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Abstract 
We estimated survival and movement probabilities in relation to breeding-colony size in the sociable 
weaver (Philetairus socius) by using multistate statistical methods, in which survival and movement 
to time t + 1 is conditional on an individual’s colony size at time t. The sociable weaver is a colonial, 
cooperatively breeding species that builds a massive communal nest, with colony size ranging from 
fewer than 20 to more than 500 individuals in some areas. We conducted an 8-year capture/mark/re-
capture study of sociable weavers near Kimberley, South Africa. By comparing the fit of different 
multistate models to our data, we found evidence that annual survival probability of adults was 
lower in small colonies (less than 30 individuals) and medium-sized colonies (30–60 individuals) 
than in large colonies (more than 60 individuals). First-year survival of birds banded as juveniles 
also increased with natal colony size. Statistically, however, these effects were weak, and models 
without an effect of colony size were equally well supported by our data. Movement probabilities 
illustrated that individuals seldom moved between colonies of different size classes, and showed a 
preference to use colonies of size classes similar to what they had occupied the preceding year, even 
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when changing colony sites between years. The potential survival differences among birds in differ-
ent colonies, if real, translated into differences of 39–45% in average lifespan. First-year survival is 
probably enhanced through antipredator advantages of being in larger groups during the fledgling 
period. Adult survival in larger groups may be increased by thermal advantages of a large nest dur-
ing cold winter weather. The fidelity of weavers to a particular colony-size class between years may 
reflect phenotypic specialization for certain group sizes. 
 
Keywords: coloniality, dispersal, life history, Philetairus socius, sociable weaver, social behavior, survival 
 
The evolution of coloniality in birds and other vertebrates is poorly understood despite 
numerous field studies over the past several decades. The predominant approach has been 
to measure various social and ecological costs and benefits in relation to the size of a breed-
ing group and, from that, to infer the selective pressures that led to the evolution and/or 
maintenance of coloniality (Brown and Brown, 1996, 2001a; Brown et al., 1990; Hoogland, 
1995; Hoogland and Sherman, 1976; Møller, 1987; Tyler, 1995; Wiklund and Andersson, 
1994). However, these costs and benefits are often measured in different currencies, and it 
can be difficult to specify the relative importance of each. An alternative approach is to use 
reproductive success as an integrative measure of the suite of effects on fitness related to 
group size (Brown and Brown, 1996; Danchin and Wagner, 1997). 

To date, the work that has directly addressed the fitness effects of colony size has fo-
cused on measuring one component of fitness, annual fledging success. No studies have 
rigorously estimated annual survival probability of breeders in relation to colony size. Sim-
ilar to fledging success (Danchin and Wagner, 1997; Danchin et al., 1998), annual survival 
probability integrates many of the disparate costs and benefits of coloniality into a single, 
readily interpretable component of fitness. However, estimating survival in relation to col-
ony size is not straightforward because animals may often occupy colonies of different 
sizes in different years, and their survival in each successive time period will be conditional 
on the colony they occupied during each interval. This problem thus requires statistical 
methods that incorporate an individual’s changing state, the probability that it changes 
states, and the effect of each state on its subsequent activity. 

The development of multistate methods for estimating state-dependent annual survival 
probabilities in natural populations of animals is one of the most important statistical ad-
vances in evolutionary ecology in recent years (Lebreton and Pradel, 2002; Nichols and 
Kendall, 1995). These techniques allow one to model the survival to time t + 1 of animals 
that are stratified by location or other state variables (e.g., breeding condition, reproductive 
success) as conditional on their state at time t. Whenever these states can change for a given 
individual between capture occasions, classical Cormack-Jolly-Seber models and their re-
finements (that assume fixed states; Lebreton et al., 1992) are not appropriate. 

In addition to estimating how survival is conditional on state, one can also use multi-
state methods to estimate the probability that an animal undergoes a transition from one 
state to another, e.g., from being a breeder to being a nonbreeder. Whenever the states are 
physical locations, the transitions represent probabilities of movement. Although the the-
ory behind multistate methods is well developed (see Brownie et al., 1993; Hestbeck, 1995a; 
Nichols et al., 1992, 1994; Schwarz et al., 1993), few attempts have been made to apply these 
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techniques to natural populations or to use them to address evolutionary questions. Those 
studies having employed multistate methods to date (see Hestbeck 1995b; Hestbeck et al., 
1991; Lindberg et al., 1995; Spendelow et al., 1995) have been primarily concerned with 
estimating physical movement between different breeding areas with the goal of popula-
tion management. Multistate estimates of survival and movement are especially appropri-
ate for studying colonial species, in which individuals are often stratified in space by their 
occupancy of different colony sites and in which individuals may move between different 
colonies over time (Spendelow et al., 1995). Both survival and movement rates may vary 
among individuals in relation to their individual attributes such as colony size. 

