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Surgical procedures utilizing minimally invasive laparoscopic techniques have shown 

less complications, better cosmetic results, and less time in the hospital than conventional 

surgery. These advantages are partially offset by inherent difficulties of the procedures which 

include an inverted control scheme, instrument clashing, and loss of triangulation. Surgical 

robots have been designed to overcome the limitations, the Da Vinci being the most widely used. 

A dexterous in vivo, two-armed robot, designed to enter an insufflated abdomen with a limited 

insertion profile and expand to perform a variety of operations, has been created as a less 

expensive, versatile alternative to the Da Vinci.  

Various surgical simulators are currently marketed to help with the rigors of training and 

testing potential surgeons for the Da Vinci system, and have been proven to be effective at 

improving surgical skills. Using the existing simulators as a baseline, the goal of this thesis was 

to design, build, and test a ring and peg simulation that emulates the four degree of freedom 

minimally invasive surgical robot from UNL. The simulation was created in the virtual reality 

software platform Vizard using the python programming language. Featuring imported visual 

models and compound simple shape collision objects, the simulation monitors and generates a 

metric file that records the user’s time to task completion along with various errors. A 

preliminary study was done on the simulation that measured seven participant’s performance on 



the simulation over three consecutive attempts. The study showed that participant’s time to 

completion and amount of recorded errors decreased across the three trials, indicating 

improvement in the robot operation with use of the simulation. The validation study provided 

confidence in continued development and testing of the introductory surgical robot simulation 

trainer.  
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Chapter 1. Background 

1.1 Minimally Invasive Surgery 

1.1.1 Laparoendoscopic Single Site Surgeries 

 Laparoendoscopic single site (LESS) surgical operations are characterized by their 

consolidation of multiple ports into a single incision site as well as the use of laparoscopic tools. 

LESS procedures are used in a wide variety of treatments including hysterectomies, 

nephrectomies and gastrointestinal surgeries. Variations of the single site surgery include 

threading the instruments through a single incision in the skin, or alternatively, through a port 

that allows insufflation through a gel like material, the setup of which can be seen in Figure 1.1. 

 

Figure 1.1 Laparoendoscopic Single Site Surgery Through Gelport 

(Jerrold, 2015) 

Morbidity was decreased in LESS procedures compared to conventional surgery, due to 

less average wound complications and reduced time in the hospital (Markar, 2014) (Rink, 2015). 

LESS procedures also had better recorded cosmetic results, including less scarring (Leo, 2016). 
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 A single port brought some challenges along with the benefits: instrumental clashing, an 

inverted control scheme, and loss of triangulation, to name a few. Instrumental clashing occured 

when the surgical tools are sent through a port with limited space, causing the tools to potentially 

impact or interfere with one another, inhibiting the surgeon's control. Inverted control scheme is 

the manner in which the tool’s end effectors mirror the motion of the surgeon; as the surgeon’s 

hand moves right, the tip moves left. The ability to visualize three dimensional images from a 

two-dimensional scope images is an additional skill needed to successfully perform minimally 

invasive LESS procedures (Nugent, 2013). In an effort to combat some of the limitations 

inherent to LESS procedures, robotic platforms have been designed and deployed for in vivo 

surgeries. 

1.1.2 Robotic Laparoendoscopic Single Site Surgeries  

Robot controlled LESS surgeries mitigated some of the potential problems inherent to the 

small working space allotted through the minimal incision. By allowing the robot to be 

positioned directly next to the operation area, it allowed the surgeon to perform precision 

motions more naturally and complete complex tasks with fewer problems. Motion scaling 

provided finer tool control, while tremor filtration removed unintentional hand vibrations; 

together they gave surgeons more confidence in their tool control within the surgical suite. 

Patient benefits observed in robotic surgeries were shorter recovery time, less pain post-surgery 

and a further decrease to scarring (Abboudi, 2013) (White, 2010). Studies have shown that 

robotic colorectal surgery leads to less pronounced inflammatory responses than their 

laparoscopic counterparts (Zawadzki, 2017). 

 A steep learning curve has been observed to be associated with R-LESS procedures with 

a relatively high expertise required to be proficient (Nelson, 2017). 
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1.1.3 Da Vinci Surgical® System 

 The Da Vinci surgical platform, developed by Intuitive Surgical, is the most widespread 

medical robotic platform in use across the world. The surgical robot is used in a wide variety of 

surgeries, including single-site laparoscopic procedures. Boasting a magnified vision system, 

wristed instruments with greater precision and dexterity than the human hand, and ergonomically 

designed master-slave console system, the Da Vinci is the household name of the robotic 

surgical platforms (Intuitive Surgical, 2017). Some drawbacks to the Da Vinci’s design are its 

high cost of entry, over a million dollars, as well as its extensive space requirements of its bulky 

console and base, meaning it is unable to operate outside the hospital setting. The surgeon 

console and patient-side cart can be seen in Figure 1.2.  

 

Figure 1.2 Da Vinci Surgical® System Control and Bedside Modules 

(Intuitive Surgical, Inc., 2018) 

The complexity in its operation also necessitated extensive education and experience to 

achieve proficiency prior to operating on a patient (Ahmed, 2015). 
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1.1.4 UNL Minimally Invasive Surgical Robot 

 A minimally invasive surgical robot was developed by the research lab of Dr. Shane 

Farritor at the University of Nebraska-Lincoln, in conjunction with the Center for Advanced 

Surgical Technology at the University of Nebraska Medical Center. The robot was built to fill 

the design space of a less expensive, more versatile surgical robot. The four degree of freedom 

(DOF) robot was designed for a variety of abdominal procedures with a less invasive insertion 

port needed due to the small, folding profile. The two-armed design featured varying end effector 

types, between cutting, grasping, and cautery, that allowed the robot to be customized for 

specific procedures. It also possessed telesurgical and telestration capabilities, allowing a user to 

provide off site support or control over the robot. The robot used a single incision insertion with 

elbows, shoulders, and wrists that actuate inside the abdomen and global positioning handled 

outside the body, a design which facilitated a slender insertion profile as the robot unfolded to 

working arm orientation within the insufflated workspace (Markvicka, 2014). 

The robot design used in the creation of the simulation can be seen in Figure 1.3 along 

with the four DOF rotational axis. 

 

Figure 1.3 Minimally Invasive Surgical Robot and Labeled Rotational Axis 

(Cubrich, 2016) 
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1.2 Existing Simulator Technologies 

A wide range of virtual reality simulators have been used in training to perform 

procedures with the Da Vinci Surgical System. It has been shown the the skills obtained on a 

training simulator translate into surgical skills and are on par with those acquired in a standard 

laboratory setting (Bric, 2014). This provided confidence in the potential benefit of developing a 

preliminary training simulation for use with UNL’s minimally invasive robot. Three existing 

platforms were compared and analyzed in the development of the simulation: the dV-Trainer, da 

Vinci Skills Simulator, and Robotic Surgery Simulator.  

1.2.1 dV-Trainer 

 The dV-Trainer is a tabletop hardware platform created by Mimic Technologies which 

can be seen below in Figure 1.4 with the master controllers suspended inside the console 

emulator by wires. 

 

Figure 1.4 dV-Trainer Surgical Training Console 

(Mimic Technologies, Inc, 2017) 
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Providing the user with several modules, the dV-Trainer allows users to practice and 

assess a wide range of necessary robot control skills, including needle control and driving, 

suturing, monopolar and bipolar energy use, dissection, knot tying, camera control, and 

clutching. The following metrics were used by the platform to judge the proficiency of the user: 

economy of motion, instrument collisions, excessive instrument force, procedure time, and 

amount of time instruments were out of view. The dV-Trainer showed high face and content 

validity with a strong correlation between assessment results from the trainer and recorded 

performance from a Da Vinci platform (Perrenot, 2012) (Abboudi, 2013). 

 

1.2.2 Da Vinci Skills Simulator 

 Developed by Intuitive Surgical the Da Vinci Skills Simulator (DVSS) is add-on program 

that is used in conjunction with existing Da Vinci surgical consoles to allow surgeons and 

trainees to engage in training exercises to improve their skills. Exercises within the Skills 

Simulator cover the following techniques: instrument manipulation, dexterity, camera work, 

clutching, additional instrument manipulation, system setting adjustments, needle control, energy 

use, dissection, and footswitch use. The exercise results are monitored and reported using 

automated metric tracking. Utilizing those metrics, users can track their proficiency and progress 

online through PC or smartphone devices. Metrics tracked within the system computer system 

included instrument collisions, excessive force, instrument travel distance, instruments moving 

out of view, missed targets, time, and a combination of all the metrics into a single aggregate 

profile score (Connolly, 2014). 
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1.2.3 Robotic Surgery Simulator (Simulated Surgical Systems LLC) 

The Robotic Surgery Simulator (RoSS) is a self-contained piece of hardware built with 

force feedback devices and foot pedals that emulate those of the da Vinci robot. The design of 

and hardware of the RoSS can be viewed in Figure 1.5. 

 

Figure 1.5 Robotic Surgery Simulator Surgical Training Console 

(Simulated Surgical Systems, LLC, 2018) 

The RoSS also has the unique feature that allows the trainee to ‘shadow’ a surgeon 

through an actual surgical procedure; using haptic feedback and prompts, along with recorded 

visuals, the student is walked through the motions of the operation. Reviews assessing the RoSS 

have proven it has good face and content validity and that time on the simulator has a positive 

influence on the time taken to complete a task on the Da Vinci surgical system (Abboudi, 2013). 
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1.3 Programming Technology 

 Once the existing simulator systems were reviewed, the methods to developing a unique 

virtual reality environment were then researched.  Among those examined: V-REP from 

Coppelia Robotics and Vizard from WorldViz. In order to be considered, the development 

system needed to be compatible with the OpenHaptics software and GeoMagic Touch haptic 

devices from 3D Systems, which were used to control the surgical robot. Ultimately, Vizard was 

chosen for its flexibile environment creation as well as its robust support for novice creators.  

1.3.1 Vizard 

Vizard is a virtual reality software platform from WorldViz designed to facilitate the 

creation of 3D environments and associated applications. It supports a wide range of image data 

types and virtual reality devices, allowing the user to use content from other existing sources 

without hassle. Running through the Python language, Vizard’s IDE comes with code 

completion and an interactive simulation engine. A built-in physics engine allows for the 

simulation of rigid body dynamics and user influenced objects within a virtual reality 

environment (WorldViz, 2018). Vizard has been used to generate virtual environments for 

various experiments within the medical field.  One such experiment, used it to generate a test 

platform for an innovative joystick controller design. Within the test platform the joystick 

controlled simulated laproscopic tool as the user attempted to perform a peg transfer test (Head, 

2012). Another experiment used the software in the creation of a laparoscopic training simulator 

used to provide a portable, affordable, metric tracking platform for users (Zahiri, 2017). The 

researcher eventually moved that laparoscopic simulator onto Unity, a different VR environment 

development platform, which wasn’t explored for use with this project.  

Vizard used the Python programming language in its operation. 
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1.3.2 Python 

Python is a stable, supported, object-oriented language that uses modules, exceptions 

dynamic data types and classes. It runs on many operating systems such as Mac, Windows, and 

Unix variants. Python’s current library encompasses the areas of software engineering, internet 

protocols, and operating system interfaces like Vizard (Python Software Foundation, 2018). 

Vizard also provides a large library of programming examples to help users design their own 

environments. 

 

Chapter 2. Motivation 

2.1 Training Surgical Skills 

 A few problems plaguing current training techniques are a decrease in overall surgical 

exposure, increasingly technically demanding procedures, and an increase in time and cost 

factors involved in instructing future surgeons (Nugent, 2013). Some potential value in a 

simulation platform is its ability to provide a concrete baseline with which to test, and certify, the 

level of skill of a surgical robot operator. In the same vein, the simulation could be used in 

annual retention tests, advanced procedural-based training, or as a warm-up tool prior to a 

surgical procedure (Bric, 2016). A study done by Gomez et al. determined that a virtual reality 

simulation curriculum was viable for use with the Da Vinci surgical system and improved the 

basic skills needed to be a proficient surgical operator of said system (Gomez, 2015). Virtual 

reality simulation training has been shown to be a sufficient substitute for laboratory training in 

learning robotic surgical skills (Bric, 2014). 

 Decreasing the cost of training platforms would allow hospitals to provide cheaper 

training equipment, which leads to less expensive student fees and additional practice platforms 
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for students. Decreasing the cost would also allow for smoother integration of R-LESS 

procedures into the current minimally invasive laparoendoscopic surgery training regime 

(University of Nebraska Medical Center, 2018).  

 Training on a simulation also offers some advantages over that of a traditional laboratory 

training method. During training, novices have the potential to accidentaly misuse equipment, 

that could damage the relatively expensive surgical robot. The capacity to damage equipment for 

the simulation is limited to that of the haptic input devices, and only then through gross 

misconduct. The simulation platform also offered additional advantages that couldn’t be found in 

a regular laboratory setting in the form of self-recorded concrete metrics that can be used to 

measure a trainee’s progress and proficiency. 

 

2.2 Metrics to Measure Progress/Proficiency 

Developing the user’s operational skills required metrics that provide quantitative data 

for analysis by both evaluator and student. This data would allow both the users and trainers to 

gauge the skill level of the user, such that they could then be compared to professional standards. 

This process could be similar to what is used in certifying surgeons possess the cognitive and 

technical skills needed to perform laparoscopic surgery through the Fundamentals of 

Laparoscopic Surgery (Society of American Gastrointestinal and Endoscopic Surgeons, 2017).  

The metrics focused on in this simulation are two common metrics examined within the 

existing DaVinci simulations, completion of the task time, and various errors to be avoided 

during operation. Time to completion is the measured time from the start of the procedure to the 

completion of the goal, which, for the simulation, was moving rings from one set of pegs to a 

different set of pegs. The real-world analogue of this metric would be the time spent in operation 
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for a surgery. Quicker surgeries result in less time spent under anesthesia, faster recovery, and an 

overall better surgical experience for the patient. Therefore, one of the goals of the simulation 

was to increase the speed with which the trainee can complete the simulation through practice, as 

well as making them more proficient and comfortable with the robot and its operation in a 

reduced stress environment.  

 Another goal of the training simulation was to reduce the number of errors committed 

during an operation. Before correction can happen the errors first need to be observed and 

recorded, allowing the user to recognize which mistakes they’ve made. The errors targeted by the 

simulation are instrument collision, dropped items, and over closing the graspers, all of which 

have the potential of damaging the robot or patient during operation.  
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Chapter 3. Solution  

3.1 Visual Modeling 

 The environment for the simulation was created using Vizard’s basic shape generation 

capabilities. The vizshape.addBox method provided the simple shape for the peg box using 

appropriate dimensional data. A visual grid was created with the addGrid function to provide 

some easy to interpret depth to the underlying environment. Without the grid, objects appeared to 

float in space, making depth perception difficult. A collision plane was overlaid across the top of 

the box attached to the grid to provide a ‘ground’ structure for the pegs to link to and the rings to 

rest on when they weren’t being moved by the robot.  

 Pegs were generated using the vizshape.addCylinder function, and the pegs were made to 

extend through the base block, ensuring a seamless visual transition between the two.  

 Created with the vizshape.addTorus function, the rings were added in a similar manner to 

the other elements. The Vizard created environmental models can be viewed in below in Figure 

3.1. 

 

Figure 3.1 Vizard Generated Visual Models 
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Stereolithography (stl) files were used to model the robot. The stl files were taken from 

the Solidworks files used in the creation of the physical robot to create an accurate representation 

within the simulation. After conversion, the files were added to the scene and scaled down to fit 

to the environment and positioned appropriately. The entire labeled robot model is shown in 

Figure 3.2.  

 

Figure 3.2 Imported Visual Models for the Robot 

Hierarchically ordered, the robot was organized to facilitate the relative motion of the 

individual components of the arm motion, while also maintaining their relative positioning to the 

moving parts above them. The shoulder was assigned as the highest parent, followed by the 

upper arms, forearms, and grasper tips as subsequent children, with separate branches existing on 

each side of the robot to allow independent motion.  
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3.2 Collision Modeling 

 Collision for the rings, pegs, forearms, graspers and tips used both singular and 

combination of simple shapes to create complex collision objects. Vizard does not support the 

visualization of collision objects that are attached to visual objects. This forced each collision 

object to be created as a separate object and then later be attached to its rendered counterpart. 

This was done to ensure the collision objects have the appropriate size and position, such as 

those of the collision models of the robot in Figure 3.3. 

 

Figure 3.3 Generated Collision Models for the Robot 

 Working around the limitation of the simple collision shapes included in Vizard’s IDE, 

building the three-dimensional torus shape for the rings was done by looping the trigonometry of 

a circle with the creation of collision spheres through the collideSphere function to create the 

appropriate collision object. The loop ran from 0 to 360 degrees at five-degree increments with 

the radius of each sphere matching that of the rings. Each individual sphere was assigned to a 

single node so they were all treated as a singular object, moving with static relative positioning.  
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 Looping was also used to create the peg collision objects. Spheres were generated 

vertically through the loop assigned to a single node so they could later be positioned 

appropriately as a solitary object. The ring and peg comparison between the visual model and the 

combined collision models are shown in Figure 3.4. 

 

 

Figure 3.4 Ring and Peg Visual and Collision Models 

 

3.3 Linking and Grabbing 

Basic collision shapes were created and attached to the visual models, providing them 

with material information the physics engine could use for collisions and dynamic calculations. 

Vizard’s viz.grab, viz.link, setPosition, and setEuler functions were used to merge the two 

elements into a functionally single object; applied to the pegs, rings, and robotic objects of the 

simulation, those functions allowed the data to be collected from the collision objects and 

applied to the visual objects, creating an accurate looking and colliding robot. 
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Pegs were cemented to the base grid by attaching the collision models to the grid using 

links, after which they were moved to the correct position by the setOffset function. Linking 

made it so the base grid’s, or source object’s, position and rotation were applied to the pegs, the 

destination objects, creating immovable pegs needed for the environment. 

 CombineTorus was the function used to set the position and rotation of the visual tori to 

their weighted collision counterparts. Set to update every frame, the function continuously 

overlayed the ring to the looped spheres by applying the collision tori’s Euler and position data 

to the visual tori.  

The forearms and grasper arms were assigned to specific positions relative to their parent 

models by a function, LockDownPosition, that was called every frame. This allowed the gravity 

to be a nonzero value while keeping the collision objects from free falling. During the updates 

the visual models were also assigned the rotational Euler values from their collision counterparts, 

overlaying the two within the simulation environment. Due to physical limitations, the rotational 

values for the arms needed to be limited; by checking, and capping, the turning values, the 

program was able to match the robot's limitations.  

The grasper tip’s two components were combined in much the same way as the forearms, 

differing only through the additional constraint of pairing one tip’s rotation value to its 

counterpart’s so that they open and close at the same rate and degree. Limits were also placed on 

the tips so they wouldn’t open or close too far.  

