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Abstract 
Young people frequently socialize together in contexts that encourage risky deci-
sion making, pointing to a need for research into how susceptibility to peer influ-
ence is related to individual differences in the neural processing of decisions during 
sequentially escalating risk. We applied a novel analytic approach to analyze EEG 
activity from college-going students while they completed the Balloon Analogue 
Risk Task (BART), a well-established risk-taking propensity assessment. By mod-
eling outcome-processing-related changes in the P200 and feedback-related nega-
tivity (FRN) sequentially within each BART trial as a function of pump order as an 
index of increasing risk, our results suggest that analyzing the BART in a progres-
sive fashion may provide valuable new insights into the temporal neurophysiolog-
ical dynamics of risk taking. Our results showed that a P200, localized to the left 
caudate nucleus, and an FRN, localized to the left dACC, were positively correlated 
with the level of risk taking and reward. Furthermore, consistent with our hypoth-
eses, the rate of change in the FRN was higher among college students with greater 
self-reported resistance to peer influence. 

Keywords: peer influence, risk taking, Balloon Analogue Risk Task, EEG, feedback-
related negativity 
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Introduction 

Because young people are generally healthy, the greatest challenges to 
their well-being are self-inflicted and preventable inasmuch as they 
result from decisions to engage in behaviors that increase the risk of 
harm (Dahl, 2004; Steinberg, 2007). College students in particular 
are more likely to engage in potentially harmful behaviors like binge 
drinking, drinking and driving, and risky sexual behavior than both 
older adults (O’Malley and Johnston, 2002; Wechsler et al., 2003; Si-
mons et al., 2005; Turchik and Garske, 2008; Crowley et al., 2009) 
and adolescents (Willoughby et al., 2013). Critically, risky decisions 
are typically made in social settings where peer pressure to conform 
is prevalent (Simons et al., 2005; Turrisi et al., 2006; Willoughby and 
Carroll, 2009), creating a need for research into how peer influence 
susceptibility is related to individual differences in the processing of 
risky decision making. 

Although numerous studies have investigated neural components 
associated with risk-related outcome processing (e.g. Fein and Chang, 
2008; Euser et al., 2011, 2013), to the best of our knowledge, no study 
has assessed changes in these components as a function of sequentially 
escalating risk and the capacity to resistance to peer influence (RPI; 
Steinberg and Monahan, 2007). In order to address this limitation, 
we adapted the Balloon Analogue Risk Task (BART), a risk-taking task 
that has been shown to correlate with ‘real-world’ risk taking in mul-
tiple populations (Lejuez et al., 2002, 2003, 2004; Aklin et al., 2005), 
and developed a novel EEG/ERP analysis strategy incorporating the 
moderating role of self-reported RPI (Steinberg and Monahan, 2007). 

The BART involves a series of trials within which risk taking is as-
sessed by calculating a participant’s voluntary exit point across a se-
ries of incrementally increasing risk levels. At each level, the partici-
pant must decide whether to continue ‘pumping up’ a virtual balloon 
to gain a small monetary reward at the risk of the balloon popping 
and losing all rewards accumulated that trial, or to terminate the trial 
and bank that trial’s earnings. Prior research indicates that BART par-
ticipants typically engage in a series of risk evaluations within each 
trial (Wallsten et al., 2005; Pleskac and Wershbale, 2014), making the 
BART a potentially unique risk-related decision-making measure for 
investigating the neurophysiological underpinnings of sequentially 
escalating risk. 
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To link our findings with factors relevant to our target population, 
our study incorporated a validated measure of RPI (Steinberg and Mo-
nahan, 2007) that has been shown in fMRI research to be sensitive to 
observation of emotion-laden actions in early adolescence (Grosbras 
et al., 2007). Peer influence consistently predicts engagement in spe-
cific risk-taking-related activities such as binge drinking (Weitzman 
et al., 2003; Eisenberg et al., 2014), risky drinking (Simons-Morton et 
al., 2005) and drug use (Bahr et al., 2005; Clark and Lohéac, 2007). 
Although previous work in this area (e.g. Cavalca et al., 2013) has not 
shown a direct relationship between RPI and behavioral differences in 
risk taking on the BART, neuroimaging work with young adolescents 
has shown low RPI to be associated with reduced connectivity between 
brain regions involved with inhibitory control (dorsal premotor cor-
tex) and decision-making (dorsolateral prefrontal cortex) (Grosbras 
et al., 2007). These findings suggest that RPI should also be related 
to individual variability in neural activation during decision-making 
when risk is escalating. 