In this article, we use mark-recapture and multistate statistical methods to estimate an-
nual survival probabilities of sociable weavers (Philetairus socius) in relation to the size of 
the breeding colony an adult bird occupied the previous season. By using single-state meth-
ods, we also investigate how postfledging survival of juveniles is influenced by the size of 
their natal colony. We use our results to determine whether breeding in colonies of differ-
ent sizes confers net costs or benefits to these birds. In addition, we examine intercolony 
movement, in which we estimate the probability of a bird making a transition from one 
colony to another from time t to time t + 1, and we interpret how the movement probabil-
ities vary in relation to both colony size and the site a bird used at time t. Movement prob-
abilities potentially reveal patterns or rules used by the birds to choose among groups of 
different sizes, and have been used in some species to estimate dispersal within a meta-
population (Spendelow et al., 1995). The sociable weaver is a highly communal passerine, 
in which all members of a colony cooperate to build a single massive grass nest with sep-
arate nesting chambers for each pair. Colonies vary in size from less than 20 to more than 
500 individuals (Maclean, 1973), making these weavers especially suitable for studying the 
effect of colony size on survival and movement probabilities. To our knowledge, this study 
is the first for any species to use multistate methods to estimate survival and movement 
specifically in relation to colony size. 
 
Methods 
 
Study site 
The study was conducted at Benfontein Game Farm, situated 6 km southeast of Kimberley, 
on the border of the Free State and Northern Cape provinces, South Africa (approximately 
28°53′S, 24°49′E). The study site, in the southern part of Benfontein, consists of open sa-
vanna and is dominated by Stipagrostis grasses and the camelthorn tree, Acacia erioloba. 
The area is semiarid, experiencing low and unpredictable rainfall (mean ± SD = 431 ± 127 
mm/year; Weather Bureau, Pretoria), with most of the precipitation falling during the sum-
mer months. The daily temperature ranges are typically broad, with cool/warm nights and 
hot days in summer (approximately 8°C–40°C) and cold nights and mild days in winter 
(approximately –8°C–25°C). 
 
Study animal 
The sociable weaver is endemic to southern Africa, with its core distribution being in the 
Northern Cape and Namibia (Maclean, 1973; Mendelsohn and Anderson, 1997). Sociable 
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weavers weigh 26–30 g, with the sexes being indistinguishable by plumage in the field. 
The males have a slightly longer tarsus (but the range overlaps with the females’); the sexes 
show no significant differences in mass (Doutrelant C and Covas R, unpublished data). 
Sociable weavers feed predominantly on insects (80% of their diet) but also on seeds and 
other plant products (Maclean, 1973). They are colonial, cooperative breeders and experi-
ence great variation in colony size (two to 500 individuals per colony; Maclean, 1973) and 
in the number of helpers attending one brood (up to nine helpers per brood; Maclean, 
1973). In our study area, colony size ranged from 10 to 200 individuals; colonies at Benfon-
tein are on average smaller than those in the Kalahari to the west of our study area (An-
derson MD, personal observation). The weavers build a huge nest with separate chambers 
in which a pair (with their offspring and possibly other birds) roost and breed. The nest is 
built on a variety of sturdy structures, from Acacia trees to telephone poles (Maclean, 1973). 
At Benfontein, the nests are almost exclusively constructed on A. erioloba trees, and the nest 
mass is maintained by the whole colony throughout the year. The colony can remain active 
for several decades, being occupied by successive generations of weavers that continu-
ously add to the nest structure (Maclean, 1973), although nests and colony sites are also 
abandoned at times (Marsden, 1999). At night, the birds roost in the chambers within the 
nest mass. They also return to the nest during the day to escape predators (Covas R, per-
sonal observation) or to seek protection from the daytime temperatures during summer 
(Maclean, 1973). 

Sociable weavers breed aseasonally in response to rainfall. Maclean (1973) found that a 
breeding response would follow approximately 20 mm of rain, regardless of the season. 
Rainfall is also a major determinant of the duration of the breeding period, the number of 
broods raised (one to eight), and clutch size (two to six eggs; Covas R, unpublished data; 
Maclean, 1973). In our study area, the weavers usually start breeding in September or Oc-
tober (see below), with the duration of the breeding season varying from 3 to 9 months. 
When conditions are favorable, the weavers can breed throughout the year, but with in-
sufficient rainfall (and resultant food), they sometimes delay reproduction for more than a 
year (Maclean, 1973; this study). Reproductive success can vary dramatically among years 
and within a single season, with nest predation being the main cause of failure (up to 100% 
nesting failure in some colonies; Covas R, unpublished data). 
 
Field methods 
From August 1993 to November 2000, we conducted a capture/ mark/recapture study at 
Benfontein. The study area contained approximately 25 sociable weaver colony sites. At 
16–18 of these, we captured the residents twice a year. During the first 5 years, our capture 
effort was distributed throughout the year (one or two colonies caught each month). Be-
ginning in mid-1998 we concentrated our capture efforts during one to two consecutive 
months at the beginning and end of the breeding period. The birds were captured with 
mist nets, which were placed before dawn around the nesting tree. Before sunrise, we ap-
proached the colony and flushed the birds into the nets. A small number of birds usually 
managed to escape (by flying over the nets), but the capture success was typically above 
80%. Those birds that escaped were counted and added to the number of birds caught; this 
total was considered to be the colony size in that period. The birds were removed from the 
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nets, placed individually in linen bags, and processed. The duration of the procedure de-
pended on the size of the colony but usually lasted 1–3 h. The birds were ringed with a 
unique numbered ring from the South African Bird Ringing Unit (SAFRING) and in later 
years with an individual color combination. Juvenile weavers molt into adult plumage 
when they are approximately 4 months old, and before that, their age can be estimated by 
assessing the development of the black patch on the face and throat (Maclean, 1973; Covas 
R, unpublished data). We considered two age classes: juvenile (younger than 4 months) 
and adults (fully developed patch, older than 4 months). The juveniles remain with the 
families for an extended period, and no subadults were ever observed to leave the natal 
colony (Maclean, 1973; Covas R, unpublished data). Thus, we confidently assumed that 
the colony where a juvenile was caught was its natal colony. 