Picking up the rings was done by introducing initialized links between invisible turn 

spheres, which were located at the rotation axis of the forearm tips and the collision objects of 

the rings. All the involves nodes were enabled for collision events, allowing collisions to be 

reported if two nodes intersect over the course of the simulation.  
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Collisions were flagged to generate collision lists for each of the tips of the individual 

forearms, as well as those of the tori and robot arms. Those lists contained all the intersecting 

nodes during that frame of the simulation. If the lists of both the tips of a single forearm side 

contain a ring, then the initialized blank grab link is removed and a new link is instantiated, 

fixing the relative position of the ring to that side's turn sphere. While the position is locked, the 

link transfers the rotation of the link sphere onto the torus, allowing for wrist twist of the robot to 

be applied to the placement object. The link can only be created if the grasper in question is 

being closed through a binary grabTorusLock global value that updates as true every second and 

is set as false when the graspers are closing. This lock prevents the user from nudging the rings 

with the grasper and unintentionally creating a link.  

Before a user can pick up objects they first must be able to control and position the robot 

arms. This was done by calculating the kinematic positioning of the tips before applying forces 

to the collision objects of the robot to move the arms into the correct position. The kinematics 

calculations were done through cyclic coordinate descent.  
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3.4 Movement 

 Calculating the correct arm positioning for the robot was first attemped with a direct 

inverse kinematic solution. That process failed due to some inconsistencies in Vizard's rotational 

framework. Instead the kinematics within the simulation used the cyclic coordinate descent 

method to determine arm positioning. 

3.4.1 Cyclic Coordinate Descent 

Cyclic coordinate descent (CCD) is a mathematical method used to find the solution to 

inverse kinematic solutions of robotic linkages and rotations. Answers from this method 

provided an angular solution for the linkages to a desired end position. First conceived by Wang 

and Chen, CCD works by minimizing the angular difference of the vectors between the current 

link and end effector position, and the desired position (Wang, Chen, 1991). 

Representative vectors were created so that the method could calculate the rotational 

Euler values of the vectors for the desired end positions which were then transferred to the 

modeled arms, allowing rapid calculation as well as realistic, gradual motion. 

To solve for the rotation needed to move each vector into the correct position the 

definition of the dot product was used. 

𝑎 ∙ 𝑏 = |𝑎||𝑏|cos(𝜃) 

Substituting in the appropriate vectors and solving for 𝜃 gives  

𝜃 = 𝑐𝑜𝑠−1 (
(𝑝𝑒 − 𝑝𝑐) ∙ (𝑝𝑡 − 𝑝𝑐)

|𝑝𝑒 − 𝑝𝑐||𝑝𝑡 − 𝑝𝑐|
) 

 The simulation used the function vizmat.AngleBetweenVector to automate these 

calculations of the angles between vectors in degrees. This was applied to the vector linking the 

point’s desired end position 𝑝𝑡 and the current rotational axis 𝑝𝑐, and the vector for the current 

tip position 𝑝𝑒  and the current rotational axis𝑝𝑐.  
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Using the calculated 𝜃, the current end position 𝑝𝑒, and the rotational axis 𝑝𝑐, 

trigonometry was used to rotate the vector, minimizing the error between the current end position 

𝑝𝑒 and the desired end position 𝑝𝑡. 

𝑝𝑒𝑥
𝑖+1 = (𝑝𝑒𝑥

𝑖 −𝑝𝑐𝑥
𝑖 ) cos(𝜃) − (𝑝𝑒𝑧

𝑖 −𝑝𝑐𝑧
𝑖 ) sin(𝜃) + 𝑝𝑐𝑥

𝑖  

𝑝𝑒𝑧
𝑖+1 = (𝑝𝑒𝑧

𝑖 −𝑝𝑐𝑧
𝑖 ) cos(𝜃) + (𝑝𝑒𝑥

𝑖 −𝑝𝑐𝑥
𝑖 ) sin(𝜃)+𝑝𝑐𝑧

𝑖  

These calculations were simplified using the setEuler function and started with at the 

elbow joint. Once the elbow joint was rotated the rotation axis 𝑝𝑐 was moved to the shoulder 

joint for the next calculation, giving two new vectors. Repeating the minimization process for the 

new vector the rotational axis 𝑝𝑐 was then moved back to the elbow, restarting the cycle.   

Checks were necessary to monitor the current orientation of the parts to ensure the 

vectors rotated in the correct direction. The CyclicCoordDes function handled both the upper 

arm and grasper vectors, finding the x, y, and z Euler values for the upper arm as well as the x 

and z Euler values for the forearm. This is congruent to that of the degrees of freedom present in 

each of the two joints so the vector’s rotation matched that of the robot’s potential range of 

motion.  

Iterating this vector rotational process minimizes the error between the end effector and 

the desired end position, and ultimately provides the link orientations required to converge the 

end effector to the desired end position. One cycle of this iterative process can be seen in Figure 

3.5. 
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Figure 3.5 One Cycle of the CCD Method 
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Once calculated, Euler values were then assigned to global theta variables and passed to 

the MoveArms function which rotated the robot models into the same configuration as that of the 

representative vectors.  

 

3.4.2 Arm Motion 

 After the desired angles were calculated, the collision boxes needed to be rotated until the 

robot model’s position matched that of the representative vectors. Forces were applied to the 

physics-based collision objects for the forearm and upper arm, simultaneously rotating both into 

the correct position. Stronger forces were used when the current angle was distant from the 

desired angle for responsive control. Damping forces were required to prevent the rotation from 

overshooting and provided smoother motion to the robot’s path, slowing the robot down as the 

current position approached the desired position. Constantly checked, robot model Euler values 

self corrected toward the desired vector values, even in the event of quickly changing values. 

 To create smooth movements in the robotic model the most current ten theta values 

recorded were averaged. This created a drifting mean value that prevented any potential spike in 

the vector motion from applying to the robotic motion. This feature created a slight delay 

between user input and robotic output. 

 

3.4.3 Global Positioning 

 On the surgical robot, a global positioning arm allowed for controlled rotation, both 

within the patient and during the insertion procedure. For the simulation, the global positioning 

arm allowed for an additional joint of rotation, creating a larger operating space, while also 

allowing the user to more easily focus on an area of interest. In the TiltShoulderCheck function, 
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the position values for the tip position were tested so that if the average values between the left 

and right arms exceeded a threshold value, the shoulder rotated, letting the user determine the 

desired operating position of the screen. This rotation had a thirty degree maximum deviation 

from the starting position. The rotation was restricted to prevent the robot from injuring a patient 

by twisting outside the safe operating space and was likewise constrained in the simulation. The 

arms across from the rotating direction had to also surpass a minimum value before the motion is 

allowed; this was done to help prevent unintended rotations. This meant that in order to move the 

left, the right arm’s horizontal value was checked as well as the average value of both arms. The 

same was true for right, but the left arm’s horizontal value was checked instead. 
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3.5 User Controls 

3.5.1 Geomagic Touch 

 The Geomagic Touch haptic device allowed for up to six degrees of freedom to be 

reported through an ethernet to USB converter. A motorized device, the Touch could provide 

haptic force feedback to the user and record user input through tip positioning, wrist rotation, and 

two buttons; the design for the Touch can be seen in Figure 3.6. 

 

Figure 3.6 Geomagic Touch Haptic Controllers 

 Connecting the Geomagics to Vizard’s integrated development environment (IDE) 

required an OpenHaptics license and software. The software allowed the encoders to be read and 

imported within the IDE framework after each of the haptic devices had been initialized and 

added to the registered devices within the simulation. 

 Vizard and Python support the OpenHaptics software which made it simple to include the 

Sensable plugin library, allowing the simulation to detect and read input from the Geomagic 

Touches. 
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 The simulation utilized the same method of acquiring user input as that of UNL’s 

miniature surgical robot, using two linked Geomagic Touch haptic devices to get arm 

positioning. Once the device’s tip position was read, the data was scaled to fit within the desired 

workspace of the program. After scaling, the data sets containing the positional data were 

assigned to the nodes representing desired position for use with CCD. The CCD calculations are 

then run an iteration every frame to get the desired Euler angles to be assigned to the collision 

objects. The buttons and wrist twist from the Geomagics were checked to see if the grasper tips 

should be twisting, opening, or closing. All methods present operated for each of the two 

Geomagic’s, applying to the left and right sides of the robot, allowing independent motion within 

the simulation.  
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3.5.2 Program Initialization 

 The starting parameters provided to be decided on by the user included the forearm used 

for the left arm of the robot, the inclusion of a vertical pegbox, and the type of simulation. 

Through vizdlg.AskDialog commands, choice boxes were generated so the user could select 

from among the options within the interface using the mouse cursor; said boxes can be seen 

below in Figure 3.7. 

 

Figure 3.7 Program Initialization Forearm Choice Dialog Box 

When cancel was chosen that getInput function read an unaccepted value and 

reinstantiated that choice box. 

A username was recorded in the simulation using a keyboard prompt through the 

vizinput.input command seen in Figure 3.8. 

 

Figure 3.8 Program Initialization User Name Input Prompt 
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The username was then assigned to the metrics text file recorded at the end of the 

program and, along with the tallied progress and error values, printed into a folder generated for 

each username with the name and date attached to the file. The user inputs were nested so that 

the next choice would not appear until the previous section has a recorded value.  

The two types of forearms included in the program were the cautery forearm and the 

standard grasper forearm. The cautery forearm visual and matching collision models are shown 

below in Figure 3.9. 

 

 

Figure 3.9 Monopolar Cautery Forearm Visual and Collision Models 

If the grasper was chosen then the cautery forearm’s visual model was removed, along 

with all the associated children objects using Vizard’s remove function. The introducing of both 

prior to removing one was done to prevent loading errors, whilst supporting a movement 

function that worked with both forearm choices.  
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Similar to the forearm choice, a choice was provided for whether or not a vertical peg 

box was added to the environment. The environment with the vertical peg box can be seen in 

Figure 3.10. 

 

Figure 3.10 Environment with Vertical Peg Box Added 

The same processes used for removing a forearm model was also used to delete the 

vertical peg box and attached pegs if they were not chosen during the initialization. The 

additional peg box was included to add another dimension to the program, helping users with 

reading depth of field. 

The final choice presented to the user was the type of simulation they wanted to use: 

testing, completion, timed, or sandbox, which are discussed in depth at the end of the simulation 

section. Within the completion, sandbox, and timed simulation types, some functionality was 

used to help users during practice. Checks were used to ensure that multiple choice boxes did not 

overlap and so the subsequent choice did not pop up until an acceptable value was chosen. Once 

all the choices were made, the screen placed over the orthographic viewing window was 
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removed, allowing the chosen environmental and robot elements to be seen and starting any 

necessary timers based on the simulation types. 

 

3.5.3 Intra Program Functionality 

 Certain simulation types, like sandbox and timed, supported additional functionality that 

allowed the user to reset the simulation, manually record their metrics, start and stop the timer, or 

unlock the camera.  

Buttons and associated functions were created for the user to interact with inside the 

program, enabling functions that were only called when an assigned button was clicked through 

the mouse cursor. Labels were assigned to the buttons using viz.addText commands. Attached as 

a child to the orthographic window, the text remained stationary, independent of any motion 

from the robot or camera. The buttons likewise were locked to the Vizard window for similar 

reasons. A standard viewing window for the sandbox simulation type is shown in Figure 3.11. 

 

Figure 3.11 Standard Viewing Window for Sandbox Simulation Choice 
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Clicking on the “Reset Simulation” button allowed a user to replace the rings to their 

starting position. The end positions for the CCD vectors were likewise replaced to their initial 

values along with the position and rotation of the robot’s model. 

The “Record Metrics” button in the corner manually called the function that builds a file 

with the errors, ring completion, and time to completion values within the simulation up to that 

point. Transparency was applied to the text for the record metrics button to keep it discreet. 

Starting and stopping the timer was done through the timer button which allowed the user 

to time themselves while attempting whatever tasks they wanted to train. The timer counted and 

displayed the number of elapsed seconds through a recursive event class which tabulates a global 

value each time an internal timer triggers. The timer value text was displayed through a function 

designed to show the associated text for Vizard’s windowed display before being removed by a 

nested function dedicated to the task. Display and remove text functions were also used in 

conjunction with the error recording to alert the user to the presence and manner of an error. 

Unlocking the camera from the shoulder model was done through a toggling button click 

function. This allowed the user to move and reposition the camera by clicking and dragging the 

mouse in order to get a different view of the simulation. Left mouse clicks pan the view while 

right ones rotated the view. The ability to toggle between locked and movable camera settings 

was done by linking the camera view to a hidden node and then linking that node to the shoulder 

at a specific position and rotation. When the assigned “Unlock View” button was clicked, the 

link assigning a position to the camer node was removed, allowing the camera to move. 

Movement could occur until the view button was clicked again, calling a function that 

reestablishes the link, sending the node back to its original position and orientation, attached to 

the shoulder node.  
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3.6 Graphical User Interface 

3.6.1 Labeling Elements 

Displaying text elements for the user interface used separate processes for text that 

needed to remain displayed on the display window versus text that was only shown for a limited 

time. StaticText was the function created to label permanent text elements assigned to user 

interface buttons. Vizard’s addText allowed a string of text to be assigned to the orthographic 

viewing window. The color, choice, font size and placement variable values were directly 

assigned after some experimentation with different layouts. Around some text, outlines were 

added to the record metric text to increase legibility against the background, and the text was 

made partially transparent to decrease obstruction of the user’s visual field, which can be seen in 

the bottom right of Figure 3.11. The same process was also used for the red collision error 

feedback text, a temporary message that was only displayed for a small amount of time.  

 

3.6.2 Temporary Messages 

Temporary messages, like those for error reporting or displaying the timer value, were 

handled through the DisplayText function. Inputting the message string or number, quadrant, 

color, size, and time, the function assigned these requisite values to the addText function to be 

displayed in the correct manner and position. Vizact.ontimer2 was used so that after the assigned 

time ellapsed, a nested function, RemoveText, was called, deleting the displayed text object.  
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3.7 Metrics 

3.7.1 Collisions 

 Feedback and metric recording within the simulation required the examination of the 

interaction of individually modeled parts of the robot through collision reporting. Three things 

were necessary to detect and interact with collisions through Vizard: collision objects needed to 

have detection enabled, a collision event needed to be generated that created a list of nodes 

associated with the collision, and finally, the list needed to be checked for intersecting nodes of 

interest. Enabling collision was done through enable(viz.COLLIDE_NOTIFY), which, when 

combined with viz.COLLIDE_BEGIN_EVENT, allowed Vizard to callback a function whenever 

an enabled node collided with another node. After the collision function was called, a list of 

intersecting nodes was compiled through the viz.phys.intersectNode command, with the node of 

interest as the input. The list could then be checked with if statements, looking for relevant 

nodes. After detecting the relevant nodes, customized branches of if statements allowed 

programmatic reactions to a variety of collisions, including detecting error collisions as well as 

providing visual feedback for ring positioning.  

 

3.7.2 Ring Positioning 

 Attached to the center of each of the rings was an invisible position sphere with collision 

detection enabled but the physics disabled, allowing it to detect intersecting nodes without 

colliding and interacting with other collision objects. Each position sphere checks for four 

distinct states with the associated ring: around a starter peg, around an ending peg, hovering 

above the pegbox, and dropped onto the pegbox without also encircling a peg. While the ring 

was around a starter peg, the visual model of said peg was set to blue with a node.color 
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assignment command. Alternatively, if the ring was around an ending peg the color was set to 

dark green. Light green was used if the position sphere was not intersecting something on the 

ground of the simulation, i.e. gripped and lifted by the robot. Finally, if the peg was lying on the 

peg box without surrounding a peg then it was considered a dropped peg and a dropped item 

function was called to increment the global variable created to track that metric. Each of the ring 

states can be viewed in Figure 3.12. 

 

Figure 3.12 Torus Position Coloring 

 To prevent multiple errors from counting for a single instance of a drop, a lock was 

placed that triggered on the initial incrementation with a self-activated timer that prevents 

another error from counting for ten seconds. Therefore, every ten seconds a new error will be 

recorded if the ring was unable to be picked up in that time. 

  

3.7.3 Instrument Collision 

 Beyond just checking for dropped rings the simulation also checked for instrument 

collision and overclosed grasper tips. Instrument collision occurred when a section of the robot 
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touched another section of the robot. Outside the simulation this could cause damage to the robot 

and, although unlikely, inhibit operation. Within the simulation, the parts which touched each 

other were highlighted red for a moment to alert the user of the impact and a collision error was 

logged.  

 

Figure 3.13 Collision Error Visual Feedback 

After three seconds had elapsed, the color was reset back to the originally assigned value for the 

affected visual models. Similar to a dropped ring error, a linked timer event prevented multiple 

errors from recording from a single collision instance. 

3.7.4 Overclose Errors 

 Overclose errors were logged in the simulation whenever the grasper tips were closed 

beyond acceptable limits. When a ring is grabbed the limit is reassigned to the current value of 

the grasper. A global variable was used to register the number of attempts to close the grasper 

while it was at a closing limit. Once the variable passed a threshold the error count for over-

closing is incremented and a message was sent through the temporary text function to announce 

the error and on which side the error occurred.  
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3.7.5 Timer 

 The simulation used Vizard’s internal timer for stopwatch and timed testing utilities. 

Toggling was needed for the user-controlled stopwatch inside the sandbox simulation type. It 

was made with a self-referential function which incremented the global variable timeValue every 

second the timer was toggled ‘on’ and remained constant when the timer was ‘off’. The global 

variable, timerToggle, was initialized to a zero value which was then incremented every time the 

timer button is clicked; if the value was incremented to two the value is reset to zero. This 

allowed the user to continuously click the button, turning the timer ‘on’ and ‘off’.  

Unlocking and relocking the camera used the same toggling method. 

 

3.7.6 Metrics File 

 Metrics were tabulated throughout the course of the simulation, recording the over-close, 

collision, and dropped items errors, as well as the elapsed time and completed tori at the time of 

reporting. Users were allowed to trigger the documentation of the metrics through the use of the 

provided button during appropriate simulation types. File writing was done through integrated 

Python write/read commands with files and folders. The timer value was segmented into minutes 

and seconds for easier reading and recording. The metrics were stored in a folder for each user 

based on the username entered at the beginning of the simulation. If no such folder exists then a 

new folder was created with that username. The file was date stamped and checked for an 

existing identical file. If such a file existed then the new file was tagged with a number at the end 

of the file, repeated for each subsequent file, allowing each discrete instance of recorded data to 

be viewed later regardless of the number of metric text files generated.  



 

 

38 

 

 

3.8 Ending the Simulation 

3.8.1 Simulation Types 

Four simulation types were included in the simulation: sandbox, time limit, completion, 

and testing. Sandbox allowed the users the full range of intra-program functionality including 

timer, resetting the positioning of the collision objects, camera viewport motion, and metric 

recording. Time limit had all the same functionality except for the timer. It hid the displayed 

timer and button, instead starting it upon selection of the simulation that then counted to a preset 

limit before ending the simulation. A visual countdown was generated when the timed simulation 

had ten seconds remaining, warning the user of the impending closing which was also used in the 

testing simulation type. The completion simulation type runs until all six rings were around an 

ending peg, at which point the ending screen was called and the metrics were recorded but also 

allowed the user to reset the simulation and record metrics manually. Similar to sandboxm all the 

user functionality was provided within the completion simulation choice. Testing had all the user 

functionality removed, providing a common baseline for each test. The simulation ended within 

the testing type and the metrics recorded if the six rings were detected around the ending pegs or 

if the four-minute timer expires. 