In our study, we employed an adaptation of the BART that was 
suited to the exploration of early ERP components. We focused our 
analysis on two early components that have typically emerged in risk-
taking tasks and have been shown to be highly sensitive to risk-param-
eter-related manipulations, the feedback-related negativity (FRN) (e.g. 
Kóbor et al., 2015; Takács et al., 2015; Yau et al., 2015) and the P200 
(e.g. Polezzi et al., 2008; Xu et al., 2011; Schuermann et al., 2012). 

The first component, the FRN, is a negative deflection typically 
observed at frontocentral sites maximal at 200–300ms postfeedback 
onset (Miltner et al., 1997). Holroyd and Coles (2002) proposed that 
the FRN represents a reward-prediction error component that is more 
positive when outcomes are better than expected and more negative 
when they are worse. Although some researchers argue that the FRN 
is an unsigned outcome deviance evaluation component (see Oliveira 
et al., 2007; Hauser et al., 2014), Sambrook and Goslin’s (2015) grand-
average meta-analysis of more than 25 FRN studies supported Hol-
royd and Coles’s (2002) interpretation by showing the FRN to be more 
positive for unexpected relative to expected positive outcomes (Ep-
pinger et al., 2009; Hämmerer et al., 2010; Mason et al., 2012; Zottoli 
and Grose-Fifer, 2012). 

From a signed reward prediction perspective, given that our anal-
ysis focused on positive feedback trials where the balloon did not pop, 
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and the fact that the level of risk was steadily increasing, we expected 
a linear increase in the FRN with increasing risk. This hypothesis as-
sumes, however, that participant expectations of negative outcomes 
increased in tandem with risk. If participants had no changes in their 
expectations or were consistently expecting the best outcome, no mod-
ulation in the FRN would likely be observed. Based on the FRN’s pre-
dicted role as a signed index of outcome expectation, and its likely 
neural source in the dorsal anterior cingulate cortex (dACC; Hauser 
et al., 2014), a region proposed to have an important role in the cog-
nitive control of risk taking (Steinberg, 2008), we hypothesized that 
changes in the FRN with escalating risk would be moderated by RPI. 

Specifically, we hypothesized that participants reporting greater 
RPI would have outcome expectations more consistent with rising 
BART risk levels, exhibiting increasing positive FRNs upon receiving 
positive feedback at higher levels of risk. This prediction draws on 
models arguing that maturation in cognitive control systems drives 
risk-taking behavior regulation (Steinberg, 2008). Prior findings sug-
gest that adolescents high in RPI possess higher connectivity between 
control and decision-related brain areas (Grosbras et al., 2007) and 
that peer influence on the BART is moderated by cognitive impulsiv-
ity (Cavalca et al., 2013). 

The second target component, the cognitive P200, is a positive ERP 
component occurring in the 150–280ms post-stimulus interval (Car-
retié et al., 2001). Although P200 activity is associated with sensory 
processing, higher-order cognitive processing has also been shown 
to moderate neural activity within the P200 time window. Polezzi et 
al. (2008), for example, found an outcome-related P200 component 
to be more positive for feedback on uncertain as opposed to certain 
outcomes in a two choice (certain vs uncertain) selection paradigm. 
Similarly, Schuermann et al. (2012) used a low- vs high-risk paradigm 
to show a more positive P200 for feedback on high-risk choices in-
dependent of outcome valence. Taken as a whole, these findings sup-
port the hypothesis that the P200 plays a role in the neural coding of 
outcome predictability such that it is more positive at higher levels of 
unpredictability and risk. 

In contrast with the FRN, it is less clear whether RPI should mod-
erate the P200. A moderating role would imply that individuals either 
particularly vulnerable or particularly RPI are less calibrated to risk 
levels. Neither of these hypotheses is supported by past investigations 
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(Cavalca et al., 2013) or general risk-perception findings across older 
and younger populations, which are likely to vary systematically in 
regard to susceptibility to peer influence (Beyth-Marom et al., 1993; 
Millstein and Halpern-Felsher, 2002). Accordingly, RPI was not hy-
pothesized to modulate the P200 and thus the encoding of outcome 
predictability. 