During the first 5 years of the study, the breeding activity of the birds was not directly 
monitored. To determine when the breeding season took place in these years, we used the 
development of the black patch of juveniles caught to back-estimate the month of hatching. 
Information on the presence/absence of brood patches also provided an indication of the 
breeding season. In the other years, we directly determined when nesting occurred by reg-
ularly checking the contents of nest chambers. In total, we considered eight breeding peri-
ods (there was no capture effort during June 1997–May 1998): August 1993 (beginning of 
the study), October 1993–April 1994, October 1995–April 1996, October 1996–March 1997, 
October 1998–December 1998, September 1999–May 2000, and September 2000–January 
2001. 
 
Statistical methods 
We estimated annual survival probabilities and tested for significant differences between 
different groups of birds by using the general methods of Lebreton et al. (1992) and of 
Burnham and Anderson (1998). We used program MARK (Cooch and White, 1998; White 
and Burnham, 1999) to generate maximum-likelihood estimates of survival, recapture, and 
movement probabilities. MARK is a software package that computes survival, recapture, 
and movement parameters by using an information matrix derived from recapture histo-
ries. MARK compares and tests the fit of different statistical models, facilitating the rank-
ing, evaluation, and plausibility of competing biological hypotheses (Lebreton et al. 1992). 

We use the general notation of Lebreton et al. (1992), in which annual survival proba-
bility is denoted φ; recapture probability, p; and movement probability, ψ. Subscripts in-
dicate whether parameters in a model are time-dependent (e.g., ψt, pt), vary with age (and 
if so, with how many age classes, e.g., ψa2, pa2t for two age classes), are constant over time 
and groups (e.g., ψ, p), are group specific (e.g., ψg, pg), or are group and time specific (e.g., 
ψg ⋅ t, pt). By using program RELEASE (Burnham et al., 1987), we assessed the overall fit of 
our data set to the assumptions inherent in the single-state Cormack-Jolly-Seber (CJS) 
model for survival and recapture (Lebreton et al., 1992). We used RELEASE’s single-state 
goodness-of-fit test, as no tractable multistate tests are currently available (Lebreton and 
Pradel, 2002); however, data sets that meet the single-state assumptions (e.g., no overdis-
persion, no predominance of transients, no trap-dependence) are probably generally robust 
for multistate analysis (Lebreton JD, personal communication). After that, we challenged 
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our data with a variety of more biologically relevant models incorporating various combi-
nations of age, group, and time dependence in survival, recapture, and movement param-
eters. 

We compared the statistical fit of competing models with the Akaike Information Cri-
terion (AICc; Akaike, 1973; Burnham and Anderson, 1998) corrected for sample size as pro-
vided by MARK. In theory, the model with the lowest value of AICc is the so-called best 
model. The AICc is a formal statistical criterion to select among competing models; the 
currently accepted convention (Burnham and Anderson, 1998) is that models with AICc 
that differ by two or less are indistinguishable statistically. In general, for model selection 
and hypothesis testing, we relied on “AICc weights,” a measure of a model’s relative prob-
ability of being the best model for the data, compared to alternative models (Burnham and 
Anderson, 1998). We assessed potential differences in survival or movement among dif-
ferent groups of birds by comparing different models, some of which separately modeled 
the effect of each group, whereas others considered the groups as a common pool. We do 
not present results of fits of all models tried within MARK; rather, in the tables we gener-
ally show only those eight to 10 competitive models with the lowest AICc that tested legit-
imate a priori survival and movement hypotheses. The number of estimable parameters in 
our models was also provided by MARK based on the chosen model structure and the 
statistical information provided by our data. 

Because sociable weavers are unpredictable, aseasonal breeders, the time intervals in 
between our capture occasions were not constant (see above). Fortunately, MARK allows 
an analyst to choose the time intervals between successive capture occasions. For the eight 
capture occasions, corresponding to the eight breeding periods that occurred July 1993–
January 2001, we used seven time intervals of 0.67, 2, 0.92, 1.2, 0.58, 1.4, and 0.67 years, 
respectively. Each interval was defined as the time from the start of the nonbreeding period 
until the end of the successive breeding period. Therefore, as in most mark-recapture stud-
ies, the breeding season was considered to take place in an instant in time with zero mor-
tality and movement during that breeding season. However, all survival, recapture, and 
movement probabilities reported here are annualized ones, that is, for a 12-month period, 
allowing comparison with other studies. Although some birds were also caught during 
nonbreeding periods, a bird had to be caught during a breeding period to be designated 
as surviving to that period. Birds were designated as adults if older than 120 days on cap-
ture and as juveniles if younger than 120 days. 
 
Multistate parameter designations 
Natal-colony and breeding-colony sizes were defined as the number of birds present at a 
colony site during that breeding period. Because natal-colony size was a fixed, single-state 
parameter that was unchanging for each individual, we used actual colony size as a co-
variate for each bird (initially banded as a juvenile) in single-state analyses. However, we 
used three classes for breeding-colony size: small (less than 30 individuals), medium (30–
60 individuals), and large (more than 60 individuals). This was necessary because of the 
many colonies we studied and the resulting large number of parameters inherent in mul-
tistate models. We had to reduce the number of these parameters to avoid data sparseness 
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across individual colonies. The colony-size classes were based a priori on results from pre-
liminary analyses that showed significant differences in clutch size, hatching success, and 
fledging mass among colonies of these sizes (Covas R and Doutrelant C, unpublished 
data). The number, spatial distribution, and mean colony-size classification (averaged over 
all years) of the colony sites in the study area are shown in figure 1. 
 