 

3.8.2 End Conditions 

 Ending the simulation happened when an end condition was met, triggering the end 

screen and associated end of the simulation functions. The conditions to be met for ending the 

simulation were dependent on which type of simulation had been selected. For completion and 

testing, the ring position was checked, and if the number of rings around ending pegs matched 
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the preset value for completed rings, then the simulation ending function was called. Timed used 

the global timer variable reaching the threshold of four minutes as the condition the end 

simulation function checked for ending the program. Testing also used the four-minute threshold 

through the timer value as a limiting factor for the user to restrict the time taken on a single 

attempt. Otherwise the simulation was ended once all six of the rings were recorded as encircling 

the ending pegs.  
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3.8.3 End Screen 

The check ending function was called once every second on an internal Vizard timer and 

only called the ending functions if an end state for that simulation type had been reached. Once 

the end state occurred the completed screen was placed over the program window and the 

metrics were recorded to their labeled text file. The completed screen function set the end 

simulation state to true which stopped the program from checking for the ending. A sky-blue 

overlay was then applied whilst simultaneously turning off the rendering of the main scene in 

Vizard, removing all the visible and collision models from the view window. The StaticText 

function was then called, informing the user that the simulation was completed and letting them 

know to restart the program to run the simulation again.  The complete ending screen can be seen 

in Figure 3.14. 

 

Figure 3.14 Simulation Ending Screen 
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Chapter 4. Results 

4.1 Simulation Evaluation Study 

In a collaboration with the University of Nebraska Medical Center (UNMC) a 

preliminary study was created to validate that repeated uses of simulation would improve new 

users’ operating skills. The study was evaluated under UNMC’s IRB with study identification 

number #087-18-EX. The Center for Advanced Surgical Technology’s facility was used to 

conduct the study. Medical students were recruited through an emailed link to an online survey, 

where they signed up for a fifteen-minute time slot. After a short introduction to the project, 

seven UNMC medical students attempted to complete the simulation in testing mode three 

consecutive times, pausing only to reset the simulation and verify that the results file had been 

reported. Results were recorded using the built-in methods of the simulation and were assigned 

to numbered identifications to preserve confidentiality for the subjects. 
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4.2 Results of the Study 

Participants of the study all showed improvement across their trials. All but one user was 

able to complete the simulation, moving all six rings onto ending pegs by the second trial before 

the alloted time ran out. The time taken to complete the simulation across the three trials can be 

seen in Figure 4.1. 

 

 

Figure 4.1 Time Taken Per Trial - Ring and Peg Simulation 

The user who didn’t manage to complete the simulation still improved from one ring 

completed in the first trial to five rings completed in the third trial. Only one of the participants 

was able to complete the test in each of the three trials. Together the participants averaged a 

thirty-four percent decrease in time to completion of the simulation from their first trial to their 

fastest trial. The entirety of the recorded data from the study can be reviewed in Appendix B.  

 

 

 

 



 

 

43 

 

The number of errors committed also decreased as the participants became more 

comfortable with the system. This occurred both between trial one and two and trial two and 

three, with the steepest decrease coming between the first and second trial. These trends can be 

seen in Figure 4.2 which shows the average errors of the participants in each of the trials. 

 

4.2 Average Errors Per Trial - Ring and Peg Simulation 

Taking a one tailed test of the statistical significance between the first and last trials 

showed that, with significance level of five percent, the users showed statistically significant 

improvement in all three errors and time time to completion. The results of the significance test 

can be seen in Appendix B. 
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Chapter 5. Conclusion 

Presented within this thesis was the creation of a simulation built to introduce users to the 

operation of a two armed minimally invasive surgical robot. The simulation was designed with 

the likeness and motion capacity of the robot as well as the input method. Metrics to be 

examined were taken from a literature review on existing surgical simulators created for the Da 

Vinci surgical system and included time to task completion, dropped items, instrument collision, 

and overclose errors.  

In an IRB approved study, seven UNMC medical students were asked to operate the 

simulation through three consecutive trials to examine how their performance changed across 

attempts. All of the users showed improvements between the first and final attempts, decreasing 

the time taken to completion as well as the amount of recorded errors. Both the errors and the 

time to completion showed statistically significant improvements between the first and third 

trials. This preliminary study provided confidence in continued exploration and examination of 

the simulation system as a viable introductory platform for the surgical robot.  
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Chapter 6. Future Work 

While the simulation showed good promise, many improvements could be made going 

forward. Additional testing should be done to examine whether training on the simulation helps 

improve the performance on the surgical robot. This would help prove the hypothesis that this 

training simulation could help ease the training regime needed to obtain mastery over the robotic 

platform. Initially a baseline of mastery would be created with the help of an experienced robotic 

surgeon operating the surgical robot through a ring and peg challenge. After the baseline was 

created, five to ten novice medical school residents would be introduced to the surgical robot and 

train on the ring and peg course until they reached the predetermined mastery. After the median 

time to achieve mastery had been determined another five to ten medical students would be 

introduced to the surgical robot, this time via the simulation. The new set of users would be 

allowed to train on the simulation to familiarize themselves with the operation of the robot and 

the task of moving the rings until they’d achieved the desired level of mastery. After the 

introduction, the group would then be taken to the physical robot to perform on the ring and peg 

platform there, moving six rings from designated starting pegs to ending pegs, just like the 

simulation. The time to mastery on the robot would then be measured and compared to that of 

the initial group, providing a comparison between the pure laboratory robot training and training 

done with an introduction through simulation training. This would also allow data to be 

generated concerning the face and content validity of the simulation, determining the correlation 

between simulation and surgical robot performance. 

The design of the University of Nebraska minimally invasive surgical robot has changed 

since the creation of the simulation. These changes have not been implemented within the 

simulation and would need to be done to keep the operation of the simulation as similar to that of 
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the robot to ensure the accuracy of the simulation. The changes would involve replacing the 

visual model files used, altering the collision models accordingly and scaling the positioning 

vectors as needed. 

Surveys could be helpful to find improvements for the user interface and error reporting 

elements, allowing them to be refined to enhance the clarity and usability of the simulation. 

 A variety of different simulation environments and testing methods could be created to 

examine and improve a wider breadth of surgical skills beyond those covered by the ring and peg 

exercise. One potential simulation scenario is a pick and place test where the user must pick up 

and rotate differently shaped pieces before putting them in appropriate sunken holes on a board. 

 Foot pedal functionality could also be included in future iterations of the simulation 

allowing for cautery testing and metrics. Another additional metric helpful for generating a more 

robust data set on the user’s performance would be economy of motion, which looks at how far 

the tips of the robot arms move throughout the examination. 
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APPENDIX A. Simulation Code 
import viz 

import vizinput 

import vizact 

import viztask 

import vizshape 

import vizproximity 

 

import math 

import datetime 

import os 

import vizmat 

import vizdlg 

sensable=viz.add('sensable3.dle') 

 

viz.go() 

#This Section allows initialization without integrated menu use 

global foreArmChoice 

#foreArmChoice="GRASPER" 

#foreArmChoice="CAUTERY" 

foreArmChoice="NONE" 

global vertPegBoxSpawn 

#vertPegBoxSpawn="NO" 

vertPegBoxSpawn="NONE" 

global simulationType 

#simulationType="TESTING" 

#simulationType="SANDBOX" 

#simulationType="TIME LIMIT" 

simulationType="NONE" 

global getInputValue 

getInputValue=True 

global userName 

#userName="Testing" 

userName="NONE" 

 

#Remove Screen Elements to get the user input before starting the simulation 

def PlaceScreen(): 

 viz.MainScene.visible(0,viz.WORLD)  #Remove MainScene Rendering 

 viz.clearcolor(viz.SKYBLUE)   #Set Background Color to light blue 

 buttonAlphaValue=0     #Remove Buttons by making them transparent 

 

 timerButton.alpha(buttonAlphaValue) 

 viewButton.alpha(buttonAlphaValue) 

 timerButton.alpha(buttonAlphaValue) 

 resetButton.alpha(buttonAlphaValue)  

  

#Initialize Program Parameter Questions-----------------------------------------------------------------------------------------------------Initialize Program 

Parameter Questions  

def GetInputForeArm(): 

 global foreArmChoice #which forearm should be rendered for the left arm 

 global getInputValue #are further input questions needed or is a question in progress 

 global userName #username to attach to the recorded metrics 

  

 #Check for Username. If none, ask for username 

 while userName=="NONE": 

  userName = vizinput.input("Please Input a User Name:") 

  userName.replace(" ","") 

  yield viztask.waitTime(1) 

 yield viztask.waitTime(1) 

 options=[("Grasper"),("Cautery")] 
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 foreArmQuestion=vizdlg.AskDialog(None,options=options,title="Forearm Choice") 

 foreArmQuestion.setScreenAlignment(viz.ALIGN_CENTER) 

 

 if foreArmChoice == "NONE" and getInputValue==True and userName!="NONE": 

  getInputValue=False 

  foreArmQuestion.selection = 0 

  yield foreArmQuestion.show() 

  if foreArmQuestion.accepted: 

   foreArmChoice=options[foreArmQuestion.selection].upper() 

   foreArmQuestion.remove() 

   getInputValue=True 

  else: 

   getInputValue=True 

  

vizact.ontimer(0.1,viztask.schedule,GetInputForeArm) 

 

def GetInputPegBox(): 

 global foreArmChoice 

 global vertPegBoxSpawn 

 global getInputValue 

 

 options2=[("No"),("Yes")] 

 vertPegBoxQuestion=vizdlg.AskDialog(None,options=options2,title="Generate Vertical Peg Box") 

 vertPegBoxQuestion.setScreenAlignment(viz.ALIGN_CENTER) 

 

 if getInputValue==True and foreArmChoice!="NONE" and vertPegBoxSpawn=="NONE": 

  getInputValue=False 

  vertPegBoxQuestion.selection = 0 

  yield vertPegBoxQuestion.show() 

  if vertPegBoxQuestion.accepted: 

   vertPegBoxSpawn=options2[vertPegBoxQuestion.selection].upper() 

   vertPegBoxQuestion.remove() 

   getInputValue=True 

  else: 

   getInputValue=True 

vizact.ontimer(.2,viztask.schedule,GetInputPegBox) 

 

def GetInputSimuType(): 

 global foreArmChoice 

 global vertPegBoxSpawn 

 global simulationType 

 global getInputValue 

  

 options3=[("Sandbox"),("Time Limit"),("Completion"),("Testing")] 

 simulationTypeQuestion=vizdlg.AskDialog(None,options=options3,title="Simulation Choice") 

 simulationTypeQuestion.setScreenAlignment(viz.ALIGN_CENTER) 

  

 if getInputValue==True and foreArmChoice!="NONE" and vertPegBoxSpawn!="NONE" and simulationType=="NONE": 

  getInputValue=False 

  simulationTypeQuestion.selection = 0 

  yield simulationTypeQuestion.show() 

  if simulationTypeQuestion.accepted: 

   simulationType=options3[simulationTypeQuestion.selection].upper() 

   simulationTypeQuestion.remove() 

   getInputValue=True 

    

   RemoveScreen() 

   ChooseSimulation() 

  else: 

   getInputValue=True 
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vizact.ontimer(.3,viztask.schedule,GetInputSimuType) 

 

#Return the rendered portions to the simulation after paramaters are determined 

def RemoveScreen(): 

 global simulationType 

  

 viz.MainScene.visible(1,viz.WORLD) 

 #Sets background color 

 viz.clearcolor(lightblue) 

 #viz.clearcolor(white) 

 buttonAlphaValue=1 

 timerButton.alpha(buttonAlphaValue) 

 viewButton.alpha(buttonAlphaValue) 

 resetButton.alpha(buttonAlphaValue) 

 StaticText(False) 

 #Remove User Functionality Buttons while testing 

 if simulationType=="TESTING": 

  timerButton.remove() 

  viewButton.remove() 

  resetButton.remove() 

  StaticText(True) 

  #Need to deal with timer 

 

#Enable the physics engine 

viz.phys.enable() 

#Set the user's viewpoint to the correct position and orientation 

viz.MainView.setPosition([-.35,6.9,-4.7]) 

viz.MainView.setEuler([0,35,0]) 

window = viz.MainWindow  

window.fov(90, 1.3) 

 

#Define the Color Values for Reference Later 

black=[0,0,0] 

gray=[.13,.13,.13] 

lightgray=[.15,.15,.15] 

blue=[0,0,1] 

red=[1,0,0] 

white=[1,1,1] 

green=[0,1,0] 

darkgreen=[0,.1,0] 

darkgray=[.08,.08,.08] 

crimson=[.5,0,0] 

lightblue=[.1,.4,1] 

 

#Define Alpha Values For What is Rendered 

colAlphaValues=0 

colGrasperAlphaValues=0 

grasperAlphaValues=1 

colCautAlphaValues=0 

cautAlphaValues=1 

vectorAlphaValues=0 

staticTextAlpha=1 

shoulderAlphaValues=0 

 

#Various Physical Values 

robotDensity=100000000 

tipFriction=1 

 

#Scale applied to the imported models 

scaleValue=.05 

scale=[scaleValue,scaleValue,scaleValue] 
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#Generate a sphere to attach to the camera 

cameraObject= vizshape.addSphere() 

cameraObject.setScale([.1,.1,.1]) 

cameraObject.setPosition([-.4,6.9,-4.6]) 

cameraObject.alpha(0) 

#Link the camera to the sphere so that it can be moved around with mouse functions 

global viewLink 

viewLink=viz.link(cameraObject,viz.MainView) 

viewLink.preEuler([0, 35, 0]) 

 

pegBox = vizshape.addBox(size=(10,1.5,8),right=True,left=True,top=True,bottom=True,front=True,back=True,splitFaces=False, pos = (0,-.75,-

1)) 

pegBox.collideMesh() 

pegBox.enable(viz.COLLIDE_NOTIFY) 

pegBox.color(lightgray) 

 

base_grid = vizshape.addGrid(boldStep=1,pos=(0,-2,0)) 

base_grid.collidePlane()  #Make Ground Plane Collidable 

base_grid.color(viz.BLACK) 

 

pegBoxVert=vizshape.addBox(size=(10,8,1.5)) 

pegBoxVert.setPosition([0,2,7]) 

pegBoxVert.collideMesh() 

pegBoxVert.color(gray) 

pegBoxAnchor=viz.grab(base_grid,pegBoxVert) 

 

#Pin and Ring Models Values 

height=1 

radius=.2 

 

#Generating the Peg Visual Models 

cylinder1pos=[-2.5,.5,2] 

cylinder2pos=(-1,.5,2) 

cylinder3pos=(-2.5,.5,0.5) 

cylinder4pos=(-1,.5,0.5) 

cylinder5pos=(-2.5,.5,-1) 

cylinder6pos=(-1,.5, -1) 

cylinder7pos=(1,.5,2) 

cylinder8pos=(2.5,.5,2) 

cylinder9pos=(1,.5,0.5) 

cylinder10pos=(2.5,.5,0.5) 

cylinder11pos=(1,.5,-1) 

cylinder12pos=(2.5,.5,-1) 

 

cylinder1=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20, 

bottom=True,top=True) 

cylinder2=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20, 

bottom=True,top=True) 

cylinder3=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20, 

bottom=True,top=True) 

cylinder4=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20, 

bottom=True,top=True) 

cylinder5=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20, 

bottom=True,top=True) 

cylinder6=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20, 

bottom=True,top=True) 

cylinder7=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20, 

bottom=True,top=True) 

cylinder8=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20, 

bottom=True,top=True) 
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cylinder9=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20, 

bottom=True,top=True) 

cylinder10=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20, 

bottom=True,top=True) 

cylinder11=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20, 

bottom=True,top=True) 

cylinder12=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20, 

bottom=True,top=True) 

 

cylinder1.color(darkgray) 

cylinder2.color(darkgray) 

cylinder3.color(darkgray) 

cylinder4.color(darkgray) 

cylinder5.color(darkgray) 

cylinder6.color(darkgray) 

cylinder7.color(darkgray) 

cylinder8.color(darkgray) 

cylinder9.color(darkgray) 

cylinder10.color(darkgray) 

cylinder11.color(darkgray) 

cylinder12.color(darkgray) 

 

cylinder1.collideMesh() 

cylinder2.collideMesh() 

cylinder3.collideMesh() 

cylinder4.collideMesh() 

cylinder5.collideMesh() 

cylinder6.collideMesh() 

cylinder7.collideMesh() 

cylinder8.collideMesh() 

cylinder9.collideMesh() 

cylinder10.collideMesh() 

cylinder11.collideMesh() 

cylinder12.collideMesh() 

 

cylinder1.enable(viz.COLLIDE_NOTIFY) 

cylinder2.enable(viz.COLLIDE_NOTIFY) 

cylinder3.enable(viz.COLLIDE_NOTIFY) 

cylinder4.enable(viz.COLLIDE_NOTIFY) 

cylinder5.enable(viz.COLLIDE_NOTIFY) 

cylinder6.enable(viz.COLLIDE_NOTIFY) 

cylinder7.enable(viz.COLLIDE_NOTIFY) 

cylinder8.enable(viz.COLLIDE_NOTIFY) 

cylinder9.enable(viz.COLLIDE_NOTIFY) 

cylinder10.enable(viz.COLLIDE_NOTIFY) 

cylinder11.enable(viz.COLLIDE_NOTIFY) 

cylinder12.enable(viz.COLLIDE_NOTIFY) 

 

for position in range(0,6,2): 

 cylinder1.collideSphere(radius=radius, pos=(0,position*.1,0)) 

 cylinder2.collideSphere(radius=radius, pos=(0,position*.1,0)) 

 cylinder3.collideSphere(radius=radius, pos=(0,position*.1,0)) 

 cylinder4.collideSphere(radius=radius, pos=(0,position*.1,0)) 

 cylinder5.collideSphere(radius=radius, pos=(0,position*.1,0)) 

 cylinder6.collideSphere(radius=radius, pos=(0,position*.1,0)) 

 cylinder7.collideSphere(radius=radius, pos=(0,position*.1,0)) 

 cylinder8.collideSphere(radius=radius, pos=(0,position*.1,0)) 

 cylinder9.collideSphere(radius=radius, pos=(0,position*.1,0)) 

 cylinder10.collideSphere(radius=radius, pos=(0,position*.1,0)) 

 cylinder11.collideSphere(radius=radius, pos=(0,position*.1,0)) 

 cylinder12.collideSphere(radius=radius, pos=(0,position*.1,0)) 
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#Link the Cylinders to the base_grid so they can't move and offset them into the correct position 

cylinder1Link=viz.link(base_grid,cylinder1) 

cylinder1Link.setOffset([-2.5,2.5,1.4]) 

cylinder2Link=viz.link(base_grid,cylinder2) 

cylinder2Link.setOffset([-1,2.5,1.4]) 

cylinder3Link=viz.link(base_grid,cylinder3) 

cylinder3Link.setOffset([-2.5,2.5,-0.1]) 

cylinder4Link=viz.link(base_grid,cylinder4) 

cylinder4Link.setOffset([-1,2.5,-0.1]) 

cylinder5Link=viz.link(base_grid,cylinder5) 

cylinder5Link.setOffset([-2.5,2.5,-1.4]) 

cylinder6Link=viz.link(base_grid,cylinder6) 

cylinder6Link.setOffset([-1,2.5,-1.4]) 

cylinder7Link=viz.link(base_grid,cylinder7) 

cylinder7Link.setOffset([1,2.5,1.4]) 

cylinder8Link=viz.link(base_grid,cylinder8) 

cylinder8Link.setOffset([2.5,2.5,1.4]) 

cylinder9Link=viz.link(base_grid,cylinder9) 

cylinder9Link.setOffset([1,2.5,-0.1]) 

cylinder10Link=viz.link(base_grid,cylinder10) 

cylinder10Link.setOffset([2.5,2.5,-0.1]) 

cylinder11Link=viz.link(base_grid,cylinder11) 

cylinder11Link.setOffset([1,2.5,-1.4]) 

cylinder12Link=viz.link(base_grid,cylinder12) 

cylinder12Link.setOffset([2.5,2.5,-1.4]) 

