
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

5-2018

Application of Cosine Similarity in Bioinformatics
Srikanth Maturu
University of Nebraska-Lincoln, srikanthmaturu@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Maturu, Srikanth, "Application of Cosine Similarity in Bioinformatics" (2018). Computer Science and Engineering: Theses, Dissertations,
and Student Research. 153.
https://digitalcommons.unl.edu/computerscidiss/153

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/153?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages

APPLICATION OF COSINE SIMILARITY IN BIOINFORMATICS

by

Srikanth Maturu

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Ful�lment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Jitender Deogun

Lincoln, Nebraska

August, 2018

APPLICATION OF COSINE SIMILARITY IN BIOINFORMATICS

Srikanth Maturu, M.S.

University of Nebraska, 2018

Adviser: Jitender Deogun

Finding similar sequences to an input query sequence (DNA or proteins) from a

sequence data set is an important problem in bioinformatics. It provides researchers

an intuition of what could be related or how the search space can be reduced for

further tasks. An exact brute-force nearest-neighbor algorithm used for this task has

complexity O(m ∗ n) where n is the database size and m is the query size. Such

an algorithm faces time-complexity issues as the database and query sizes increase.

Furthermore, the use of alignment-based similarity measures such as minimum edit

distance adds an additional complexity to the exact algorithm.

In this thesis, an alignment-free method based similarity measures such as cosine

similarity and squared euclidean distance by representing sequences as vectors was

investigated. The cosine-similarity based locality-sensitive hashing technique was

used to reduce the number of pairwise comparisons while �nding similar sequences

to an input query. We evaluated our algorithm on a proteins dataset of size 100,000

sequences and found that our cosine-similarity based algorithm is 28 times faster

than the exact algorithm and 13 times faster than the BLASTP[3] algorithm for

�nding similar sequences with percent identity greater than 90%. It also has 99.5%

accuracy. We also developed a greedy incremental clustering algorithm based on our

cosine-similarity nearest neighbor algorithm for removing redundant sequences in a

protein dataset. We compared our clustering algorithm with a popular clustering

algorithm CD-HIT. The clustering results on protein dataset of size 100000 show

that our clustering algorithm generated clusters with accuracy almost equal to the

CD-HIT algorithm accuracy.

We further demonstrated two bioinformatics application where our cosine-similarity

based algorithm can be used: an analysis of assembly data of various assemblers and

a clustering of a protein dataset. Using our algorithm, we successfully compared the

quality of assembly data of multiple de novo and genome-guided assemblers.

iv

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my adviser Dr. Jitender Deogun

for his constant guidance and support throughout my masters program. I would like

to thank him for his kindness and motivation.

I would like to thank the rest of my thesis committee members, Dr. Etsuko

Moriyama and Dr. Ashok Samal for their time and valuable guidance during my

thesis review. I would also like to thank Sairam Behera for his guidance and help in

my research.

Lastly, I would like to thank my friends and family members for their help and

support.

v

Contents

Contents v

List of Figures ix

List of Tables xi

1 INTRODUCTION 1

1.1 Thesis Outline . 4

1.2 Thesis Contribution . 4

2 BACKGROUND & RELATED WORKS 7

2.1 Nearest-Neighbor Search . 7

2.2 Approximate Nearest-Neighbor Search 8

2.2.1 Kd-tree . 9

2.2.2 Ball tree . 10

2.2.3 RPForest . 10

2.3 Locality-Sensitive Hashing . 11

2.3.1 Cosine-similarity . 11

2.3.2 LSH for cosine-distance . 12

2.3.2.1 Hyperplane LSH . 12

vi

2.3.2.2 Cross-polytope LSH 13

2.4 Clustering . 13

2.4.1 CD-HIT . 15

2.5 Sequence Similarity Tools . 15

2.5.1 BLAST . 15

3 METHODOLOGY 16

3.1 Problem De�nition . 16

3.2 Overview . 16

3.3 Similarity Measure . 17

3.3.1 Minimum edit distance . 17

3.3.2 Percent Identity . 18

3.3.3 Alignment-free Measure . 18

3.3.3.1 Cosine-Similarity . 18

3.3.3.2 Squared Euclidean Distance 19

3.4 K-tuple Frequency Vector . 19

3.5 Approximate Nearest-Neighbor Search 20

3.5.1 Brute force method . 21

3.5.2 Cosine similarity based locality-sensitive hashing method . . . 22

3.5.2.1 Index Construction 22

3.5.2.2 Query Processing 23

3.6 Clustering Algorithm . 25

3.7 Evaluation Metrics for Cluster Comparison 28

3.7.1 Average pairwise distance . 28

3.7.2 Maximum Average Jaccard Index 28

3.8 Implementation. 28

vii

4 RESULTS 30

4.1 Datasets . 30

4.2 Evaluation of similarity measures . 31

4.2.1 Experimental Design . 32

4.2.2 Cosine-similarity versus percent identity 33

4.2.3 Squared euclidean distance versus percent identity 35

4.3 Approximate Nearest-Neighbor Algorithm 35

4.3.1 Accuracy . 38

4.3.1.1 De�nition . 38

4.3.1.2 Experimental Design 39

4.3.1.3 Evaluation . 39

4.3.2 Query Time . 40

4.3.2.1 De�nition . 40

4.3.2.2 Experimental Design 40

4.3.2.3 Evaluation . 41

4.3.3 Average Number of Candidates 42

4.3.3.1 De�nition . 42

4.3.3.2 Experimental Design 42

4.3.3.3 Evaluation . 43

4.3.4 Comparison with related algorithms 43

4.3.4.1 Experimental Design 44

4.3.4.2 Evaluation . 44

4.4 Clustering . 45

4.4.1 Accuracy . 46

4.4.1.1 Evaluation . 47

4.4.2 Number of Clusters . 50

viii

4.4.2.1 Experimental Design 50

4.4.2.2 Evaluation . 50

4.4.3 Clustering Time . 52

4.4.3.1 Experimental Design 52

4.4.3.2 Evaluation . 52

4.5 Assembly Data Analysis . 52

5 CONCLUSION AND FUTURE WORK 59

Bibliography 61

ix

List of Figures

2.1 5-nearest neighbors to an object (black circle) 8

2.2 5-approximate nearest neighbors to an object (black circle) 9

2.3 2 dimension cross-polytope (left) & 3 dimensional cross-polytope (right)

Source: [1] . 14

4.1 Cosine similarity versus percent identity (k = 2) 33

4.2 Cosine similarity versus percent identity (k = 3) 34

4.3 Cosine similarity versus percent identity (k = 4) 34

4.4 Square euclidean distance versus percent identity (k = 2) 36

4.5 Square euclidean distance versus percent identity (k = 3) 36

4.6 Square euclidean distance versus percent identity (k = 4) 37

4.7 Dataset Size versus Accuracy . 40

4.8 Dataset Size vs Query Time . 41

4.9 Dataset Size vs Number of Candidates in second �ltering phase 43

4.10 Query Time Comparison . 45

4.11 Average pairwise distance vs Relative frequency (PI>70) 48

4.12 Average pairwise distance vs Relative frequency (PI>80) 48

4.13 Average pairwise distance vs Relative Frequency (PI>90) 49

4.14 Dataset Size vs Number of Clusters (PI>70) 50

x

4.15 Dataset Size vs Number of Clusters (PI>80) 51

4.16 Dataset Size vs Number of Clusters (PI>90) 51

4.17 Dataset Size vs Clustering Time (PI > 70) 53

4.18 Dataset Size vs Clustering Time (PI > 80) 53

4.19 Dataset Size vs Clustering Time (PI > 90) 54

4.20 Number of true positives found vs Percent Identity of four denovo assem-

blers using analysis 2 . 58

xi

List of Tables

4.1 Maize transcriptome assembly protein sequence datasets 31

4.2 Cosine-similarity versus percent identity correlation tests 35

4.3 Cosine-similarity versus percent identity correlation tests 37

4.4 Optimal parameters setting . 38

4.5 Average query times . 44

4.6 Average Maximum Jaccard Index comparison (PI>70) 47

4.7 Average Maximum Jaccard Index comparison (PI>80) 49

4.8 Average Maximum Jaccard Index comparison (PI>90) 49

4.9 Analysis 1 summary for four denovo assemblers - Part 1 55

4.10 Analysis 1 summary for four denovo assemblers - Part 2 55

4.11 Analysis 1 summary for two Genome-guided assemblers 56

4.12 Analysis 2 summary for four denovo assemblers - Part 1 57

4.13 Analysis 2 summary for four denovo assemblers - Part 2 57

4.14 Analysis 2 summary for two Genome-guided assemblers 57

1

Chapter 1

INTRODUCTION

Biological sequences which code genes, RNA, and proteins are nothing but the suc-

cession of letters from their corresponding Σ, where Σ is the set of symbols or letters.

For DNA and RNA sequences |Σ| = 4 and for protein sequences |Σ| = 20. A sub-

sequence of length k is called a k -tuple or a k -word. The total number of unique

k -tuples that are possible in a sequence depends on both k and Σ, and is exactly

equal to |Σ|k. For a given k, a sequence can be represented as a n-dimensional vector

of these k -tuple frequencies where n, the number of dimensions, equals to |Σ|k. For

a given set of similar sequences, their corresponding k -tuple frequency vectors tend

to close to each other in the n-dimensional vector space. Similarity measures such as

cosine-similarity and euclidean distance are applicable for k -tuple frequency vectors

in the n-dimensional vector space. Finding nearest k -tuple frequency vectors to an

input query k-tuple frequency vector is a nearest-neighbor problem.

There are many nearest-neighbor algorithms that exist in the current literature for

n-dimensional vector spaces [6, 17, 23]. However, most of them are limited to smaller

dimensions. Biological sequences face the problem of high-dimensional space which is

also known as the curse of dimensionality [5]. For an instance of nucleotide sequences

2

with k values 3, 4, and 5, corresponding k -tuple frequency vector sizes are 64, 512,

and 1024. Locality-sensitive hashing techniques have been known for reducing the

dimensionality of high-dimensional data. Locality-sensitive hashing techniques use

randomized algorithms to reduce the dimensionality [18]. Due to the randomization,

an error term will be introduced in the output results, thereby provide approximate

solutions rather than exact solutions. Approximate nearest-neighbor algorithms are

faster when compared with exact nearest neighbor algorithms as they reduce the di-

mensionality of biological sequences. Approximate nearest-neighbor algorithms based

on locality-sensitive hashing are therefore more appropriate for biological sequences.