 
 

Figure 1. Schematic diagram showing the number, spatial distribution, and average size 
of sociable weaver colony sites in the study area. Locations were based on GPS readings. 
The different-sized dots represent sites with small, medium, or large colonies, based on 
mean colony size over all breeding periods of the study. Open circles are colony sites at 
which birds were never captured, and the half-filled circle indicates a colony site that was 
abandoned in the later years of the study. The open savannah woodland characteristic of 
the study area continued to the south and east of the area shown, and to the north and 
west the vegetation abruptly changed into treeless grassland (unsuitable for sociable 
weavers). 

 
For each adult bird for which we knew its breeding colony in at least 1 year, we also 

classified it according to whether it occupied a colony site for the first time in a given year 
or whether it had been known to use that site in the previous nesting season, regardless of 
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colony size. We use the designations Sf, Mf, and Lf for birds using small, medium, and large 
colonies, respectively, for the first time at a particular site, and the designations Sr, Mr , and 
Lr for birds using small, medium, and large colonies, respectively, at a site where they had 
been the previous year. This allowed us to examine movement probabilities for birds 
among colony sizes independent of the effect of site per se. Models that contained both an 
effect of colony size and site-usage history thus had six states; those that ignored site usage 
had three states, treating Sf and Sr the same, Mf and Mr the same, and Lf and Lr the same. 
For studying the effect of colony size on movement in first-year birds, we again used the 
same colony-size classes. However, the sample size of birds initially banded as juveniles 
was too small to allow us to study the effect of site usage per se, because models with both 
colony size and site usage had too many states (six) for the limited amount of data availa-
ble. With the six states for adults, we had 36 defined transition (movement) probabilities, 
corresponding to various scenarios in which a bird changed sites and colony sizes, 
changed sites but its colony size remained the same, stayed at the same site but the colony 
size there changed, or remained at the same site with the same colony size between years 
(see below). 
 
Results 
 
Goodness-of-fit testing 
By using our entire data set (N = 1486 total birds marked and released), we found that the 
sociable weaver data met the general CJS single-state assumptions under model ψt, pt. Nei-
ther test 3.SR (χ25 = 7.72, p = .17) nor test 3.SM (χ23 = 1.60, p ¼ .66) in RELEASE, both being 
tests for transients, showed a significant departure from the frequencies expected under 
the CJS model. Similarly, there was no indication of any trap-dependence in weaver cap-
tures, as judged from test 2.CT in RELEASE (χ23 = 3.91, p = .27). For these reasons, it was 
not necessary to correct our values of AICc for overdispersion in subsequent tests. 
 
Effects of natal-colony size on survival 
By using each juvenile’s actual natal-colony size (range, 11–99) as a continuous covariate, 
we used MARK to model survival estimates (φ) as a function of natal-colony size and com-
pared models with and without natal-colony size as a covariate for our sample of birds 
first banded as juveniles (N = 369 total birds marked and released) (Table 1). The AICc 
values for the top two candidate models—one without and one with an effect of natal col-
ony size on survival—differed by less than two (Table 1). Thus, each model and the hy-
pothesis on which it was based had some support in our data. However, because the model 
without an effect (model 1; Table 1) was 1.6 times as likely (based on AICc weights) as the 
one with an effect of natal colony size (model 2), it would appear that any influence of natal 
colony size on first-year survival was small. The slight effect of natal colony size was pos-
itive: The trend from model 2 was for first-year survival to increase with colony size, with 
the estimated logit regression coefficient being 0.10674. From that regression, first-year 
survival probabilities varied from 0.617–0.707 over the observed range of colony sizes in 
the Benfontein population. All of the better-fitting candidate models incorporated an effect 
of natal-colony size at time t on recapture probability (p) at time t + 1. This reflects the fact 
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that our capture effort was not apportioned evenly among colony sizes; in particular, we 
had more small colonies in the study area and more effort in the smaller colonies in the 
later years of the study. There was no evidence of an age-related effect on survival proba-
bility for birds banded as juveniles (models 3 and 4) or an effect of time (models 7–9; Table 
1). 
 

Table 1. Single-state models to assess the effect of natal-colony size on survival and recapture 
probabilities in sociable weavers 

Model AICc AICc weight 
Number of estimable 

parameters Deviance 

(1) φ, pcs ⋅ t 735.7 0.508 13 708.8 
(2) φcs, pcs ⋅ t 736.7 0.310 14 707.7 
(3) φcs ⋅ a2, pcs ⋅ t 739.3 0.081 16 706.1 
(4) φcs ⋅ a2, pcs ⋅ t 739.3 0.081 16 706.1 
(5) φ, pt 744.1 0.010 8 727.7 
(6) φcs, pt 745.2 0.008 9 727.2 
(7) φcs ⋅ t, pt 749.0 0.001 17 713.6 
(8) φt, pt 751.6 0.000 13 724.7 
(9) φcs ⋅ t, pcs ⋅ t 753.1 0.000 24 702.2 

Models with an effect of natal-colony size (subscript cs) used colony size as a continuously distributed co-
variate. Model 3 constrained survival of both age classes as a function of natal-colony size; model 4 con-
strained only first-year survival as a function of natal-colony size. 

