
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Mechanical (and Materials) Engineering --
Dissertations, Theses, and Student Research

Mechanical & Materials Engineering, Department
of

4-2018

Ring and Peg Simulation for Minimally Invasive
Surgical Robot
Evan Brown
University of Nebraska - Lincoln, evanrbrownie@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/mechengdiss

Part of the Biomechanical Engineering Commons, Biomedical Devices and Instrumentation
Commons, and the Surgery Commons

This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Brown, Evan, "Ring and Peg Simulation for Minimally Invasive Surgical Robot" (2018). Mechanical (and Materials) Engineering --
Dissertations, Theses, and Student Research. 138.
https://digitalcommons.unl.edu/mechengdiss/138

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mechengdiss?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mechengdiss?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mechengineer?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mechengineer?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mechengdiss?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/296?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/235?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/235?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/706?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mechengdiss/138?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages

RING AND PEG SIMULATION FOR MINIMALLY INVASIVE SURGICAL ROBOT

By

Evan Brown

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Mechanical Engineering and Applied Mechanics

Under the Supervision of Professor Shane Farritor

Lincoln, Nebraska

April 2018

RING AND PEG SIMULATION FOR MINIMALLY INVASIVE SURGICAL ROBOT

Evan Brown, M.S.

University of Nebraska, 2018

Adviser: Shane Farritor

Surgical procedures utilizing minimally invasive laparoscopic techniques have shown

less complications, better cosmetic results, and less time in the hospital than conventional

surgery. These advantages are partially offset by inherent difficulties of the procedures which

include an inverted control scheme, instrument clashing, and loss of triangulation. Surgical

robots have been designed to overcome the limitations, the Da Vinci being the most widely used.

A dexterous in vivo, two-armed robot, designed to enter an insufflated abdomen with a limited

insertion profile and expand to perform a variety of operations, has been created as a less

expensive, versatile alternative to the Da Vinci.

Various surgical simulators are currently marketed to help with the rigors of training and

testing potential surgeons for the Da Vinci system, and have been proven to be effective at

improving surgical skills. Using the existing simulators as a baseline, the goal of this thesis was

to design, build, and test a ring and peg simulation that emulates the four degree of freedom

minimally invasive surgical robot from UNL. The simulation was created in the virtual reality

software platform Vizard using the python programming language. Featuring imported visual

models and compound simple shape collision objects, the simulation monitors and generates a

metric file that records the user’s time to task completion along with various errors. A

preliminary study was done on the simulation that measured seven participant’s performance on

the simulation over three consecutive attempts. The study showed that participant’s time to

completion and amount of recorded errors decreased across the three trials, indicating

improvement in the robot operation with use of the simulation. The validation study provided

confidence in continued development and testing of the introductory surgical robot simulation

trainer.

ACKNOWLEDGMENTS

I would like to offer thanks to my advisor, Dr. Shane Farritor, for providing me with the

opportunity to work on such an exciting project in such an important field. I will forever

remember your support and generosity in helping me along this path.

I would also like to thank my family for being there for me when I struggled and

celebrating my successes when things worked out. Without you I wouldn’t be where I am today. I

will always be grateful for all your love and support.

1

Table of Contents

Chapter 1. Background 3

1.1 Minimally Invasive Surgery 4

1.1.1 Laparoendoscopic Single Site Surgeries 4

1.1.2 Robotic Laparoendoscopic Single Site Surgeries 5

1.1.3 Da Vinci Surgical® System 6

1.1.4 UNL Minimally Invasive Surgical Robot 7

1.2 Existing Simulator Technologies 8

1.2.1 dV-Trainer 8

1.2.2 Da Vinci Skills Simulator 9

1.2.3 Robotic Surgery Simulator (Simulated Surgical Systems LLC) 10

1.3 Programming Technology 11

1.3.1 Vizard 11

1.3.2 Python 11

Chapter 2. Motivation 12

2.1 Training Surgical Skills 12

2.2 Metrics to Measure Progress/Proficiency 13

Chapter 3. Solution 14

3.1 Visual Modeling 15

3.2 Collision Modeling 17

3.3 Linking and Grabbing 18

3.4 Movement 20

3.4.1 Cyclic Coordinate Descent 21

3.4.2 Arm Motion 24

3.4.3 Global Positioning 24

3.5 User Controls 26

3.5.1 Geomagic Touch 26

3.5.2 Program Initialization 28

3.5.3 Intra Program Functionality 31

3.6 Graphical User Interface 33

3.6.1 Labeling Elements 33

3.6.2 Temporary Messages 33

2

3.7 Metrics 34

3.7.1 Collisions 34

3.7.3 Instrument Collision 35

3.8 Ending the Simulation 38

3.8.1 Simulation Types 38

Chapter 4. Results 41

4.1 Simulation Evaluation Study 41

4.2 Results of the Study 42

Chapter 5. Conclusion 44

Chapter 6. Future Work 45

References 47

APPENDIX A. Simulation Code 51

APPENDIX B. Study Results Table 88

3

List of Figures

Figure 1.1 Laparoendoscopic Single Site Surgery Through Gelport 4

Figure 1.2 Da Vinci Surgical® System Control and Bedside Modules 6

Figure 1.3 Minimally Invasive Surgical Robot and Labeled Rotational Axis 8

Figure 1.4 dV-Trainer Surgical Training Console 9

Figure 1.5 Robotic Surgery Simulator Surgical Training Console 11

Figure 3.1 Vizard Generated Visual Models 15

Figure 3.2 Imported Visual Models for the Robot 16

Figure 3.3 Generated Collision Models for the Robot 17

Figure 3.4 Ring and Peg Visual and Collision Models 18

Figure 3.5 One Cycle of the CCD Method 23

Figure 3.6 Geomagic Touch Haptic Controllers 26

Figure 3.7 Program Initialization Forearm Choice Dialog Box 28

Figure 3.8 Program Initialization User Name Input Prompt 28

Figure 3.9 Monopolar Cautery Forearm Visual and Collision Models 29

Figure 3.10 Environment with Vertical Peg Box Added 30

Figure 3.11 Standard Viewing Window for Sandbox Simulation Choice 31

Figure 3.12 Torus Position Coloring 35

Figure 3.13 Collision Error Visual Feedback 36

Figure 3.14 Simulation Ending Screen 40

Figure 4.1 Time Taken Per Trial - Ring and Peg Simulation 42

Figure 4.2 Average Errors Per Trial - Ring and Peg Simulation 43

4

Chapter 1. Background

1.1 Minimally Invasive Surgery

1.1.1 Laparoendoscopic Single Site Surgeries

 Laparoendoscopic single site (LESS) surgical operations are characterized by their

consolidation of multiple ports into a single incision site as well as the use of laparoscopic tools.