Methods 

Participants 

Thirty-one participants (18 females, four left-handed, mean age = 
20.03, s.d. = 1.78, range 18–26) were recruited from a large Midwest-
ern university. The local institutional review board approved all study 
procedures and subjects earned up to $10 on the task (mean = $9.82). 
Three participants did not meet the minimum criterion of having at 
least 12 clean ERP trials and were removed from the dataset, leaving a 
total of 28 participants (16 females, 4 left-handed, mean age = 20.21, 
s.d. = 1.77) in the final sample. 

Procedure 

Participants completed an online questionnaire outside the lab prior 
to the experiment that included questions pertaining to demograph-
ics as well as the 10-item RPI Scale (Cronbach’s а = 0.75; Steinberg 
and Monahan, 2007). All participants were tested individually in the 
experimental session with one experimenter monitoring the partici-
pant for possible movement artifacts and a second experimenter mon-
itoring the real-time EEG waveforms. 

BART task procedure 

The BART is a well-established risk-taking propensity measure (Lejuez 
et al., 2002) that is correlated with “real-world” risk taking in multi-
ple populations (e.g. Cazzell et al., 2012). To adapt this task for ERP 
collection and to control for the fact that neural activity within both 
the P200 and FRN time period is influenced by visual characteristics 
of stimuli (Pierret et al., 1994), we modified the BART in the following 
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ways: First, a fixed 600-ms time window between feedback and sub-
sequent responses was set (i.e. participant could only respond 600ms 
after feedback). Second, in order to control for the confounding of se-
quentially increasing balloon size with each ‘pump’ in the first con-
dition, a second condition was added where the on-screen balloon 
started out initially large (equivalent to a balloon inflated with 20 
pumps) and was subsequently compressed. The two conditions were 
randomized and differentiated by balloon color (red = inflation, blue 
= compression) and initial size. This modification ensured that ef-
fects due to changes in image size should move in opposite direc-
tions when compared across conditions. In the task instructions, par-
ticipants were explicitly told that both the inflation and compression 
conditions could lead to explosions. Participants were also given four 
practice trials, two inflation and two compression, to gain familiar-
ity with the input controls before beginning the actual task. One of 
the two practice trials in each condition was set to explode after two 
pumps to ensure that participants were aware that overpumping in 
either condition could lead to explosions. 

The experimental task consisted of 25 inflation and 25 compres-
sion trials. Participants were instructed to press a button on a button 
box to either inflate or compress the balloon on screen, accumulating 
$0.05 on that trial for each button press. The participant could stop 
pumping a balloon, transfer the accumulated monies to a permanent 
bank and proceed to the next trial at any time. If a balloon exploded, 
all accumulated monies on that trial were lost and the participant 
proceeded to the next trial. On each pump, the balloon was set to ex-
plode randomly with an a priori probability of 1/(n – number of prior 
attempts) with n = 20 being the maximum number of pumps allowed 
in both the inflation and compression conditions. Participants were 
not informed of this probability structure and were told that their task 
was to pump/compress the balloon to make it as large/small as they 
could without popping it. 

EEG collection procedure 

The EEG data were recorded using a 256 high-density AgCl electrode 
Hydrocel Geodesic Sensor Net connected to a high-input impedance 
NetAmps 300 amplifier (Electrical Geodesics Inc.; EGI, Eugene, OR, 
USA) using Netstation version 4.4.2. Recordings were collected us-
ing a vertex sensor (Cz), later re-referenced to an average reference. 
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Electrode impedances were below 60 kΩ, a level appropriate for the 
high impedance system used. The data were analogue filtered from 
0.1 to 100 Hz and digitized at 250 Hz. 

EEG preprocessing 

In order to explore within-trial changes in feedback components as a 
function of escalating risk, the ongoing EEG on each BART trial was 
segmented into individual pumps. ERPs associated with the positive 
feedback screen (i.e. balloon size change) for each of those pump de-
cisions provided a measure of each participant’s neural response to 
feedback on their first pump decision, their second pump and so on. 
To ensure that each response average was calculated from an equal 
number of segments, trials with at least five responses were selected 
and segmented to just those first five responses. Segmentation was 
locked to feedback onset for each 600ms segment, beginning 100ms 
before onset and continuous for 500ms thereafter. 