 
Effects of breeding-colony size on adult survival 
Unlike natal-colony size, breeding-colony size was a multistate variable, with individuals 
potentially able to switch from one colony-size class (or from one colony site) to another 
between breeding periods. The survival probabilities we estimated from MARK assume 
that an individual’s probability of survival from period t to period t + 1 depend only on its 
colony-size class at period t and is unaffected by its colony size in period t + 1, a seemingly 
reasonable assumption for sociable weavers. This analysis used all birds for which a breed-
ing-colony-size class was known (N = 950 total birds marked and released), and included 
birds first banded as adults and any bird first caught as a juvenile and later as a breeder 
(for birds banded as juveniles, their capture histories in this analysis began when they were 
first encountered as a breeder). 

The multistate model with the lowest AICc value (model 10; Table 2) treated the large 
colony-size class (more than 60 individuals) as distinct from the small and medium classes 
combined. Although this model was 1.7 times as likely (based on AICc weights) as the next 
best-fitting model (11; Table 2) without a colony-size effect, the top two models differed by 
only 1.1 in AICc, and thus, each had some support in our data. Again the effect of colony 
size on survival appeared weak. From model 10, we estimated average (± SE) annual sur-
vival probability of birds breeding in small and medium colonies as 0.660 (± 0.023) and for 
those in the large colonies as 0.751 (± 0.040). Comparison of model 10 with model 12 (Table 
2) suggests that the small- and medium-sized classes are not functionally distinct in terms 
of their possible effect on breeders’ survival. The other models with effects of colony size 
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(some using all three size classes and others considering small as distinct from medium 
and large combined) had AICc values that were larger by two or more and thus were less 
plausible (Table 2). All multistate models used for survival estimation considered colony 
sizes without regard to what colony site a bird had used; when we modeled survival as a 
function of both size and site-usage history (six states for survival), our data were too 
sparse to get convergences for those models in MARK. As with the single-state analysis of 
natal colony size, all of the better-fitting multistate models incorporated an effect of colony 
size at time t on recapture probability at time t + 1 (Table 2). 
 

Table 2. Multistate models to assess the effect of three breeding-colony-size classes on survival, 
recapture, and movement probabilities in sociable weavers 

Model AICc AICc weight 

Number of 
estimable 

parameters Deviance 

(10) φcc2, pcc3 ⋅ t, ψcc3/suh3 1945.9 0.467 53 472.1 
(11) φ, pcc3 ⋅ t, ψcc3/suh3 1947.0 0.268 52 475.5 
(12) φcc3, pcc3 ⋅ t, ψcc3/suh3 1948.2 0.154 54 472.0 
(13) φcc2, pcc3 ⋅ t, ψcc3/suh3 1949.0 0.103 53 475.1 
(14) φcc3, pt, ψcc3/suh3 1980.4 0.000 40 535.8 
(15) φ, pcc3 ⋅ t, ψcc3 2008.4 0.000 31 583.5 
(16) φcc2, pcc3 ⋅ t, ψcc3 2009.6 0.000 32 582.6 
(17) φ, pt, ψ  2592.7 0.000 9 1214.1 

Models with three colony size classes are indicated with a subscript cc3. Some models used only two colony-
size classes (subscript cc2). Movement probabilities modeled both the effect of colony size (subscript cc3) and 
site-usage history (subscript suh3). See text for definition of colony-size classes and site-usage histories. Mod-
els 10 and 16 used two colony-size classes of small + medium and large; model 13 used two classes of small 
and medium + large. 

 
Effects of colony size on movement by breeders and first-year birds 
Movement (i.e., between-state transition) probabilities (ψ) are essentially a measure of in-
dividual dispersal to and from both a given colony-size class and a physical colony site. 
Between-year movement probabilities of breeders were clearly affected by breeding-colony 
size and by colony site. All models with constant movement probability had relatively high 
AICc values (e.g., model 17; Table 2) and thus did not describe our data well. All of the 
better-fitting models for breeders incorporated both an effect of colony size and site-usage 
history (i.e., six states) on movement probabilities (Table 2). We tried several models that 
combined different pairs of our colony-size classes in estimating movement (e.g., as model 
10 did for survival), and none of these provided as good a fit as the model that kept the 
three size and site-usage classes. We also found that models that did not take site usage 
into account (e.g., models 15–17; Table 2) were a much poorer fit. 

From the best-fitting model (10; Table 2), we estimated the transition probabilities 
among the three breeding-colony size classes and the two possible site-usage histories (Ta-
ble 3). These data show that sociable weavers remain relatively faithful to both a breeding-
colony size from year to year and to a particular site. Because colony size at a site tends to 
be similar between breeding episodes, as measured by the intraclass correlation coefficient 
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(Zar, 1999) for colony size by site (rI = .897; p < .0001), size and site are confounded for birds 
that occupy the same physical location between breeding periods. However, by examining 
the probability of movement from one colony size to another only for birds that switched 
colony sites, we could determine the effect of colony size independent of site. Considering 
only birds that moved between different sites, we found (Table 3) that birds were likely to 
use a site of size similar to that they had used the previous season. For example, birds using 
small colonies in year t generally moved only to other small colonies and were unlikely 
ever to use medium or large colonies (Table 3), even though the larger colonies were often 
nearby (Figure 1). Individuals occupying large colonies also tended to occupy other large 
colonies when moving (Table 3) despite the proximity of many small colonies (Figure 1). 
Thus, sociable weavers maintained a preference for the colony-size class they used at time 
t even when changing physical sites at time t + 1; this preference was particularly strong 
for birds in small colonies. 
 