Cross-polytope and hyperplane are two locality-sensitive hashing techniques used

for cosine-similarity. In both techniques, the n-dimensional space is partitioned across

the center and each partition is represented as a bucket. A group of n-dimensional

vectors within a partition is hashed into the same bucket. When a query vector is

given, it is hashed into a bucket and all vectors that were hashed into that bucket

are taken out as candidates for nearest neighbors to the query vector. There is a

chance that nearest neighbors are located at boundaries of the partition, in such case

candidates from neighboring partitions or buckets are also considered.

In this thesis, we have developed a fast nearest-neighbor search algorithm for

biological sequences such as nucleotide sequences (DNA, RNA) and amino acid se-

quences (proteins) using the cosine-similarity based locality-sensitive hashing tech-

nique and then demonstrated two bioinformatics applications of our cosine-similarity

based nearest-neighbor algorithm.

The �rst application is to analyze transcriptome sequences assembled using mul-

tiple methods. Many assemblers are available today to assemble large amounts of

long and short reads data generated by high-throughput sequencing. The de novo

assemblers do not use a reference genome to assemble short reads into contigs whereas

3

the genome-guided assemblers use a reference genome. Di�erent assemblers produce

di�erent assembly outputs with di�erent accuracies. Given a set of true positive se-

quences and assembled contig sequences of an assembler, our cosine-similarity based

nearest-neighbor algorithm can be used to determine the accuracy of the assembler

output comparing with the true positives for a given input minimum percent iden-

tity threshold. For example, for a given input minimum percent identity threshold

th = 70, we can determine the number of sequences in an assembly output that are

similar to the true positives with at least 70 percent identity. Also we can determine

the number of true positives that are present in the assembly output with at least

70 percent identity. It can also be used to analyze an ensemble assembly approach

where more than one assembler results are combined.

The second application is clustering of amino acid sequences. We developed a

greedy incremental clustering algorithm based on our nearest-neighbor algorithm that

can be used to reduce the redundancy in the sequences by clustering similar sequences

into one cluster. Our clustering algorithm uses an agglomerative approach for cluster-

ing amino acid sequences. Initially, amino acid sequences to be clustered are sorted

in decreasing length order. The topmost sequence is chosen as the new cluster repre-

sentative and nearest sequences from remaining amino acid sequences according to a

certain input percent identity threshold are removed to form the new cluster. Clus-

ter representatives of all clusters are outputted as a set of non-redundant sequences.

Thus the number of output sequences equals to the number of clusters formed. In

this thesis, we demonstrated the application of our clustering algorithm by perform-

ing clustering on combined assembly data from multiple assemblers. We extracted

the cluster representatives and analyzed them by comparing with the true positives.

Our results showed that the use the cluster representatives have an accuracy slightly

lower than the accuracy of combined assembly data.

4

1.1 Thesis Outline

Chapter 1 introduces the similarity search problem, outline of this report and con-

tributions of this research. Chapter 2 de�nes the nearest-neighbor search problem,

related algorithms for the nearest-neighbor search problem, introduces the cosine-

similarity based locality-sensitive hashing technique for the approximate nearest-

neighbor problem, and clustering in bioinformatics. Chapter 3 consists of the problem

statement for this thesis, overview of the methodology chapter, de�nes the similarity

measures for biological sequence similarity measurements and vector representation of

biological sequences, describes two nearest-neighbor algorithms: one based on brute-

force method and the other based on cosine-similarity based locality-sensitive hashing,

describes a greedy incremental clustering algorithm and concludes with implementa-

tion details of the algorithms. Chapter 4 describes the datasets used for the evalu-

ation of the algorithms, evaluates the alignment-free similarity measures, evaluates

the cosine-similarity based approximate nearest-neighbor algorithm and the cluster-

ing algorithm, and demonstrated the assembly data analysis application. Chapter 5

summarize, the conclusions and discuss possible directions of future work.

1.2 Thesis Contribution

The following is our contributions in this research:

• We developed a fast approximate similarity search algorithm for biological se-

quences based on a cosine-similarity locality-sensitive hashing technique. Our

search algorithm uses the alignment-free similarity measures to search approxi-

5

mate nearest neighbors to the input queries. We evaluated our algorithm on the

SWISS-PROT protein dataset of size 100,000 sequences. The results demon-

strated that our algorithm is 28 times faster than the exact algorithm and 13

times faster than the BLASTP [3] algorithm for �nding similar sequences with

percent identity greater than 90%, it also has 99.5% accuracy.

• We also developed a greedy incremental clustering algorithm using our fast ap-

proximate similarity search algorithm for removing redundant sequences from an

input protein database. We evaluated our clustering algorithm on the SWISS-

PROT protein dataset of size 100,000 sequences and compared with the CD-HIT

[14] algorithm. The clustering results show that our clustering algorithm gen-

erated clusters with accuracy almost equal to the CD-HIT algorithm accuracy.

• We also reviewed the correlation between alignment-free similarity measure-

ments and alignment-based similarity measurements of protein sequences. We

used three statistical correlation approaches for our correlation analysis. The re-

sults demonstrated that these types of similarity measurements correlate highly

for percent identities greater than 50.

• We demonstrated two bioinformatics applications of our cosine-similarity based

approximate similarity search algorithm and clustering algorithm:

� The �rst application is to analyze assembly sequences by comparing with

true positive sequences. For a given minimum percent identity threshold

th, our algorithm can be used to determine the number of true positives

that are similar to the assembly sequences with at least percent identity

6

th and also the number of sequences in the assembly that are similar to

the true positives with at least percent identity th. We demonstrated this

application by analyzing multiple assemblies data of RNA sequencing data.

The assemblers accuracy was compared and also the accuracy of combined

assembly data of multiple assemblers was analyzed.

� The second application is to cluster combined assembly data of multiple

assemblers to remove redundant sequences.

7

Chapter 2

BACKGROUND & RELATED

WORKS

2.1 Nearest-Neighbor Search

The nearest-neighbor search is a similarity problem of �nding the closest neighbors

for a given object or instance.

De�nition

Given a set of n instances P = {p0, p1, ..., pn-1} in some metric space X, the nearest-

neighbor search algorithm �nds the nearest neighbor p′ ∈ P to the given query in-

stance q under some similarity measurement function.

The k-nearest neighbors problem:

De�nition

Given a set of n instances P = {p0, p1, ..., pn-1} in some metric space X, the k -nearest

neighbors search algorithm �nds the k -nearest neighbors {p′0, p
′
1, ..., p

′
k−1}, p

′
i
∈ P for

the given query instance q under some similarity measurement function.

8

Figure 2.1: 5-nearest neighbors to an object (black circle)

The exact nearest neighbor algorithm is a brute-force algorithm and its time com-

plexity is O(m ∗n ∗d) where m is the number of instances, n is the number of queries

and d is the number of dimensions. This algorithm works well for lower dimensions

but becomes slow for higher dimensions. This problem of higher dimensions is known

as the curse of dimensionality[5] and to solve that these approximate nearest-neighbor

algorithms have been introduced[11].

2.2 Approximate Nearest-Neighbor Search

The motivation towards approximate nearest-neighbor algorithms is to reduce the

time complexity O(m ∗n ∗ d) of the exact nearest-neighbor algorithm. An error term

is introduced in order to reduce the time-complexity.

De�nition

Given a set of n instances P = {p0, p1, ..., pn-1} in some metric space M, �nd a point

p ∈ P where p is an ε-nearest neighbor of the query instance q that ∀p′ ∈ P, d (p, q) ≤

(1 + ε) d (p′, q).

9

Figure 2.2: 5-approximate nearest neighbors to an object (black circle)

2.2.1 Kd-tree

Kd-tree is a binary tree and stores instances from a k-dimensional space. Kd-trees

were �rst introduced by Bentley in 1975 [6, 12] and �rst used as a base for the nearest-

neighbor search by Friedman [9]. For a d -dimensional set of instances D, the kd-tree

construction is started by choosing a dimension from d dimensions and splitting D

in to two partitions based on the median of that dimension. All the instances that

are less than the median are placed in the left partition and all that are greater than

or equal to the median are placed in the right partition. Now for each partition, a

kd-tree is further constructed using the remaining d-1 dimensions recursively. Each

leaf node of the kd-tree stores a set of instances. For a given query q, the kd-tree is

traversed from the root down to a leaf node by comparing values of the query with the

median at each split corresponding to a dimension. All the instances in the leaf node

are returned as the nearest neighbors to the query. This method is an approximate

nearest-neighbor search method because it can miss some instance when the instance

is placed in to another partition.

10

2.2.2 Ball tree

The approximate nearest-neighbor search using ball trees works similar to kd-trees

[17]. For a d -dimensional set of instances D, instead of splitting the points based on

some median they are split by computing distances to two centroids. Initially, two

centroids are chosen, for every instance distances to the two centroids are computed

and is assigned to the cluster with the smaller distance forming two clusters. If the

distances are equal then the instance is assigned to the cluster chosen randomly. In

turn for each cluster two more centroids are chosen and split again. This is continued

recursively until each cluster is containing speci�ed number of points or the number

of clusters allowed has reached. For a given query q, recursively computed to �nd a

cluster to which it belongs and all the instances in that cluster are returned as the

nearest neighbors to the query. Again, some instance can miss when the instance

is placed into another cluster. So this method using ball tree is an approximate

nearest-neighbor method.

2.2.3 RPForest

In RPForest [2] (Random projection forest) multiple random projection trees are used.

It is a variant of kd-tree. In each random projection tree the given set of instances D

are recursively split in to subsets until the number of instances at leaf nodes are at

most m. The instances are partitioned based on cosine of angle value of an instance to

a randomly chosen hyperplane. The median of cosine of angle values of all instances

is computed. Instances with cosine of angle value to the random hyperplane less

than or equal to the median goes to the left partition and greater than the median

goes to the right partition. For a given query q, every tree in the forest is recursively

11

traversed down to a leaf node by calculating the cosine of angle values to each random

hyperplane. All the instances from all leaf nodes are collected, duplicates are removed

and the remaining instances are returned as the nearest neighbors to the given query

q.