Segments were re-referenced using ERP PCA Toolkit (Dien, 2010) 
to an average reference configuration and baseline corrected using 
the 100ms pre-stimulus average. The average number of trials used 
to compute each of the five response averages was 18.6 (s.d. = 2.6) 
and 18.2 (s.d. = 2.7) in the inflation and compression conditions, 
respectively. 

Segments were then digitally filtered in EEGlab (Delorme and 
Makeig, 2004) using a 0.3–30 Hz zero-phase shift finite impulse re-
sponse bandpass filter. EEGlab’s Automatic Artifact Removal (AAR) 
toolbox (Gomez-Herrero et al., 2006) was then used to remove ocu-
lar and electromyographic artifacts using spatial filtering and blind 
source separation. Bad channels were then identified and interpolated 
using the ERP PCA Toolkit’s preprocessing functions (Dien, 2010). Bad 
channels were identified across the entire session via their poor over-
all correlation (<0.40) between neighboring channels and identified 
within each segment via either unusually high differences between 
an electrode’s average voltage and that of their neighbors (>30 μV) 
or as extreme voltage differences within the electrode (>100 μV min 
to max). A channel was also marked as bad for the entire session if 
>20% of its segments were classified as being bad. All identified bad 
channels were replaced using whole head spline interpolation. After 
the bad channels were identified and interpolated, trials with >10% 
interpolated channels were removed from the analysis set. 
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Results 

Behavioral results 

In the final trimmed EEG sample, risk-taking levels in the inflation 
and compression conditions were correlated (r(28) = 0.38, P = 0.045). 
Participants made an average of 2.43 pumps (s.d. = 0.95) in the infla-
tion condition and 2.25 pumps (s.d. = 0.91) in the compression condi-
tion and did not significantly differ from each other, t(30) = 0.93, P = 
0.36. Participants successfully cashed out on 86.87% (s.d. = 0.04%) 
of trials across conditions. Consistent with Cavalca et al. (2013), there 
was no significant relationship between RPI and risk level in either 
condition (inflation: r(28) = 0.031, P = 0.876, compression: r(28) = 
0.231, P = 0.238). 

ERP analysis 

To assess the possibility of a noise confound wherein later BART pump 
responses had a poorer signal-to-noise ratio than earlier ones, the 
noise in each ERP average was estimated by inverting the polarity of 
every other trial that contributed to that average. Inverted and un-in-
verted trials were then re-averaged (Schimmel, 1967) so that consis-
tent ERP signals cancelled out, leaving noise. Pump order was then 
regressed onto this noise estimate separately by condition. No signif-
icant relationship between noise and pump order in either the infla-
tion (F(1,123) = 1.33, P = 0.25) or compression (F(1,123) = 1.97, P = 
0.16) conditions was found  

The ERP components were then quantified using temporal–spa-
tial PCA using the ERP PCA Toolkit version 2.43 (Dien, 2010). First, 
temporal PCA was performed using all time points from each partic-
ipant’s averaged ERP as variables, and condition and recording sites 
as observations. Promax rotation was used and 34 temporal factors 
(the majority representing noise) were extracted based on a 99% 
variance-accounted-for criterion. The spatial distribution of these fac-
tors was then reduced using spatial ICA. This ICA used all recording 
sites as variables and considered participants, conditions and tem-
poral factor scores as observations. Infomax rotation identified nine 
spatial factors based on parallel analysis. The covariance matrix and 
Kaiser normalization were used for both the temporal PCA and spa-
tial ICA steps. To facilitate interpretation, the waveforms for each 
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temporal–spatial factor were reconstructed (i.e. converted to micro-
volts) by multiplying the factor loadings with their respective factor 
scores (Dien, 2012). 

Based on past ERP work in the area, two ERP components were 
selected for quantitative analysis based on their topography and tem-
poral time course: First, a posterior component spanning 150–275ms 
post-stimulus (peaking at 212 ms), henceforth referred to as a P200; 
second, a central component spanning 240–300ms post-stimulus 
(peaking at 256 ms), henceforth referred to as an FRN. No other com-
ponents with nonartifactual topographies and sources within the typ-
ically observed time windows of the P200 and FRN were observed. 