Table 3. Between-season movement (transition) probabilities (± SE) for sociable weavers from 
small, medium, and large colonies (S, M, L) that used a colony site they had not been known to 
use the previous breeding season (“first-time site,” denoted by subscript f) and that occupied the 
same site they were known to have used the previous breeding season (“previous-use site,” denoted 
by subscript r). 
 To first-time site  To previous-use site 

From 
Small 
(Sf) 

Medium 
(Mf) 

Large 
(Lf)  

Small 
(Sr) 

Medium 
(Mr) 

Large 
(Lr) 

Small, first-time site (Sf) 0.038 ± 
0.082 

0.026 ± 
0.018 

0.051 ± 
0.034  

0.719 ± 
0.056 

0.166 ± 
0.046 

0.000 ± 
0.000 

Medium, first-time site (Mf) 0.027 ± 
0.019 

0.022 ± 
0.031 

0.000 ± 
0.000  

0.000 ± 
0.000 

0.951 ± 
0.024 

0.000 ± 
0.000 

Large, first-time site (Lf) 0.000 ± 
0.000 

0.000 ± 
0.000 

0.048 ± 
0.052  

0.000 ± 
0.000 

0.077 ± 
0.032 

0.875 ± 
0.041 

Small, previous-use site (Sr) 0.536 ± 
0.084 

0.000 ± 
0.000 

0.000 ± 
0.000  

0.464 ± 
0.084 

0.000 ± 
0.000 

0.000 ± 
0.000 

Medium, previous-use site (Mr) 0.203 ± 
0.056 

0.414 ± 
0.099 

0.073 ± 
0.054  

0.000 ± 
0.000 

0.310 ± 
0.126 

0.000 ± 
0.000 

Large, previous-use site (Lr) 0.000 ± 
0.000 

0.294 ± 
0.074 

0.367 ± 
0.091  

0.000 ± 
0.000 

0.000 ± 
0.000 

0.339 ± 
0.117 

Colony-size classes are defined in the text. Movement probabilities were estimated by using model 10 in Table 
2. Those in bold show transition probabilities for birds moving to a site different from the one they used the 
previous season, and those not in bold are probabilities for birds remaining at the same colony site. Each 
transition is theoretically possible because sites can change in size between breeding periods. 

 
We also examined whether natal-colony size affected the dispersal decisions of birds 

during their first year and thus asked whether birds might be using different decision rules 
in their first year than those used in later years. For this analysis, we used the sample of all 
birds first banded as juveniles, and classified their natal and subsequent breeding colonies 
into the three size classes described above (but we could not also model site-usage history 
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because of sparseness of data). There would be age dependence in the movement proba-
bilities if the birds’ first choice of breeding-colony size differed from later choices they 
made as breeders. However, we found no evidence of any age dependence in movement 
probabilities. Multistate models with an age effect on movement were markedly poorer 
fits to the data than models with a simple colony-size effect (Table 4), owing mainly to the 
extra parameters required and no improvement in fit. We thus conclude that sociable 
weavers’ movement probabilities during their first season were not different from their 
subsequent movement probabilities, although our power to detect any age-related differ-
ence was limited. 
 

Table 4. Models to assess the effect of age on movement probabilities in sociable weavers for birds 
first banded as juveniles 

Model AICc AICc weighta 

Number of 
estimable 

parameters Deviance 

(18) φ, pcc3 ⋅ t, ψcc3 1038.7 0.371 28 200.2 
(19) φa2, pcc3 ⋅ t, ψcc3 1040.0 0.200 29 199.2 
(20) φcc3, pcc3 ⋅ t, ψcc3 1041.8 0.081 30 198.7 
(21) φ, pcc3 ⋅ t, ψ 1044.7 0.019 23 217.2 
(22) φ, pcc3 ⋅ t, ψa2 1046.8 0.006 24 217.2 
(23) φa2, pcc3 ⋅ t, ψa2 1048.7 0.003 25 216.8 
(24) φ, pcc3 ⋅ t, ψcc3 ⋅ a2 1050.7 0.001 34 198.5 
(25) φa2, pcc3 ⋅ t, ψcc3 ⋅ a2 1052.1 0.000 35 197.6 
(26) φcc3, pcc3 ⋅ t, ψcc3 ⋅ a2 1053.9 0.000 36 197.1 
(27) φcc3 ⋅ a2, pcc3 ⋅ t, ψcc3 ⋅ a2 1057.3 0.000 39 193.4 

Some models contained an effect of colony-size class (subscript cc3), which represented the natal-colony size 
at the time of banding and breeding-colony size at later encounters. Colony-size classes are defined in the text. 
The age classes used were the first year and all older ages combined. The data set was not large enough to 
model an effect of site-usage history. 
a. Weights do not sum to 1.000 because some models tried are not presented here. 

