upland pine, and mixed habitat) to test density estimators under varying field
conditions. Populations of wild pigs on the SRS have grown recently as evidenced by increasing incidences of
pig-vehicle collisions and numbers of individuals culled by U.S. Forest Service contractors®.

Field Methods. All field methods were carried out in accordance with approved guidelines and research
protocols (University of Georgia IACUC permit A2015 05-004-Y). Within each study site (bottomland, mixed,
upland), we applied three common field techniques to gather data. These techniques were 1) individual iden-
tification of animals using camera traps and natural marks, 2) use of a biomarker bait to mark individuals for
capture-recapture analysis, and 3) application of trapping and lethal removal. Camera trapping and biomarkers
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a.

Figure 5. Example of a wild pig (Sus scrofa) individually identified by pelage patterns (a) and a wild pig
identified by scars at a Rhodamine B treated bait pile (b), Savannah River Site, South Carolina, USA, 2015.

were simultaneously applied in each study site prior to live-trapping. Each of the combined field and analytical
methods we evaluated was self-contained (i.e. did not require capture and marking of individuals prior to imple-
mentation or gathering of external data, such as telemetry). Table 1 provides an overview of how field data fed
into the analytical methods tested.

We established a 5 x 4 grid of white-flash trail cameras (Scoutguard SG565FV, HCO Outdoor Products,
Norcross, USA; Fig. 4) in each study site. We placed cameras along transects 750 m apart (+7 m) in locations
that would maximize the probability of animal detections based upon local habitat conditions or evidence of pig
presence (e.g. rooting, scat, etc.). Cameras were set on motion triggers, with a 3-minute delay between trigger
activation, and programed to take 3 pictures, 5seconds apart, when triggered. We baited cameras with corn
treated with Rhodamine B (RB), a biomarker that can be used for “batch-marking” individuals prior to removal
efforts® (described in Appendix S3 in Supporting Information). Camera traps were active for 12 days in the
upland and mixed study sites, and 13 days in the bottomland study site. We identified individual animals using
unique combinations of pelage, scars, and association with other individuals from camera photos (Fig. 5). To
create individual capture histories, each 24-hour period a camera was active defined a capture occasion. Using
camera trap data, we determined whether each individual pig was likely to be marked by RB through evaluation
of the amount of time it spent consuming treated bait and its estimated weight (Appendix S3). We assessed
accuracy of our classifications of animals as “marked” or “unmarked” based upon their consumption of RB by
determining how many individuals that were judged marked were not marked based upon whisker analysis (i.e.
false positives), and how many animals thought to be unmarked were marked according to whisker analysis (i.e.
false negatives).

Following camera trapping, we created a grid of 1 km? cells in each study site, and placed 10 corral traps (1
trap per grid cell) in areas with recent pig activity or in what was judged to be the best habitat if no fresh activity
was found (Fig. 4). We pre-baited traps with whole corn for three days and live-trapping occurred for 14 days in
each study site (i.e. 140 trap-nights per habitat type). To account for effort using traps, we recorded each occasion
a trap was triggered without successfully catching a pig; these occasions were generally the result of a non-target
species activating the trigger. Captured pigs were euthanized via cranial gunshot (University of Georgia IACUC
permit A2015 05-004-Y). We collected 8-10 whiskers from each captured pig for use in analysis of RB consump-
tion, and photographed each animal with a digital camera to allow identification of pigs that had previously
visited camera traps. Whiskers collected from captured pigs were prepared for analysis according to the methods
described in ref. 37. Further detail on the implementation of field protocols is available in Supporting Information
(Appendix S3).
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Analytical Methods. Data sources for each analytical technique, method of implementation, and basic cita-
tions are in Table 1. We excluded individuals <20 kg from all analyses, as piglets travel with older individuals?,
and would violate the independence assumption inherent in the estimation methods we used.

We assumed demographic and geographic closure existed among adult animals in each study site, as this study
was conducted in a short time period (~1 month). Human harvest is frequently the largest source of adult mor-
tality in wild pigs38, however, no hunting, vehicle deaths, or culling (outside our study design) occurred within
~2km of the study sites during this project.

In the biomarker Lincoln-Petersen Estimator (LPE) and camera LPE, we calculated abundance of wild pigs
using the Chapman correction for small sample size®’. Marked animals for the biomarker LPE were those that
consumed a sufficient amount of RB (described in Appendix S3), whereas in the camera LPE, marked animals
were those that were individually identified by camera trap photographs. The recapture occasion for both LPEs
consisted of corral trapping and lethal removal of animals.