Source localization of the neural sources of these factors was con-
ducted by specifying a pair of hemispheric dipoles (mirrored in posi-
tion but not orientation) in Oostenveld et al.’s (2010) Fieldtrip using a 
four-shell model, with a single-dipole model being applied should the 
two dipoles run into each other. A grid scan first produced a rough es-
timate of the best starting position after an iterative algorithm identi-
fied the position of maximum fit using maximum likelihood (Lütken-
höner, 1998). P200 component source localization was best accounted 
for by a single dipole model that identified the left caudate nucleus 
as the most likely neural generator, as shown in Figure 1a. While the 
source of the decision-making-related P200 is generally not well es-
tablished, localization of decision-processing-related activity during 
the P200 time window (i.e. 200 ms) to the left caudate has been dem-
onstrated in recent simultaneous EEG-fMRI localization work (Walz et 
al., 2013). In addition, Polezzi et al. (2008) localized the P200 in their 
outcome-predictability encoding paradigm to the inferior frontal gy-
rus, an area that has been shown to have functional interactions with 
the caudate (Robinson et al., 2012; Kireev et al., 2015). Source local-
ization of the neural generator for the FRN factor, Figure 1b, was also 
best represented by a single dipole model. This model identified the 
left dACC (Broadmann area 32) as the most likely neural generator for 
this component, consistent with past EEG (Luu et al., 2003) and simul-
taneous EEG-fMRI FRN localization studies (e.g., Hauser et al., 2014). 

Although localization of ERP components to deep brain sources 
such as the caudate is a point of slight controversy (e.g., Cohen et al., 
2011), there is evidence to suggest that it is possible to record electri-
cal dipoles from the caudate and its neighboring regions using EEG 
(Rektor, 2002, 2008; Jung et al., 2007), even with only a limited num-
ber of trials (Attal et al., 2009; Foti et al., 2011). 
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P200 temporal–spatial factor results 

ICA scalp topographies and waveforms depicting the raw ERPs (i.e. 
before PCA) for the last three responses (i.e. pumps 3, 4 and 5), av-
eraged across conditions and electrodes with loadings above 0.6 on 
the P200 factor are presented in Figure 2a and b. The relationship be-
tween pump order and factor voltage scores on this component was 
modeled using a random intercept model that allowed individuals to 
differ in average voltage for this component. A positive relationship 
between pump order and P200 factor voltage was found for both in-
flation (F(1,123) = 4.81, P = 0.03) and compression (F(1,123) = 7.29, 
P = 0.01) conditions. Raw factor voltage means alongside 61 standard 
error bars are presented in Figure 2c. 

Fig. 1. Single dipole source localization of (a) the neural generator of the P200 com-
ponent in the left caudate nucleus and (b) the FRN in the left dACC.  
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RPI was then added to the model as a fully interacting covariate. 
RPI did not have a significant main effect on P200 factor voltage (in-
flation: F(1,26) = 0.66, P = 0.43, compression: F(1,26) = 3.72, P = 
0.07) and did not significantly moderate the relationship between 
pump order and factor voltage (inflation: F(1,110) = 2.32, P = 0.13, 
compression: F(1,110) = 2.27, P = 0.14). 

Fig. 2. P200 temporal–spatial factor results (a) represented as scalp topographies, 
(b) waveforms prior to PCA and (c) raw factor voltage means with 61 standard er-
ror bars.  
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FRN temporal–spatial factor results 

ICA scalp topographies and waveforms depicting the raw ERPs (i.e. 
before PCA) for the last three responses, averaged across conditions 
and electrodes with loadings above 0.6 on the FRN factor are shown 
in Figure 3a and b. The relationship between pump order and factor 

Fig. 3. FRN temporal–spatial factor results (a) represented as scalp topographies, 
(b) waveforms prior to PCA and (c) raw factor voltage means with 61 standard er-
ror bars.  
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voltage scores on this component was modeled using a random inter-
cept model, which allowed individuals to differ in average voltage for 
this component. A positive relationship between pump order and fac-
tor voltage was found for both conditions (inflation: F(1,123) = 6.03, 
P = 0.02, compression: F(1,123) = 5.97, P = 0.02). Raw factor voltage 
means with 61 standard error bars are presented in Figure 3c. 