LESS procedures are used in a wide variety of treatments including hysterectomies,

nephrectomies and gastrointestinal surgeries. Variations of the single site surgery include

threading the instruments through a single incision in the skin, or alternatively, through a port

that allows insufflation through a gel like material, the setup of which can be seen in Figure 1.1.

Figure 1.1 Laparoendoscopic Single Site Surgery Through Gelport

(Jerrold, 2015)

Morbidity was decreased in LESS procedures compared to conventional surgery, due to

less average wound complications and reduced time in the hospital (Markar, 2014) (Rink, 2015).

LESS procedures also had better recorded cosmetic results, including less scarring (Leo, 2016).

5

 A single port brought some challenges along with the benefits: instrumental clashing, an

inverted control scheme, and loss of triangulation, to name a few. Instrumental clashing occured

when the surgical tools are sent through a port with limited space, causing the tools to potentially

impact or interfere with one another, inhibiting the surgeon's control. Inverted control scheme is

the manner in which the tool’s end effectors mirror the motion of the surgeon; as the surgeon’s

hand moves right, the tip moves left. The ability to visualize three dimensional images from a

two-dimensional scope images is an additional skill needed to successfully perform minimally

invasive LESS procedures (Nugent, 2013). In an effort to combat some of the limitations

inherent to LESS procedures, robotic platforms have been designed and deployed for in vivo

surgeries.

1.1.2 Robotic Laparoendoscopic Single Site Surgeries

Robot controlled LESS surgeries mitigated some of the potential problems inherent to the

small working space allotted through the minimal incision. By allowing the robot to be

positioned directly next to the operation area, it allowed the surgeon to perform precision

motions more naturally and complete complex tasks with fewer problems. Motion scaling

provided finer tool control, while tremor filtration removed unintentional hand vibrations;

together they gave surgeons more confidence in their tool control within the surgical suite.

Patient benefits observed in robotic surgeries were shorter recovery time, less pain post-surgery

and a further decrease to scarring (Abboudi, 2013) (White, 2010). Studies have shown that

robotic colorectal surgery leads to less pronounced inflammatory responses than their

laparoscopic counterparts (Zawadzki, 2017).

 A steep learning curve has been observed to be associated with R-LESS procedures with

a relatively high expertise required to be proficient (Nelson, 2017).

6

1.1.3 Da Vinci Surgical® System

 The Da Vinci surgical platform, developed by Intuitive Surgical, is the most widespread

medical robotic platform in use across the world. The surgical robot is used in a wide variety of

surgeries, including single-site laparoscopic procedures. Boasting a magnified vision system,

wristed instruments with greater precision and dexterity than the human hand, and ergonomically

designed master-slave console system, the Da Vinci is the household name of the robotic

surgical platforms (Intuitive Surgical, 2017). Some drawbacks to the Da Vinci’s design are its

high cost of entry, over a million dollars, as well as its extensive space requirements of its bulky

console and base, meaning it is unable to operate outside the hospital setting. The surgeon

console and patient-side cart can be seen in Figure 1.2.

Figure 1.2 Da Vinci Surgical® System Control and Bedside Modules

(Intuitive Surgical, Inc., 2018)

The complexity in its operation also necessitated extensive education and experience to

achieve proficiency prior to operating on a patient (Ahmed, 2015).

7

1.1.4 UNL Minimally Invasive Surgical Robot

 A minimally invasive surgical robot was developed by the research lab of Dr. Shane

Farritor at the University of Nebraska-Lincoln, in conjunction with the Center for Advanced

Surgical Technology at the University of Nebraska Medical Center. The robot was built to fill

the design space of a less expensive, more versatile surgical robot. The four degree of freedom

(DOF) robot was designed for a variety of abdominal procedures with a less invasive insertion

port needed due to the small, folding profile. The two-armed design featured varying end effector

types, between cutting, grasping, and cautery, that allowed the robot to be customized for

specific procedures. It also possessed telesurgical and telestration capabilities, allowing a user to

provide off site support or control over the robot. The robot used a single incision insertion with

elbows, shoulders, and wrists that actuate inside the abdomen and global positioning handled

outside the body, a design which facilitated a slender insertion profile as the robot unfolded to

working arm orientation within the insufflated workspace (Markvicka, 2014).

The robot design used in the creation of the simulation can be seen in Figure 1.3 along

with the four DOF rotational axis.

Figure 1.3 Minimally Invasive Surgical Robot and Labeled Rotational Axis

(Cubrich, 2016)

8

1.2 Existing Simulator Technologies

A wide range of virtual reality simulators have been used in training to perform

procedures with the Da Vinci Surgical System. It has been shown the the skills obtained on a

training simulator translate into surgical skills and are on par with those acquired in a standard

laboratory setting (Bric, 2014). This provided confidence in the potential benefit of developing a

preliminary training simulation for use with UNL’s minimally invasive robot. Three existing

platforms were compared and analyzed in the development of the simulation: the dV-Trainer, da

Vinci Skills Simulator, and Robotic Surgery Simulator.

1.2.1 dV-Trainer

 The dV-Trainer is a tabletop hardware platform created by Mimic Technologies which

can be seen below in Figure 1.4 with the master controllers suspended inside the console

emulator by wires.

Figure 1.4 dV-Trainer Surgical Training Console

(Mimic Technologies, Inc, 2017)

9

Providing the user with several modules, the dV-Trainer allows users to practice and

assess a wide range of necessary robot control skills, including needle control and driving,

suturing, monopolar and bipolar energy use, dissection, knot tying, camera control, and

clutching. The following metrics were used by the platform to judge the proficiency of the user:

economy of motion, instrument collisions, excessive instrument force, procedure time, and

amount of time instruments were out of view. The dV-Trainer showed high face and content

validity with a strong correlation between assessment results from the trainer and recorded

performance from a Da Vinci platform (Perrenot, 2012) (Abboudi, 2013).

1.2.2 Da Vinci Skills Simulator

 Developed by Intuitive Surgical the Da Vinci Skills Simulator (DVSS) is add-on program

that is used in conjunction with existing Da Vinci surgical consoles to allow surgeons and

trainees to engage in training exercises to improve their skills. Exercises within the Skills

Simulator cover the following techniques: instrument manipulation, dexterity, camera work,

clutching, additional instrument manipulation, system setting adjustments, needle control, energy

use, dissection, and footswitch use. The exercise results are monitored and reported using

automated metric tracking. Utilizing those metrics, users can track their proficiency and progress

online through PC or smartphone devices. Metrics tracked within the system computer system

included instrument collisions, excessive force, instrument travel distance, instruments moving

out of view, missed targets, time, and a combination of all the metrics into a single aggregate

profile score (Connolly, 2014).