 
Discussion 
 
This study is the first to estimate survival and movement probability explicitly in relation 
to colony size for any species. Both were influenced by colony size, although movement 
probabilities were more strongly affected. For survival, both natal-colony size and breed-
ing-colony size apparently had only weak effects. However, in each case, it appeared that 
survival varied positively with colony size, with both breeders and the birds raised in the 
largest colonies showing higher probabilities of survival. Movement probabilities illus-
trated that individuals preferred colonies of particular sizes, even when controlling for 
site-usage history. We found little evidence of time or age dependence in our analyses in 
general, suggesting that colony-size effects tended not to vary with breeding period or age. 
In the case of time dependence, this might have reflected our not having enough data over 
time to model time effects rigorously, given the increased numbers of parameters that must 
be estimated in time-dependent models. Alternatively, it could have been that colony-size 
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effects in sociable weavers were of sufficient magnitude to mask any annual variation in 
ecological conditions. 
 
Colony size and survival 
Any increase in survival associated with larger natal colonies was likely brought about by 
benefits to fledglings from living in large groups. Larger colony sizes in sociable weavers 
tend to have a negative effect on fledging mass, at least in some years (Covas R and 
Doutrelant C, unpublished data; Marsden, 1999), so the enhanced postfledging survival of 
birds that hatched at large colonies cannot be owing to advantages experienced during the 
nestling phase. However, the postfledging period is a particularly critical time when, for 
example, the young birds need to learn how to forage and avoid predators. Predation by 
Gabar goshawks (Micronisus gabar) is a survival risk for this species (Covas R and Ander-
son MD, personal observation; Maclean, 1973; Marsden, 1999), and it is likely that larger 
groups provide extra protection through increased vigilance. We noticed, for example, that 
goshawks could sometimes catch single weavers immediately upon release from our mist 
nets, whereas they rarely captured birds when we released them as a group. 

In addition, there may be thermal benefits of large colonies that influence survival of 
adults and juveniles. The large multicompartmented nest is thought to be important in 
helping sociable weavers to thermoregulate during cold winter nights in the Kalahari re-
gion (Marsden, 1999; White et al., 1975; Williams and du Plessis, 1996). Other analyses 
(Covas R, Brown CR, Anderson MD, and Brown MB, unpublished data) show that weaver 
survival can be higher when winter temperatures are warmer, implying that these small 
birds are indeed sensitive to the thermal environment. Because the colony sites are occu-
pied year-round in most cases, large colonies may be particularly advantageous during 
cold winters when the large nest allows the birds to stay warmer. 

Survival rates also reflect the costs of occupying groups of a given size. Some of the 
potential costs of coloniality for sociable weavers include increased parasite load, food de-
pletion around the colonies, and higher nest predation rates. Adult sociable weavers at 
larger colonies had significantly greater ectoparasite loads in a study in Namibia (Marsden, 
1999). Lower fledging weights in larger colonies in some years (Marsden, 1999; Covas R 
and Doutrelant C, unpublished data) suggest that food depletion might increase with col-
ony size, and food depletion around colonies is probably common in colonial birds in gen-
eral (Brown and Brown 1996, 2001a). Larger sociable weaver colonies may also attract more 
predators; nest predation was higher at larger colonies in Namibia (Marsden, 1999). Alt-
hough the cost of nest predation in terms of adult survival is not clear, in Marsden’s (1999) 
study, nests in larger colonies had a greater per capita risk of predation, primarily by 
snakes, than those in small colonies. Our analyses, however, suggest that all of these costs 
of coloniality are either not important or are balanced by benefits of colonial nesting in 
sociable weavers. 

If we assume that the colony-size effects described by models 2 (Table 1) and 10 (Table 
2) are real, even these relatively small differences in annual survival probabilities for so-
ciable weavers translate into relatively large effects on lifespan. For example, the variation 
in natal colony size in our population led to an estimated range in survival probabilities of 
0.62–0.71. Converting these survival probabilities into mean lifespan with the formula of 



B R O W N  E T  A L . ,  B E H A V I O R A L  E C O L O G Y  1 4  (2 0 0 3 )  

14 

Brownie et al. (1985: 208), there is a difference of almost 10 months (or about 39%) in mean 
lifespan for birds raised in the smallest versus largest colonies. The increase in adult sur-
vival probabilities for birds living in the large colonies (0.66–0.75) translates into an in-
crease of over 1 year (or about 45%) in mean lifespan. Because sociable weaver breeding 
seasons are unpredictable and sometimes closely spaced in time, an increase of only a few 
months in average survival can in some situations lead to an individual’s surviving to an 
additional breeding period and thus potentially greatly increasing its lifetime reproductive 
success. For small passerines such as sociable weavers, even minor differences in survival 
tend to result in relatively large fitness gains (see Bryant, 1988; McCleery and Perrins, 1988; 
Newton, 1989; Smith, 1988; van Noordwijk and van Balen, 1988). We should not discount 
small apparent differences in survival, even when models suggesting these differences are 
not unambiguously the best (as in this study). Small but meaningful differences in survival 
will usually be difficult to detect statistically, because survival may often vary over time 
and only “average” survival probability is constant. Thus, in general, sampling error and 
annual variability can hamper our ability to “prove” differences among classes of individ-
uals. 