 

#Vertical PegBox Cylinders 

cylinder1Vert=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Z, slices=20, 

bottom=True,top=True,parent=pegBoxVert) 

cylinder2Vert=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Z, slices=20, 

bottom=True,top=True,parent=pegBoxVert) 

cylinder3Vert=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Z, slices=20, 

bottom=True,top=True,parent=pegBoxVert) 

cylinder4Vert=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Z, slices=20, 

bottom=True,top=True,parent=pegBoxVert) 

 

cylinder1Vert.setPosition([-3,1.6,-1.2]) 

cylinder2Vert.setPosition([-1,1.6,-1.2]) 

cylinder3Vert.setPosition([1,1.6,-1.2]) 

cylinder4Vert.setPosition([3,1.6,-1.2]) 

 

cylinder1Vert.collideMesh() 

cylinder2Vert.collideMesh() 

cylinder3Vert.collideMesh() 

cylinder4Vert.collideMesh() 

 

cylinder1Vert.color(gray) 

cylinder2Vert.color(gray) 

cylinder3Vert.color(gray) 

cylinder4Vert.color(gray) 

 

def RemoveVertPegBox(): 

 global vertPegBoxSpawn 

 if vertPegBoxSpawn=="NO": 

  pegBoxVert.remove(children=True) 

vizact.ontimer2(1,30,RemoveVertPegBox) 

  

#Ring parameter values 

RADIUS = .5 

TUBE_RADIUS = 0.12 
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density = 2 

friction = 5 

hardness = .01 

bounce=0 

 

#Generating the Ring Visual Models 

torus1 = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS) 

torus2 = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS) 

torus3 = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS) 

torus4 = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS) 

torus5 = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS) 

torus6 = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS) 

 

torus1.color(green) 

torus2.color(green) 

torus3.color(green) 

torus4.color(green) 

torus5.color(green) 

torus6.color(green) 

 

#Creating Nodes for the Torus Collision Objects  

torus1weight = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS) 

torus2weight = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS) 

torus3weight = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS) 

torus4weight = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS) 

torus5weight = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS) 

torus6weight = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS) 

 

#Generate the Collision Objects for the Torus 

for degree in range(0,360, 5): 

 xx = math.sin(viz.radians(degree))*RADIUS 

 zz = math.cos(viz.radians(degree))*RADIUS 

 torus1weight.collideSphere(radius=TUBE_RADIUS*.8, pos=(xx,0,zz), bounce = bounce, friction=friction, density = density, 

hardness = hardness) 

 torus2weight.collideSphere(radius=TUBE_RADIUS*.8, pos=(xx,0,zz), bounce = bounce, friction=friction, density = density, 

hardness = hardness) 

 torus3weight.collideSphere(radius=TUBE_RADIUS*.8, pos=(xx,0,zz), bounce = bounce, friction=friction, density = density, 

hardness = hardness) 

 torus4weight.collideSphere(radius=TUBE_RADIUS*.8, pos=(xx,0,zz), bounce = bounce, friction=friction, density = density, 

hardness = hardness) 

 torus5weight.collideSphere(radius=TUBE_RADIUS*.8, pos=(xx,0,zz), bounce = bounce, friction=friction, density = density, 

hardness = hardness) 

 torus6weight.collideSphere(radius=TUBE_RADIUS*.8, pos=(xx,0,zz), bounce = bounce, friction=friction, density = density, 

hardness = hardness) 

 

#Initial placement of torus over the rings 

torus1weight.setPosition((-1,.5,1.5)) 

torus2weight.setPosition((-1,.5,0.0)) 

torus3weight.setPosition((-1,.5,-1.5)) 

torus4weight.setPosition((-2.5,.5,1.5)) 

torus5weight.setPosition((-2.5,.5,0)) 

torus6weight.setPosition((-2.5,.5,-1.5)) 

 

#Enable Collision Reporting For the torus 

torus1weight.enable(viz.COLLIDE_NOTIFY) 

torus2weight.enable(viz.COLLIDE_NOTIFY) 

torus3weight.enable(viz.COLLIDE_NOTIFY) 

torus4weight.enable(viz.COLLIDE_NOTIFY) 

torus5weight.enable(viz.COLLIDE_NOTIFY) 

torus6weight.enable(viz.COLLIDE_NOTIFY) 
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#Disable the rendering from the collision torus, leaving only one set of torus visable 

torus1weight.disable(viz.RENDERING) 

torus2weight.disable(viz.RENDERING) 

torus3weight.disable(viz.RENDERING) 

torus4weight.disable(viz.RENDERING) 

torus5weight.disable(viz.RENDERING) 

torus6weight.disable(viz.RENDERING) 

 

#Position balls for torus placement information 

posBall1=vizshape.addSphere(radius=RADIUS/2,pos=(0,0,0),parent=torus1) 

posBall1.collideMesh() 

posBall1.enable(viz.COLLIDE_NOTIFY) 

posBall1.disable(viz.RENDERING) 

 

posBall2=vizshape.addSphere(radius=RADIUS/2,pos=(0,0,0),parent=torus2) 

posBall2.collideMesh() 

posBall2.enable(viz.COLLIDE_NOTIFY) 

posBall2.disable(viz.RENDERING) 

 

posBall3=vizshape.addSphere(radius=RADIUS/2,pos=(0,0,0),parent=torus3) 

posBall3.collideMesh() 

posBall3.enable(viz.COLLIDE_NOTIFY) 

posBall3.disable(viz.RENDERING) 

 

posBall4=vizshape.addSphere(radius=RADIUS/2,pos=(0,0,0),parent=torus4) 

posBall4.collideMesh() 

posBall4.enable(viz.COLLIDE_NOTIFY) 

posBall4.disable(viz.RENDERING) 

 

posBall5=vizshape.addSphere(radius=RADIUS/2,pos=(0,0,0),parent=torus5) 

posBall5.collideMesh() 

posBall5.enable(viz.COLLIDE_NOTIFY) 

posBall5.disable(viz.RENDERING) 

 

posBall6=vizshape.addSphere(radius=RADIUS/2,pos=(0,0,0),parent=torus6) 

posBall6.collideMesh() 

posBall6.enable(viz.COLLIDE_NOTIFY) 

posBall6.disable(viz.RENDERING) 

 

#Function to link the position and orientation of the Collision Torus to the Visable Torus 

def CombineTorus(): 

 torus1.setPosition(torus1weight.getPosition()) 

 torus1.setEuler(torus1weight.getEuler()) 

  

 torus2.setPosition(torus2weight.getPosition()) 

 torus2.setEuler(torus2weight.getEuler()) 

  

 torus3.setPosition(torus3weight.getPosition()) 

 

 torus4.setPosition(torus4weight.getPosition()) 

 torus4.setEuler(torus4weight.getEuler()) 

  

 torus5.setPosition(torus5weight.getPosition()) 

 torus5.setEuler(torus5weight.getEuler()) 

  

 torus6.setPosition(torus6weight.getPosition()) 

 torus6.setEuler(torus6weight.getEuler()) 

 

#Repeatedly Call the Function to Overlay the Separate Torus Objects 

vizact.onupdate(0,CombineTorus) 
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#Robot Model Generation----------------------------------------------------------------------------------------------------------------------------------------------

Robot Model Generation 

baseObject=vizshape.addSphere() 

baseObject.alpha(0) 

 

shoulder = viz.addChild("shoulder.dae",parent=baseObject) 

shoulder.setScale(scale) 

shoulder.setCenter([-.35,0,0]) 

shoulder.setPosition([.35,5,-5]) 

shoulder.setEuler([0,-90,180]) 

shoulder.alpha(shoulderAlphaValues) 

 

#Link the camera view to the tilt/pan of the body of the robot 

cameraObjectLink=viz.grab(shoulder,cameraObject) 

 

upperArmLeft = viz.addChild("UpperArmLeft.dae",parent=shoulder) 

upperArmLeft.setCenter([15,0,0]) 

upperArmLeft.color(gray) 

upperArmLeft.alpha(grasperAlphaValues) 

 

colUpArmLeft=vizshape.addBox([15,60,20],parent=shoulder) 

colUpArmLeft.collideBox([.75,3,1],density=robotDensity) 

colUpArmLeft.setCenter([-10,-30,0]) 

colUpArmLeft.setPosition([30,25,4.5]) 

colUpArmLeft.alpha(colAlphaValues) 

colUpArmLeft.color(lightgray) 

 

pivotPointLeft=vizshape.addSphere(radius=.5,parent=shoulder) 

pivotPointLeft.setPosition([-.75,5,-5],viz.ABS_GLOBAL) 

pivotPointLeft.alpha(0) 

 

elbowPointLeft=vizshape.addSphere(radius=.5,parent=upperArmLeft) 

elbowPointLeft.setPosition([-1.7,5,-1.4],viz.ABS_GLOBAL) 

elbowPointLeft.alpha(0) 

 

upperArmRight = viz.addChild("UpperArmRight.dae",parent=shoulder) 

upperArmRight.alpha(grasperAlphaValues) 

upperArmRight.color(gray) 

 

colUpArmRight=vizshape.addBox([15,60,20],parent=shoulder) 

colUpArmRight.collideBox([.75,3,1],density=robotDensity) 

colUpArmRight.setCenter([10,-30,0]) 

colUpArmRight.setPosition([-15,26,4.5]) 

colUpArmRight.alpha(colAlphaValues) 

colUpArmRight.color(lightgray) 

 

pivotPointRight=vizshape.addSphere(radius=.5,parent=shoulder) 

pivotPointRight.alpha(0) 

 

elbowPointRight=vizshape.addSphere(radius=.5,parent=upperArmRight) 

elbowPointRight.setPosition([.73,5,-1.4],viz.ABS_GLOBAL) 

elbowPointRight.alpha(0) 

 

grasperLeft = viz.addChild("graspLeft.dae", parent=upperArmLeft) 

grasperLeft.setCenter([28,75,0]) 

grasperLeft.color(gray) 

grasperLeft.alpha(grasperAlphaValues) 

 

colGraspLeft=vizshape.addBox(size=([15,75,20]),parent=upperArmLeft) 

colGraspLeft.setCenter([0,-42,0]) 

colGraspLeft.collideBox([15*scaleValue,75*scaleValue,20*scaleValue],density=robotDensity) 
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colGraspLeft.setPosition([30,116,2.5]) 

colGraspLeft.enable(viz.COLLIDE_NOTIFY) 

colGraspLeft.alpha(colGrasperAlphaValues) 

colGraspLeft.color(lightgray) 

 

turnSphereLeft=vizshape.addSphere(parent=grasperLeft) 

turnSphereLeft.setCenter([30.5,0,5]) 

turnSphereLeft.alpha(0) 

 

linkSphereLeft=vizshape.addSphere(parent=grasperLeft) 

linkSphereLeft.setPosition([30.55,154.9,4.7]) 

linkSphereLeftOrientLink=viz.link(turnSphereLeft, linkSphereLeft) 

linkSphereLeftOrientLink.setMask(viz.LINK_ORI) 

linkSphereLeft.alpha(0) 

 

tipLeft1 = viz.addChild("LeftTip1.dae", parent=turnSphereLeft) 

tipLeft1.setCenter([31,155,5]) 

tipLeft2 = viz.addChild("LeftTip2.osgb", parent=turnSphereLeft) 

tipLeft2.setCenter([31,155,5]) 

tipLeft1.alpha(grasperAlphaValues) 

tipLeft2.alpha(grasperAlphaValues) 

 

 

colBoxLeft1=vizshape.addBox(size=[3,14,4],parent=turnSphereLeft) 

colBoxLeft1.collideBox([3*scaleValue,14*scaleValue,4*scaleValue],density=robotDensity) 

colBoxLeft1.setPosition([32,168,4.6]) 

colBoxLeft1.setCenter([0,-12,0]) 

colBoxLeft1.setEuler([0,0,-35]) 

colBoxLeft1.enable(viz.COLLIDE_NOTIFY) 

colBoxLeft1.alpha(colGrasperAlphaValues) 

colBoxLeft1.color(lightgray) 

 

colBoxLeft2=vizshape.addBox(size=[3,14,4],parent=turnSphereLeft) 

colBoxLeft2.collideBox([3*scaleValue,14*scaleValue,4*scaleValue],density=robotDensity) 

colBoxLeft2.setPosition([29,167.5,4.4]) 

colBoxLeft2.setCenter([0,-12,0]) 

colBoxLeft2.setEuler([0,0,35]) 

colBoxLeft2.enable(viz.COLLIDE_NOTIFY) 

colBoxLeft2.alpha(colGrasperAlphaValues) 

colBoxLeft2.color(lightgray) 

 

grasperRight = viz.addChild("graspRight.dae", parent=upperArmRight) 

grasperRight.setCenter([-13,74,0]) 

grasperRight.alpha(grasperAlphaValues) 

grasperRight.color(gray) 

 

colGraspRight=vizshape.addBox(size=([15,75,20]),parent=upperArmRight) 

colGraspRight.setCenter([0,-42,0]) 

colGraspRight.collideBox([15*scaleValue,75*scaleValue,20*scaleValue],density=robotDensity) 

colGraspRight.setPosition([-12,116,2.8]) 

colGraspRight.enable(viz.COLLIDE_NOTIFY) 

colGraspRight.alpha(colAlphaValues) 

colGraspRight.color(lightgray) 

 

cauteryLeft = viz.addChild("singleCaut.osgb", parent=upperArmLeft) 

cauteryLeft.setPosition([-108,133,45]) 

cauteryLeft.setCenter([135,-58,37]) 

cauteryLeft.alpha(cautAlphaValues) 

cauteryLeft.color(gray) 

 

linkSphereLeft_caut=vizshape.addSphere(parent=cauteryLeft) 
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linkSphereLeft_caut.setPosition([135.55, 13.89, -41.3]) 

#linkSphereLeft_caut.alpha(0) 

 

colCautLeft=vizshape.addBox([15,57,17], parent=upperArmLeft) 

colCautLeft.setPosition([30,110,5]) 

colCautLeft.collideBox([15*scaleValue,57*scaleValue,17*scaleValue],density=robotDensity) 

colCautLeft.setCenter([-2,-35,3]) 

colCautLeft.alpha(colCautAlphaValues) 

 

turnSphereRight=vizshape.addSphere(parent=grasperRight) 

turnSphereRight.setCenter([-10.5,0,5]) 

turnSphereRight.alpha(0) 

 

linkSphereRight=vizshape.addSphere(parent=grasperRight) 

linkSphereRight.setPosition([-10.7,154.9,4.6]) 

linkSphereRightOrientLink=viz.link(turnSphereRight, linkSphereRight) 

linkSphereRightOrientLink.setMask(viz.LINK_ORI) 

linkSphereRight.alpha(0) 

 

turnSphereLeftCaut=vizshape.addSphere(parent=cauteryLeft) 

turnSphereLeftCaut.setCenter([136.2,6.1,-41.7]) 

turnSphereLeftCaut.alpha(0) 

 

tipRight1 = viz.addChild("RightTip1.dae", parent=turnSphereRight) 

tipRight1.setCenter([-11,155,5]) 

tipRight2 = viz.addChild("RightTip2.dae", parent=turnSphereRight) 

tipRight2.setCenter([-11,155,5]) 

tipRight1.alpha(grasperAlphaValues) 

tipRight2.alpha(grasperAlphaValues) 

 

tipRight1.color(gray) 

tipRight2.color(gray) 

tipLeft1.color(gray) 

tipLeft2.color(gray) 

 

colBoxRight1=vizshape.addBox(size=[3,14,4],parent=turnSphereRight) 

colBoxRight1.collideBox([3*scaleValue,14*scaleValue,4*scaleValue],density=robotDensity,friction=tipFriction) 

colBoxRight1.setPosition([-9,168,5]) 

colBoxRight1.setCenter([0,-12,0]) 

colBoxRight1.setEuler([0,0,-35]) 

colBoxRight1.enable(viz.COLLIDE_NOTIFY) 

colBoxRight1.alpha(colAlphaValues) 

colBoxRight1.color(lightgray) 

 

colBoxRight2=vizshape.addBox(size=[3,14,4],parent=turnSphereRight) 

colBoxRight2.collideBox([3*scaleValue,14*scaleValue,4*scaleValue],density=robotDensity,friction=tipFriction) 

colBoxRight2.setPosition([-11.82,167.4,4.9]) 

colBoxRight2.setCenter([0,-12,0]) 

colBoxRight2.setEuler(0,0,35) 

colBoxRight2.enable(viz.COLLIDE_NOTIFY) 

colBoxRight2.alpha(colAlphaValues) 

colBoxRight2.color(lightgray) 

 

cauteryLeftTip = viz.addChild("cautTip.osgb", parent=cauteryLeft) 

cauteryLeftTip.setCenter([136.2,6.1,-41.7]) 

cauteryLeftTip.alpha(cautAlphaValues) 

cauteryLeftTip.color(lightgray) 

 

colCautLeftTip1=vizshape.addBox(size=[5,15.5,5],parent=turnSphereLeftCaut) 

colCautLeftTip1.setPosition([136,14,-41.5]) 

colCautLeftTip1.collideBox([5*scaleValue,15.5*scaleValue,5*scaleValue], density=robotDensity) 
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colCautLeftTip1.alpha(colCautAlphaValues) 

 

colCautLeftTip2=vizshape.addBox(size=[2,6,2],parent=turnSphereLeftCaut) 

colCautLeftTip2.setPosition([136,25,-41.5]) 

colCautLeftTip2.collideBox([2*scaleValue,6*scaleValue,2*scaleValue],density=robotDensity) 

colCautLeftTip2.alpha(colCautAlphaValues) 

#cautLink2=viz.grab(colCautLeftTip1,colCautLeftTip2) 

 

colCautLeftTip3=vizshape.addBox(size=[2,5,2],parent=turnSphereLeftCaut) 

colCautLeftTip3.setPosition([135.3,31,-41.5]) 

colCautLeftTip3.collideBox([2*scaleValue,5*scaleValue,2*scaleValue],density=robotDensity) 

colCautLeftTip3.setEuler([0,0,15]) 

#cautLink3=viz.grab(colCautLeftTip2,colCautLeftTip3) 

colCautLeftTip3.alpha(colCautAlphaValues) 

 

colCautLeftTip4=vizshape.addBox(size=[5,2,2],parent=turnSphereLeftCaut) 

colCautLeftTip4.setPosition([136,36,-41.5]) 

colCautLeftTip4.collideBox([5*scaleValue,2*scaleValue,2*scaleValue],density=robotDensity) 

colCautLeftTip4.alpha(colCautAlphaValues) 

cautLink4=viz.grab(colCautLeftTip3,colCautLeftTip4) 

 

#Used to remove the forearm not chosen as well as all linked parts 

def RemoveForearm(): 

 global foreArmChoice 

 if foreArmChoice=="CAUTERY": 

  grasperLeft.remove(children=True) 

  colGraspLeft.remove(children=True) 

 if foreArmChoice=="GRASPER": 

  cauteryLeft.remove(children=True) 

  colCautLeft.remove(children=True) 

vizact.ontimer2(1,30,RemoveForearm) 