10

1.2.3 Robotic Surgery Simulator (Simulated Surgical Systems LLC)

The Robotic Surgery Simulator (RoSS) is a self-contained piece of hardware built with

force feedback devices and foot pedals that emulate those of the da Vinci robot. The design of

and hardware of the RoSS can be viewed in Figure 1.5.

Figure 1.5 Robotic Surgery Simulator Surgical Training Console

(Simulated Surgical Systems, LLC, 2018)

The RoSS also has the unique feature that allows the trainee to ‘shadow’ a surgeon

through an actual surgical procedure; using haptic feedback and prompts, along with recorded

visuals, the student is walked through the motions of the operation. Reviews assessing the RoSS

have proven it has good face and content validity and that time on the simulator has a positive

influence on the time taken to complete a task on the Da Vinci surgical system (Abboudi, 2013).

11

1.3 Programming Technology

 Once the existing simulator systems were reviewed, the methods to developing a unique

virtual reality environment were then researched. Among those examined: V-REP from

Coppelia Robotics and Vizard from WorldViz. In order to be considered, the development

system needed to be compatible with the OpenHaptics software and GeoMagic Touch haptic

devices from 3D Systems, which were used to control the surgical robot. Ultimately, Vizard was

chosen for its flexibile environment creation as well as its robust support for novice creators.

1.3.1 Vizard

Vizard is a virtual reality software platform from WorldViz designed to facilitate the

creation of 3D environments and associated applications. It supports a wide range of image data

types and virtual reality devices, allowing the user to use content from other existing sources

without hassle. Running through the Python language, Vizard’s IDE comes with code

completion and an interactive simulation engine. A built-in physics engine allows for the

simulation of rigid body dynamics and user influenced objects within a virtual reality

environment (WorldViz, 2018). Vizard has been used to generate virtual environments for

various experiments within the medical field. One such experiment, used it to generate a test

platform for an innovative joystick controller design. Within the test platform the joystick

controlled simulated laproscopic tool as the user attempted to perform a peg transfer test (Head,

2012). Another experiment used the software in the creation of a laparoscopic training simulator

used to provide a portable, affordable, metric tracking platform for users (Zahiri, 2017). The

researcher eventually moved that laparoscopic simulator onto Unity, a different VR environment

development platform, which wasn’t explored for use with this project.

Vizard used the Python programming language in its operation.

12

1.3.2 Python

Python is a stable, supported, object-oriented language that uses modules, exceptions

dynamic data types and classes. It runs on many operating systems such as Mac, Windows, and

Unix variants. Python’s current library encompasses the areas of software engineering, internet

protocols, and operating system interfaces like Vizard (Python Software Foundation, 2018).

Vizard also provides a large library of programming examples to help users design their own

environments.

Chapter 2. Motivation

2.1 Training Surgical Skills

 A few problems plaguing current training techniques are a decrease in overall surgical

exposure, increasingly technically demanding procedures, and an increase in time and cost

factors involved in instructing future surgeons (Nugent, 2013). Some potential value in a

simulation platform is its ability to provide a concrete baseline with which to test, and certify, the

level of skill of a surgical robot operator. In the same vein, the simulation could be used in

annual retention tests, advanced procedural-based training, or as a warm-up tool prior to a

surgical procedure (Bric, 2016). A study done by Gomez et al. determined that a virtual reality

simulation curriculum was viable for use with the Da Vinci surgical system and improved the

basic skills needed to be a proficient surgical operator of said system (Gomez, 2015). Virtual

reality simulation training has been shown to be a sufficient substitute for laboratory training in

learning robotic surgical skills (Bric, 2014).

 Decreasing the cost of training platforms would allow hospitals to provide cheaper

training equipment, which leads to less expensive student fees and additional practice platforms

13

for students. Decreasing the cost would also allow for smoother integration of R-LESS

procedures into the current minimally invasive laparoendoscopic surgery training regime

(University of Nebraska Medical Center, 2018).

 Training on a simulation also offers some advantages over that of a traditional laboratory

training method. During training, novices have the potential to accidentaly misuse equipment,

that could damage the relatively expensive surgical robot. The capacity to damage equipment for

the simulation is limited to that of the haptic input devices, and only then through gross

misconduct. The simulation platform also offered additional advantages that couldn’t be found in

a regular laboratory setting in the form of self-recorded concrete metrics that can be used to

measure a trainee’s progress and proficiency.

2.2 Metrics to Measure Progress/Proficiency

Developing the user’s operational skills required metrics that provide quantitative data

for analysis by both evaluator and student. This data would allow both the users and trainers to

gauge the skill level of the user, such that they could then be compared to professional standards.

This process could be similar to what is used in certifying surgeons possess the cognitive and

technical skills needed to perform laparoscopic surgery through the Fundamentals of

Laparoscopic Surgery (Society of American Gastrointestinal and Endoscopic Surgeons, 2017).

The metrics focused on in this simulation are two common metrics examined within the

existing DaVinci simulations, completion of the task time, and various errors to be avoided

during operation. Time to completion is the measured time from the start of the procedure to the

completion of the goal, which, for the simulation, was moving rings from one set of pegs to a

different set of pegs. The real-world analogue of this metric would be the time spent in operation

14

for a surgery. Quicker surgeries result in less time spent under anesthesia, faster recovery, and an

overall better surgical experience for the patient. Therefore, one of the goals of the simulation

was to increase the speed with which the trainee can complete the simulation through practice, as

well as making them more proficient and comfortable with the robot and its operation in a

reduced stress environment.

 Another goal of the training simulation was to reduce the number of errors committed

during an operation. Before correction can happen the errors first need to be observed and

recorded, allowing the user to recognize which mistakes they’ve made. The errors targeted by the

simulation are instrument collision, dropped items, and over closing the graspers, all of which

have the potential of damaging the robot or patient during operation.

15

Chapter 3. Solution

3.1 Visual Modeling

 The environment for the simulation was created using Vizard’s basic shape generation

capabilities. The vizshape.addBox method provided the simple shape for the peg box using

appropriate dimensional data. A visual grid was created with the addGrid function to provide

some easy to interpret depth to the underlying environment. Without the grid, objects appeared to

float in space, making depth perception difficult. A collision plane was overlaid across the top of

the box attached to the grid to provide a ‘ground’ structure for the pegs to link to and the rings to

rest on when they weren’t being moved by the robot.