These results on survival complement those studies using annual reproductive success 
to infer the net fitness effect of different group sizes. Many studies on colonial birds have 
not found strong effects of colony size on reproductive success (Brown and Brown, 2001a), 
and at least statistically speaking, we did not find a strong effect of colony size on survival. 
The consequence may be relatively equivalent fitness for individuals in groups of different 
sizes. This pattern is thought to result from tradeoffs between costs and benefits in some 
species (Brown and Brown, 1996). The range in colony sizes seen in sociable weavers and 
other species may be maintained whenever no one group size confers a reproductive ad-
vantage over another. We emphasize, however, that complete estimates of fitness are not 
yet available for birds occupying colonies of different sizes in our population, and we thus 
do not know whether the costs and benefits associated with colonies of different sizes affect 
weavers in all colonies in the same way or to the same degree. 
 
Colony size and movement 
Movement probabilities, in which an animal’s likelihood of moving from one site to an-
other is estimated, can be useful in developing management strategies (Spendelow et al. 
1995) and in understanding metapopulation biology. Unfortunately, essentially no studies 
have used multistate statistical methods (e.g., with distance from initial capture site as a 
continuous covariate) to generate quantitative estimates of dispersal, despite the need for 
unbiased, quantitative measures of movement in animal populations (Koenig et al., 1996). 
Among colonial species, movement probabilities may also reflect colony choice and pro-
vide relative measures of how likely an individual occupying one colony (perhaps of a 
particular size) is to move to another colony. In some species, colony settlement decisions 
are based on a moderate degree of heritable variation in social-group preference (Brown 
and Brown, 2000; Møller, 2002), and thus, colony choice may reflect the attributes of (and 
the expected payoffs for) individuals settling at different colony sites. 

Sociable weavers show strong between-year fidelity to both the colony size and the col-
ony site they used the previous year. The probabilities of birds staying at the same colony 
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location, irrespective of colony size, from breeding period to breeding period were rela-
tively high, ranging from 0.310–0.951 depending on the class of individuals considered 
(Table 3). However, the most striking result was the between-year fidelity to breeding-
colony size class shown by birds that moved between colony sites. For all classes of colony 
size, dispersing birds were more likely to settle in a colony of size similar to the one they 
had occupied the previous year. Strong fidelity to particular colony sizes could come about 
if the birds are sensitive to colony size in making settlement decisions, as in cliff swallows 
(Petrochelidon pyrrhonota; Brown and Brown, 2000), and actively choose the colony size to 
which they are behaviorally or physiologically best suited. Our data are consistent with 
the hypothesis, for which data are accumulating in a variety of species (Brown and Brown, 
1996, 2001a), that variation in colony size reflects phenotypic sorting of individuals into 
colonies of different sizes and that variation in colony size is maintained by individuals’ 
preferences for groups of particular sizes. Sociable weavers in this study, and cliff swal-
lows and barn swallows (Hirundo rustica) in Brown and Brown’s (2000) and Møller’s (2002) 
cross-fostering experiments, are the only species for which site choice based on colony size 
has so far been demonstrated. 

One caveat is in order. Demonstrating a greater likelihood of a bird using a colony of a 
particular size class does not necessarily rule out random choice of sites. Depending on 
how colonies of different sizes are distributed in space (Figure 1), dispersing individuals 
could be more likely to use a given colony size simply because they are more likely to 
encounter sites with colonies of that size. This is a difficult problem to resolve, requiring 
simulations to ascertain the expected multistate movement probabilities under the as-
sumption of random (or other spatially-dependent) movement rules. These sorts of simu-
lations have not been done for any species to our knowledge. However, regardless of 
whether movement contains a random component, in sociable weavers, colony settlement 
results in birds tending to remain in colonies of similar size between years. 

In the absence of similar multistate movement estimates for other colonial birds, direct 
comparison to other species is difficult; however, the relatively low probabilities of move-
ment of birds between colonies of different sizes suggest that each colony-size class is rel-
atively closed with respect to emigration and immigration. One consequence can be higher 
levels of within-colony relatedness in the smaller colonies (Brown and Brown, 2001b). Pre-
liminary results from Namibia suggest a greater degree of within-colony relatedness 
among males in sociable weavers (Marsden, 1999). Our observation that birds dispersing 
between colonies are often females (Anderson MD and Covas R, unpublished data) and 
the colony-size-specific movement probabilities reported here are consistent with higher 
levels of relatedness in smaller colonies. 
 
Multistate models and studies of coloniality 
Although still seldom used, the application of multistate methods has great promise for 
evolutionary ecology, being the only way to examine how an individual’s changing attrib-
utes sequentially affect its probability of survival or movement. The principal limitation of 
multistate analysis at present is the large number of parameters that are generated in any 
meaningful model and the large amount of data needed to test such heavily parameterized 
models. One consequence is that researchers often must restrict their analyses to relatively 
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simple models that contain manageable numbers of parameters. However, even when this 
is done, as we had to in our study, the resulting parameter estimates can yield unexpected 
insight and reveal information about fitness components that would not have been possi-
ble from more traditional studies on particular aspects of coloniality. We would not have 
predicted the positive effect of colony size on juvenile and adult survival in sociable weav-
ers using measures of fledging success or from behavioral observations alone (see 
Marsden, 1999). Similarly, the multistate movement probabilities that separated the effects 
of site and size may be a viable alternative to more laborious cross-fostering experiments 
(see Brown and Brown, 2000; Møller, 2002) in studying colony choice in some species. We 
urge increasing use of multistate methods, as they should add considerably to our ability 
to measure reproductive success in colonial birds, now regarded as a priority for future 
studies of coloniality (Brown and Brown, 1996, 2001a; Danchin and Wagner, 1997). 
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