2.3 Locality-Sensitive Hashing

In locality-sensitive hashing, items are hashed and mapped to the same buckets with

high probability when the items are similar and with low probability when the items

are dissimilar. Two vectors can be termed as similar if their cosine distance is below

a certain threshold and as dissimilar if their cosine distance is above the threshold.

Locality-sensitive hashing technique based on cosine distance can be applied to the

nearest neighbors search of n-dimensional vectors.

2.3.1 Cosine-similarity

Cosine-similarity is a similarity measure between two vectors that measures the cosine

of the angle between them. The cosine similarity value ranges between [0, 1]. It can

be derived by computing dot product and magnitudes of two vectors. For a given two

vectors a and b:

cosine− similarity = cos(θ) =
~a.~b

~‖a‖.‖~b‖
(2.3.1)

cosine− distance = 1− cos(θ) (2.3.2)

12

Two vectors tend to close to each other when their cosine-similarity value is close

to 1 and away from each other when their cosine-similarity value is close to 0.

2.3.2 LSH for cosine-distance

In cosine-distance based locality-sensitive hashing [19], for a given set of two instances

or vectors, they hash to the same bucket with high probability if they are similar and

they hash to the same bucket with low probability when they are dissimilar. The

probability of collision between two vectors with angle α between them is equal to

1− α
π
. This type of hashing can be applied to approximate nearest-neighbor search of

d -dimensional vectors. Given d-dimensional vectors D are hashed to buckets using the

LSH. Later when a query vector q is given, it is hashed to a bucket and all the vectors

in that bucket are returned as candidates for approximate nearest neighbors to q. The

candidates returned may be further �ltered by computing the actual cosine distance

to the query vector q. Random hyperplanes and cross-polytopes are two types of LSH

families based on cosine-similarity[4]. They both can be used for euclidean distance

also. Both hyperplane LSH and cross-polytope LSH partition the d -dimensional unit

sphere into random partitions with only di�erence in how granular these partitions

are.

2.3.2.1 Hyperplane LSH

In hyperplane LSH [8] a sphere is partitioned in to two parts of equal sizes by sampling

a random hyperplane through the center of the sphere. Actually this is achieved by

sampling a d-dimensional vector r whose coordinates are i.i.d. standard guassians.

For a given vector v, dot product <r, v> is computed and sign of the result is used

13

as a hash of the vector v.

2.3.2.2 Cross-polytope LSH

Cross-polytope is a regular, convex polytope that exists in d-dimensions. Let e1 , ...,

e2d be the set of signed bias vectors, i.e., each e i has exactly one nonzero coordinate

that is either +1 or -1. The d-dimensional cross-polytope is the convex hull of these

signed standard basis vectors. In 2 dimensions, the cross-polytope is a rotated square

and in 3 dimensions, the cross-polytope is the octahedron. All points on the surface

of the cross-polytope have l1-norm 1 which is why the cross-polytope is also known

as a l1-unit ball.

In cross-polytope LSH[22], a random rotation S is sampled to compute hash of a

point v. To hash the point v, the rotation S is applied to v and the nearest vertex

of the cross-polytope to Sv is found to be its hash value. A cross-polytope hash

function partitions the unit sphere corresponding to the Voronoi cells of the vertices

of the randomly rotated cross-polytope.

2.4 Clustering

Clustering is grouping similar objects into one group. Clustering is based on two

principles:

• Homogeneity: Objects in a cluster are maximally close to each other.

• Separation: Objects in di�erent clusters are maximally far apart from each

other.

There are three types of clustering techniques:

14

Figure 2.3: 2 dimension cross-polytope (left) & 3 dimensional cross-polytope (right)
Source: [1]

• Agglomerative: Initially every object itself is a cluster. Clusters that are similar

are joined into one cluster.

• Divisive: Initially all objects are in one big cluster. Then it is iteratively parti-

tioned into smaller clusters.

• Hierarchical: Objects are organized in a tree structure. Leaves represent indi-

vidual objects, length of the path between leaves represent similarity and similar

objects are present in the same subtree.

In this thesis, we used agglomerative clustering to cluster similar biological sequences.

One use case of such clustering is to remove redundancy in the sequences.

15

2.4.1 CD-HIT

CD-HIT is a popular program used for clustering protein or nucleotide sequences[14].

CD-HIT can be used to remove redundant sequences from a database through clus-

tering. It implements a greedy incremental clustering algorithm. All the sequences in

a database are clustered such that similar sequences are within a cluster. A cluster

representative is chosen from each cluster and outputted as non-redundant sequences.

CD-HIT uses heuristics that are short-word �lter and banded alignment to approxi-

mate the percentage identity between two sequences instead of a dynamic program-

ming algorithm. Although CD-HIT does pairwise comparisons, it is still fast due to

the heuristics. In pairwise comparisons of a query to a database, the short-word �lter

is used initially to �lter out the sequences that are possibly not similar to the query

at given input percent identity threshold and then the banded alignment algorithm

is used to approximate the percent identity between remaining sequences.

2.5 Sequence Similarity Tools

2.5.1 BLAST

The Basic Local Alignment Search Tool (BLAST) [3][21] �nds regions of local sim-

ilarity between biological sequences. It compares nucleotide or protein sequences to

sequences databases and computes the statistical signi�cance of the matches. It can

also be used for motif searches, gene identi�cation searches, and also for the analysis

of multiple regions of matches in long DNA sequences. It produces results quickly

by using heuristics. It also calculates an �expect� value that estimates how many

matches would have occurred by chance, which can aid a user in deciding how much

con�dence to have in an alignment.

16

Chapter 3

METHODOLOGY

3.1 Problem De�nition

For a given input nucleotide/protein query sequence, performing a fast approximate

query search over a large collection of nucleotide/protein database sequences for

�nding the similar nucleotide/protein sequences with at least input percent iden-

tity threshold th using a cosine similarity based locality-sensitive hashing technique.

Then compare search performance in terms of both speed and accuracy with pair-wise

similarity search algorithms, the brute-force algorithm and the BLASTP[3] algorithm.

3.2 Overview

We �rst de�ne alignment based and alignment-free similarity measures for biological

sequences. Alignment based similarity measures are minimum edit distance and per-

cent identity. Alignment-free similarity measures are cosine-similarity and squared

euclidean distance. Sequences will be represented as vectors to compute the align-

17

ment free-similarity measurements. We then describe two nearest neighbors search

algorithms for biological sequences, one using brute-force method and the other using

the cosine-similarity based locality sensitive hashing technique. We then de�ne greedy

incremental clustering algorithm based on our cosine-similarity approximate nearest

neighbors algorithm. We conclude with implementation details of our algorithms.

3.3 Similarity Measure

For similarity measurement between biological sequences such as DNA, RNA or pro-

teins we used both alignment-based and alignment-free similarity measures. The

following are the similarity measures:

3.3.1 Minimum edit distance

Minimum edit distance measures the minimum number of edit operations required to

transform one sequence to another sequence. Minimum edit distance is also known

as levenshtein distance. They are three basic types of edit operations that are in-

volved in transforming a start sequence to the �nal sequence. They are insertion

when a character is inserted in to the start sequence, deletion when a character is

removed from the start sequence and substitution when a character is substituted in

the start sequence. The Needleman�Wunsch algorithm is an algorithm to compute

global alignment between two biological sequences. It uses the dynamic programming

approach and can be used to compute minimum edit distance. The algorithm was

developed by Saul B. Needleman and Christian D. Wunsch.

18

3.3.2 Percent Identity

Percent identity of two sequences is calculated by globally aligning the two sequences.

Let l be the alignment length of the two sequences including gaps after global align-

ment and m be the number of matches between the two sequences in the global

alignment. The formula for percent identity of the two sequences is

PercentIdentity =
m ∗ 100

l
(3.3.1)

3.3.3 Alignment-free Measure

We used an alignment-free method based similarity measurement to measure sim-

ilarity among nucleotide/protein sequences. We choose a short word length k and

map each sequence onto an n-dimensional vector according to its k -length tuple (also

called k -tuple or k -word) frequency. In the Section 3.4, we discuss an algorithm for

generating k -tuple frequency vector for a given input sequence. Let us consider two

sequences S 1 & S 2 and let V 1 & V 2 be their n-dimensional k -tuple frequency vectors.

Now we de�ne our two similarity measures for k -tuple frequency vectors.

3.3.3.1 Cosine-Similarity

Cosine-similarity between two given k -tuple frequency vectors is the cosine of the

angle between those two vectors.

Cosine− Similarity(V1, V2) =
~V1. ~V2

‖ ~V1‖ ~V2‖
(3.3.2)

19

3.3.3.2 Squared Euclidean Distance

Squared euclidean distance between two given k -tuple frequency vectors is square of

the euclidean distance between those two vectors.

SquaredEuclideanDistance(V 1,V2) =
n−1∑
i=0

(V1[i]− V2[i])2 (3.3.3)

3.4 K-tuple Frequency Vector

Let Σ be a set of unique letters, where a sequence S of length l over Σ is a succession

of l letters s0s1...si...sl-1 & si ∈ Σ. For a given sequence S of length l, k -tuples or

k -words are obtained by sliding a window of size k from the beginning to the end

of sequence. The total size of k -tuples will be l - k + 1 and may contain k -tuples

with frequency greater than one. The number of unique k -tuples depend on both

k and the size of Σ and exactly equal to |Σ|k. Each element in the n-dimensional

vector corresponds to an unique k -tuple and stores the k -tuple frequency occurred in

the sequence. There can be zero value elements in the vector if their corresponding

k -tuple frequencies in the sequence are zero.