For the camera SECR analysis, we created and compared 10 a priori SECR models of wild pig density, availa-
ble in Appendix S4. These models included potential factors affecting density (D), the scale parameter (sigma),
describing how detection declines with distance between an animal’s home range center and a detector (i.e.
camera), and the probability of detection (g0). These models assumed animals were distributed on the landscape
following a homogenous Poisson point process, and that probability of detection was related to distance between
an animal’s activity center and detectors through a half-normal curve®. We evaluated the level of support for
each model using change in second order Akaike’s Information Criterion (AAIC.) and AIC weight (AIC,,)),
measures of model likelihood*. We chose the results of the most supported model for comparison to the other
population estimation techniques. If model selection uncertainty occurred, we used model averaging to estimate
parameters.

For the trap SECR analysis, we used individual capture histories from the camera SECR method combined
with live-trapping effort as additional potential capture occasions. We evaluated 10 a priori models of wild pig
density using AAICc and AIC,; (Appendix S4). Corral traps were considered a “proximity”-type detector to
allow data analysis using R package secr*">*2. This implies that multiple individuals could be captured by the
same detector during a time period, which was facilitated by bait placement and using continuous-catch gates
on many of the traps (Appendix $3). Similar to'8, this assumption likely did not influence our estimates, as
mean trap saturation, or the occasion specific proportion of occupied traps, was low (<0.03, Appendix S1). We
also tested models that included a categorical effect of trap type (i.e. camera trap vs. corral trap) on detection
probabilities.

For the removal method, we used a Bayesian hierarchical removal model, accounting for variation in capture
effort, to estimate abundance in each study site®. The removal method was a standard removal model® that jointly
estimated capture rate and initial population size, and assumed changes in population size during the study were
exclusively due to removals. Capture probability was dependent on the amount of effort (i.e. number of traps
active in a given night). We implemented the model as in ref. 8.

Converting abundance to density. To compare the techniques employed, we converted abundance esti-
mates (i.e. biomarker LPE, camera LPE, removal) to density, as estimates of density are scalable across studies.
We estimated the effective area sampled by each method as the area encompassed by the sampling grid buffered
by the mean maximum distance moved!® (MMDM), as calculated using camera and corral trap capture data. We
used the Delta method** to calculate variances for the analytical techniques requiring a conversion from abun-
dance to density (i.e. biomarker LPE, camera LPE, and removal). In addition, for the removal method we used
a naive buffer calculated from literature values for wild pig home range size** to determine how this estimator
performed without site-specific movement data.

Simulation. We used simulations to evaluate the accuracy of each analytical method with varying densities,
detection rates, and scale of movement parameters. We excluded the biomarker LPE in simulations due to obser-
vational process uncertainty (see Results).

We simulated a homogenous landscape and added a camera grid as implemented in the field component of
this study (i.e. 20 cameras spaced 750 m apartin a 5 x 4 grid). We used a similar method to simulate trap locations
(i.e. 10 traps in a spatially balanced design within the camera array). We then simulated spatial distributions of
animal home range centroids using a partial Poisson clustering algorithm (R function PCPsim*) to account for
the social dynamics of this species. We assumed that home range centroids were stationary throughout the study
period (i.e. dispersal or transience were not evident)?'.

Our observation process was based on a daily scale (i.e. any observation of an animal, regardless of the num-
ber of observations of that animal, within one day was treated as a single detection). There are many metrics that
describe movement rates (e.g., step lengths, turning angles, maximum distance moved, hourly-, daily-, monthly-
movement rates, etc.). While many of these movement metrics could influence the number of detections occur-
ring within a single day, we wanted to focus on metrics that would relate to the probability of an animal being
detected at any given detector within a day. We created an observational process in which the likelihood of an
animal being available for detection depended upon the distance between its home range centroid and detectors
(d). We assumed the probability of an animal being available for detection at a detector decreased with increased
distance between that animal’s home range centroid and the focal detector, similar to distance sampling*” and a
simplified movement process with a point of attractions*®, which we implemented through a truncated Gaussian
relationship (eq. 1). This method simplifies uncertainties associated with complex movement processes that
might arise from a more explicit movement model (e.g., correlated random walks, Brownian Bridge) to the scale
of movement metric (o) which is important for this observational level.
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plavailability) =