 Pegs were generated using the vizshape.addCylinder function, and the pegs were made to

extend through the base block, ensuring a seamless visual transition between the two.

 Created with the vizshape.addTorus function, the rings were added in a similar manner to

the other elements. The Vizard created environmental models can be viewed in below in Figure

3.1.

Figure 3.1 Vizard Generated Visual Models

16

Stereolithography (stl) files were used to model the robot. The stl files were taken from

the Solidworks files used in the creation of the physical robot to create an accurate representation

within the simulation. After conversion, the files were added to the scene and scaled down to fit

to the environment and positioned appropriately. The entire labeled robot model is shown in

Figure 3.2.

Figure 3.2 Imported Visual Models for the Robot

Hierarchically ordered, the robot was organized to facilitate the relative motion of the

individual components of the arm motion, while also maintaining their relative positioning to the

moving parts above them. The shoulder was assigned as the highest parent, followed by the

upper arms, forearms, and grasper tips as subsequent children, with separate branches existing on

each side of the robot to allow independent motion.

17

3.2 Collision Modeling

 Collision for the rings, pegs, forearms, graspers and tips used both singular and

combination of simple shapes to create complex collision objects. Vizard does not support the

visualization of collision objects that are attached to visual objects. This forced each collision

object to be created as a separate object and then later be attached to its rendered counterpart.

This was done to ensure the collision objects have the appropriate size and position, such as

those of the collision models of the robot in Figure 3.3.

Figure 3.3 Generated Collision Models for the Robot

 Working around the limitation of the simple collision shapes included in Vizard’s IDE,

building the three-dimensional torus shape for the rings was done by looping the trigonometry of

a circle with the creation of collision spheres through the collideSphere function to create the

appropriate collision object. The loop ran from 0 to 360 degrees at five-degree increments with

the radius of each sphere matching that of the rings. Each individual sphere was assigned to a

single node so they were all treated as a singular object, moving with static relative positioning.

18

 Looping was also used to create the peg collision objects. Spheres were generated

vertically through the loop assigned to a single node so they could later be positioned

appropriately as a solitary object. The ring and peg comparison between the visual model and the

combined collision models are shown in Figure 3.4.

Figure 3.4 Ring and Peg Visual and Collision Models

3.3 Linking and Grabbing

Basic collision shapes were created and attached to the visual models, providing them

with material information the physics engine could use for collisions and dynamic calculations.

Vizard’s viz.grab, viz.link, setPosition, and setEuler functions were used to merge the two

elements into a functionally single object; applied to the pegs, rings, and robotic objects of the

simulation, those functions allowed the data to be collected from the collision objects and

applied to the visual objects, creating an accurate looking and colliding robot.

19

Pegs were cemented to the base grid by attaching the collision models to the grid using

links, after which they were moved to the correct position by the setOffset function. Linking

made it so the base grid’s, or source object’s, position and rotation were applied to the pegs, the

destination objects, creating immovable pegs needed for the environment.

 CombineTorus was the function used to set the position and rotation of the visual tori to

their weighted collision counterparts. Set to update every frame, the function continuously

overlayed the ring to the looped spheres by applying the collision tori’s Euler and position data

to the visual tori.

The forearms and grasper arms were assigned to specific positions relative to their parent

models by a function, LockDownPosition, that was called every frame. This allowed the gravity

to be a nonzero value while keeping the collision objects from free falling. During the updates

the visual models were also assigned the rotational Euler values from their collision counterparts,

overlaying the two within the simulation environment. Due to physical limitations, the rotational

values for the arms needed to be limited; by checking, and capping, the turning values, the

program was able to match the robot's limitations.

The grasper tip’s two components were combined in much the same way as the forearms,

differing only through the additional constraint of pairing one tip’s rotation value to its

counterpart’s so that they open and close at the same rate and degree. Limits were also placed on

the tips so they wouldn’t open or close too far.

Picking up the rings was done by introducing initialized links between invisible turn

spheres, which were located at the rotation axis of the forearm tips and the collision objects of

the rings. All the involves nodes were enabled for collision events, allowing collisions to be

reported if two nodes intersect over the course of the simulation.

20

Collisions were flagged to generate collision lists for each of the tips of the individual

forearms, as well as those of the tori and robot arms. Those lists contained all the intersecting

nodes during that frame of the simulation. If the lists of both the tips of a single forearm side

contain a ring, then the initialized blank grab link is removed and a new link is instantiated,

fixing the relative position of the ring to that side's turn sphere. While the position is locked, the

link transfers the rotation of the link sphere onto the torus, allowing for wrist twist of the robot to

be applied to the placement object. The link can only be created if the grasper in question is

being closed through a binary grabTorusLock global value that updates as true every second and

is set as false when the graspers are closing. This lock prevents the user from nudging the rings

with the grasper and unintentionally creating a link.

Before a user can pick up objects they first must be able to control and position the robot

arms. This was done by calculating the kinematic positioning of the tips before applying forces

to the collision objects of the robot to move the arms into the correct position. The kinematics

calculations were done through cyclic coordinate descent.

21

3.4 Movement

 Calculating the correct arm positioning for the robot was first attemped with a direct

inverse kinematic solution. That process failed due to some inconsistencies in Vizard's rotational

framework. Instead the kinematics within the simulation used the cyclic coordinate descent

method to determine arm positioning.

3.4.1 Cyclic Coordinate Descent

Cyclic coordinate descent (CCD) is a mathematical method used to find the solution to

inverse kinematic solutions of robotic linkages and rotations. Answers from this method

provided an angular solution for the linkages to a desired end position. First conceived by Wang

and Chen, CCD works by minimizing the angular difference of the vectors between the current

link and end effector position, and the desired position (Wang, Chen, 1991).

Representative vectors were created so that the method could calculate the rotational

Euler values of the vectors for the desired end positions which were then transferred to the

modeled arms, allowing rapid calculation as well as realistic, gradual motion.

To solve for the rotation needed to move each vector into the correct position the

definition of the dot product was used.

𝑎 ∙ 𝑏 = |𝑎||𝑏|cos(𝜃)

Substituting in the appropriate vectors and solving for 𝜃 gives

𝜃 = 𝑐𝑜𝑠−1 (
(𝑝𝑒 − 𝑝𝑐) ∙ (𝑝𝑡 − 𝑝𝑐)

|𝑝𝑒 − 𝑝𝑐||𝑝𝑡 − 𝑝𝑐|
)

 The simulation used the function vizmat.AngleBetweenVector to automate these

calculations of the angles between vectors in degrees. This was applied to the vector linking the

point’s desired end position 𝑝𝑡 and the current rotational axis 𝑝𝑐, and the vector for the current

tip position 𝑝𝑒 and the current rotational axis𝑝𝑐.