For nucleotide sequences Σ = {A,C,G, T}, therefore for k-values 3, 4 and 5 cor-

responding k -tuple frequency vector sizes are 64, 512 and 1024 respectively. For pro-

tein sequences Σ = {A,R,N,D,C,E,Q,G,H, I, L,K,M,F, P, S, T,W, Y, V }, there-

fore for k-values 3, 4 and 5 corresponding k -tuple frequency vector sizes are 8000,

160,000 and 3,200,000 respectively. We can observe that as the k value increases the

vector size is increasing exponentially. However, when the sequence length l is �xed,

the k -tuple frequency vector becomes sparser as the k value increases i.e the total

20

Algorithm 1 COMPUTE-K-TUPLE-POSITION(w, Σ)
INPUT: k -tuple W = w0w1...wk-1of length k and Σ where wi ∈ Σ.
//Consider Σ as an array of letters that it contains.
OUTPUT: The corresponding position pos of k -tuple in the k -tuple frequency vector
where 0 ≤ pos < |Σ|k.
1: k := w.length
2: pos := 0
3: for i = 0 : k - 1 do

4: w_pos ← position of wi in Σ
5: pos ← pos + w_pos * |Σ|i
6: end for

Algorithm 2 COMPUTE-K-TUPLE-FREQUENCY-VECTOR(S, k, Σ)
INPUT: Input sequence S = s0 s1 ...s l-1of length l, k and Σ where s i ∈ Σ.
OUTPUT: k -tuple frequency vector V where |V | = |Σ|k.
1: v_size ← |Σ|k
2: V ← zero-vector Z of size v_size
3: for i = 0 : l - k + 1 do
4: W ← sisi+1...si+k-1

5: pos ← COMPUTE-K-TUPLE-POSITION(W, Σ)
6: V[pos] ← V[pos] + 1
7: end for

number of zero elements in the vector increases. In this thesis, we have used k = 3

for protein sequences, this choice is explained in detail in the section 4.2. We used

the algorithm COMPUTE-K-TUPLE-FREQUENCY-VECTOR to generate k -tuple

frequency vector for a given input sequence S and Σ.

3.5 Approximate Nearest-Neighbor Search

In this thesis, we developed two algorithms to perform the nearest-neighbor search

on biological sequences. Both algorithms accept DNA, RNA or protein sequences as

inputs for both database and queries. The �rst algorithm is an exact nearest-neighbor

algorithm that uses the brute-force technique, i.e. every query sequence is compared

21

Algorithm 3 BRUTE-FORCE-NEAREST-NEIGHBORS(D, Q, th)
INPUT: Database sequences D = {S 0 , S 1 , ..., S n-1} of size n, query sequence Q &
percent identity threshold th.
OUTPUT: R = {S′0, S

′
1, ..., S

′
m−1} |R| ≥ 0 and S′

i
∈ D .

1: R ← {}
2: for i = 0 : n - 1 do

3: Calculate percent identity between sequences Q and S iusing the Needle-
man�Wunsch algorithm.

4: percent_identity ← PERCENT-IDENTITY-NW(Q, S i)
5: if percent_identity ≥ th then

6: R ← R ∪ S i

7: end for

to all the sequences in a database. Second algorithm is an approximate nearest-

neighbor algorithm that uses the cosine-similarity based locality-sensitive hashing

technique to retrieve the candidate sequences that are similar to the input query and

further �lter them by pairwise comparisons with the query. For pairwise comparisons,

we use the Needleman�Wunsch algorithm to global align two biological sequences and

then compute the percent identity between them. The objectives for both algorithms

is the same that for a given query q, return similar sequences in the database according

to the input minimum percent identity threshold. Let D be the set of database

sequences, Q be the set of query sequences and the percent identity threshold th.

3.5.1 Brute force method

In brute force method, the inputs database and query sequences are considered as

it is. A percent identity threshold th is also given as input to return the similar

sequences in the database to a query with percent identity greater than or equal to

the threshold th. We used the algorithm 3 for brute force based nearest neighbors

search.

22

3.5.2 Cosine similarity based locality-sensitive hashing

method

Nearest neighbor search using the cosine similarity based locality-sensitive hashing

method works in the following two phases:

1. Index construction

2. Query processing

3.5.2.1 Index Construction

An index I is constructed for the given input D = {S 0 , S 1 , ..., Sn-1} database

sequences which later will be used in the query processing phase. Initially, all the

database sequences are converted to k -tuple frequency vectors P = {V 0 , V 1 , ...,

V n-1}. Index construction requires two parameters: number of hash tables l and

number of hash functions per table f. The index I consists of multiple hash tables

where all vectors in P are stored in buckets in each of the hash tables. Each hash

table has a unique hash function that hashes a k -tuple frequency vector and that

hash value is used as the key to store the vector in the corresponding bucket. All the

vectors that shares the same hash value will be stored in the same bucket in a hash

table. A hash function splits the unit sphere in to a �xed number of random partitions

based on the type of LSH used, where each partition of the sphere corresponds to a

bucket in the hash table. So, all the vectors that are in the same partition are hashed

in to the same bucket. Two types of LSH for cosine similarity are hyperplane LSH

and cross-polytope LSH.

Hyperplane LSH

23

In hyperplane LSH the unit sphere is partitioned by sampling a random hyperplane

through the center of the sphere. If the number of random hyperplanes sampled is K

then the number of partitions in the space created is equal to 2K.

Cross-polytope LSH

Given a n-dimensional unit sphere, the number of vertices in the n-dimensional cross-

polytope is equal to 2n. In cross-polytope LSH the unit sphere is randomly partitioned

into voronoi cells each corresponding to a vertex of the cross-polytope. Therefore

the number of partitions created in the n-dimensional sphere is equal to 2n. Cross-

polytope LSH is implemented by sampling a random cross-polytope. To achieve that a

random rotation R is sampled and applied to the cross-polytope. In order to compute

the hash value of an input vector V, the rotation S is applied to the vector and the

nearest vertex of the cross-polytope to the Rv is returned as the vector V hash value.

For given input database sequences D = {S 0 , S 1 , ..., Sn-1}, window size k, Σ

and number of hash tables l, the index construction using cross-polytope LSH is done

through the algorithm4.

3.5.2.2 Query Processing

In the query processing phase, for an input query sequence q the set of similar se-

quences in the database D is returned. Initially, the query is converted to k -tuple

frequency vector, then the vector is used to compute hash values corresponding to all

hash tables. Those hash values act as keys to the hash tables and the corresponding

buckets are retrieved. All buckets from all the hash tables are combined and any

duplicates found are removed. The resulting set of values after removing duplicates

will be indices of the candidate sequences. The candidates are further �ltered in

two �ltering phases using input squared euclidean distance d and percent identity th

24

Algorithm 4 CONSTRUCT-LSH-INDEX(D, k, Σ ,l)
INPUT: Database sequences D = {S 0 , S 1 , ..., Sn-1} of size n, window size k, Σ &
number of hash tables l.
OUTPUT: Index I constructed for D using cross-polytope LSH
1: P ← {}
2: Iterate through all sequences in D and compute k -tuple frequency vectors for each

sequence S i∈ D. Store the computed vectors in P such that V i∈ P corresponds
to S i∈ D.

3: for i = 0 : n - 1 do

4: V i ← COMPUTE-K-TUPLE-FREQUENCY-VECTOR(S i , k, Σ)
5: P ← P ∪ V i

6: end for

7: Initialize l empty hash tables
8: T = { L0 , L1 , ..., Ll-1}
9: Initialize f hash functions each corresponding to a hash table. Each hash function

is initialized by sampling a random rotation R.
10: H = { F 0 , F 1 , ..., F l-1}
11: Iterate through all k -tuple frequency vectors in P, for every Vi ∈ P compute hash

values for all hash tables and store the value i in every hash table using the hash
values corresponding to the hash tables as the keys.

12: for i = 0 : n - 1 do

13: for j = 0 : l - 1 do

14: compute hash value of V i using the hash function F j and store i in the hash
table Lj in a bucket using the hash value as the key.

15: hash ← F j(V i)
16: Lj(hash) ← Lj(hash) ∪ i
17: end for

thresholds.

• The �rst �ltering phase by squared euclidean distance threshold

� Squared euclidean distance between candidates to the query vector is com-

puted. Only the candidates whose squared euclidean distance with the

query is less than the input squared euclidean threshold d are considered

for the second �ltering phase.

25

• The second �ltering phase by percent identity threshold

� The input candidates are �ltered by pairwise comparisons with the query

sequence q using the Needleman�Wunsch algorithm. The candidates whose

percent identity is at least the threshold th are returned as the similar

sequences to the query q.

The algorithm 5 describes the query processing phase.

3.6 Clustering Algorithm

In this thesis, we developed a greedy incremental clustering algorithm for biological

sequences based on our cosine-similarity nearest-neighbor search algorithm. Our al-

gorithm support both nucleotide and protein sequences as input. One use case of our

clustering algorithm is to remove redundancy in large dataset sequences through the

clustering approach. A cluster representative or consensus sequence can be picked

from a cluster. Therefore the number of output sequences is equal to the number

of clusters. Within each cluster, all sequences must be similar to the cluster repre-

sentative with percent identity greater than or equal to the input percent identity

threshold. We initially sort the input sequences dataset in decreasing length order.

We go through every sequence from top to bottom in decreasing length order. We

pick the �rst sequence in the list, create the �rst cluster and set the �rst sequence as

the representative of the �rst cluster. Now we search all the remaining sequences in

the dataset to �nd the similar sequences that are similar to the �rst sequence with

percent identity greater than or equal to the input percent identity threshold and put

them in to the �rst cluster. Now we pick the next sequence in the list that is not

26

Algorithm 5 PROCESS-LSH-QUERY(q, k, Σ , I, D, d, th)
INPUT: Query sequence q, window size k, Σ, I, D, squared euclidean distance thresh-
old d and minimum percent identity threshold th.
OUTPUT: R = {S′0, S′1, ..., S′m−1} |R| ≥ 0 and S′

i
∈ D .

1: R′ ← {}
2: Let input LSH index I consists of T = { L0 , L1 , ..., Ll-1} hash tables & H = {

F 0 , F 1 , ..., F l-1} hash functions corresponding to the hash tables.
3: V ← COMPUTE-K-TUPLE-FREQUENCY-VECTOR(q, k, Σ)
4: Iterate through all the hash tables and compute hash values of V for all the hash

tables. Using the hash values as keys retrieve buckets from all the hash tables.
5: for i = 0 : l - 1 do

6: compute hash value of V using the hash function F i and retrieve the hash
bucket from the hash table Li using the hash value as the key.

7: hash ← F i(V)
8: R′ ← R′ ∪ Li(hash)
9: end for

10: Remove duplicate indices from R′.
11: R′ ← remove_duplicate_indices(R′)
12: Perform �rst �ltering phase
13: R′ ← �lter_by_squared_euclidean_distance(R′, V, d)
14: m ← |R′|
15: R = {}
16: Perform second �ltering phase. For every index r′i ∈ R′ retrieve corresponding

sequence in D, compute the percent identity with the query q and if the percent
identity ≤ th store it in R.