 

#Do once:Rotate the collison boxes for the tips into the correct position 

initialize=0 

global rightEuler 

global leftEuler 

if initialize==0: 

 rightEuler=colBoxRight1.getEuler()[2] 

 leftEuler=colBoxLeft1.getEuler()[2] 

 initialize=1 

 

#Function to Combine Visual Models and Collide Objects 

def LockDownPosition(): 

 global leftEuler 

 global rightEuler 

 global foreArmChoice 

  

 colBoxRight1.setPosition([-9,168,5]) 

 colBoxRight1.setVelocity([0,0,0],mode=viz.ABS_GLOBAL) 

 colBoxRight1.setAngularVelocity([0,0,0],mode=viz.ABS_GLOBAL) 

 offsetAngle=colBoxRight1.getEuler() 

 offsetAngle[0]=0 

 offsetAngle[1]=0 

 offsetAngle[2]=rightEuler 

  

 colBoxRight1.setEuler(offsetAngle) 

 offsetAngle[2]=offsetAngle[2]+35 #35 is the Offset Difference Between the Tip Model and the Collision Box 

 tipRight1.setEuler(offsetAngle) 

   

 colBoxRight2.setPosition([-11.82,167.4,4.9]) 

 colBoxRight2.setVelocity([0,0,0],mode=viz.ABS_GLOBAL) 
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 colBoxRight2.setAngularVelocity([0,0,0],mode=viz.ABS_GLOBAL) 

 offsetAngle[2]=-(offsetAngle[2]-35) 

 colBoxRight2.setEuler(offsetAngle) 

 offsetAngle[2]=offsetAngle[2]-35 

 tipRight2.setEuler(offsetAngle) 

 

 colBoxLeft1.setPosition([32,168,4.6]) 

 colBoxLeft1.setVelocity([0,0,0],mode=viz.ABS_GLOBAL) 

 colBoxLeft1.setAngularVelocity([0,0,0],mode=viz.ABS_GLOBAL) 

 offsetAngle=colBoxLeft1.getEuler() 

 offsetAngle[0]=0 

 offsetAngle[1]=0 

 offsetAngle[2]=leftEuler 

  

 colBoxLeft1.setEuler(offsetAngle) 

 offsetAngle[2]=offsetAngle[2]+35 #35 is the Offset Difference Between the Tip Model and the Collision Box 

 tipLeft1.setEuler(offsetAngle) 

  

 colBoxLeft2.setPosition([29,168.5,4.4]) 

 colBoxLeft2.setVelocity([0,0,0],mode=viz.ABS_GLOBAL) 

 colBoxLeft2.setAngularVelocity([0,0,0],mode=viz.ABS_GLOBAL) 

 offsetAngle[2]=-(offsetAngle[2]-35) 

 colBoxLeft2.setEuler(offsetAngle) 

 offsetAngle[2]=offsetAngle[2]-35 

 tipLeft2.setEuler(offsetAngle) 

  

 grasperAngle=colGraspRight.getEuler() 

 colGraspRight.setPosition([-12,116,2.8]) 

 colGraspRight.setVelocity([0,0,0],mode=viz.ABS_GLOBAL) 

 grasperAngle[0]=0 

 grasperAngle[1]=0 

 colGraspRight.setEuler(grasperAngle) 

 grasperRight.setEuler(grasperAngle) 

 

 grasperAngle=colGraspLeft.getEuler() 

 if grasperAngle[2]>121: 

  grasperAngle[2]=121 

 colGraspLeft.setPosition([30,116,2.5]) 

 colGraspLeft.setVelocity([0,0,0],mode=viz.ABS_GLOBAL) 

 grasperAngle[0]=0 

 grasperAngle[1]=0 

 colGraspLeft.setEuler(grasperAngle) 

 grasperLeft.setEuler(grasperAngle) 

  

 grasperAngle=colUpArmRight.getEuler() 

 colUpArmRight.setPosition([-15,26,4.5]) 

 colUpArmRight.setVelocity([0,0,0],mode=viz.ABS_GLOBAL) 

 colUpArmRight.setEuler(grasperAngle) 

 upperArmRight.setEuler(grasperAngle) 

  

 grasperAngle=colUpArmLeft.getEuler() 

 colUpArmLeft.setPosition([30,25,4.5]) 

 colUpArmLeft.setVelocity([0,0,0],mode=viz.ABS_GLOBAL) 

 colUpArmLeft.setEuler(grasperAngle) 

 upperArmLeft.setEuler(grasperAngle) 

  

 grasperAngle=colCautLeft.getEuler() 

 colCautLeft.setPosition([30,110,5]) 

 colCautLeft.setVelocity([0,0,0],mode=viz.ABS_GLOBAL) 

 grasperAngle[0]=0 

 grasperAngle[1]=0 
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 colCautLeft.setEuler(grasperAngle) 

 cauteryLeft.setEuler(grasperAngle) 

 cauteryLeftTip.setEuler(turnSphereLeftCaut.getEuler()) 

  

 colCautLeftTip1.setPosition([136,14,-41.5]) 

 colCautLeftTip1.setEuler([0,0,0]) 

 colCautLeftTip2.setPosition([136,25,-41.5]) 

 colCautLeftTip2.setEuler([0,0,0]) 

 colCautLeftTip3.setPosition([135.3,31,-41.5]) 

 colCautLeftTip3.setEuler([0,0,15]) 

 colCautLeftTip4.setPosition([136,36,-41.5]) 

 colCautLeftTip1.setVelocity([0,0,0]) 

 colCautLeftTip2.setVelocity([0,0,0]) 

 colCautLeftTip3.setVelocity([0,0,0]) 

 colCautLeftTip4.setVelocity([0,0,0]) 

 

vizact.onupdate(0, LockDownPosition) 

 

#Cyclic Coordinate Descent Section-----------------------------------------------------------------------------------------------------------------------------------

Cyclic Coordinate Descent Section 

 

#The Position x y z position we want the tip to be in r indicates right l indicates left 

#Initializing the global variables 

global theta1r; global theta2r; global theta3r; global extRatioR 

global theta1l; global theta2l; global theta3l; global extRatioL 

theta1r=0;theta2r=0;theta3r=0; extRatioR=1; 

theta1l=0;theta2l=0;theta3l=0; extRatioL=1; 

 

base_x=[1,0,0] 

base_neg_x=[-1,0,0] 

base_y=[0,1,0] 

base_z=[0,0,1] 

 

shoulderEulerVector=vizshape.addArrow(length=10*scaleValue,radiusRatio=.006,tipRadiusRatio=1.5, tipLengthRatio=.3,parent=shoulder) 

shoulderEulerVector.setScale([1/scaleValue,1/scaleValue,1/scaleValue]) 

shoulderEulerVector.setEuler([0,0,0],viz.ABS_GLOBAL) 

shoulderEulerVector.alpha(0)  

 

upperVectorRight=vizshape.addArrow(length=77*scaleValue,radiusRatio=.006,tipRadiusRatio=1.5, tipLengthRatio=.3,parent=shoulder) 

upperVectorRight.setScale([1/scaleValue,1/scaleValue,1/scaleValue])  

upperVectorRight.setCenter([0,0,-77*scaleValue]) 

upperVectorRight.setPosition([0,-.3,2]) 

upperVectorRight.setEuler([0,0,0],viz.ABS_GLOBAL) 

upperVectorRight.alpha(vectorAlphaValues) 

 

upperVectorRightBase=vizshape.addSphere(radius=.05,parent=upperVectorRight) 

upperVectorRightBase.setPosition([0,0,-77*scaleValue]) 

upperVectorRightBase.color(red) 

upperVectorRightBase.alpha(vectorAlphaValues) 

 

foreArmVectorRight=vizshape.addArrow(length=90*scaleValue,radiusRatio=.006,tipRadiusRatio=1.5, 

tipLengthRatio=.3,parent=upperVectorRight) 

foreArmVectorRight.setCenter([0,0,-90*scaleValue]) 

foreArmVectorRight.setPosition([0,0,90*scaleValue]) 

foreArmVectorRight.setEuler([0,0,0],viz.ABS_PARENT) 

foreArmVectorRight.alpha(vectorAlphaValues) 

 

foreArmVectorRightBase=vizshape.addSphere(radius=.05,parent=foreArmVectorRight) 

foreArmVectorRightBase.setPosition([0,0,-90*scaleValue]) 

foreArmVectorRightBase.color(red) 

foreArmVectorRightBase.alpha(vectorAlphaValues) 
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tipPositionRight=vizshape.addSphere(radius=.05,parent=foreArmVectorRight) 

tipPositionRight.color(red) 

tipPositionRight.alpha(vectorAlphaValues) 

 

endPositionRight=vizshape.addSphere(radius=.05/scaleValue,parent=shoulder) 

endPositionRight.color(blue) 

endPositionRight.alpha(vectorAlphaValues) 

endPositionRight.setPosition([0,.78,4.55],viz.ABS_GLOBAL) 

 

upperVectorLeft=vizshape.addArrow(length=77*scaleValue,radiusRatio=.006,tipRadiusRatio=1.5, tipLengthRatio=.3,parent=shoulder) 

upperVectorLeft.setScale([1/scaleValue,1/scaleValue,1/scaleValue]) 

upperVectorLeft.setCenter([0,0,-77*scaleValue]) 

upperVectorLeft.setPosition([13.8,-.3,2]) 

upperVectorLeft.setEuler([0,0,0],viz.ABS_GLOBAL) 

upperVectorLeft.alpha(vectorAlphaValues) 

 

upperVectorLeftBase=vizshape.addSphere(radius=.05,parent=upperVectorLeft) 

upperVectorLeftBase.setPosition([0,0,-77*scaleValue]) 

upperVectorLeftBase.color(red) 

upperVectorLeftBase.alpha(vectorAlphaValues) 

 

foreArmVectorLeft=vizshape.addArrow(length=90*scaleValue,radiusRatio=.006,tipRadiusRatio=1.5, 

tipLengthRatio=.3,parent=upperVectorLeft) 

foreArmVectorLeft.setCenter([0,0,-90*scaleValue]) 

foreArmVectorLeft.setPosition([0,0,90*scaleValue]) 

foreArmVectorLeft.alpha(vectorAlphaValues) 

 

foreArmVectorLeftBase=vizshape.addSphere(radius=.05,parent=foreArmVectorLeft) 

foreArmVectorLeftBase.setPosition([0,0,-90*scaleValue]) 

foreArmVectorLeftBase.color(red) 

foreArmVectorLeftBase.alpha(vectorAlphaValues) 

 

tipPositionLeft=vizshape.addSphere(radius=.05,parent=foreArmVectorLeft) 

tipPositionLeft.color(red) 

tipPositionLeft.alpha(vectorAlphaValues) 

 

endPositionLeft=vizshape.addSphere(radius=.05/scaleValue,parent=shoulder) 

endPositionLeft.color(blue) 

endPositionLeft.setPosition([-1,4.85,3.4],viz.ABS_GLOBAL) 

endPositionLeft.alpha(vectorAlphaValues) 

 

def CyclicCoordDes(basePoint,side): 

  

 #The Position x y z position we want the tip to be in r indicates right l indicates left 

 global theta1r; global theta2r; global theta3r; global extRatioR 

 global theta1l; global theta2l; global theta3l; global extRatioL 

  

 if side=="Right": 

  #p_t is the desired end position 

  p_t=endPositionRight.getPosition(viz.ABS_GLOBAL) 

  #p_e is the current tip position 

  p_e=tipPositionRight.getPosition(viz.ABS_GLOBAL) 

  elbowPosition=foreArmVectorRightBase.getPosition(viz.ABS_GLOBAL) 

 if side=="Left": 

  p_t=endPositionLeft.getPosition(viz.ABS_GLOBAL) 

  p_e=tipPositionLeft.getPosition(viz.ABS_GLOBAL) 

  elbowPosition=foreArmVectorLeftBase.getPosition(viz.ABS_GLOBAL) 

  #p_c is the current base point 

 p_c=basePoint.getPosition(viz.ABS_GLOBAL) 

 neg_p_c=[-p_c[0],-p_c[1],-p_c[2]] 
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 A=[sum(x) for x in zip(p_e,neg_p_c)] 

 B=[sum(x) for x in zip(p_t,neg_p_c)] 

 

 A[1]=0 

 B[1]=0 

 angleDiff=vizmat.AngleBetweenVector(A,base_x)-vizmat.AngleBetweenVector(B,base_x) 

 A=[sum(x) for x in zip(p_e,neg_p_c)] 

 B=[sum(x) for x in zip(p_t,neg_p_c)] 

 A[0]=0 

 B[0]=0 

 angleDiff_z=vizmat.AngleBetweenVector(A,B) 

 A=[sum(x) for x in zip(p_e,neg_p_c)] 

 B=[sum(x) for x in zip(p_t,neg_p_c)] 

 

# Determines the direction of The Rotation for angleDiff 

 if side=="Right": 

  if basePoint==foreArmVectorRightBase: 

   if elbowPosition[2]<p_t[2] and elbowPosition[2]>p_e[2]: 

    A[1]=0 

    B[1]=0 

    angleDiff=-360+vizmat.AngleBetweenVector(A,B) 

   if elbowPosition[2]>p_t[2]: 

    if elbowPosition[2]< p_e[2]: 

     A[1]=0 

     B[1]=0 

     angleDiff=360-vizmat.AngleBetweenVector(A,B) 

    else: 

     angleDiff=-angleDiff 

      

 if side=="Left": 

  if basePoint==foreArmVectorLeftBase: 

   if elbowPosition[2]<p_t[2] and elbowPosition[2]>p_e[2]: 

    A[1]=0 

    B[1]=0 

    angleDiff=360-vizmat.AngleBetweenVector(A,B) 

   if elbowPosition[2]>p_t[2]: 

    if elbowPosition[2]< p_e[2]: 

     A[1]=0 

     B[1]=0 

     angleDiff=-360+vizmat.AngleBetweenVector(A,B) 

    else: 

     angleDiff=-angleDiff 

 

#Applies the angleDiff and angleDiff_z rotations to the Vectors 

 if side=="Right": 

  if basePoint==foreArmVectorRightBase: 

   foreArmVectorRight.setEuler([angleDiff,0,0],viz.REL_LOCAL) 

  if basePoint==upperVectorRightBase: 

   upperVectorRight.setEuler([angleDiff,0,0],viz.REL_LOCAL) 

    

   if (p_t[1]-p_e[1])>0:  

    upperVectorRight.setEuler([0,-angleDiff_z,0],viz.ABS_LOCAL) 

   else: 

    upperVectorRight.setEuler([0,angleDiff_z,0],viz.ABS_LOCAL)  

 if side=="Left": 

  if basePoint==foreArmVectorLeftBase: 

   foreArmVectorLeft.setEuler([angleDiff,0,0],viz.REL_LOCAL) 

  if basePoint==upperVectorLeftBase: 

   upperVectorLeft.setEuler([angleDiff,0,0],viz.REL_LOCAL) 

    

   if (p_t[1]-p_e[1])>0:  
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    upperVectorLeft.setEuler([0,-angleDiff_z,0],viz.ABS_LOCAL) 

   else: 

    upperVectorLeft.setEuler([0,angleDiff_z,0],viz.ABS_LOCAL)    

  

  

 #Ensures elbow bends correct direction 

 if foreArmVectorRight.getEuler(viz.ABS_PARENT)[0]>0 and basePoint==foreArmVectorRightBase and side=="Right": 

  foreArmVectorRight.setEuler([-.2,0,0],viz.ABS_PARENT) 

   

 if foreArmVectorLeft.getEuler(viz.ABS_PARENT)[0]<0 and basePoint==foreArmVectorLeftBase and side=="Left": 

  foreArmVectorLeft.setEuler([.2,0,0],viz.ABS_PARENT)     

  

 #Acquire Theta Values used for moving each arm into the correct position 

 [theta1r,theta2r,theta3r,extRatioR]=GetThetaValues("Right") 

 [theta1l,theta2l,theta3l,extRatioL]=GetThetaValues("Left") 

  

 #Ensures a good elbow height 

 PlanarRotation(side) 

 

global iteration; iteration=0 

 

def CheckError(side): 

 global iteration 

 margin=.05 

 maxLength=8.3 

  

 if side=="Right": 

  p_e=tipPositionRight.getPosition(viz.ABS_GLOBAL) 

  p_t=endPositionRight.getPosition(viz.ABS_GLOBAL) 

  curLength=math.sqrt(math.pow(upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[0]-

p_t[0],2)+math.pow(upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1]-

p_t[1],2)+math.pow(upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[2]-p_t[2],2)) 

  if curLength>maxLength: 

   value1=(endPositionRight.getPosition(viz.ABS_GLOBAL)[0]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[0])*(maxLength/curLength) 

   value2=(endPositionRight.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])*(maxLength/curLength) 

   value3=(endPositionRight.getPosition(viz.ABS_GLOBAL)[2]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[2])*(maxLength/curLength) 

   endPositionRight.setPosition(upperVectorRightBase.getPosition(viz.ABS_GLOBAL),viz.ABS_GLOBAL) 

   endPositionRight.setPosition([value1,value2,value3],viz.REL_GLOBAL) 

  if abs(p_e[0]-p_t[0])>margin or abs(p_e[1]-p_t[1])>margin or abs(p_e[2]-p_t[2])>margin: 

   CyclicCoordDes(foreArmVectorRightBase,side) 

   CyclicCoordDes(upperVectorRightBase,side) 

    

 if side=="Left": 

  p_e=tipPositionLeft.getPosition(viz.ABS_GLOBAL) 

  p_t=endPositionLeft.getPosition(viz.ABS_GLOBAL) 

  curLength=math.sqrt(math.pow(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[0]-

p_t[0],2)+math.pow(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1]-

p_t[1],2)+math.pow(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[2]-p_t[2],2)) 

  if curLength>maxLength: 

   value1=(endPositionLeft.getPosition(viz.ABS_GLOBAL)[0]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[0])*(maxLength/curLength) 

   value2=(endPositionLeft.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])*(maxLength/curLength) 

   value3=(endPositionLeft.getPosition(viz.ABS_GLOBAL)[2]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[2])*(maxLength/curLength) 

   endPositionLeft.setPosition(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL),viz.ABS_GLOBAL) 

   endPositionLeft.setPosition([value1,value2,value3],viz.REL_GLOBAL) 

  if abs(p_e[0]-p_t[0])>margin or abs(p_e[1]-p_t[1])>margin or abs(p_e[2]-p_t[2])>margin: 
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   CyclicCoordDes(foreArmVectorLeftBase,side) 

   CyclicCoordDes(upperVectorLeftBase,side)    

 

def GetThetaValues(side): 

 if side=="Right": 

  p_t=endPositionRight.getPosition(viz.ABS_GLOBAL) 

  theta1r= upperVectorRight.getEuler(viz.ABS_GLOBAL)[0]-shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[0] 

  theta2r=foreArmVectorRight.getEuler(viz.ABS_PARENT)[0] 

  theta3r=-upperVectorRight.getEuler(viz.ABS_GLOBAL)[1]+shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[1] 

  maxLength=8.414 

  curLength=math.sqrt(math.pow(upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[0]-

p_t[0],2)+math.pow(upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1]-

p_t[1],2)+math.pow(upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[2]-p_t[2],2)) 

  extRatio=curLength/maxLength/1.2 

  return [theta1r,theta2r,theta3r,extRatio] 