22

Using the calculated 𝜃, the current end position 𝑝𝑒, and the rotational axis 𝑝𝑐,

trigonometry was used to rotate the vector, minimizing the error between the current end position

𝑝𝑒 and the desired end position 𝑝𝑡.

𝑝𝑒𝑥
𝑖+1 = (𝑝𝑒𝑥

𝑖 −𝑝𝑐𝑥
𝑖) cos(𝜃) − (𝑝𝑒𝑧

𝑖 −𝑝𝑐𝑧
𝑖) sin(𝜃) + 𝑝𝑐𝑥

𝑖

𝑝𝑒𝑧
𝑖+1 = (𝑝𝑒𝑧

𝑖 −𝑝𝑐𝑧
𝑖) cos(𝜃) + (𝑝𝑒𝑥

𝑖 −𝑝𝑐𝑥
𝑖) sin(𝜃)+𝑝𝑐𝑧

𝑖

These calculations were simplified using the setEuler function and started with at the

elbow joint. Once the elbow joint was rotated the rotation axis 𝑝𝑐 was moved to the shoulder

joint for the next calculation, giving two new vectors. Repeating the minimization process for the

new vector the rotational axis 𝑝𝑐 was then moved back to the elbow, restarting the cycle.

Checks were necessary to monitor the current orientation of the parts to ensure the

vectors rotated in the correct direction. The CyclicCoordDes function handled both the upper

arm and grasper vectors, finding the x, y, and z Euler values for the upper arm as well as the x

and z Euler values for the forearm. This is congruent to that of the degrees of freedom present in

each of the two joints so the vector’s rotation matched that of the robot’s potential range of

motion.

Iterating this vector rotational process minimizes the error between the end effector and

the desired end position, and ultimately provides the link orientations required to converge the

end effector to the desired end position. One cycle of this iterative process can be seen in Figure

3.5.

23

Figure 3.5 One Cycle of the CCD Method

24

Once calculated, Euler values were then assigned to global theta variables and passed to

the MoveArms function which rotated the robot models into the same configuration as that of the

representative vectors.

3.4.2 Arm Motion

 After the desired angles were calculated, the collision boxes needed to be rotated until the

robot model’s position matched that of the representative vectors. Forces were applied to the

physics-based collision objects for the forearm and upper arm, simultaneously rotating both into

the correct position. Stronger forces were used when the current angle was distant from the

desired angle for responsive control. Damping forces were required to prevent the rotation from

overshooting and provided smoother motion to the robot’s path, slowing the robot down as the

current position approached the desired position. Constantly checked, robot model Euler values

self corrected toward the desired vector values, even in the event of quickly changing values.

 To create smooth movements in the robotic model the most current ten theta values

recorded were averaged. This created a drifting mean value that prevented any potential spike in

the vector motion from applying to the robotic motion. This feature created a slight delay

between user input and robotic output.

3.4.3 Global Positioning

 On the surgical robot, a global positioning arm allowed for controlled rotation, both

within the patient and during the insertion procedure. For the simulation, the global positioning

arm allowed for an additional joint of rotation, creating a larger operating space, while also

allowing the user to more easily focus on an area of interest. In the TiltShoulderCheck function,

25

the position values for the tip position were tested so that if the average values between the left

and right arms exceeded a threshold value, the shoulder rotated, letting the user determine the

desired operating position of the screen. This rotation had a thirty degree maximum deviation

from the starting position. The rotation was restricted to prevent the robot from injuring a patient

by twisting outside the safe operating space and was likewise constrained in the simulation. The

arms across from the rotating direction had to also surpass a minimum value before the motion is

allowed; this was done to help prevent unintended rotations. This meant that in order to move the

left, the right arm’s horizontal value was checked as well as the average value of both arms. The

same was true for right, but the left arm’s horizontal value was checked instead.

26

3.5 User Controls

3.5.1 Geomagic Touch

 The Geomagic Touch haptic device allowed for up to six degrees of freedom to be

reported through an ethernet to USB converter. A motorized device, the Touch could provide

haptic force feedback to the user and record user input through tip positioning, wrist rotation, and

two buttons; the design for the Touch can be seen in Figure 3.6.

Figure 3.6 Geomagic Touch Haptic Controllers

 Connecting the Geomagics to Vizard’s integrated development environment (IDE)

required an OpenHaptics license and software. The software allowed the encoders to be read and

imported within the IDE framework after each of the haptic devices had been initialized and

added to the registered devices within the simulation.

 Vizard and Python support the OpenHaptics software which made it simple to include the

Sensable plugin library, allowing the simulation to detect and read input from the Geomagic

Touches.

27

 The simulation utilized the same method of acquiring user input as that of UNL’s

miniature surgical robot, using two linked Geomagic Touch haptic devices to get arm

positioning. Once the device’s tip position was read, the data was scaled to fit within the desired

workspace of the program. After scaling, the data sets containing the positional data were

assigned to the nodes representing desired position for use with CCD. The CCD calculations are

then run an iteration every frame to get the desired Euler angles to be assigned to the collision

objects. The buttons and wrist twist from the Geomagics were checked to see if the grasper tips

should be twisting, opening, or closing. All methods present operated for each of the two

Geomagic’s, applying to the left and right sides of the robot, allowing independent motion within

the simulation.

28

3.5.2 Program Initialization

 The starting parameters provided to be decided on by the user included the forearm used

for the left arm of the robot, the inclusion of a vertical pegbox, and the type of simulation.

Through vizdlg.AskDialog commands, choice boxes were generated so the user could select

from among the options within the interface using the mouse cursor; said boxes can be seen

below in Figure 3.7.

Figure 3.7 Program Initialization Forearm Choice Dialog Box

When cancel was chosen that getInput function read an unaccepted value and

reinstantiated that choice box.

A username was recorded in the simulation using a keyboard prompt through the

vizinput.input command seen in Figure 3.8.

Figure 3.8 Program Initialization User Name Input Prompt

29

The username was then assigned to the metrics text file recorded at the end of the

program and, along with the tallied progress and error values, printed into a folder generated for

each username with the name and date attached to the file. The user inputs were nested so that

the next choice would not appear until the previous section has a recorded value.

The two types of forearms included in the program were the cautery forearm and the

standard grasper forearm. The cautery forearm visual and matching collision models are shown

below in Figure 3.9.

Figure 3.9 Monopolar Cautery Forearm Visual and Collision Models

If the grasper was chosen then the cautery forearm’s visual model was removed, along

with all the associated children objects using Vizard’s remove function. The introducing of both

prior to removing one was done to prevent loading errors, whilst supporting a movement

function that worked with both forearm choices.

