University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

3-D printed model structural files

Biochemistry, Department of

2018

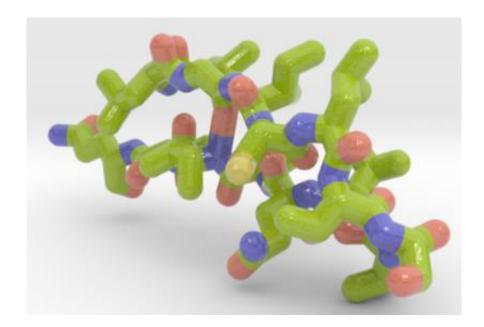
Model file name: beta-sheet_rod 0.7.dae

Michelle Howell *University of Nebraska - Lincoln*, michelle.palmer@unl.edu

Rebecca Roston
University of Nebraska- Lincoln, rroston@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/structuralmodels

Part of the <u>Graphics and Human Computer Interfaces Commons</u>, and the <u>Structural Biology Commons</u>


Howell, Michelle and Roston, Rebecca, "Model file name: beta-sheet_rod 0.7.dae" (2018). 3-D printed model structural files. 7. https://digitalcommons.unl.edu/structuralmodels/7

This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in 3-D printed model structural files by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Model file name: beta-sheet_rod 0.7.dae

Authors: Michelle E Howell, Rebecca L Roston

This is a teaching model of a stick representation of a protein β -sheet (PDB: $\underline{3vjo}$). This model is designed to accompany three other α -helix models: a $\underline{space\text{-fill}}$ representation of a straight α -helix, a stick representation of a $\underline{straight}$ α -helix, and a stick representation of a \underline{kinked} α -helix. These models accompany a teaching module illustrating protein secondary structure and function. The printable model is already uploaded to $\underline{Shapeways.com}$ in the $\underline{MacroMolecules}$ shop under the name " $\underline{Beta\text{-sheet}}$ Thick". This model has been printed successfully using these parameters on Shapeways' binder jetting printer in the Coated Full Color Sandstone material.