e 207
2mo? (1)
We simulated the scale of movement metrics by varying the standard error (o) of the truncated Gaussian
distribution to affect the potential that an animal would be available for encounter with a detector. The max-
imum distances at which animals might encounter corral traps were simulated as being greater than those of
camera traps, as there would be fewer detectors and, therefore, bait, present on the landscape during the trapping
period, potentially causing animals to move greater distances. We modeled detection as a simple rate given the
animal was available to be detected (e.g., the animal being within the proximity of the detector; g, eq. 2). The
detection probability was examined uniformly across a range of values from 0.1 to 0.9. The encounter rates were
thus dependent on the movement process multiplied by the detection rates. This represents a scaled truncated
Gaussian distribution (the combination of a maximum detection probability from a uniform range and a trun-
cated Gaussian distribution, eq. 3). We restricted the total number of traps an animal could visit in a single night
using a multinomial process based upon our observed empirical distribution of trap attendance and capture
rates (eq. 4). In addition, we included a behavioral effect that increased the chances of an individual returning to
a camera in subsequent nights once it was detected (i.e. “trap-happiness”), as supported by SECR model results
(Appendix S4). In simulating corral trapping, animals could only be detected at one trap ever, and then were
removed from the population.

p(detection|available) = A (2)
dz
p(detection) = 8 e 207
270 (3)
# traps|detected = multinomial(#detected, [0.82, 0.15, 0.03]) (4)

We simulated all combinations of a range of scale of movement (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2), density (0.25,
0.50, 0.75, 1.25, 2.00, 2.50, 3.75, 5.00, 6.25, 7.50, 10.00, 15.00), and detection probabilities (0.1, 0.2, 0.3, 0.5, 0.7,
0.8, 0.9), for a total of 588 combinations. We generated five sample datasets from each combination. We defined
scale of movement (sigma) as the standard deviation of a Gaussian distribution, based upon the average radius of
two week home range sizes from collared animals at the SRS (Smith et al., Savannah River Ecology Laboratory,
unpublished data). The detection probability was modeled as being 75% lower for corral traps than camera traps
based upon field data, meaning that given the distance between its home range centroid and the detector was the
same, the probability of a pig being captured in a corral trap was % of its probability of being captured at a camera.
We compared analytical methods in terms of scaled bias, the deviation of the estimated density from the true
density used to create the simulation, and scaled by the true density, and coefficients of variation of the density, a
scaled measure of variability representing relative precision.

References
1. Williams, B. K, Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations (Academic Press, 2002).
2. Pierce, B. L., Lopez, R. R. & Silvy, N. J. Estimating animal abundance in The Wildlife Techniques Manual: Research (ed. Silvy, N. ].)
284-310 (The John Hopkins University Press, 2012).
3. Rich, L. N. et al. Comparing capture-recapture, mark-resight, and spatial mark-resight models for estimating puma densities via
camera traps. Journal of Mammalogy. 95, 382-391 (2014).
4. Royle, J. A., Chandler, R. B,, Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Elsevier, 2014).
5. Mills, L. S. Conservation of Wildlife Populations: Demography, Genetics, and Management. (Wiley/Blackwell Press, 2007).
6. Seber, G. A. F The estimation of animal abundance and related parameters (Macmillan, 1982).
7. Pollock, K. H. Modeling capture, recapture, and removal statistics for estimation of demographic parameters for fish and wildlife
populations: past, present, and future. Journal of the American Statistical Association 86, 225-238 (1991).
8. Davis, A. J. et al. Inferring invasive species abundance using removal data from management actions. Ecological Applications.
doi:10.1002/eap.1383 (2016).
9. Lewis, J. S. et al. The effects of urbanization on population density, occupancy, and detection probability of wild felids. Ecological
Applications 25, 1880-1895 (2015).
10. Wilson, K. R. & Anderson, D. R. Evaluation of two density estimators of small mammal population size. Journal of Mammalogy 66,
13-21(1985).
11. Ivan, J. S., White, G. C. & Shenk, T. M. Using simulation to compare methods for estimating density from capture-recapture data.
Ecology 94, 817-826 (2013).
12. Obbard, M. E., Howe, E. ]. & Kyle, C. J. Empirical comparison of density estimators for large carnivores. Journal of Applied Ecology
47,76-84 (2010).
13. Sharma, R. K. et al. Evaluating capture-recapture population and density estimation of tigers in a population with known parameters.
Animal Conservation 13, 94-103 (2010).
14. Sollmann, R. et al. Improving density estimates for elusive carnivores: accounting for sex-specific detection and movements using
spatial capture-recapture models for jaguars in central Brazil. Biological Conservation 144, 1017-1024 (2011).
15. Gerber, B. D., Karpanty, S. M. & Kelly, M. J. Evaluating the potential biases in carnivore capture-recapture studies associated with the
use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Population Ecology
54, 43-54 (2012).
16. Noss, A. J. et al. Comparison of density estimation methods for mammal populations with camera traps in the Kaa-lya del Gran
Chaco landscape. Animal Conservation 15, 527-535 (2012).
17. Blanc, L., Marboutin, E., Gatt, S. & Gimenez, O. Abundance of rare and elusive species: empirical investigation of closed versus
spatially explicit capture-recapture models with lynx as a case study. Journal of Wildlife Management 77, 372-378 (2012).