30

Similar to the forearm choice, a choice was provided for whether or not a vertical peg

box was added to the environment. The environment with the vertical peg box can be seen in

Figure 3.10.

Figure 3.10 Environment with Vertical Peg Box Added

The same processes used for removing a forearm model was also used to delete the

vertical peg box and attached pegs if they were not chosen during the initialization. The

additional peg box was included to add another dimension to the program, helping users with

reading depth of field.

The final choice presented to the user was the type of simulation they wanted to use:

testing, completion, timed, or sandbox, which are discussed in depth at the end of the simulation

section. Within the completion, sandbox, and timed simulation types, some functionality was

used to help users during practice. Checks were used to ensure that multiple choice boxes did not

overlap and so the subsequent choice did not pop up until an acceptable value was chosen. Once

all the choices were made, the screen placed over the orthographic viewing window was

31

removed, allowing the chosen environmental and robot elements to be seen and starting any

necessary timers based on the simulation types.

3.5.3 Intra Program Functionality

 Certain simulation types, like sandbox and timed, supported additional functionality that

allowed the user to reset the simulation, manually record their metrics, start and stop the timer, or

unlock the camera.

Buttons and associated functions were created for the user to interact with inside the

program, enabling functions that were only called when an assigned button was clicked through

the mouse cursor. Labels were assigned to the buttons using viz.addText commands. Attached as

a child to the orthographic window, the text remained stationary, independent of any motion

from the robot or camera. The buttons likewise were locked to the Vizard window for similar

reasons. A standard viewing window for the sandbox simulation type is shown in Figure 3.11.

Figure 3.11 Standard Viewing Window for Sandbox Simulation Choice

32

Clicking on the “Reset Simulation” button allowed a user to replace the rings to their

starting position. The end positions for the CCD vectors were likewise replaced to their initial

values along with the position and rotation of the robot’s model.

The “Record Metrics” button in the corner manually called the function that builds a file

with the errors, ring completion, and time to completion values within the simulation up to that

point. Transparency was applied to the text for the record metrics button to keep it discreet.

Starting and stopping the timer was done through the timer button which allowed the user

to time themselves while attempting whatever tasks they wanted to train. The timer counted and

displayed the number of elapsed seconds through a recursive event class which tabulates a global

value each time an internal timer triggers. The timer value text was displayed through a function

designed to show the associated text for Vizard’s windowed display before being removed by a

nested function dedicated to the task. Display and remove text functions were also used in

conjunction with the error recording to alert the user to the presence and manner of an error.

Unlocking the camera from the shoulder model was done through a toggling button click

function. This allowed the user to move and reposition the camera by clicking and dragging the

mouse in order to get a different view of the simulation. Left mouse clicks pan the view while

right ones rotated the view. The ability to toggle between locked and movable camera settings

was done by linking the camera view to a hidden node and then linking that node to the shoulder

at a specific position and rotation. When the assigned “Unlock View” button was clicked, the

link assigning a position to the camer node was removed, allowing the camera to move.

Movement could occur until the view button was clicked again, calling a function that

reestablishes the link, sending the node back to its original position and orientation, attached to

the shoulder node.

33

3.6 Graphical User Interface

3.6.1 Labeling Elements

Displaying text elements for the user interface used separate processes for text that

needed to remain displayed on the display window versus text that was only shown for a limited

time. StaticText was the function created to label permanent text elements assigned to user

interface buttons. Vizard’s addText allowed a string of text to be assigned to the orthographic

viewing window. The color, choice, font size and placement variable values were directly

assigned after some experimentation with different layouts. Around some text, outlines were

added to the record metric text to increase legibility against the background, and the text was

made partially transparent to decrease obstruction of the user’s visual field, which can be seen in

the bottom right of Figure 3.11. The same process was also used for the red collision error

feedback text, a temporary message that was only displayed for a small amount of time.

3.6.2 Temporary Messages

Temporary messages, like those for error reporting or displaying the timer value, were

handled through the DisplayText function. Inputting the message string or number, quadrant,

color, size, and time, the function assigned these requisite values to the addText function to be

displayed in the correct manner and position. Vizact.ontimer2 was used so that after the assigned

time ellapsed, a nested function, RemoveText, was called, deleting the displayed text object.

34

3.7 Metrics

3.7.1 Collisions

 Feedback and metric recording within the simulation required the examination of the

interaction of individually modeled parts of the robot through collision reporting. Three things

were necessary to detect and interact with collisions through Vizard: collision objects needed to

have detection enabled, a collision event needed to be generated that created a list of nodes

associated with the collision, and finally, the list needed to be checked for intersecting nodes of

interest. Enabling collision was done through enable(viz.COLLIDE_NOTIFY), which, when

combined with viz.COLLIDE_BEGIN_EVENT, allowed Vizard to callback a function whenever

an enabled node collided with another node. After the collision function was called, a list of

intersecting nodes was compiled through the viz.phys.intersectNode command, with the node of

interest as the input. The list could then be checked with if statements, looking for relevant

nodes. After detecting the relevant nodes, customized branches of if statements allowed

programmatic reactions to a variety of collisions, including detecting error collisions as well as

providing visual feedback for ring positioning.

3.7.2 Ring Positioning

 Attached to the center of each of the rings was an invisible position sphere with collision

detection enabled but the physics disabled, allowing it to detect intersecting nodes without

colliding and interacting with other collision objects. Each position sphere checks for four

distinct states with the associated ring: around a starter peg, around an ending peg, hovering

above the pegbox, and dropped onto the pegbox without also encircling a peg. While the ring

was around a starter peg, the visual model of said peg was set to blue with a node.color

35

assignment command. Alternatively, if the ring was around an ending peg the color was set to

dark green. Light green was used if the position sphere was not intersecting something on the

ground of the simulation, i.e. gripped and lifted by the robot. Finally, if the peg was lying on the

peg box without surrounding a peg then it was considered a dropped peg and a dropped item

function was called to increment the global variable created to track that metric. Each of the ring

states can be viewed in Figure 3.12.

Figure 3.12 Torus Position Coloring

 To prevent multiple errors from counting for a single instance of a drop, a lock was

placed that triggered on the initial incrementation with a self-activated timer that prevents

another error from counting for ten seconds. Therefore, every ten seconds a new error will be

recorded if the ring was unable to be picked up in that time.

3.7.3 Instrument Collision

 Beyond just checking for dropped rings the simulation also checked for instrument

collision and overclosed grasper tips. Instrument collision occurred when a section of the robot

36

touched another section of the robot. Outside the simulation this could cause damage to the robot

and, although unlikely, inhibit operation. Within the simulation, the parts which touched each

other were highlighted red for a moment to alert the user of the impact and a collision error was

logged.