RPI was then added as a fully interacting covariate. RPI did not 
have a significant main effect on FRN factor voltage (inflation: F(1,26) 
= 2.63, P = 0.12, compression: F(1,26) = 0.58, P = 0.45). Moderation of 
the relationship between pump order and FRN amplitude by RPI was 
statistically significant in the inflation condition, F(1,110) = 6.41, P = 
0.01, and showed a trend toward significance (in the expected direc-
tion) in the compression condition, F(1,110) = 2.66, P = 0.10. In both 
conditions, the direction of moderation was positive, such that as hy-
pothesized higher levels of RPI were associated with a higher rate of 
increase in FRN factor voltage. This relationship is depicted in Fig-
ure 4 for high (+1 s.d.), medium (mean) and low (–1 s.d.) RPI levels. 
At lower levels of RPI, little to no increase in the FRN was predicted 
in either condition, as shown in Figure 4. Predictions were consistent 
across inflation and compression conditions. 

Fig. 4. Relationship between balloon pumps and FRN voltage change, moderated by 
low (–1 s.d.), medium (mean) and high (+1 s.d.) RPI.   
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Discussion 

The aim of this study was to determine how escalating risk-taking lev-
els are reflected in outcome-related ERPs in conjunction with the pos-
sible moderating role of RPI. Two ERP components were more positive 
at higher levels of risk taking, a P200 component source localized to 
the left caudate nucleus and an FRN component localized to the left 
dACC. Consistent with our hypotheses, the P200 was not moderated 
by RPI while the FRN was. 

Past studies have shown the P200 to be more positive at higher 
levels of unpredictability and risk (Polezzi et al., 2008; Schuermann 
et al., 2012), which is particularly interesting given the localization of 
the observed P200 component to the caudate nucleus. Activity in the 
caudate nucleus has been linked with goal-directed behavior and re-
ward-based learning, specifically in regard to both outcome evalua-
tion and the support of appropriately switching behavioral strategies 
in response to changing contingencies and/or goals (see Grahn et al., 
2008 for a review; Haruno et al., 2004). In past feedback-related P200 
findings (Polezzi et al., 2008; Schuermann et al., 2012), activity in the 
left caudate has been associated with feedback processing (Yacubian 
et al., 2007), specifically in regard to response-related as opposed to 
observation-based feedback (Cincotta and Seger, 2007). These exper-
imental findings have also been linked with real-world outcomes. Re-
duced activity in the left caudate during risk taking has been observed 
among individuals with high, as opposed to low or moderate, social 
drinking levels (Bednarski et al., 2012). With these findings in mind, 
it is plausible that the observed feedback-related P200 component 
activity in our study reflects cognitive control mechanisms related to 
feedback monitoring and possibly the moderation of appropriate be-
havioral strategies based on changing reward-to-risk ratios. While no 
significant moderation of RPI was observed in regard to the P200 ef-
fect, given the trend toward significance in some of the observed P-
values, it may interesting to investigate this possible relationship in 
future research with a larger sample size. 

The FRN also showed a linear increase with higher risk levels, but 
was significantly moderated by self-reported RPI such that the FRN 
was virtually absent at lower RPI levels. The localization of the FRN 
to the dACC is consistent with both past ERP FRN localization work 
(Hauser et al., 2014) and the demonstrated decision-making role of the 
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dACC in regard to reward probability and risk in fMRI tasks (Smith et 
al., 2009). Based on the interpretation of the FRN as a signed reward 
prediction error component (for a meta-analytic review, see Sambrook 
and Goslin, 2015), it is possible that individuals in our study who re-
port being highly RPI were more likely to anticipate negative outcomes 
in regard to risk taking, which would partially account for their abil-
ity to RPI to engage in risky behaviors. Alternatively, previous study 
has shown that FRNs may not be observed when outcome expecta-
tions are not being formed (Bismark et al., 2013), in which case in-
dividuals who report being highly susceptible to peer influence may 
simply be failing to consider the potential consequences of their ac-
tions. Accordingly, they may be more readily influenced into making 
risky decisions. A third possibility is that individuals highly suscepti-
ble to peer influence may consistently expect more positive outcomes. 
Dissociating these different explanatory mechanisms is an important 
goal for future research. 