SCIENTIFICREPORTS |7: 9446 | DOI:10.1038/s41598-017-09746-5 10


http://S4
http://dx.doi.org/10.1002/eap.1383

www.nature.com/scientificreports/

18. Gerber, B. D. & Parmenter, R. R. Spatial capture-recapture model performance with known small-mammal densities. Ecological
Applications 25, 695-705 (2015).

19. Junek, T., Vymyslickd, P. J., Hozdecka, K. & Hejcmanovd, P. Application of spatial and closed-capture-recapture models on known
population of the Western Derby Eland (Taurotragus derbianus derbianus) in Senegal. PLoS ONE 10, 0136525 (2015).

20. Taberlet, P.,, Waits, L. P. & Luikart, G. Noninvasive genetic sampling: look before you leap. Trends in Ecology and Evolution 14,
323-327(1999).

21. Plhal, R,, Kamler, J. & Homolka, M. Faecal pellet group counting as a promising method of wild boar population density estimation.
Acta Theriologica 59, 561-569 (2014).

22. Arnason, A. N., Schwarz, C. ]. & Gerrard, J. M. Estimating closed population size and number of marked animals from sighting data.
Journal of Wildlife Management 55, 716-730 (1991).

23. Lukacs, P. M. & Burnham, K. P. Review of capture-recapture methods applicable to noninvasive genetic sampling. Molecular Ecology
14, 3909-3919 (2005).

24. Reidy, M. M., Campbell, T. A. & Hewitt, D. G. A mark-recapture technique for monitoring feral swine populations. Rangeland
Ecology and Management 64, 316-318 (2011).

25. Zippin, C. The removal method of population estimation. Journal of Wildlife Management 22, 82-90 (1958).

26. Bellemain, E., Swenson, J. E., Tallmon, D., Brunberg, S. & Taberlet, P. Estimating population size of elusive animals with DNA from
hunter-collected feces: four methods for brown bears. Conservation Biology 19, 150-161 (2005).

27. Rodgers, T. W. et al. Comparison of noninvasive genetics and camera trapping for estimating population density of ocelots
(Leopardus pardalis) on Barro Colorado Island, Panama. Tropical Conservation Science 7, 690-705 (2014).

28. Hebeisen, C., Fattebert, J., Baubet, E. & Fischer, C. Estimating wild boar (Sus scrofa) abundance and density using capture-resights
in Canton of Geneva, Switzerland. European Journal of Wildlife Research 54, 391-401 (2008).

29. Hanson, L. B. et al. Effect of experimental manipulation on survival and recruitment of feral pigs. Wildlife Research 36, 185-191
(2009).

30. Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: problems with current designs and recommendations
for future studies. Biological Conservation 159, 109-118 (2013).

31. Royle, J. A, Fuller, A. K. & Sutherland, C. Spatial capture-recapture models allowing Markovian transience or dispersal. Population
Ecology 58, 53-62 (2016).

32. Chandler, R. B. & Royle, J. A. Spatially explicit models for inference about density in unmarked or partially marked populations. The
Annals of Applied Statistics 7, 936-954 (2013).

33. Williams, B. L., Holtfreter, R. W,, Ditchkoff, S. S. & Grand, J. B. Trap style influences wild pig behavior and trapping success. Journal
of Wildlife Management 75, 432-436 (2011).

34. Long, J. L. Introduced Mammals of the World (CSIRO, 2013).

35. Imm, D. W. & McLeod, K. W. 2005. Plant communities in Ecology and Management of a Forested Landscape: Fifty Years on the
Savannah River Site (eds Kilgo, J. C. & Blake, ].I) 106-161 (Island Press, 2005).

36. Beasley, J. C., Grazia, T. E., Johns, P. E. & Mayer, J. J. Habitats associated with vehicle collisions with wild pigs. Wildlife Research 40,
654-660 (2013).

37. Beasley, J. C., Webster, S. C., Rhodes, O. E. Jr. & Cunningham, E. L. Evaluation of Rhodamine B as a biomarker for assessing bait
acceptance in wild pigs. Wildlife Society Bulletin 39, 188-192 (2015).

38. Gabor, T. M., Hellgren, E. C., Van Den Bussche, R. A. & Silvy, N. J. Demography, sociospatial behavior and genetics of feral pigs (Sus
scrofa) in a semi-arid environment. Journal of the Zoological Society of London 247, 311-322 (1999).