Figure 3.13 Collision Error Visual Feedback

After three seconds had elapsed, the color was reset back to the originally assigned value for the

affected visual models. Similar to a dropped ring error, a linked timer event prevented multiple

errors from recording from a single collision instance.

3.7.4 Overclose Errors

 Overclose errors were logged in the simulation whenever the grasper tips were closed

beyond acceptable limits. When a ring is grabbed the limit is reassigned to the current value of

the grasper. A global variable was used to register the number of attempts to close the grasper

while it was at a closing limit. Once the variable passed a threshold the error count for over-

closing is incremented and a message was sent through the temporary text function to announce

the error and on which side the error occurred.

37

3.7.5 Timer

 The simulation used Vizard’s internal timer for stopwatch and timed testing utilities.

Toggling was needed for the user-controlled stopwatch inside the sandbox simulation type. It

was made with a self-referential function which incremented the global variable timeValue every

second the timer was toggled ‘on’ and remained constant when the timer was ‘off’. The global

variable, timerToggle, was initialized to a zero value which was then incremented every time the

timer button is clicked; if the value was incremented to two the value is reset to zero. This

allowed the user to continuously click the button, turning the timer ‘on’ and ‘off’.

Unlocking and relocking the camera used the same toggling method.

3.7.6 Metrics File

 Metrics were tabulated throughout the course of the simulation, recording the over-close,

collision, and dropped items errors, as well as the elapsed time and completed tori at the time of

reporting. Users were allowed to trigger the documentation of the metrics through the use of the

provided button during appropriate simulation types. File writing was done through integrated

Python write/read commands with files and folders. The timer value was segmented into minutes

and seconds for easier reading and recording. The metrics were stored in a folder for each user

based on the username entered at the beginning of the simulation. If no such folder exists then a

new folder was created with that username. The file was date stamped and checked for an

existing identical file. If such a file existed then the new file was tagged with a number at the end

of the file, repeated for each subsequent file, allowing each discrete instance of recorded data to

be viewed later regardless of the number of metric text files generated.

38

3.8 Ending the Simulation

3.8.1 Simulation Types

Four simulation types were included in the simulation: sandbox, time limit, completion,

and testing. Sandbox allowed the users the full range of intra-program functionality including

timer, resetting the positioning of the collision objects, camera viewport motion, and metric

recording. Time limit had all the same functionality except for the timer. It hid the displayed

timer and button, instead starting it upon selection of the simulation that then counted to a preset

limit before ending the simulation. A visual countdown was generated when the timed simulation

had ten seconds remaining, warning the user of the impending closing which was also used in the

testing simulation type. The completion simulation type runs until all six rings were around an

ending peg, at which point the ending screen was called and the metrics were recorded but also

allowed the user to reset the simulation and record metrics manually. Similar to sandboxm all the

user functionality was provided within the completion simulation choice. Testing had all the user

functionality removed, providing a common baseline for each test. The simulation ended within

the testing type and the metrics recorded if the six rings were detected around the ending pegs or

if the four-minute timer expires.

3.8.2 End Conditions

 Ending the simulation happened when an end condition was met, triggering the end

screen and associated end of the simulation functions. The conditions to be met for ending the

simulation were dependent on which type of simulation had been selected. For completion and

testing, the ring position was checked, and if the number of rings around ending pegs matched

39

the preset value for completed rings, then the simulation ending function was called. Timed used

the global timer variable reaching the threshold of four minutes as the condition the end

simulation function checked for ending the program. Testing also used the four-minute threshold

through the timer value as a limiting factor for the user to restrict the time taken on a single

attempt. Otherwise the simulation was ended once all six of the rings were recorded as encircling

the ending pegs.

40

3.8.3 End Screen

The check ending function was called once every second on an internal Vizard timer and

only called the ending functions if an end state for that simulation type had been reached. Once

the end state occurred the completed screen was placed over the program window and the

metrics were recorded to their labeled text file. The completed screen function set the end

simulation state to true which stopped the program from checking for the ending. A sky-blue

overlay was then applied whilst simultaneously turning off the rendering of the main scene in

Vizard, removing all the visible and collision models from the view window. The StaticText

function was then called, informing the user that the simulation was completed and letting them

know to restart the program to run the simulation again. The complete ending screen can be seen

in Figure 3.14.

Figure 3.14 Simulation Ending Screen

41

Chapter 4. Results

4.1 Simulation Evaluation Study

In a collaboration with the University of Nebraska Medical Center (UNMC) a

preliminary study was created to validate that repeated uses of simulation would improve new

users’ operating skills. The study was evaluated under UNMC’s IRB with study identification

number #087-18-EX. The Center for Advanced Surgical Technology’s facility was used to

conduct the study. Medical students were recruited through an emailed link to an online survey,

where they signed up for a fifteen-minute time slot. After a short introduction to the project,

seven UNMC medical students attempted to complete the simulation in testing mode three

consecutive times, pausing only to reset the simulation and verify that the results file had been

reported. Results were recorded using the built-in methods of the simulation and were assigned

to numbered identifications to preserve confidentiality for the subjects.

42

4.2 Results of the Study

Participants of the study all showed improvement across their trials. All but one user was

able to complete the simulation, moving all six rings onto ending pegs by the second trial before

the alloted time ran out. The time taken to complete the simulation across the three trials can be

seen in Figure 4.1.

Figure 4.1 Time Taken Per Trial - Ring and Peg Simulation

The user who didn’t manage to complete the simulation still improved from one ring

completed in the first trial to five rings completed in the third trial. Only one of the participants

was able to complete the test in each of the three trials. Together the participants averaged a

thirty-four percent decrease in time to completion of the simulation from their first trial to their

fastest trial. The entirety of the recorded data from the study can be reviewed in Appendix B.

43

The number of errors committed also decreased as the participants became more

comfortable with the system. This occurred both between trial one and two and trial two and

three, with the steepest decrease coming between the first and second trial. These trends can be

seen in Figure 4.2 which shows the average errors of the participants in each of the trials.

4.2 Average Errors Per Trial - Ring and Peg Simulation

Taking a one tailed test of the statistical significance between the first and last trials

showed that, with significance level of five percent, the users showed statistically significant

improvement in all three errors and time time to completion. The results of the significance test

can be seen in Appendix B.