   

 if side=="Left": 

  p_t=endPositionLeft.getPosition(viz.ABS_GLOBAL) 

  theta1l=upperVectorLeft.getEuler(viz.ABS_GLOBAL)[0]-shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[0] 

  theta2l=foreArmVectorLeft.getEuler(viz.ABS_PARENT)[0] 

  theta3l=-upperVectorLeft.getEuler(viz.ABS_GLOBAL)[1]+shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[1] 

  maxLength=8.414 

  curLength=math.sqrt(math.pow(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[0]-

p_t[0],2)+math.pow(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1]-

p_t[1],2)+math.pow(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[2]-p_t[2],2)) 

  extRatio=curLength/maxLength/1.2 

  return [theta1l,theta2l,theta3l,extRatio]  

 

vizact.onupdate(1,CheckError,"Right") 

vizact.onupdate(1,CheckError,"Left") 

 

def PlanarRotation(side): 

 margin=.05 

 rotDeg=2 

 if side=="Right": 

  p_e=tipPositionRight.getPosition(viz.ABS_GLOBAL) 

  p_c=upperVectorRightBase.getPosition(viz.ABS_GLOBAL) 

  neg_p_c=[-p_c[0],-p_c[1],-p_c[2]] 

  A=[sum(x) for x in zip(p_e,neg_p_c)] 

  if abs((foreArmVectorRightBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionRight.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])*.416)>margin and (foreArmVectorRightBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionRight.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])*.416<0: 

   upperVectorRight.setAxisAngle([A[0],A[1],A[2],rotDeg],viz.REL_GLOBAL) 

 

  if abs((foreArmVectorRightBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionRight.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])*.416)>margin and (foreArmVectorRightBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionRight.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])*.416>0: 

   upperVectorRight.setAxisAngle([A[0],A[1],A[2],-rotDeg],viz.REL_GLOBAL) 

    

 if side=="Left": 

  p_e=tipPositionLeft.getPosition(viz.ABS_GLOBAL) 

  p_c=upperVectorLeftBase.getPosition(viz.ABS_GLOBAL) 

  neg_p_c=[-p_c[0],-p_c[1],-p_c[2]] 

  A=[sum(x) for x in zip(p_e,neg_p_c)] 

  if abs((foreArmVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionLeft.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])*.416)>margin and (foreArmVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1]-
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upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionLeft.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])*.416>0: 

   upperVectorLeft.setAxisAngle([A[0],A[1],A[2],rotDeg],viz.REL_GLOBAL) 

 

  if abs((foreArmVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionLeft.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])*.416)>margin and (foreArmVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionLeft.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])*.416<0: 

   upperVectorLeft.setAxisAngle([A[0],A[1],A[2],-rotDeg],viz.REL_GLOBAL) 

 

global theta1_l_List; global theta2_l_List; global theta3_l_List 

global theta1_r_List; global theta2_r_List; global theta3_r_List 

#Initialize the length of the lists to ten 

theta1_l_List=[0]*10 

theta2_l_List=[0]*10 

theta3_l_List=[0]*10 

theta1_r_List=[0]*10 

theta2_r_List=[0]*10 

theta3_r_List=[0]*10  

 

#Averages the Theta Values Sent to the Arm Models to smooth the motion 

def AvgThetaValues(inp_type,inp_list): 

 #Theta Values that are applied 

 global theta1r; global theta2r; global theta3r 

 global theta1l; global theta2l; global theta3l 

 #List of last 10 theta values 

 global theta1_l_List; global theta2_l_List; global theta3_l_List 

 global theta1_r_List; global theta2_r_List; global theta3_r_List 

  

 if inp_type=="theta1l": 

  inp_value=theta1l 

 if inp_type=="theta2l": 

  inp_value=theta2l 

 if inp_type=="theta3l": 

  inp_value=theta3l 

 if inp_type=="theta1r": 

  inp_value=theta1r 

 if inp_type=="theta2r": 

  inp_value=theta2r 

 if inp_type=="theta3r": 

  inp_value=theta3r 

 #Sum of the theta values in list and apply them to the global theta value 

 for i in range(0,10): 

  if i==0: 

   tempValue_1=inp_list[i] 

   inp_list[i]=inp_value 

  else: 

   tempValue_2=inp_list[i] 

   inp_list[i] = tempValue_1 

   tempValue_1=tempValue_2 

 sum=0 

 for element in inp_list: 

  sum+=element 

  inp_value=sum/10 

 return inp_value 

 

#Move the robot model to the theta values determined by the CCD  

def MoveArms(colUpArm,colGrasp): 

 global theta1r; global theta2r; global theta3r; global extRatioR; 

 global theta1l; global theta2l; global theta3l; global extRatioL; 
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 if colUpArm==colUpArmRight: 

  theta1=AvgThetaValues("theta1r",theta1_r_List); theta2=AvgThetaValues("theta2r",theta2_r_List); 

theta3=AvgThetaValues("theta3r",theta3_r_List); 

 if colUpArm==colUpArmLeft: 

  theta1=AvgThetaValues("theta1l",theta1_l_List); theta2=AvgThetaValues("theta2l",theta2_l_List); 

theta3=AvgThetaValues("theta3l",theta3_l_List); 

 upperArmPushFast=300000000*1.2 

 upperArmPushSlow=upperArmPushFast/3 

 

 foreArmPushFast=700000000 

 foreArmPushSlow=foreArmPushFast/3 

  

 #Get the Current Angle Values for the Collision Models 

 theta1_c=colUpArm.getEuler(viz.ABS_PARENT)[2] 

 theta2_c=colGrasp.getEuler(viz.ABS_PARENT)[2] 

 if colUpArm==colUpArmRight: 

  theta3_c=colUpArm.getEuler(viz.ABS_PARENT)[1]*extRatioR 

 elif colUpArm==colUpArmLeft or colUpArm==colCautLeft: 

  theta3_c=colUpArm.getEuler(viz.ABS_PARENT)[1]*extRatioL 

 

 #Stop the Movement so the Part Doesn't Accelerate Uncontrollably 

 colUpArmRight.setVelocity([0,0,0]) 

 colUpArmRight.setAngularVelocity([0,0,0]) 

 colGraspRight.setVelocity([0,0,0]) 

 colGraspRight.setAngularVelocity([0,0,0]) 

 colUpArmLeft.setVelocity([0,0,0]) 

 colUpArmLeft.setAngularVelocity([0,0,0]) 

 colGraspLeft.setVelocity([0,0,0]) 

 colGraspLeft.setAngularVelocity([0,0,0]) 

 colCautLeft.setVelocity([0,0,0]) 

 colCautLeft.setAngularVelocity([0,0,0])  

  

 slowMargin=10 

 errorMargin=.5 

  

 #Rotate UpperArm Left and Right 

 if theta1-theta1_c>0 and abs(theta1-theta1_c)>slowMargin: 

  colUpArm.applyTorque([0,0,upperArmPushFast],duration=0.2,mode=viz.ABS_LOCAL) 

 elif theta1-theta1_c>0 and abs(theta1-theta1_c)<=slowMargin and abs(theta1-theta1_c)>=errorMargin: 

  colUpArm.applyTorque([0,0,upperArmPushSlow],duration=0.2,mode=viz.ABS_LOCAL) 

   

 if theta1-theta1_c<0 and abs(theta1-theta1_c)>slowMargin: 

  colUpArm.applyTorque([0,0,-upperArmPushFast],duration=0.2,mode=viz.ABS_LOCAL) 

 elif theta1-theta1_c<0 and abs(theta1-theta1_c)<=slowMargin and abs(theta1-theta1_c)>=errorMargin: 

  colUpArm.applyTorque([0,0,-upperArmPushSlow],duration=0.2,mode=viz.ABS_LOCAL) 

   

 #Rotate Forearms Left and Right 

  #If Cautery arm is used, alters the force values to compensate for the change 

 if colGrasp==colCautLeft: 

  if theta2-theta2_c>0 and abs(theta2-theta2_c)>slowMargin: 

   colGrasp.applyTorque([0,0,foreArmPushFast/2],duration=0.2,mode=viz.ABS_LOCAL) 

  elif theta2-theta2_c>0 and abs(theta2-theta2_c)<=slowMargin and abs(theta2-theta2_c)>=errorMargin: 

   colGrasp.applyTorque([0,0,foreArmPushSlow/2],duration=0.2,mode=viz.ABS_LOCAL) 

    

  if theta2-theta2_c<0 and abs(theta2-theta2_c)>slowMargin: 

   colGrasp.applyTorque([0,0,-foreArmPushFast/2],duration=0.2,mode=viz.ABS_LOCAL) 

  elif theta2-theta2_c<0 and abs(theta2-theta2_c)<=slowMargin and abs(theta2-theta2_c)>=errorMargin: 

   colGrasp.applyTorque([0,0,-foreArmPushSlow/2],duration=0.2,mode=viz.ABS_LOCAL) 

   

 else: 

  if theta2-theta2_c>0 and abs(theta2-theta2_c)>slowMargin: 
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   colGrasp.applyTorque([0,0,foreArmPushFast],duration=0.2,mode=viz.ABS_LOCAL) 

  elif theta2-theta2_c>0 and abs(theta2-theta2_c)<=slowMargin and abs(theta2-theta2_c)>=errorMargin: 

   colGrasp.applyTorque([0,0,foreArmPushSlow],duration=0.2,mode=viz.ABS_LOCAL) 

    

  if theta2-theta2_c<0 and abs(theta2-theta2_c)>slowMargin: 

   colGrasp.applyTorque([0,0,-foreArmPushFast],duration=0.2,mode=viz.ABS_LOCAL) 

  elif theta2-theta2_c<0 and abs(theta2-theta2_c)<=slowMargin and abs(theta2-theta2_c)>=errorMargin: 

   colGrasp.applyTorque([0,0,-foreArmPushSlow],duration=0.2,mode=viz.ABS_LOCAL) 

 

 #Rotate UpperArm Up 

 if theta3-theta3_c>0 and abs(theta3-theta3_c)>slowMargin: 

  colUpArm.applyTorque([upperArmPushFast,0,0],duration=0.2,mode=viz.ABS_LOCAL) 

 elif theta3-theta3_c>0 and abs(theta3-theta3_c)<=slowMargin and abs(theta3-theta3_c)>=errorMargin: 

  colUpArm.applyTorque([upperArmPushSlow,0,0],duration=0.2,mode=viz.ABS_LOCAL) 

   

 #Rotate UpperArm Down 

 if theta3-theta3_c<0 and abs(theta3-theta3_c)>slowMargin: 

  colUpArm.applyTorque([-upperArmPushFast,0,0],duration=0.2,mode=viz.ABS_LOCAL)  

 elif theta3-theta3_c<0 and abs(theta3-theta3_c)<=slowMargin and abs(theta3-theta3_c)>=errorMargin: 

  colUpArm.applyTorque([-upperArmPushSlow,0,0],duration=0.2,mode=viz.ABS_LOCAL) 

   

 #Twist Upper Arm 

 margin=.05 

 rotDeg=.5 

 setPoint=.416#-.116 

 if colUpArm==colUpArmLeft and colGrasp==colGraspLeft: 

  p_e=linkSphereLeft.getPosition(viz.ABS_GLOBAL) 

  p_c=pivotPointLeft.getPosition(viz.ABS_GLOBAL) 

  neg_p_c=[-p_c[0],-p_c[1],-p_c[2]] 

  A=[sum(x) for x in zip(p_e,neg_p_c)] 

  if abs((elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint)>margin and 

(elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint>0: 

   colUpArmLeft.setAxisAngle([A[0],A[1],A[2],rotDeg],viz.REL_GLOBAL) 

  if abs((elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint)>margin and 

(elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint<0: 

   colUpArmLeft.setAxisAngle([A[0],A[1],A[2],-rotDeg],viz.REL_GLOBAL) 

  

 if colUpArm==colUpArmLeft and colGrasp==colCautLeft: 

  p_e=linkSphereLeft_caut.getPosition(viz.ABS_GLOBAL) 

  p_c=pivotPointLeft.getPosition(viz.ABS_GLOBAL) 

  neg_p_c=[-p_c[0],-p_c[1],-p_c[2]] 

  A=[sum(x) for x in zip(p_e,neg_p_c)] 

  if abs((elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft_caut.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint)>margin and 

(elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft_caut.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint>0: 

   colUpArmLeft.setAxisAngle([A[0],A[1],A[2],rotDeg],viz.REL_GLOBAL) 

  if abs((elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft_caut.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint)>margin and 

(elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft_caut.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint<0: 

   colUpArmLeft.setAxisAngle([A[0],A[1],A[2],-rotDeg],viz.REL_GLOBAL) 

   

 if colUpArm==colUpArmRight: 

  p_e=linkSphereRight.getPosition(viz.ABS_GLOBAL) 

  p_c=pivotPointRight.getPosition(viz.ABS_GLOBAL) 

  neg_p_c=[-p_c[0],-p_c[1],-p_c[2]] 
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  A=[sum(x) for x in zip(p_e,neg_p_c)] 

  if abs((elbowPointRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])*setPoint)>margin and 

(elbowPointRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])*setPoint<0: 

   colUpArmRight.setAxisAngle([A[0],A[1],A[2],rotDeg],viz.REL_GLOBAL) 

  if abs((elbowPointRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])*setPoint)>margin and 

(elbowPointRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])*setPoint>0: 

   colUpArmRight.setAxisAngle([A[0],A[1],A[2],-rotDeg],viz.REL_GLOBAL) 

 

global moveArmLimiter 

moveArmLimiter=False 

#Used to determine which of the forearms were chosen and should be moving 

def SetForearmMovement(): 

 global foreArmChoice 

 global moveArmLimiter 

 if moveArmLimiter==False: 

  if foreArmChoice=="GRASPER": 

   vizact.onupdate(0,MoveArms,colUpArmLeft,colGraspLeft) 

   moveArmLimiter=True 

  elif foreArmChoice=="CAUTERY": 

   vizact.onupdate(0,MoveArms,colUpArmLeft,colCautLeft) 

   moveArmLimiter=True 

vizact.onupdate(0,MoveArms,colUpArmRight,colGraspRight) 

vizact.ontimer2(1,30,SetForearmMovement) 

 

#GEOMAGIC_________________________________________________________________________________________________________

____________GEOMAGIC 

 

geoMagicLeft=sensable.addHapticDevice("Left") 

geoMagicRight=sensable.addHapticDevice("Right") 

 

#Get the positional values of the GeoMagic Touches, scale them, and assign the data to the endPositions or desired position of the vector tips 

def ReadGeoMagic(): 

 #Bounding Boxes for Scaling 

 firstBBoxLimitRight=[-6.25,-2.5,3.4] #[Left,Lower,Out] 

 secondBBoxLimitRight=[4.3,6.7,-2] #[Right,Upper,In] 

  

 firstBBoxLimitLeft=[-7.25,-2.5,3.4]#[Left,Lower,Out] 

 secondBBoxLimitLeft=[3.3,6.7,-2]#[Right,Upper,In] 

  

 #Limits for the GeomMagics  

 firstGeoLimit=[-.136,-.106,.098]#[Left,Lower,Out] 

 secondGeoLimit=[.1,.135,-.06]#[Right,Upper,In] 

  

 #Scale the inputs into three coordinate values to assing to the endPositions 

 right_x=GeoCoordTrans(firstGeoLimit[0],secondGeoLimit[0],firstBBoxLimitRight[0],secondBBoxLimitRight[0],geoMagicRight.get

Position()[0]) 

 right_y=GeoCoordTrans(firstGeoLimit[1],secondGeoLimit[1],firstBBoxLimitRight[1],secondBBoxLimitRight[1],geoMagicRight.get

Position()[1]) 

 right_z=GeoCoordTrans(firstGeoLimit[2],secondGeoLimit[2],firstBBoxLimitRight[2],secondBBoxLimitRight[2],geoMagicRight.get

Position()[2]) 

 endPositionRight.setPosition([right_x,right_y,right_z],viz.ABS_GLOBAL) 

  

 left_x=GeoCoordTrans(firstGeoLimit[0],secondGeoLimit[0],firstBBoxLimitLeft[0],secondBBoxLimitLeft[0],geoMagicLeft.getPositi

on()[0]) 

 left_y=GeoCoordTrans(firstGeoLimit[1],secondGeoLimit[1],firstBBoxLimitLeft[1],secondBBoxLimitLeft[1],geoMagicLeft.getPositi

on()[1]) 
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 left_z=GeoCoordTrans(firstGeoLimit[2],secondGeoLimit[2],firstBBoxLimitLeft[2],secondBBoxLimitLeft[2],geoMagicLeft.getPositi

on()[2]) 

 endPositionLeft.setPosition([left_x,left_y,left_z],viz.ABS_GLOBAL) 

  

 #Read the ButtonStates of the geoMagics to see if the graspers should open or close 

 state=geoMagicLeft.getButtonState() 

 if geoMagicLeft.isButtonDown(1): 

  OpenClose("Left","Close") 

 elif geoMagicLeft.isButtonDown(0): 

  OpenClose("Left","Open") 

   

 state2=geoMagicRight.getButtonState()  

 if geoMagicRight.isButtonDown(1): 

  OpenClose("Right","Close") 

 elif geoMagicRight.isButtonDown(0): 

  OpenClose("Right","Open") 

  

 #Read the twist of the geoMagics wrist to see if the graspers should rotate 

 if geoMagicLeft.getEuler()[2]<-50: 

  RotateGrasper("Left","CW") 

 if geoMagicLeft.getEuler()[2]>50: 

  RotateGrasper("Left","CCW") 

   

 if geoMagicRight.getEuler()[2]<-50: 

  RotateGrasper("Right","CW") 

 if geoMagicRight.getEuler()[2]>50: 

  RotateGrasper("Right","CCW") 

 

#Here to Turn Geomagic Reading ON/OFF--------------------------------------------- 

vizact.ontimer(.1,ReadGeoMagic)   

 

#Linear Scaling Function for the GeoMagic Inputs 

def GeoCoordTrans(x1,x2,y1,y2,x): 

 m=(y1-y2)/(x1-x2) 

 b=.5*(y1+y2-m*(x1+x2)) 

 y=m*x+b 

 return y 

 

#Testing Functions Used to Move and Rotate Objects Manually 

def retrievePosition(key): 

 if key == "p":  

  printValue=linkSphereLeft_caut.getPosition() 

  #printValue=upperVectorRight.getEuler() 

  print printValue 

viz.callback(viz.KEYDOWN_EVENT,retrievePosition) 

def movement(first,second,third): 

 vizact.onkeydown("w", first.setPosition, [0,1,0],viz.REL_LOCAL) 

 vizact.onkeydown("s", first.setPosition, [0,-1,0],viz.REL_LOCAL) 

 vizact.onkeydown("a", first.setPosition, [1,0,0],viz.REL_LOCAL) 

 vizact.onkeydown("d", first.setPosition, [-1,0,0],viz.REL_LOCAL) 

 vizact.onkeydown("q", first.setPosition, [0,0,1],viz.REL_LOCAL) 

 vizact.onkeydown("e", first.setPosition, [0,0,-1],viz.REL_LOCAL) 