39. Efford, M. G., Dawson, D. K. & Robbins, C. S. DENSITY: software for analysing capture-recapture data from passive detector arrays.
Animal Biodiversity and Conservation 27.1, 217-228 (2004).

40. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach
(Springer, 2002).

41. R core team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
“https://r-project.org/” (2014).

42. Efford, M. G. secr: spatially explicit capture-recapture models. R package, version 2.10.2. (2016). Available at: https://cran.r-project.
org/web/packages/secr/index.html. Last accessed 10 March 2016.

43. Farnsworth, G. L. et al. A removal model for estimating detection probabilities from point-count surveys. The Auk 119, 414-425
(2002).

44. Powell, L. A. Approximating variance of demographic parameters using the delta method: A reference for avian biologists. The
Condor 109, 949-954 (2007).

45. McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States.
PLoS ONE 10, e0133771 (2015).

46. Rowlingson, B. & Diggle, P. Splancs: spatial and space-time point pattern analysis. R package, version 2.01-39 (2016). Available at
https://CRAN.R-project.org/package=splancs.

47. Buckland, S. T. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press
Inc., 2001).

48. Preisler, H. K., Ager, A. A. & Wisdom, M. J. Analyzing animal movement patterns using potential functions. Ecosphere 4, 1-13
(2013).

49. ESRI. ArcGIS Desktop: Release 10.3.1. Environmental Systems Research Institute, Redlands, California, USA (2015).

50. Borchers, D. L. & Efford, M. G. Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics 64,
377-385 (2008).

Acknowledgements

This study would not have been possible without the hard work of E. Bledsoe, E.J. Borchert, K. Eckert, and R.
Juarez in collecting data. Additional thanks to the US Forest Service including T. Grazia, T. Mims, J. Nance,
and M. Vukovich for logistical support of this work. This project was funded by the USDA Animal and Plant
Health Inspection Service, Wildlife Services, National Wildlife Research Center through APHIS agreement #15-
7488-119-CA and the Department of Energy Office of Environmental Management through award number DE-
FC09-07SR22506 to the University of Georgia Research Foundation. The views and conclusions contained in this
document are those of the authors and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of USDA-APHIS.

Author Contributions

J.C.B., EL.C, D.AK, J.CK,, KM.P, and O.E.R. designed the study. D.A K. implemented the fieldwork. A.].D.
and D.A K. conducted analyses and simulations. D.A.K. wrote the paper and all authors contributed to editing
the paper.

SCIENTIFICREPORTS |7: 9446 | DOI:10.1038/s41598-017-09746-5 11


https://cran.r-project.org/web/packages/secr/index.html
https://cran.r-project.org/web/packages/secr/index.html
https://CRAN.R-project.org/package=splancs

www.nature.com/scientificreports/

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-09746-5

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

M | jcense, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017

SCIENTIFICREPORTS |7: 9446 | DOI:10.1038/s41598-017-09746-5 12


http://dx.doi.org/10.1038/s41598-017-09746-5
http://creativecommons.org/licenses/by/4.0/

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2017

	Effects of scale of movement, detection probability, and true population density on common methods of estimating population density
	David A. Keiter
	Amy J. Davis
	Olin E. Rhodes Jr.
	Fred L. Cunningham
	John C. Kilgo
	See next page for additional authors
	Authors


	Effects of scale of movement, detection probability, and true population density on common methods of estimating population ...
	Results

	Density Estimates. 
	Simulation. 

	Discussion

	Methods

	Study Species. 
	Study Area. 
	Field Methods. 
	Analytical Methods. 
	Converting abundance to density. 
	Simulation. 

	Acknowledgements

	Figure 1 Estimated densities of wild pigs (Sus scrofa) at three study sites at the Savannah River Site using five analytical techniques, South Carolina, USA, 2015.
	Figure 2 Effects of scale of movement, probability of detection, and density on scaled bias ((estimated density − true density)/true density) of tested analytical techniques from simulations.
	Figure 3 Effects of scale of movement, probability of detection, and density on the coefficients of variation (CV) of density of tested analytical techniques from simulations.
	Figure 4 Location of the Savannah River Site (a) and distribution of detectors in the selected study sites (b), South Carolina, USA, 2015.
	Figure 5 Example of a wild pig (Sus scrofa) individually identified by pelage patterns (a) and a wild pig identified by scars at a Rhodamine B treated bait pile (b), Savannah River Site, South Carolina, USA, 2015.
	Table 1 Data sources, implementation, and references for tested density estimators, Savannah River Site, South Carolina, USA, 2015.