17: for i = 0 : m - 1 do

18: S ← S r′i
∈ D

19: percent_identity ← PERCENT-IDENTITY-NW(Q, S)
20: if percent_identity ≥ th then

21: R ← R ∪ S
22: end for

27

Algorithm 6 GREEDY-INCREMENTAL-CLUSTERING(q, k, Σ , I, D, th)
INPUT: Input sequences D = {S 0 , S 1 , ..., Sn-1} of size n, window size k, Σ, number
of hash tables l & percent identity threshold th.
OUTPUT: Output clusters W = {C′0,C′1, ...,C′m−1} |Ci| ≥ 1 & |W| ≤ |D|.
1: W ← {}
2: Sort sequences in D in decreasing sequence length order. Let D′ =
{S′0, S′1, ..., S′n−1} be the set of sequences after sorting D.

3: I = CONSTRUCT-LSH-INDEX(D′, k, Σ , l)
4: Construct LSH index I for the sorted sequences D′ with l hash tables and window

size k.
5: Let LSH index I consists of T = { L0 , L1 , ..., Ll-1} hash tables & H = { F 0 ,

F 1 , ..., F l-1} hash functions corresponding to the hash tables.
6: Iterate through the sequences in D′ from top to bottom in decreasing sequence

length order.
7: for i = 0 : n - 1 do

8: If the sequence S ′i is not present in any cluster of W , make a new cluster and
set the sequence S ′i as the cluster representative of the new cluster.

9: if S ′i is not in any cluster of W
10: C ← {S ′i} & set S ′i as the cluster representative of C.
11: else

12: continue;

13: end if

14: Retrieve all sequences in D′ that are similar to S ′i with at least percent identity
threshold th.

15: R← PROCESS-LSH-QUERY(S ′i, k, Σ , I, D′, th) and let R = {S ′′0 , S
′′
1 , ..., S

′′
p−1}

16: for j = 0 : p - 1 do

17: if S ′′j is not in any cluster of W
18: C ← C ∪ {S ′′j }
19: end for

20: W ← W ∪ {C}
21: end for

clustered and create a new cluster in the same method. If the cluster representative

doesn't have similar sequences in the remaining list then the cluster formed contains

only the cluster representative. The algorithm 6 describes our clustering technique.

28

3.7 Evaluation Metrics for Cluster Comparison

3.7.1 Average pairwise distance

For measuring accuracy of a cluster, we perform multiple-sequence alignment using

the T-co�ee algorithm [15], which is then used to compute pairwise distance matrix

and obtained the average pairwise distance between any two sequences in the multiple-

sequence alignment of the cluster.

We de�ne pairwise distance as:

pairwise− distance = 1− percent− identity
100

(3.7.1)

3.7.2 Maximum Average Jaccard Index

We used the maximum average Jaccard Index [13] to assess the performance of

CSANN-Clust clusters compared against CD-HIT clusters. Given two sets of pro-

tein clusters, A and B from two clustering algorithms, the average maximum Jaccard

Index of algorithm A against the algorithm B is given by,

S(A,B) =
1

|A|
∑
A1∈A

max(B1)∈B
|A1 ∩B1|
A1 ∪B1

3.8 Implementation.

All our algorithms are written in C++ for better performance. We used the OpenMP

parallel programming library in our algorithms to get speedups on multi-core cpus.

We used the following two libraries that underlie our algorithms

29

• Edlib library [16], is a fast edit distance library written in C++ by Martin ¦o¨i¢

and Mile ¦iki¢. The library is packaged with Needleman�Wunsch algorithm and

we used it to compute the percent identity between two sequences by obtaining

global alignment path.

• FALCONN library, is an LSH library for cosine-similarity. The FALCONN

is short for FAst Lookups of Cosine and Other Nearest Neighbors. It was

developed and currently maintained by Ilya Razenshteyn and Ludwig Schmidt

[20]. It supports both sparse and dense datasets as input. Although it is

designed for cosine-similarity it can also be used for nearest-neighbor search

under euclidean distance. We call this library in index construction and query

processing phases.

30

Chapter 4

RESULTS

4.1 Datasets

In this thesis, we evaluated our cosine-similarity based nearest-neighbor search al-

gorithm and our greedy incremental clustering algorithm on SWISS-PROT protein

sequence dataset. SWISS-PROT dataset (0.4M sequences) was downloaded online

from NCBI (ftp://ftp. ncbi.nih.gov/blast/db/FASTA/) on September 10, 2017. The

datasets for our assembly data analysis are transcriptome protein sequences assem-

bled by four de novo assemblers and two genome-guided assemblers. The de novo

and genome-guided assemblers were run to assemble short reads generated from syn-

thetic RNA sequences of a maize plant. The original synthetic RNA sequences and

assembled contig sequences are nucleotide sequences. We used the GeneMarkS[7]

tool to convert RNA sequences to protein sequences. We used the de novo and

genome-guided assemblers assembly contig sequences as our queries datasets. The

RNA based amino acid sequences of synthetic maize are our true positives and is

used as the database sequences in our experiments. The table 4.1 shows the list of

assembly datasets with dataset sizes and sequences length ranges in each dataset.

31

Table 4.1: Maize transcriptome assembly protein sequence datasets

number of sequences bp range
True positive sequences 117,610 98bp - 5267bp

denovo

idba 177,126 98bp - 5375bp
soapDenovo 374,913 98bp - 4743bp
SPADes 486,912 91bp - 5375bp
Trinity 120,199 98bp - 5231bp

Genome-guided
Bayesembler 4,002 98bp - 4927bp
Cu�inks 63,246 98bp - 4108bp

4.2 Evaluation of similarity measures

We represent sequences as k -tuple frequency vectors. Although input sequences are

of varied length in base pairs, the length of the resulting k-tuple frequency vectors

is constant and equal to |Σ|k. We de�ned two similarity measures cosine-similarity

and squared euclidean distance 3.3 for similarity measurement between the k -tuple

frequency vectors. When �nding similar sequences to an input query sequence, we re-

quire that the returned similar sequences percent identity similarities with the query

sequence are greater than or equal to the input minimum percent identity thresh-

old. To facilitate such requirement, we needed to enforce de�nite cosine-similarity or

squared euclidean distance thresholds for k-tuple frequency vectors. Therefore it is

essential to run correlation analysis between similarity measures of both string repre-

sentation and k -tuple frequency vector representation of sequences. Our correlation

study helped us in determining the appropriate thresholds for cosine-similarity and

squared euclidean distance measures. As the sequences are varied in size, we choose

the percent identity measure over minimum edit distance.

32

4.2.1 Experimental Design

Our goal is to determine the correlation between percent identity versus both cosine-

similarity and squared euclidean distance among protein sequences. For that purpose,

we random sampled 10,000 RNA protein sequences from trinity assembly sequences

and used them as the query sequences. Next, we sampled 10,000 RNA protein se-

quences from the true positive sequences dataset and used them as the database

sequences. We computed pairwise comparisons between the database sequences and

query sequences. For each pair, we computed the percent similarity, the squared eu-

clidean distance and the cosine-similarity between the two sequences. That resulted

in 100,000,000 pairwise comparisons. Although it is a large number of pairwise com-

parisons, there were many duplicates that we removed before our correlation analysis.

We conducted these experiments for only protein sequences with k = 2, 3, and 4.

We used box-plots to visualize the pair-wise comparisons and a mean curve is

also included as a part of the box-plots. We computed two types of box-plots: one

for cosine-similarity versus percent identity and other for squared euclidean distance

versus percent identity. Our initial box-plot results for all k values suggested that

pairwise comparisons with percent identity less than 50 don't correlate well, thereby

we removed all the pairwise comparisons with percent identity less than 50 from

the total samples. Such �ltering of samples doesn't a�ect our outcomes as we are

only interested in percent identities greater than 50. Next, we performed correlation

analysis for remaining sample points using the following three correlation methods:

1. Pearson's product-moment correlation

2. Kendall's rank correlation tau

3. Spearman's rank correlation rho

The following two sections discuss the results of our correlation analysis experi-

33

Figure 4.1: Cosine similarity versus percent identity (k = 2)

ments.

4.2.2 Cosine-similarity versus percent identity

Figures 4.1 4.2 4.3 shows the cosine-similarity versus percent identity box-plots. From

the pairwise comparisons for a given percent identity, it is evident in the box-plot that

the sequences have varied cosine-similarity values. It is also seen from the box-plot

that there is a good correlation exist for percent identity greater than 50. The red

line curve plots the means of cosine-similarity values for each percent identity. It is

evident from the box-plots for percent identity > 50, that as the percent identity

increase the cosine-similarity between the q-tuple frequency vectors of the sequences

also increase in an almost linear manner.

Table 4.2 shows the results of correlation tests for k = 2, 3, and 4 that we conducted

using the three popular methods. We did our correlation tests only for samples with

34

Figure 4.2: Cosine similarity versus percent identity (k = 3)

Figure 4.3: Cosine similarity versus percent identity (k = 4)

35

Table 4.2: Cosine-similarity versus percent identity correlation tests

Type of correlation test
k

2 3 4
degree of freedom 1821 1820 1822

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16
Pearson's product-moment correlation 0.3832822 0.6104683 0.738707

Kendall's rank correlation tau 0.2790689 0.4285499 0.5726693
Spearman's rank correlation rho 0.3975879 0.5976841 0.7677395

percent identity greater than 50 as explained in the above.

4.2.3 Squared euclidean distance versus percent identity

Figures 4.4 4.5 4.6 shows the squared euclidean distance versus percent identity box-

plots for k = 2, 3, and 4. From the pairwise comparisons for a given percent identity it

is evident in the box-plot that the sequences have varied squared euclidean distance

values. It is also seen from the box-plot that there is a good correlation exist for

percent identity greater than 50. The red line curve plots the means of squared

euclidean distance values for each percent identity. It is evident from the box-plot

for percent identity > 50, that as the percent identity increase the squared euclidean

distance between the q-tuple frequency vectors of the sequences decrease in an almost

linear manner.