# 

# vizact.onkeydown("i", second.setEuler, [0,1,0],viz.REL_LOCAL) 

# vizact.onkeydown("k", second.setEuler, [0,-1,0],viz.REL_LOCAL) 

# vizact.onkeydown("j", second.setEuler, [0,0,1],viz.REL_PARENT) 

# vizact.onkeydown("l", second.setEuler, [0,0,-1],viz.REL_PARENT) 

#  

# vizact.onkeydown("m", third.setEuler, [1,0,0],viz.REL_LOCAL) 

# vizact.onkeydown("n", third.setEuler, [-1,0,0],viz.REL_LOCAL) 

# vizact.onkeydown("1", third.setEuler, [1,0,0],viz.REL_PARENT) 
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# vizact.onkeydown("2", third.setEuler, [-1,0,0],viz.REL_PARENT) 

movement(endPositionLeft,upperArmRight,upperVectorRight) 

 

#Duplicate Tip Position Spheres with shoulder parent for shoulder rotation 

dupTipPosRight=vizshape.addSphere(radius=.1,parent=shoulderEulerVector) 

dupTipPosRight.alpha(vectorAlphaValues) 

dupTipPosLeft=vizshape.addSphere(radius=.1,parent=shoulderEulerVector) 

dupTipPosLeft.alpha(vectorAlphaValues) 

 

#Checks the positioning of the arms to see if the shoulders should be rotated 

def TiltShoulderCheck(): 

 #Threshold Values needed to be exceeded to trigger rotation 

 x_avg_threshold=4 

 x_l_threshold=5 

 x_r_threshold=-5 

 y_threshold_up=2 

 y_avg_threshold_up=2.3 

 y_threshold_down=-3 

 y_avg_threshold_down=-3.5 

 dupTipPosRight.setPosition(tipPositionRight.getPosition(viz.ABS_GLOBAL),viz.ABS_GLOBAL) 

 dupTipPosLeft.setPosition(tipPositionLeft.getPosition(viz.ABS_GLOBAL),viz.ABS_GLOBAL) 

  

 x_r=dupTipPosRight.getPosition(viz.ABS_PARENT)[0] 

 y_r=dupTipPosRight.getPosition(viz.ABS_PARENT)[1] 

  

 x_l=dupTipPosLeft.getPosition(viz.ABS_PARENT)[0]+1.325 

 y_l=dupTipPosLeft.getPosition(viz.ABS_PARENT)[1] 

  

 if (x_r+x_l)/2>x_avg_threshold and x_l>x_l_threshold: 

  TiltShoulder("Right") 

 elif (x_r+x_l)/2<-x_avg_threshold and x_r<x_r_threshold: 

  TiltShoulder("Left") 

   

 if y_r>y_threshold_up and y_l>y_threshold_up: 

  TiltShoulder("Up") 

 if y_r<y_threshold_down and y_l<y_threshold_down and (y_r+y_l)/2<y_avg_threshold_down: 

  TiltShoulder("Down") 

vizact.onupdate(0,TiltShoulderCheck) 

 

def TiltShoulder(direction): 

 #Ensure the Shoulder Stays Aligned (Doesn't "Shrug" on one side) 

 if shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[2]>.02: 

  shoulder.setEuler([-.01,0,0],viz.REL_LOCAL) 

 if shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[2]<-.02: 

  shoulder.setEuler([.01,0,0],viz.REL_LOCAL) 

 #Read direction and move rotate shoulders in that direction 

 if direction=="Down": 

  if -shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[1]>-30: 

   shoulder.setEuler([0,-.1,0],viz.REL_LOCAL) 

 if direction=="Up": 

  if -shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[1]<30: 

   shoulder.setEuler([0,.1,0],viz.REL_LOCAL) 

 if direction=="Right": 

  if shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[0]<30: 

   shoulder.setEuler([0,0,.1],viz.REL_LOCAL) 

 if direction=="Left": 

  if shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[0]>-30: 

   shoulder.setEuler([0,0,-.1],viz.REL_LOCAL) 

 

#Global Variables to Tabulates and Reports Graspers that are opened or closed too long 

global overCloseValue 
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overCloseValue=0 

global overCloseTrigger 

overCloseTrigger=0 

#Variable that determines whether a ring can be grabbed, used to prevent the ring from being regrabbed 

#right after being dropped 

global grabTorusLock 

grabTorusLock=True 

#Function for Opening and Closing Graspers, Called When An Omni Button is Pressed 

def OpenClose(side, direction): 

 global leftEuler 

 global rightEuler 

 global overCloseTrigger  

 global grabTorusLock 

 triggerValue=30 

  

 if side=="Left" and direction=="Open":   

  #if colBoxLeft1.getEuler()[2]>=-50: 

  if tipLeft1.getEuler()[2]>=-15: 

   colBoxLeft1.setEuler([0,0,-1],viz.REL_LOCAL) 

  leftEuler=colBoxLeft1.getEuler()[2] 

  ReleaseTorus(side) 

  overCloseTrigger=0 

   

 if side=="Left" and direction=="Close": 

  if tipLeft1.getEuler()[2]>29.1: 

   overCloseTrigger=overCloseTrigger+1 

   if overCloseTrigger>triggerValue: 

    OverCloseError(side) 

  if closeRestrictorLeft==False: 

   if tipLeft1.getEuler()[2]<30: 

    colBoxLeft1.setEuler([0,0,1],viz.REL_LOCAL) 

   leftEuler=colBoxLeft1.getEuler()[2] 

  if closeRestrictorLeft==True: 

   overCloseTrigger=overCloseTrigger+1 

   if overCloseTrigger == triggerValue: 

    OverCloseError(side) 

    

 if side=="Right" and direction=="Open": 

  if colBoxRight1.getEuler()[2]>=-50: 

   colBoxRight1.setEuler([0,0,-1],viz.REL_LOCAL) 

  rightEuler=colBoxRight1.getEuler()[2] 

  ReleaseTorus(side) 

  overCloseTrigger=0 

 if side=="Right" and direction=="Close": 

  if colBoxRight1.getEuler()[2]>-5.1: 

   overCloseTrigger=overCloseTrigger+1 

   if overCloseTrigger>triggerValue: 

    OverCloseError(side) 

  if closeRestrictorRight==False: 

   if colBoxRight1.getEuler()[2]<-5: 

    colBoxRight1.setEuler([0,0,1],viz.REL_LOCAL) 

   rightEuler=colBoxRight1.getEuler()[2] 

  if closeRestrictorRight==True: 

   overCloseTrigger=overCloseTrigger+1 

   if overCloseTrigger == triggerValue: 

    OverCloseError(side) 

 if direction=="Close": 

  grabTorusLock=False 

 else:  

  grabTorusLock=True 

def LockGrab(): 



 

 

76 

 

 global grabTorusLock 

 grabTorusLock=True 

vizact.ontimer(1.5,LockGrab) 

     

def RotateGrasper(side,direction): 

 if side=="Right": 

  if direction=="CCW": 

   turnSphereRight.setEuler([3,0,0],viz.REL_LOCAL) 

 if side=="Right": 

  if direction=="CW": 

   turnSphereRight.setEuler([-3,0,0],viz.REL_LOCAL) 

 if side=="Left": 

  if direction=="CCW": 

   turnSphereLeft.setEuler([3,0,0],viz.REL_LOCAL) 

   turnSphereLeftCaut.setEuler([3,0,0],viz.REL_LOCAL) 

 if side=="Left": 

  if direction=="CW": 

   turnSphereLeft.setEuler([-3,0,0],viz.REL_LOCAL) 

   turnSphereLeftCaut.setEuler([-3,0,0],viz.REL_LOCAL)    

#Displayed Text Size Variables 

small=10 

medium=40 

large=200 

 

#Following functions are used to display 

def RemoveText(dispObject): 

 dispObject.remove() 

def DisplayText(message,quadrant,color,size,time): 

 global dispObject 

 dispObject=viz.addText(message, viz.ORTHO) 

 dispObject.fontSize(size) 

 dispObject.color(color) 

 if quadrant=="TOP_LEFT": 

  dispObject.setPosition(155,983) 

 if quadrant=="BOTTOM_LEFT": 

  dispObject.setPosition(5,5) 

 vizact.ontimer2(time,0, RemoveText,dispObject) 

 if quadrant=="CENTERED": 

  dispObject.setPosition(500,600) 

 if quadrant=="BOTTOM_CENTER": 

  dispObject.setPosition(700,10) 

 if quadrant=="TOP_CENTER_1": 

  dispObject.setPosition(800,983) 

 if quadrant=="TOP_CENTER_2": 

  dispObject.setPosition(965,983) 

 if color==red: 

  dispObject.setBackdrop(viz.BACKDROP_OUTLINE) 

  dispObject.setBackdropColor(black) 

 

#Place for Text Which Stays on the Screen for the Entirety of the Simulation 

def StaticText(endScreen): 

  

 timerText=viz.addText("Timer:",viz.ORTHO)  

 timerText.fontSize(medium) 

 timerText.color(white) 

 timerText.setPosition(40,983) 

 timerText.alpha(staticTextAlpha) 

  

 unlockViewText=viz.addText("Unlock View:",viz.ORTHO)  

 unlockViewText.fontSize(medium) 

 unlockViewText.color(white) 
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 unlockViewText.setPosition(1620,983) 

 unlockViewText.alpha(staticTextAlpha) 

  

 resetSimulationText=viz.addText("Reset Simulation",viz.ORTHO) 

 resetSimulationText.fontSize(medium) 

 resetSimulationText.color(white) 

 resetSimulationText.setPosition(40,931) 

 resetSimulationText.alpha(staticTextAlpha) 

  

 recordMetricsText=viz.addText("Record Metrics:",viz.ORTHO) 

 recordMetricsText.setBackdrop(viz.BACKDROP_OUTLINE) 

 recordMetricsText.setBackdropColor(white) 

 recordMetricsText.fontSize(medium) 

 recordMetricsText.color(gray) 

 recordMetricsText.setPosition(1580,20) 

 recordMetricsText.alpha(.3) 

  

 #Remove's the static text for the completion screen 

 if endScreen==True: 

  orthoChildrenList=viz.MainWindow.getChildren() 

  for number in orthoChildrenList: 

   viz.VizText(number).remove() 

 

#Button size and position assignment 

timerButton=viz.addButton() 

timerButton.setPosition(.01,.98) 

timerButton.setScale(.7,1) 

timerButton.color(blue) 

global timerToggle  

timerToggle=0 

global timeValue 

timeValue=0 

 

viewButton = viz.addButton() 

viewButton.setPosition(.98,.98) 

viewButton.setScale(.7,1) 

viewButton.color(blue) 

global viewtoggle; viewtoggle=0 

 

#Function which toggles between various states in the program 

def ToggleFunct(object): 

  

 #Turns Timer On and Off  

 global timerToggle 

 if object=="Timer": 

  if timerToggle==2: 

   timerToggle=0 

  timerToggle=timerToggle+1 

   

 #Locks and Unlocks the View from the shoulder model 

 global viewtoggle 

 global viewLink 

 if object=="View": 

  viewtoggle=viewtoggle+1 

  if viewtoggle==1: 

   viewLink.remove() 

  if viewtoggle==2: 

   viewLink=viz.link(cameraObject,viz.MainView) 

   viewLink.preEuler( [0, 35, 0] ) 

   viewtoggle=0 
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vizact.onbuttondown(viewButton, ToggleFunct, "View") 

vizact.onbuttondown(timerButton, ToggleFunct, "Timer") 

vizact.onupdate(0, LockDownPosition) 

 

#Reset the position of the robot as well as the rings when the button is clicked 

resetButton=viz.addButton() 

resetButton.setPosition(.01,.93) 

resetButton.setScale(.7,1) 

resetButton.color(blue) 

 

#Function called when button is pressed to set everything to it's starting position 

def ResetSimulation(): 

 global xr; global yr; global zr 

 global xl; global yl; global zl 

 xr=0;yr=180;zr=0 

 xl=0;yl=180;zl=0 

  

 #Tips Open/Close Angles 

 global leftEuler; global rightEuler 

 leftEuler=-35 

 rightEuler=-35 

 

 #Body of the Robot 

 shoulder.setPosition([.35,5,-5]) 

 shoulder.setEuler([0,-90,180]) 

 #Upper Arms 

 colUpArmLeft.setPosition([30,25,4.5]) 

 colUpArmLeft.setEuler([0,0,0]) 

 colUpArmLeft.setVelocity([0,0,0]) 

 colUpArmRight.setPosition([-15,26,4.5]) 

 colUpArmRight.setEuler([0,0,0]) 

 colUpArmRight.setVelocity([0,0,0]) 

  

 #Grasper Forearms 

 colGraspLeft.setPosition([30,116,2.5]) 

 colGraspLeft.setEuler([0,0,0]) 

 colGraspRight.setPosition([-12,116,2.8]) 

 colGraspRight.setEuler([0,0,0]) 

 #Cautery Forearm 

 colCautLeft.setPosition([30,110,5]) 

 colCautLeft.setEuler([0,0,0]) 

 colCautLeft.setAngularVelocity([0,0,0]) 

 colCautLeft.setVelocity([0,0,0]) 

  

 #Grasper Tips 

 colBoxRight1.setPosition([-9,168,5]) 

 colBoxRight1.setEuler([0,0,-35]) 

 colBoxRight2.setPosition([-11.82,167.4,4.9]) 

 colBoxRight2.setEuler([0,0,35]) 

 colBoxLeft1.setPosition([32,168,4.6]) 

 colBoxLeft1.setEuler([0,0,-35]) 

 colBoxLeft2.setPosition([29,167.5,4.4]) 

 colBoxLeft2.setEuler([0,0,35]) 

 colBoxLeft1.setAngularVelocity([0,0,0]) 

 colBoxLeft1.setVelocity([0,0,0]) 

 colBoxLeft2.setAngularVelocity([0,0,0]) 

 colBoxLeft2.setVelocity([0,0,0]) 

 colBoxRight1.setAngularVelocity([0,0,0]) 

 colBoxRight1.setVelocity([0,0,0]) 

 colBoxRight2.setAngularVelocity([0,0,0]) 

 colBoxRight2.setVelocity([0,0,0]) 



 

 

79 

 

  

 #Torus  

 torus1weight.setPosition([-1,1,1.4]) 

 torus1weight.setEuler([0,0,0]) 

 torus1weight.setVelocity([0,0,0]) 

 torus1weight.setAngularVelocity([0,0,0]) 

 torus2weight.setPosition([-1,1,-0.1]) 

 torus2weight.setEuler([0,0,0]) 

 torus2weight.setVelocity([0,0,0]) 

 torus2weight.setAngularVelocity([0,0,0]) 

 torus3weight.setPosition([-1,1,-1.4]) 

 torus3weight.setEuler([0,0,0]) 

 torus3weight.setVelocity([0,0,0]) 

 torus3weight.setAngularVelocity([0,0,0]) 

 torus4weight.setPosition([-2.5,1,1.4]) 

 torus4weight.setEuler([0,0,0]) 

 torus4weight.setVelocity([0,0,0]) 

 torus4weight.setAngularVelocity([0,0,0]) 

 torus5weight.setPosition([-2.5,1,-0.1]) 

 torus5weight.setEuler([0,0,0]) 

 torus5weight.setVelocity([0,0,0]) 

 torus5weight.setAngularVelocity([0,0,0]) 

 torus6weight.setPosition([-2.5,1,-1.4]) 

 torus6weight.setEuler([0,0,0]) 

 torus6weight.setVelocity([0,0,0]) 

 torus6weight.setAngularVelocity([0,0,0]) 

  

 #Sets the forearm end positions to the straight out configuration 

 endPositionRight.setPosition([0,4.9,3.4],viz.ABS_GLOBAL) 

 endPositionLeft.setPosition([-1,4.85,3.4],viz.ABS_GLOBAL) 

#Calls ResetSimulation when button is pressed 

vizact.onbuttondown(resetButton,ResetSimulation) 

 

#Event using a counter every second to tabulate every second 

class TimerFunction(viz.EventClass): 

 def __init__(self): 

  viz.EventClass.__init__(self) 

  self.starttimer(0,1,viz.FOREVER) 

  self.callback(viz.TIMER_EVENT,self.TimerFunction) 

 def TimerFunction(self,timerNumber): 

  global timerToggle 

  global timeValue 

  global simulationType 

  #timerToggle sets whether or not the timeValue counts up 

  if foreArmChoice!="NONE" and vertPegBoxSpawn!="NONE" and simulationType!="NONE": 

   if timerToggle==1: 

    timeValue=timeValue+1 

    if simulationType!="TESTING": 

     DisplayText(str(timeValue),"TOP_LEFT",white,medium,.9) 

   if timerToggle==2 or timerToggle==0: 

    DisplayText(str(timeValue),"TOP_LEFT",white,medium,1) 

TimerFunction() 

 

global torus1GrabLeft; global torus2GrabLeft; global torus3GrabLeft 

global torus4GrabLeft; global torus5GrabLeft; global torus6GrabLeft 

 

torus1GrabLeft=viz.grab(linkSphereLeft,torus1weight,absolute=True,enabled=False) 

torus2GrabLeft=viz.grab(linkSphereLeft,torus2weight,absolute=True,enabled=False) 

torus3GrabLeft=viz.grab(linkSphereLeft,torus3weight,absolute=True,enabled=False) 

torus4GrabLeft=viz.grab(linkSphereLeft,torus4weight,absolute=True,enabled=False) 

torus5GrabLeft=viz.grab(linkSphereLeft,torus5weight,absolute=True,enabled=False) 
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torus6GrabLeft=viz.grab(linkSphereLeft,torus6weight,absolute=True,enabled=False) 

 

global torus1GrabRight; global torus2GrabRight; global torus3GrabRight 

global torus4GrabRight; global torus5GrabRight; global torus6GrabRight 

torus1GrabRight=viz.grab(linkSphereRight,torus1weight,absolute=True,enabled=False) 

torus2GrabRight=viz.grab(linkSphereRight,torus2weight,absolute=True,enabled=False) 

torus3GrabRight=viz.grab(linkSphereRight,torus3weight,absolute=True,enabled=False) 

torus4GrabRight=viz.grab(linkSphereRight,torus4weight,absolute=True,enabled=False) 

torus5GrabRight=viz.grab(linkSphereRight,torus5weight,absolute=True,enabled=False) 

torus6GrabRight=viz.grab(linkSphereRight,torus6weight,absolute=True,enabled=False) 

 

global closeRestrictorLeft 

global closeRestrictorRight 

closeRestrictorLeft=False 

closeRestrictorRight=False 

 

global droppedItemCount 

droppedItemCount=0 

global droppedItemLock 

droppedItemLock=False 

 

global completedTorusCount 

completedTorusCount=0 

 

#Function Called when Collision Notification Enabled Objects Intersect 

def CollisionDetected(e): 

  

 global torus1GrabLeft; global torus2GrabLeft; global torus3GrabLeft 

 global torus4GrabLeft; global torus5GrabLeft; global torus6GrabLeft 

 global torus1GrabRight; global torus2GrabRight; global torus3GrabRight 

 global torus4GrabRight; global torus5GrabRight; global torus6GrabRight 

 global closeRestrictorLeft 

 global closeRestrictorRight 

 global grabTorusLock 

 global droppedItemCount; global droppedItemLock 

 global completedTorusCount 

 completedTorusCount=0 

  