Taken together, the P200 and FRN activity patterns are consis-
tent with a “hot–cold” dual-system risk-taking model. This model 
views risk taking to be a result of two neural systems, a phylogeneti-
cally older, more affective socioemotional system and a phylogeneti-
cally younger, more deliberate cognitive-control system (Cohen, 2005; 
Ernst et al., 2006; Steinberg, 2007, 2008; Casey et al., 2008; Geier 
and Luna, 2009). The affective system is considered to be fairly auto-
matic and spontaneous and is believed to be driven by, among other 
regions, midbrain dopaminergic centers. The deliberative system relies 
on higher-order brain structures including the ACC and PFC (Stein-
berg, 2008). Developmentally, the affective system is considered to be 
initially more assertive with the deliberative system gaining strength 
as adolescents’ age into adulthood. Eventually, arousal-driven inclina-
tions toward risk taking can be modulated more efficiently in late ad-
olescence and adulthood (Giedd, 2004; Casey et al., 2008; Steinberg, 
2008; but see Pfeifer and Allen, 2012 for an opposing view). Our col-
lege student sample may represent a transitional period in this devel-
opmental trajectory with individuals particularly RPI on average dem-
onstrating evidence of more mature control mechanisms. 

Our source localization results are also in line with the dual-system 
model, particularly in regard to cognitive control. The P200 compo-
nent localized to regions associated with feedback processing and ap-
propriate behavioral strategy selection and regulation (Haruno et al., 
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2004, Cincotta and Seger, 2007; Yacubian et al., 2007; Grahn et al., 
2008). The FRN in turn localized to the dACC. The dACC is known to 
play an important role within the reward network (Rushworth et al., 
2004, 2011; Beckmann et al., 2009; Haber and Knutson, 2009;) and 
is also proposed to play an important role in response evaluation and 
adaptation (Williams et al., 2004). Together these two components 
may represent activity related to the moderation of affective motiva-
tion or behavioral strategies based on outcome expectation and feed-
back processing. 

Our findings are also congruent with more fine-grained multiple- 
system models. These models (e.g. St Onge et al., 2012; see Phelps et 
al., 2014 for a review) propose multiple modular neural circuits to be 
differentially recruited in the decision-making process depending on 
various decision and individual difference-related variables. In this 
framework, observed changes in the P200 may reflect general activa-
tion in neural circuits involved with outcome encoding while the mod-
erating effect of RPI on the FRN may be suggestive of individual dif-
ferences in the engagement of systems involved in forming outcome 
expectations. Further research would help clarify whether our find-
ings are reflective of (1) differences in the neural systems being acti-
vated, (2) variability in activity in the relevant systems or (3) some 
combination of the two. 

Interestingly, there were minor differences in the regularity of 
voltage increases in these two components across the inflation and 
compression conditions, with the inflation condition being less con-
sistent. This result may be due to size-related confounds in the visual 
system that are present in the inflation but not compression condi-
tion. Nevertheless, both the consistent moderation of the FRN compo-
nent as a function of RPI and the source localization of both the FRN 
and P200 components support the idea that observed changes in these 
components are related to higher-order cognitive processing. 

In summary, our findings suggest that feedback evaluation and 
monitoring have an important role in sequential risk taking among 
college students with additional control mechanisms related to out-
come expectation coming into play among individuals with a higher 
level of RPI. Our results also suggest that analyzing BART data in a 
sequential fashion, capturing its progressive structure, may provide 
valuable insights into the temporal neurophysiological dynamics of 
risk-taking behavior in different populations and across developmen-
tal stages. 
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Given known age-related differences in the neural underpinnings 
of risk taking (e.g. West et al., 2014), future studies should explore 
the moderating effects of age on the effects observed in this study. It 
is also uncertain whether the current findings are specific to RPI or 
whether they apply more broadly to cognitive control in general in line 
with work by Kóbor et al. (2015), Fein and Chang (2008) and Yau et 
al. (2015). Future research addressing these issues, in addition to iso-
lating variables that moderate changes in the P200, would be of sig-
nificant value. Given our findings regarding the role of RPI in moder-
ating risk-related outcome processing, future work could also extend 
these findings by directly incorporating peer influence or feedback to 
increase social-ecological validity (e.g. Parkinson et al., 2012).   
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