Table 4.3 shows the results of correlation tests for k = 2, 3, and 4 that we conducted

using the three popular methods. We did our correlation tests only for samples with

percent identity greater than 50 as explained in the above.

4.3 Approximate Nearest-Neighbor Algorithm

We evaluated our cosine-similarity based approximate nearest-neighbor algorithm on

SWISS-PROT protein sequences. We refer our approximate nearest-neighbor algo-

36

Figure 4.4: Square euclidean distance versus percent identity (k = 2)

Figure 4.5: Square euclidean distance versus percent identity (k = 3)

37

Figure 4.6: Square euclidean distance versus percent identity (k = 4)

Table 4.3: Cosine-similarity versus percent identity correlation tests

Type of correlation test
k

2 3 4
degree of freedom 1690 1688 1689

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16
Pearson's product-moment correlation -0.700298 -0.7463848 -0.749849

Kendall's rank correlation tau -0.603641 -0.6263307 -0.6276174
Spearman's rank correlation rho -0.7832556 -0.806429 -0.8054255

rithm as CSANN and our clustering algorithm as CSANN-Clust in the current results

section. Our algorithm performance depends on the input parameters: number of

hash tables l, squared euclidean distance threshold d and percent identity threshold

th. When the number of hash tables is reduced, our algorithm performs faster be-

cause the number of tables that needed to be queried is reduced, thereby less query

time. For higher percent identity thresholds th, we can reduce the number of hash

tables thereby reduce the query time. Considering the box-plots analysis in section

4.2, we have performed parameter tuning and determined optimal parameter settings

38

Table 4.4: Optimal parameters setting

Parameter Value
k 3

k -tuple vector size 8000
LSH type cross-polytope

Number of buckets per hash table 16000
Minimum percent identity threshold (th) 70 80 90

Number of hash tables (l) 32 16 16
Squared euclidean distance threshold (d) 0.7 0.6 0.5

PI 70, PI 80 and PI 90 for percent identity thresholds 70, 80 and 90 respectively. We

applied these parameter settings in our experiments according to the percent iden-

tity threshold used. The table 4.4 describes the optimal parameter settings that we

used in our experiments. We chose k = 3 as optimal parameter by considering the

correlation tests that we conducted as presented in the tables 4.2 4.3. We found that

higher k values have better correlations when compared with lower k values. How-

ever, higher k values increase the k -tuple vector size thereby increase memory usage.

For k = 2, 3 and 4, the corresponding k-tuple vector sizes are 400, 8000, and 160,000

respectively. There is a trade-o� between memory requirements and correlations for

choosing k. We chose k = 3 as it has better correlation than k = 2 and has lower

memory requirement than k = 4.

4.3.1 Accuracy

4.3.1.1 De�nition

We compute percent identity using the Needleman�Wunsch algorithm. For a given

query q and percent identity threshold th, we run the brute-force algorithm to obtain

all the true positive sequences from the database db that are similar to the query

sequence q i.e., percent identities greater than or equal to the input threshold th. Let

39

the true positive sequences count be tp. Now we obtain similar sequences using our

CSANN algorithm and let that count be c. Now we de�ne c/tp as accuracy of our

CSANN algorithm w.r.t query q, database db and percent identity threshold th.

Let a given input query sequences set Q = {q0 , q1 , ..., qn-1} of size n, cor-

responding true positive counts be TP = {tp0 , tp1 , ..., tpn-1} and corresponding

counts returned by CSANN be C = {c0 , c1 , ..., cn-1}. Now we de�ne accuracy of

our CSANN algorithm w.r.t Q and th as:

accuracy =

∑n−1
i=0 ci∑n−1
i=0 tpi

(4.3.1)

4.3.1.2 Experimental Design

We evaluated the accuracy of our algorithm in three parameter settings described in

4.4 on SWISS-PROT proteins dataset. We randomly selected subsets of sequences

of varying size 5000 - 100,000 as database sets from SWISS-PROT dataset. Now for

each subset we further randomly chose a query set of size 5,000 from the subset. We

now conducted accuracy tests for these database sets and query sets and plotted the

results for each parameter setting.

4.3.1.3 Evaluation

The �gure 4.7 shows our accuracy results. As the dataset size varies from 5000 to

100,000 the accuracies of PI 70, PI 80 and PI 90 vary by little. The average accuracies

of PI 70, PI 80 & PI 90 are 0.83, 0.91 and 0.995 respectively. The results show that

our algorithm has 100% accuracy for PI 90 on SWISS-PROT dataset.

40

Figure 4.7: Dataset Size versus Accuracy

4.3.2 Query Time

4.3.2.1 De�nition

Let a given input query sequences set Q = {q0 , q1 , ..., qn-1} of size n, corresponding

query times be T = {t0 , t1 , ..., tn-1}. Now we de�ne average query time of our

CSANN algorithm w.r.t Q as:

average− query − time =

∑n−1
i=0 ti
n

(4.3.2)

4.3.2.2 Experimental Design

We evaluated the query time of our algorithm in three parameter settings described

in 4.4 on SWISS-PROT proteins dataset. We randomly selected subsets of sequences

of varying size 5000 - 100,000 as database sets from SWISS-PROT dataset. Now for

41

Figure 4.8: Dataset Size vs Query Time

each subset we further randomly chose a query set of size 5,000 from the subset. We

now conducted tests for these database sets and query sets and plotted the results

for each parameter setting.

4.3.2.3 Evaluation

We evaluated the query time of our algorithm in three parameter settings on SWISS-

PROT proteins dataset. The �gure 4.8 shows the query times. For PI 70, the query

time is raised by a big factor when the dataset size is varied from 5000 to 100,000.

However, for PI 80 and PI 90 the query times grow slowly. The results show that PI

80 and PI 90 perform a lot faster than PI 70. The average query times for PI 80 and

PI 70 are 0.1382s and 0.06s respectively.

42

4.3.3 Average Number of Candidates

As described in section 3.5.2.2, query processing by our CSANN algorithm consist two

�ltering phases. The second �ltering phase is an expensive phase as it involves �ltering

candidates of the �rst phase by pairwise comparisons using the Needleman�Wunsch

(dynamic programming) algorithm, therefore second �ltering phase directly a�ects

the query time. We investigated the average number of candidates that need to be

processed for an input query q as it impacts the query time of the query.

4.3.3.1 De�nition

Let a given input query sequences set Q = {q0 , q1 , ..., qn-1} of size n, corresponding

candidates counts in the second �ltering phase be CC = {cc0 , cc1 , ..., ccn-1}. Now

we de�ne average number of candidates processed by our CSANN algorithm w.r.t Q

as:

average− number − of − candidates =

∑n−1
i=0 cci
n

(4.3.3)

4.3.3.2 Experimental Design

We evaluated the average number of candidates of our algorithm in three parameter

settings described in 4.4 on SWISS-PROT proteins dataset. We randomly selected

subsets of sequences of varying size 5000 - 100,000 as database sets from SWISS-

PROT dataset. Now for each subset we further randomly chose a query set of size

5,000 from the subset. We then conducted tests for these database sets and query

sets and plotted the results for each parameter setting.

43

Figure 4.9: Dataset Size vs Number of Candidates in second �ltering phase

4.3.3.3 Evaluation

The �gure 4.9 describes how the number of candidates grow as the dataset size in-

creases for parameter settings PI 70, PI 80 and PI 90. We can observe from the �gure

that the number of candidates grows slowly for PI 80 and PI 90 when compared with

the PI 70. The reason for the small growth of candidates for PI 80 and PI 90 is the

number of hash tables. PI 80 and PI 90 use 16 hash tables which is smaller than 32

which is used in PI 70. The average number of candidates for PI 80 and PI 90 are

1327 and 516 respectively.

4.3.4 Comparison with related algorithms

We compared our cosine-similarity based approximate nearest-neighbor algorithm

(CSANN) with two related algorithms. One is Brute-force(NW) described in section 3

44

Average query time Average speed up Average accuracy
Brute-force(NW) 1.66s 1x 1

BLASTP 0.796s 2x -
CSANN(PI>70) 0.469s 3.5x 0.83
CSANN(PI>80) 0.1382s 12.5x 0.91
CSANN(PI>90) 0.06s 27.6x 0.995

Table 4.5: Average query times

and the other one is BLASTP [3] 2.5.1. The �gure 4.10 shows the comparison in terms

of query time between the three algorithms. Both BLASTP and Brute-force(NW)

algorithms use pairwise comparisons to determine similar items to a query and their

accuracy is very high. For comparison, we included all three con�gurations of our

algorithm: CSANN(PI>70), CSANN(PI>80), and CSANN(PI>90).

4.3.4.1 Experimental Design

We randomly selected subsets of sequences of varying size 5000 - 100,000 as database

sets from SWISS-PROT dataset. Now for each subset we further randomly chose a

query set of size 5,000 from the subset. We now conducted tests for these database

sets and query sets and plotted the results for each algorithm.

4.3.4.2 Evaluation

From the �gure 4.10, we can see that the query times of the �ve algorithms increase

as the dataset size increases. Table 4.5 shows the average query times, speed ups

and accuracies of all the �ve algorithms. These averages are computed by varying

database size from 10,000 - 100,000. Our CSANN algorithms are faster than Brute-

force(NW) and BLASTP on average. Although the speedups of the CSANN(PI>70)

and CSANN(PI>80) algorithms are higher, their average accuracies are lower when

compared with the BLASTP and Brute-force(NW) algorithms. Our CSANN(PI>90)

45

Figure 4.10: Query Time Comparison

has 27.6x speedup with average accuracy at 0.995 thereby outperforms both Brute-

force(NW) and BLASTP algorithms.

It is important to note that the BLASTP and Brute-force(NW) algorithms do not

use the percent identity threshold as required input. Therefore it is disadvantageous

to use those algorithms when we want to search for only highly similar items. Our

algorithm is signi�cant in terms that it can speedup when higher percent identity

thresholds are provided and maintain its accuracy as well, as shown in the �gure

4.10.