 #Provides List of Object ID's that Intersected the Nodes 

 torus1CollideList=viz.phys.intersectNode(torus1weight) 

 torus2CollideList=viz.phys.intersectNode(torus2weight) 

 torus3CollideList=viz.phys.intersectNode(torus3weight) 

 torus4CollideList=viz.phys.intersectNode(torus4weight) 

 torus5CollideList=viz.phys.intersectNode(torus5weight) 

 torus6CollideList=viz.phys.intersectNode(torus6weight) 

  

 leftGraspColList=viz.phys.intersectNode(colGraspLeft) 

 rightGraspColList=viz.phys.intersectNode(colGraspRight) 

 leftUpArmColList=viz.phys.intersectNode(colUpArmLeft) 

 rightUpArmColList=viz.phys.intersectNode(colUpArmRight) 

 leftCautColList=viz.phys.intersectNode(colCautLeft) 

  

 posBall1ColList=viz.phys.intersectNode(posBall1) 

 posBall2ColList=viz.phys.intersectNode(posBall2) 

 posBall3ColList=viz.phys.intersectNode(posBall3) 

 posBall4ColList=viz.phys.intersectNode(posBall4) 

 posBall5ColList=viz.phys.intersectNode(posBall5) 

 posBall6ColList=viz.phys.intersectNode(posBall6) 

  

 posBallColList=[posBall1ColList,posBall2ColList,posBall3ColList, posBall4ColList, posBall5ColList, posBall6ColList] 
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 #If two parts of the robot collide, flash them red and report a collision error 

 if colBoxRight1 in leftGraspColList or colBoxRight2 in leftGraspColList: 

  FlashPartsRed(tipRight1,grasperLeft) 

  CollisionCount() 

   

 if colBoxRight1 in leftUpArmColList or colBoxRight2 in leftUpArmColList: 

  FlashPartsRed(tipRight1,upperArmLeft) 

  CollisionCount() 

  

 if colBoxLeft1 in rightGraspColList or colBoxLeft2 in rightGraspColList: 

  FlashPartsRed(tipLeft1,grasperRight) 

  CollisionCount() 

 

 if colBoxLeft1 in rightUpArmColList or colBoxLeft2 in rightUpArmColList: 

  FlashPartsRed(tipLeft1,upperArmRight) 

  CollisionCount() 

   

 if colGraspRight in leftUpArmColList: 

  FlashPartsRed(grasperRight,upperArmLeft) 

  CollisionCount() 

   

 if colGraspLeft in rightUpArmColList: 

  FlashPartsRed(grasperLeft,upperArmRight) 

  CollisionCount() 

  

 if colGraspRight in leftGraspColList: 

  FlashPartsRed(grasperRight,grasperLeft) 

  CollisionCount()  

   

 #If a torus collides with both left tips generate a link to the left grasper 

 if colBoxLeft1 in torus1CollideList and colBoxLeft2 in torus1CollideList: 

  if grabTorusLock==False: 

   torus1GrabLeft.remove() 

   torus1GrabLeft=viz.grab(linkSphereLeft,torus1weight,absolute=True) 

   closeRestrictorLeft=True 

    

 if colBoxLeft1 in torus2CollideList and colBoxLeft2 in torus2CollideList: 

  if grabTorusLock==False: 

   torus2GrabLeft.remove() 

   torus2GrabLeft=viz.grab(linkSphereLeft,torus2weight,absolute=True) 

   closeRestrictorLeft=True 

    

 if colBoxLeft1 in torus3CollideList and colBoxLeft2 in torus3CollideList: 

  if grabTorusLock==False: 

   torus3GrabLeft.remove() 

   torus3GrabLeft=viz.grab(linkSphereLeft,torus3weight,absolute=True) 

   closeRestrictorLeft=True  

  

 if colBoxLeft1 in torus4CollideList and colBoxLeft2 in torus4CollideList: 

  if grabTorusLock==False: 

   torus4GrabLeft.remove() 

   torus4GrabLeft=viz.grab(linkSphereLeft,torus4weight,absolute=True) 

   closeRestrictorLeft=True 

    

 if colBoxLeft1 in torus5CollideList and colBoxLeft2 in torus5CollideList: 

  if grabTorusLock==False: 

   torus5GrabLeft.remove() 

   torus5GrabLeft=viz.grab(linkSphereLeft,torus5weight,absolute=True) 

   closeRestrictorLeft=True    

    

 if colBoxLeft1 in torus6CollideList and colBoxLeft2 in torus6CollideList: 
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  if grabTorusLock==False: 

   torus6GrabLeft.remove() 

   torus6GrabLeft=viz.grab(linkSphereLeft,torus6weight,absolute=True) 

   closeRestrictorLeft=True 

 

 #If a torus collides with both right tips generate a link to the right grasper 

 if colBoxRight1 in torus1CollideList and colBoxRight2 in torus1CollideList: 

  if grabTorusLock==False: 

   torus1GrabRight.remove() 

   torus1GrabRight=viz.grab(linkSphereRight,torus1weight,absolute=True) 

   closeRestrictorRight=True  

  

 if colBoxRight1 in torus2CollideList and colBoxRight2 in torus2CollideList: 

  if grabTorusLock==False: 

   torus2GrabRight.remove() 

   torus2GrabRight=viz.grab(linkSphereRight,torus2weight,absolute=True) 

   closeRestrictorRight=True    

    

 if colBoxRight1 in torus3CollideList and colBoxRight2 in torus3CollideList: 

  if grabTorusLock==False: 

   torus3GrabRight.remove() 

   torus3GrabRight=viz.grab(linkSphereRight,torus3weight,absolute=True) 

   closeRestrictorRight=True   

    

 if colBoxRight1 in torus4CollideList and colBoxRight2 in torus4CollideList: 

  if grabTorusLock==False: 

   torus4GrabRight.remove() 

   torus4GrabRight=viz.grab(linkSphereRight,torus4weight,absolute=True) 

   closeRestrictorRight=True 

    

 if colBoxRight1 in torus5CollideList and colBoxRight2 in torus5CollideList: 

  if grabTorusLock==False: 

   torus5GrabRight.remove() 

   torus5GrabRight=viz.grab(linkSphereRight,torus5weight,absolute=True) 

   closeRestrictorRight=True 

   

 if colBoxRight1 in torus6CollideList and colBoxRight2 in torus6CollideList: 

  if grabTorusLock==False: 

   torus6GrabRight.remove() 

   torus6GrabRight=viz.grab(linkSphereRight,torus6weight,absolute=True) 

   closeRestrictorRight=True 

  

 #For each torus, look at what they're colliding with and color them appropriately 

 for posBall in posBallColList: 

  #If torus is in starting cylinders color them blue 

  if cylinder1 in posBall or cylinder2 in posBall or cylinder3 in posBall or cylinder4 in posBall or cylinder5 in posBall or 

cylinder6 in posBall: 

   if posBall==posBall1ColList: 

    torus1.color(blue) 

   if posBall==posBall2ColList: 

    torus2.color(blue) 

   if posBall==posBall3ColList: 

    torus3.color(blue) 

   if posBall==posBall4ColList: 

    torus4.color(blue) 

   if posBall==posBall5ColList: 

    torus5.color(blue) 

   if posBall==posBall6ColList: 

    torus6.color(blue) 

  #If torus is in an ending cylinder color them darkgreen  
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  elif cylinder7 in posBall or cylinder8 in posBall or cylinder9 in posBall or cylinder10 in posBall or cylinder11 in posBall 

or cylinder12 in posBall: 

   if posBall==posBall1ColList: 

    torus1.color(darkgreen) 

    completedTorusCount=completedTorusCount+1 

   if posBall==posBall2ColList: 

    torus2.color(darkgreen) 

    completedTorusCount=completedTorusCount+1 

   if posBall==posBall3ColList: 

    torus3.color(darkgreen) 

    completedTorusCount=completedTorusCount+1 

   if posBall==posBall4ColList: 

    torus4.color(darkgreen) 

    completedTorusCount=completedTorusCount+1 

   if posBall==posBall5ColList: 

    torus5.color(darkgreen) 

    completedTorusCount=completedTorusCount+1 

   if posBall==posBall6ColList: 

    torus6.color(darkgreen) 

    completedTorusCount=completedTorusCount+1 

    

  #If they are colliding with only the pegbox color them red and report a dropped item   

  elif pegBox in posBall: 

   if posBall==posBall1ColList: 

    torus1.color(red) 

   if posBall==posBall2ColList: 

    torus2.color(red) 

   if posBall==posBall3ColList: 

    torus3.color(red) 

   if posBall==posBall4ColList: 

    torus4.color(red) 

   if posBall==posBall5ColList: 

    torus5.color(red) 

   if posBall==posBall6ColList: 

    torus6.color(red) 

   DroppedItemCount() 

  #If they aren't colliding with any of the above color them green 

  else: 

   if posBall==posBall1ColList: 

    torus1.color(green) 

   if posBall==posBall2ColList: 

    torus2.color(green) 

   if posBall==posBall3ColList: 

    torus3.color(green) 

   if posBall==posBall4ColList: 

    torus4.color(green) 

   if posBall==posBall5ColList: 

    torus5.color(green) 

   if posBall==posBall6ColList: 

    torus6.color(green) 

     

viz.callback(viz.COLLIDE_BEGIN_EVENT, CollisionDetected) 

 

#Timer that limits the link being created by the torus for 2 seconds after a torus has been released 

class GrabTorusTimer(viz.EventClass): 

 def __init__(self): 

  viz.EventClass.__init__(self) 

  self.starttimer(0,2,0) 

  self.callback(viz.TIMER_EVENT,self.GrabTorusTimer) 

 def GrabTorusTimer(self,timerNumber): 

  global grabTorusLock 
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  grabTorusLock=False   

 

#Function Called in the OpenClose function to disable the gripper/torus links when 

# the tips are opened; also allows the gripper tips to close further. 

def ReleaseTorus(side): 

 global torus1GrabLeft; global torus2GrabLeft; global torus3GrabLeft 

 global torus4GrabLeft; global torus5GrabLeft; global torus6GrabLeft 

 global torus1GrabRight; global torus2GrabRight; global torus3GrabRight 

 global torus4GrabRight; global torus5GrabRight; global torus6GrabRight 

  

 torusGrabLeftList=[torus1GrabLeft,torus2GrabLeft,torus3GrabLeft,torus4GrabLeft,torus5GrabLeft,torus6GrabLeft] 

 torusGrabRightList=[torus1GrabRight,torus2GrabRight,torus3GrabRight,torus4GrabRight,torus5GrabRight,torus6GrabRight] 

  

 global closeRestrictorLeft 

 global closeRestrictorRight 

 if side=="Left": 

  for torusGrabbed in torusGrabLeftList: 

   torusGrabbed.disable() 

   closeRestrictorLeft=False 

   GrabTorusTimer() 

   grabTorusLock=True 

   

 if side=="Right": 

  for torusGrabbed in torusGrabRightList: 

   torusGrabbed.disable() 

   closeRestrictorRight=False 

   GrabTorusTimer() 

   grabTorusLock=True 

 

global collisionCounter 

collisionCounter=0 

global collisionCountLock 

collisionCountLock=False 

 

#Prevents Collisions From being reported more than once every 3 seconds 

class CollisionLockTimer(viz.EventClass): 

 def __init__(self): 

  viz.EventClass.__init__(self) 

  self.starttimer(0,3,0) 

  self.callback(viz.TIMER_EVENT,self.CollisionLockTimer) 

 def CollisionLockTimer(self,timerNumber): 

  global collisionCountLock 

  collisionCountLock=False 

#Tabulates the number of collisions 

def CollisionCount(): 

 global collisionCountLock 

 global collisionCounter 

 if collisionCountLock == False: 

  collisionCounter=collisionCounter+1 

  collisionCountLock=True 

  CollisionLockTimer() 

 

#Resets the color to original after a collision occured 

class ReturnPartsColorTimer(viz.EventClass): 

 def __init__(self): 

  viz.EventClass.__init__(self) 

  self.starttimer(0,2,0) 

  self.callback(viz.TIMER_EVENT,self.ReturnPartsColorTimer) 

 def ReturnPartsColorTimer(self,timerNumber): 

  upperArmLeft.color(gray) 

  upperArmRight.color(gray) 
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  grasperLeft.color(gray) 

  grasperRight.color(gray) 

  cauteryLeft.color(gray) 

  tipLeft1.color(lightgray) 

  tipLeft2.color(lightgray) 

  tipRight1.color(lightgray) 

  tipRight2.color(lightgray) 

  cauteryLeftTip.color(lightgray) 

#Sets the color of parts that collided to red 

def FlashPartsRed(part1,part2): 

 part1.color(red) 

 part2.color(red) 

 if part1==tipLeft1: 

  tipLeft2.color(red) 

 if part1==tipRight1: 

  tipRight2.color(red) 

 ReturnPartsColorTimer() 

 errorMessage="Collision Error Detected"  

 DisplayText(errorMessage,"BOTTOM_CENTER",red,medium,2) 

 

#Prevents dropped items from being reported more than once every 5 seconds 

class DroppedItemLockTimer(viz.EventClass): 

 def __init__(self): 

  viz.EventClass.__init__(self) 

  self.starttimer(0,10,0) 

  self.callback(viz.TIMER_EVENT,self.DroppedItemLockTimer) 

 def DroppedItemLockTimer(self,timerNumber): 

  global droppedItemLock 

  droppedItemLock=False  

 

#Tabulates the number of times a ring was dropped 

def DroppedItemCount(): 

 global droppedItemLock 

 global droppedItemCount 

 if droppedItemLock == False: 

  droppedItemCount=droppedItemCount+1 

  droppedItemLock=True 

  DroppedItemLockTimer() 

 

vizact.onkeydown("/", CollisionCount) 

 

def OverCloseError(side): 

 global overCloseValue 

 global overCloseTrigger 

 overCloseTrigger=0 

 overCloseValue=overCloseValue+1 

 errorMessage="Closing %s Too Much" %side  

 DisplayText(errorMessage,"BOTTOM_CENTER",red,medium,2) 

 

recordMetricsButton=viz.addButton() 

recordMetricsButton.setPosition(.98,.03) 

recordMetricsButton.setScale(.7,1) 

recordMetricsButton.alpha(.3) 

recordMetricsButton.color(blue) 

 

global fileNumber 

fileNumber=0 

 

def RecordMetrics(): 

 global simulationType 

 global overCloseValue 
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 global collisionCounter 

 global droppedItemCount 

 global timeValue 

 global completedTorusCount 

 global userName 

 userName=userName.upper() 

 global fileNumber 

 #Check path for folder. If one doesn't exist already make a new one with that name. 

 if not os.path.exists("C:\Users\kcoenbrown\Desktop\Simulation\Results\\"+userName): 

  os.makedirs("C:\Users\kcoenbrown\Desktop\Simulation\Results\\"+userName)  

 minutes= timeValue//60 

 seconds= timeValue%60 

 todaysDate=datetime.datetime.now().strftime("%m-%d-%Y") 

 

 OutputFile=userName+"-Results-"+todaysDate+".txt" 

 if os.path.exists("C:\Users\kcoenbrown\Desktop\Simulation\Results\\"+userName+"\\"+OutputFile): 

  while os.path.exists("C:\Users\kcoenbrown\Desktop\Simulation\Results\\"+userName+"\\"+OutputFile):  

   fileNumber=fileNumber+1 

   fileNumberString=str(fileNumber) 

   OutputFile=userName+"-Results-"+todaysDate+"-"+fileNumberString+".txt" 

    

  with open(os.path.join("C:\Users\kcoenbrown\Desktop\Simulation\Results\\"+userName,OutputFile), "w") as text_file: 

   text_file.write("Overclose Errors: %d\nCollision Errors: %d\nDropped Item Count: %d\nElapsed Time: %d 

minutes %d seconds\nNumber of Completed Tori: %d" %(overCloseValue, collisionCounter, droppedItemCount, minutes, 

seconds,completedTorusCount)) 

  print "wrote output file" 

 else: 

  with open(os.path.join("C:\Users\kcoenbrown\Desktop\Simulation\Results\\"+userName,OutputFile), "w") as text_file: 

   text_file.write("Overclose Errors: %d\nCollision Errors: %d\nDropped Item Count: %d\nElapsed Time: %d 

minutes %d seconds\nNumber of Completed Tori: %d" %(overCloseValue, collisionCounter, droppedItemCount, minutes, 

seconds,completedTorusCount)) 

  print "wrote output file"   

 

vizact.onbuttondown(recordMetricsButton,RecordMetrics) 

vizact.onkeydown("'", RecordMetrics) 

 

vizact.ontimer2(.2,1,ResetSimulation) 

#Things Done to End the Simulation 

global doOnce 

doOnce=0 

def CompletedScreen(): 

 global endSimulationState 

 global doOnce 

 endSimulationState=True 

 if doOnce==0: 

  StaticText(True) 

  viz.MainScene.visible(0,viz.WORLD) 

  timerButton.remove() 

  viewButton.remove() 

  timerButton.remove() 

  resetButton.remove() 

  recordMetricsButton.remove() 

  doOnce=1 

 vizact.ontimer2(0,1,DisplayText,"Simulation\n Complete","CENTERED",black,large,10) 

 vizact.ontimer2(0,1,DisplayText,"\n\n\n\n\n\n\n\n\n                To Restart Please Relaunch Program","CENTERED",black,medium,10) 

 

#Time Limit in Seconds for Testing and TimeLimit Simulation Types 

global timeLimit 

timeLimit=240 

global endSimulationState   

endSimulationState=False 
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def CheckEndSimulation(): 

 global timeValue 

 global timeLimit 

 global endSimulationState 

 if endSimulationState==False: 

  if simulationType=="TIME LIMIT": 

   if (timeLimit-timeValue)<=10: 

    countdownTime=str(timeLimit-timeValue) 

    DisplayText(countdownTime,"TOP_CENTER_2",red,medium,.9) 

    DisplayText("Warning:","TOP_CENTER_1",red,medium,1) 

   if completedTorusCount==6: 

    CompletedScreen() 

    RecordMetrics() 

   if (timeLimit-timeValue)<=0: 

    CompletedScreen() 

    RecordMetrics() 

     

  if simulationType=="COMPLETION" and completedTorusCount==6: 

   CompletedScreen() 

   RecordMetrics() 

   

  if simulationType=="TESTING": 

   if (timeLimit-timeValue)<=10 and (timeLimit-timeValue)>0: 

    countdownTime=str(timeLimit-timeValue) 

    DisplayText(countdownTime,"TOP_CENTER_2",red,medium,.9) 

    DisplayText("Warning:","TOP_CENTER_1",red,medium,1) 

   if (timeLimit-timeValue)<=0: 

    CompletedScreen() 

    RecordMetrics() 

   if completedTorusCount==6:  

    vizact.ontimer(.1,CompletedScreen) 

    RecordMetrics() 

 

vizact.ontimer(1,CheckEndSimulation) 

#Removes User Elements based on the Simulation Type Chosen 

def ChooseSimulation(): 

 if simulationType=="TIME LIMIT": 

  ToggleFunct("Timer") 

  timerButton.remove() 

 if simulationType=="COMPLETION": 

  ToggleFunct("Timer") 

  

 if simulationType=="TESTING": 

  ToggleFunct("Timer") 

  timerButton.remove() 

  recordMetricsButton.remove() 

  viz.VizText(73).remove() 

ChooseSimulation() 

#Places A Blue Screen over environment while simulation initialization options are chosen 

PlaceScreen() 
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APPENDIX B. Study Results Table 
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