4.4 Clustering

We compared our CSANN-Clust clustering algorithm 6 with CD-HIT [14] on SWISS-

PROT protein sequence dataset. The objective of the two algorithms is to remove

46

redundant protein sequences from an input protein sequence data set and output only

non-redundant sequences. The number of output clusters is equal to the number of

non-redundant sequences. Both algorithms accept minimum percent identity thresh-

old th as input, i.e., the sequences in each output cluster are at least percent identity

th similar to the cluster representative. We compare the performance of CSANN-

Clust with CD-HIT in terms of accuracy, number of output clusters generated and

total clustering time. Additionally, we also examined the accuracy of CSANN-Clust

with the Brute-force-Clust(NW) algorithm.

The clustering approach used in the Brute-force-Clust(NW) algorithm is same as

that is used by the CSANN-Clust and CD-HIT algorithms, i.e. greedy incremen-

tal clustering algorithm. However, the di�erence between the three algorithms is

that they use di�erent alignment algorithms for computing percent identity between

two sequences. The CD-HIT algorithm uses banded alignment algorithm, and the

CSANN-Clust and Brute-force-Clust(NW) algorithms uses the Needleman�Wunsch

algorithm for computing percent identity between two sequences.

4.4.1 Accuracy

We evaluated the accuracy of our CSANN-Clust algorithm, the CD-HIT algorithm

and the Brute-force-Clust(NW) algorithm at three percent identity thresholds th: 70,

80 and 90. We used a dataset of size 100,000 protein sequences randomly chosen from

SWISS-PROT dataset. All the three algorithms outputted large number of clusters

(greater than 60,000 clusters) for each percent identity threshold. Therefore we chose

only top 50 clusters from each algorithm by sorting clusters in decreasing size order.

We adopted our approach for testing clustering accuracy from [10]. Now we plotted

the average pairwise distances 3.7.1 versus relative frequency. We used the term

47

CSANN-Clust CD-HIT Brute-force-Clust(NW)
CSANN-Clust 1 0.856 0.935

CD-HIT 0.836 1 0.9
Brute-force-Clust(NW) 0.884 0.86 1

Table 4.6: Average Maximum Jaccard Index comparison (PI>70)

relative frequency to refer to number of sequence pairs with same average pairwise

distance. Along with that, we also computed the average maximum Jaccard Index

3.7.2 between all the three clustering algorithms.

4.4.1.1 Evaluation

Figures 4.11 4.12 4.13 plots average pairwise distance versus relative frequency for

percent identity thresholds th: 70, 80 and 90. As seen in the plots, the clusters of

our CSANN-Clust are slightly more packed than the CD-HIT clusters (especially for

PI>70). It is also seen from plots that CD-HIT has few clusters with the average

pairwise distance greater than the input percent identity thresholds. The reason is

that CD-HIT uses short-word �lter, which is not accurate, to compute percent identity

between any two sequences whereas our CSANN-Clust uses the global alignment

algorithm called Needleman�Wunsch algorithm which is more accurate than the short-

word �lter. Also, we can see from plots that CSANN-Clust performed very closely to

Brute-force-Clust for PI>90.

Tables 4.6 4.7 4.13 shows the average maximum Jaccard Index between the CSANN-

Clust, the CD-HIT and the Brute-force-Clust(NW) algorithms for percent identity

thresholds: 70, 80 & 90. We see that our CSANN-Clust clusters are almost equal to

the Brute-force-Clust clusters for percent identity threshold 90.

48

Figure 4.11: Average pairwise distance vs Relative frequency (PI>70)

Figure 4.12: Average pairwise distance vs Relative frequency (PI>80)

49

Figure 4.13: Average pairwise distance vs Relative Frequency (PI>90)

CSANN-Clust CD-HIT Brute-force-Clust(NW)
CSANN-Clust 1 0.897 0.984

CD-HIT 0.886 1 0.9
Brute-force-Clust(NW) 0.942 0.89 1

Table 4.7: Average Maximum Jaccard Index comparison (PI>80)

CSANN-Clust CD-HIT Brute-force-Clust(NW)
CSANN-Clust 1 0.914 0.999

CD-HIT 0.892 1 0.891
Brute-force-Clust(NW) 0.999 0.914 1

Table 4.8: Average Maximum Jaccard Index comparison (PI>90)

50

Figure 4.14: Dataset Size vs Number of Clusters (PI>70)

4.4.2 Number of Clusters

4.4.2.1 Experimental Design

We randomly selected subsets of sequences of varying size 5000 - 100,000 from SWISS-

PROT dataset. Now for each subset, we ran both CSANN-Clust and CD-HIT algo-

rithms at percent identity thresholds: 70, 80 and 90 and plotted the results.

4.4.2.2 Evaluation

Figures 4.16 4.15 4.14 shows the comparison of CSANN-Clust and CD-HIT in terms of

number of clusters formed for percent identity thresholds 70, 80 and 90 respectively.

We can see that the number of clusters formed by our algorithm CSANN-Clust is

almost equal to the CD-HIT algorithm.

51

Figure 4.15: Dataset Size vs Number of Clusters (PI>80)

Figure 4.16: Dataset Size vs Number of Clusters (PI>90)

52

4.4.3 Clustering Time

4.4.3.1 Experimental Design

We randomly selected subsets of sequences of varying size 5000 - 100,000 from the

SWISS-PROT dataset. Now for each subset we ran both CSANN-Clust and CD-HIT

algorithms at percent identity thresholds: 70, 80 and 90 and plotted the results.

4.4.3.2 Evaluation

Figures 4.17 4.18 4.19 shows the comparison of CSANN-Clust and CD-HIT in terms

of total time taken to form clusters for percent identity thresholds 70, 80 and 90

respectively. The CD-HIT algorithm is performing much faster than our CSANN-

Clust algorithm for percent identity thresholds 70, 80 and 90. Although CD-HIT

does all pairwise comparisons while determining similar items, it uses short-word

�lter and heuristics to determine the percent identity between two sequences instead

of using the dynamic programming algorithm and that is the reason for its higher

speedups even for large dataset sizes. Our CSANN-Clust algorithm avoids all pairwise

comparisons by using cosine-similarity based LSH but uses the dynamic programming

algorithm during the second �ltering phase and that is the reason for its lower speed

ups for large dataset sizes. However, our CSANN-Clust algorithm is performing very

well at percent identity threshold 90 when compared with its performance at percent

identity thresholds 80 and 70.

4.5 Assembly Data Analysis

We performed analysis on assembly datasets that we described in 4.1. We used our

CSANN algorithm for this analysis. We compared assembly data of each assembler

53

Figure 4.17: Dataset Size vs Clustering Time (PI > 70)

Figure 4.18: Dataset Size vs Clustering Time (PI > 80)

54

Figure 4.19: Dataset Size vs Clustering Time (PI > 90)

with true positive sequences. For a given input minimum percent identity threshold

th, we performed two types of analysis:

• Analysis Type 1

� Find the number of transcripts in an assembly data of an assembler that

are similar to the true positive sequences with at least th percent identity.

• Analysis Type 2

� Find the number of true positive sequences that are similar to the assembly

data with at least th percent identity.

We generated 'All Combined' data by combining all de novo assemblers assembly data

and 'All Combined-NR(clustered)' data by removing redundant protein sequences

from the 'All Combined' data using our CSANN-Clust algorithm. We also analyzed

55

IDBA SOAPdenovo SPAdes
Total # of transcripts 177,126 374,913 486,912
Correct # of transcripts 21,086 11.9% 11,173 3% 26,280 5.3%

of transcripts with

>99.5 PI 28,373 16% 15,236 4% 39,927 8.2%
>90 PI 63,494 35.84% 44,674 11.9% 125,256 25.72%
>80 PI 81,040 45.75% 74,703 19.9% 180,396 37.04%
>70 PI 94,192 53.17% 104,766 27.94% 228,075 46.84%

Table 4.9: Analysis 1 summary for four denovo assemblers - Part 1

Trinity All Combined All Combined-NR
Total # of transcripts 120,199 1,035,354 302,813
Correct # of transcripts 21,945 18.25% 41,072 3.9% 10,900 3.6%

of transcripts with

>99.5 PI 26,902 22.38% 61,467 5.9% 14,886 4.9%
>90 PI 53,887 44.83% 221,768 21.4% 33,474 11.05%
>80 PI 67,305 55.99% 330,329 31.9% 49,844 16.46%
>70 PI 77,128 64.16% 425,074 41% 69,974 23.107%

Table 4.10: Analysis 1 summary for four denovo assemblers - Part 2

'All Combined' and 'All Combined-NR(clustered)' data by comparing with the true

positive sequences.

The tables 4.9 4.10 shows the analysis 1 on assembly data of four de novo assem-

blers. In the tables, the �rst row represents the total number of transcripts in each

assembler data and the second row represents the number of correct transcripts in

assembly data that correctly match true positive sequences. As shown in the tables,

as the percent identity threshold is decreased the number of transcripts that match

true positives increased. The similar analysis on assembly data of two genome-guided

assemblers is shown in the table 4.11.

The tables 4.12 4.13 shows the analysis 2 on assembly data of four de novo as-

semblers. The total number of true positives is 117,610. In the tables, the �rst

row represents the total number of true positive sequences that correctly match the

sequences in each assembler data. As shown in the tables, as the percent identity

56

Bayesembler Cu�inks All Combined
Total # of transcripts 4,002 63246 65,943
Correct # of transcripts 1,396 34.9% 24,656 39% 25,370 38.47%

of transcripts with

>99.5 PI 1,641 41% 28,924 45.7% 29,771 45.14%
>90 PI 2,320 57.9% 38,233 60.45% 39,607 60%
>80 PI 2,602 65% 43,167 68.25% 44,769 67.89%
>70 PI 2,812 70.2% 46,593 73.66% 48,379 73.36%

Table 4.11: Analysis 1 summary for two Genome-guided assemblers

threshold is decreased the number of true positives that match the assembly data

increased. Among four de novo assemblers SPAdes assembly data seem to have a

higher number of true positive matches for all percent identity thresholds. In the

table 4.13, the 'All Combined' assembly data have a higher number of true positives

than any of the individual assembly data. As the 'All Combined' assembly data is a

combination of multiple assemblers assembly data, the total number of transcripts are

increased and the number of redundant sequences also increased. Our clustering algo-

rithm was used to remove redundant data from the 'All Combined' assembly data and

thereby reduced the output sequences size. The 'All Combined-NR' assembly data

was created by removing redundant sequences in the 'All Combined' assembly data.

Although the 'All Combined-NR' has reduced the number of transcripts, the total

number of true positives present is equal to 107,705 (91.57%) with percent identity

threshold 70. This demonstrates that our clustering algorithm can be very useful in

removing redundant sequences from the combined assembly data analysis and still

not lose too many true positives in the reduction process.

The �gure 4.20 shows the chart of cumulative number of true positives found

in 4 de novo assemblers and 'All Combined' assembly data versus percent identity

threshold used. We performed analysis 2 using our CSANN algorithm to compute

these results. The chart demonstrates the comparison of assembly data quality of 4

57

IDBA SOAPdenovo SPAdes
of TP correctly matched 21,086 17.9% 11,173 9.5% 26,280 22.8%

of TP matched with

>99.5 PI 26,735 22.7% 15,085 12.82% 34,569 29.39%
>90 PI 47,851 40.68% 34,085 28.98% 69,940 59.46%
>80 PI 61,289 52.11% 50,069 42.57% 89,298 75.92%
>70 PI 72,852 61.94% 65,398 55.6% 101,421 86.23%

Table 4.12: Analysis 2 summary for four denovo assemblers - Part 1

Trinity All Combined All Combined-NR
of TP correctly matched 21,945 18.65% 41,072 34.92% 10,900 9.26%

of TP matched with

>99.5 PI 26,133 22.22% 50,850 43.23% 15,152 12.88%
>90 PI 53,767 45.7% 88,879 75.57% 46,815 39.8%
>80 PI 70,791 60.19% 103,620 88.10% 86,058 73.17%
>70 PI 82,987 70.56% 110,813 94.22% 107,705 91.57%

Table 4.13: Analysis 2 summary for four denovo assemblers - Part 2

Bayesembler Cu�inks All Combined
Correct # of transcripts 1,396 1.18% 24,656 20.96% 25,370 21.57%

of TP matched with

>99.5 PI 1,665 1.4% 29,230 24.85% 30,075 25.57%
>90 PI 2856 2.4% 49,043 41.69% 50,135 42.62%
>80 PI 3,855 3.27% 64,864 55.15% 65,890 56.02%
>70 PI 4,869 4.1% 78,205 66.49% 79,036 67.20%

Table 4.14: Analysis 2 summary for two Genome-guided assemblers

de novo assemblers and also the 'All Combined' assembly data in terms of number

of true positives found in each assembly data. From the �gure we can determine

that SPAdes assembly data have higher quality when compared with the remaining

assemblers. It is also seen from the plot, that as the percent identity threshold is

reduced the percent of true positives found is increased.

58

Figure 4.20: Number of true positives found vs Percent Identity of four denovo as-
semblers using analysis 2

59

Chapter 5

CONCLUSION AND FUTURE

WORK

In this thesis, we developed an approximate similarity search algorithm based on

cosine-similarity locality-sensitive hashing technique for biological sequences. We

compared our algorithm with the Brute-force(NW) and BLASTP algorithms on SWISS-

PROT (100,000 sequences) proteins dataset and the results demonstrated that our

cosine-similarity based algorithm is 28 times faster than the Brute-force(NW) algo-

rithm and 13 times faster than the BLASTP algorithm for �nding similar sequences

with percent identity greater than 90% and have 99.5% accuracy. We also developed a

greedy incremental clustering algorithm based on our cosine-similarity nearest neigh-

bors algorithm for removing redundant sequences in a proteins dataset. We compared

our clustering algorithm with CD-HIT on SWISS-PROT proteins dataset. The clus-

tering results show that our clustering algorithm generated clusters have accuracy

almost equal to CD-HIT, but the total clustering time is higher than the CD-HIT.

We demonstrated two bioinformatics applications of our algorithms, one is to perform

assembly data analysis and other is for removing redundant sequences in a protein

60

dataset through clustering.

In this thesis, we evaluated our algorithms only on one protein dataset and k =3

for k -tuple vectors. Evaluation of our algorithms on nucleotide sequences and other

datasets is left for future work. Query time of our cosine-similarity based similarity

search algorithm depends on the dimension size of k -tuple vectors. As the dimen-

sion size increase both the query time and the memory usage increase exponentially.

Higher values of k such as 4 and 5 for protein sequences, the dimension sizes are

160,000 and 3,200,000 respectively and the amounts of memory required to store one

k -tuple vector in main memory are 625KB, 12.2MB respectively. Such problem is

also known as the curse of dimensionality. Dimensionality reduction techniques needs

to be investigated for protein sequences in order to use higher k values. Such research

is left for future work.

61

Bibliography

[1] Cross-polytope wiki page. https://en.wikipedia.org/wiki/Cross-polytope. Ac-

cessed: 11/18/2017.

[2] rpforest python library on github. https://github.com/lyst/rpforest. Accessed:

2017-11-18.

[3] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J

Lipman. Basic local alignment search tool. Journal of molecular biology,

215(3):403�410, 1990.

[4] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig

Schmidt. Practical and optimal lsh for angular distance. In C. Cortes, N. D.

Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural

Information Processing Systems 28, pages 1225�1233. Curran Associates, Inc.,

2015.

[5] Richard Bellman. Dynamic programming. princeton landmarks in mathematics,

2010.

[6] Jon Louis Bentley. Multidimensional binary search trees used for associative

searching. Commun. ACM, 18(9):509�517, September 1975.

62

[7] John Besemer, Alexandre Lomsadze, and Mark Borodovsky. Genemarks: a self-

training method for prediction of gene starts in microbial genomes. implications

for �nding sequence motifs in regulatory regions, Jun 2001.

[8] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In

Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,

pages 380�388. ACM, 2002.

[9] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm

for �nding best matches in logarithmic expected time. ACM Transactions on

Mathematical Software (TOMS), 3(3):209�226, 1977.

[10] Mohammadreza Ghodsi, Bo Liu, and Mihai Pop. Dnaclust: accurate and e�cient

clustering of phylogenetic marker genes, 2011.

[11] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards re-

moving the curse of dimensionality. In Proceedings of the thirtieth annual ACM

symposium on Theory of computing, pages 604�613. ACM, 1998.

[12] Ashraf M Kibriya and Eibe Frank. An empirical comparison of exact nearest

neighbour algorithms. In PKDD, volume 7, pages 140�151. Springer, 2007.

[13] Li Li, Yang Guo, Wenwu Wu, Youyi Shi, Jian Cheng, and Shiheng Tao. A com-

parison and evaluation of �ve biclustering algorithms by quantifying goodness of

biclusters for gene expression data. BioData Mining, 5(1):8, July 2012.

[14] Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and com-

paring large sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658�

1659, 2006.

63

[15] CÃ©dric Notredame, Desmond G. Higgins, and Jaap Heringa. T-co�ee: a novel

method for fast and accurate multiple sequence alignment11edited by j. thornton.

Journal of Molecular Biology, 302(1):205�217, September 2000.

[16] Martin Å oÅ¡iÄ� and Mile Å ikiÄ�. Edlib: a c/câ��++ library for fast, exact

sequence alignment using edit distance. Bioinformatics, 33(9):1394�1395, 2017.

[17] Stephen M Omohundro. Five balltree construction algorithms. International

Computer Science Institute Berkeley, 1989.

[18] Loïc Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing: A

comparison of hash function types and querying mechanisms. Pattern Recogni-

tion Letters, 31(11):1348�1358, 2010.

[19] Deepak Ravichandran, Patrick Pantel, and Eduard Hovy. Randomized algo-

rithms and nlp: Using locality sensitive hash function for high speed noun clus-

tering. In Proceedings of the 43rd Annual Meeting on Association for Com-

putational Linguistics, ACL '05, pages 622�629, Stroudsburg, PA, USA, 2005.

Association for Computational Linguistics.

[20] Ilya Razenshteyn and Ludwig Schmidt. Falconn library on github.

https://github.com/FALCONN-LIB/FALCONN. Accessed on 11/18/2017.

[21] Madden T. The blast sequence analysis tool. The NCBI Handbook [Internet]. 2nd

edition. Bethesda (MD): National Center for Biotechnology Information (US),

03 2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK153387/.

[22] Kengo Terasawa and Yuzuru Tanaka. Spherical lsh for approximate nearest

neighbor search on unit hypersphere. Algorithms and Data Structures, pages

27�38, 2007.

64

[23] Peter N Yianilos. Data structures and algorithms for nearest neighbor search in

general metric spaces. In SODA, volume 93, pages 311�321, 1993.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	5-2018

	Application of Cosine Similarity in Bioinformatics
	Srikanth Maturu

	Contents
	List of Figures
	List of Tables
	INTRODUCTION
	Thesis Outline
	Thesis Contribution

	BACKGROUND & RELATED WORKS
	Nearest-Neighbor Search
	Approximate Nearest-Neighbor Search
	Kd-tree
	Ball tree
	RPForest

	Locality-Sensitive Hashing
	Cosine-similarity
	LSH for cosine-distance
	Hyperplane LSH
	Cross-polytope LSH

	Clustering
	CD-HIT

	Sequence Similarity Tools
	BLAST

	METHODOLOGY
	Problem Definition
	Overview
	Similarity Measure
	Minimum edit distance
	Percent Identity
	Alignment-free Measure
	Cosine-Similarity
	Squared Euclidean Distance

	K-tuple Frequency Vector
	Approximate Nearest-Neighbor Search
	Brute force method
	Cosine similarity based locality-sensitive hashing method
	Index Construction
	Query Processing

	Clustering Algorithm
	Evaluation Metrics for Cluster Comparison
	Average pairwise distance
	Maximum Average Jaccard Index

	Implementation.

	RESULTS
	Datasets
	Evaluation of similarity measures
	Experimental Design
	Cosine-similarity versus percent identity
	Squared euclidean distance versus percent identity

	Approximate Nearest-Neighbor Algorithm
	Accuracy
	Definition
	Experimental Design
	Evaluation

	Query Time
	Definition
	Experimental Design
	Evaluation

	Average Number of Candidates
	Definition
	Experimental Design
	Evaluation

	Comparison with related algorithms
	Experimental Design
	Evaluation

	Clustering
	Accuracy
	Evaluation

	Number of Clusters
	Experimental Design
	Evaluation

	Clustering Time
	Experimental Design
	Evaluation

	Assembly Data Analysis

	CONCLUSION AND FUTURE WORK
	Bibliography