44

Chapter 5. Conclusion

Presented within this thesis was the creation of a simulation built to introduce users to the

operation of a two armed minimally invasive surgical robot. The simulation was designed with

the likeness and motion capacity of the robot as well as the input method. Metrics to be

examined were taken from a literature review on existing surgical simulators created for the Da

Vinci surgical system and included time to task completion, dropped items, instrument collision,

and overclose errors.

In an IRB approved study, seven UNMC medical students were asked to operate the

simulation through three consecutive trials to examine how their performance changed across

attempts. All of the users showed improvements between the first and final attempts, decreasing

the time taken to completion as well as the amount of recorded errors. Both the errors and the

time to completion showed statistically significant improvements between the first and third

trials. This preliminary study provided confidence in continued exploration and examination of

the simulation system as a viable introductory platform for the surgical robot.

45

Chapter 6. Future Work

While the simulation showed good promise, many improvements could be made going

forward. Additional testing should be done to examine whether training on the simulation helps

improve the performance on the surgical robot. This would help prove the hypothesis that this

training simulation could help ease the training regime needed to obtain mastery over the robotic

platform. Initially a baseline of mastery would be created with the help of an experienced robotic

surgeon operating the surgical robot through a ring and peg challenge. After the baseline was

created, five to ten novice medical school residents would be introduced to the surgical robot and

train on the ring and peg course until they reached the predetermined mastery. After the median

time to achieve mastery had been determined another five to ten medical students would be

introduced to the surgical robot, this time via the simulation. The new set of users would be

allowed to train on the simulation to familiarize themselves with the operation of the robot and

the task of moving the rings until they’d achieved the desired level of mastery. After the

introduction, the group would then be taken to the physical robot to perform on the ring and peg

platform there, moving six rings from designated starting pegs to ending pegs, just like the

simulation. The time to mastery on the robot would then be measured and compared to that of

the initial group, providing a comparison between the pure laboratory robot training and training

done with an introduction through simulation training. This would also allow data to be

generated concerning the face and content validity of the simulation, determining the correlation

between simulation and surgical robot performance.

The design of the University of Nebraska minimally invasive surgical robot has changed

since the creation of the simulation. These changes have not been implemented within the

simulation and would need to be done to keep the operation of the simulation as similar to that of

46

the robot to ensure the accuracy of the simulation. The changes would involve replacing the

visual model files used, altering the collision models accordingly and scaling the positioning

vectors as needed.

Surveys could be helpful to find improvements for the user interface and error reporting

elements, allowing them to be refined to enhance the clarity and usability of the simulation.

 A variety of different simulation environments and testing methods could be created to

examine and improve a wider breadth of surgical skills beyond those covered by the ring and peg

exercise. One potential simulation scenario is a pick and place test where the user must pick up

and rotate differently shaped pieces before putting them in appropriate sunken holes on a board.

 Foot pedal functionality could also be included in future iterations of the simulation

allowing for cautery testing and metrics. Another additional metric helpful for generating a more

robust data set on the user’s performance would be economy of motion, which looks at how far

the tips of the robot arms move throughout the examination.

47

References

Abboudi, Hamid, et al. “Current Status of Validation for Robotic Surgery Simulators - a

Systematic Review.” BJU International, vol. 111, no. 2, Feb. 2013, pp. 194–205.

doi:10.1111/j.1464-410X.2012.11270.x. Accessed 6 Feb. 2018.

Ahmed, Kamran, et al. “Development of a Standardised Training Curriculum for Robotic

Surgery: A Consensus Statement from an International Multidisciplinary Group of

Experts.” BJU International, vol. 116, no. 1, 2015, pp. 93–101., doi:10.1111/bju.12974.

Bric, Justin, et al. “Current State of Virtual Reality Simulation in Robotic Surgery Training: a

Review.” Surgical Endoscopy, vol. 30, no. 6, June 2016, pp. 2169–2178.

doi:10.1007/s00464-015-4517-y. Accessed 6 Feb. 2018.

Bric, Justin, et al. “Proficiency Training on a Virtual Reality Robotic Surgical Skills

Curriculum.” Surgical Endoscopy, vol. 28, no. 12, Dec. 2014, pp. 3343–3348.

doi:10.1007/s00464-014-3624-5. Accessed 6 Feb. 2018.

Buchs, Nicolas C., et al. “Learning Tools and Simulation in Robotic Surgery: State of the Art.”

World Journal of Surgery, vol. 37, no. 12, Dec. 2013, pp. 2812–2819. doi:10.1007/s00268-

013-2065-y. Accessed 6 Feb. 2018.

Choi, Hyundo, et al. “Surgical Robot for Single-Incision Laparoscopic Surgery.” IEEE

Transactions on Biomedical Engineering, vol. 61, no. 9, Sept. 2014, pp. 2458–2466.

doi:10.1109/TBME.2014.2320941. Accessed 6 Feb. 2018.

Connolly, Michael, et al. “Validation of a Virtual Reality-Based Robotic Surgical Skills

Curriculum.” Surgical Endoscopy, vol. 28, no. 5, May 2014, pp. 1691–1694.

doi:10.1007/s00464-013-3373-x. Accessed 6 Feb. 2018.

Cubrich, Lou P., and Shane M. Farritor. “Design of a Flexible Control Platform and Miniature in

Vivo Robots for Laparo-Endoscopic Single-Site Surgeries.” DigitalCommons@University

of Nebraska - Lincoln, University of Nebraska Lincoln, Dec. 2016,

digitalcommons.unl.edu/mechengdiss/104/.

Gash, K., et al. “Single-Incision Laparoscopic Surgery for Rectal Cancer: Early Results and

Medium-Term Oncological Outcome.” Colorectal Disease, vol. 17, no. 12, Dec. 2015, pp.

1071–1078. doi:10.1111/codi.13034. Accessed 6 Feb. 2018.

Gomez, Pedro, et al. “Development of a Virtual Reality Robotic Surgical Curriculum Using the

Da Vinci Si Surgical System.” Surgical Endoscopy, vol. 29, no. 8, Aug. 2015, pp. 2171–

2179. doi:10.1007/s00464-014-3914-y. Accessed 6 Feb. 2018.

Halvorsen, F., et al. “Virtual Reality Simulator Training Equals Mechanical Robotic Training in

Improving Robot-Assisted Basic Suturing Skills.” Surgical Endoscopy, vol. 20, no. 10,

Oct. 2006, pp. 1565–1569. doi:10.1007/s00464-004-9270-6. Accessed 6 Feb. 2018.

Head, Michael John. “Modular Joystick Design for Virtual Reality Surgical Skills

Training.”DigitalCommons@University of Nebraska - Lincoln, University of Nebraska

Lincoln, 2012, digitalcommons.unl.edu/mechengdiss/46/.

48

Intuitive Surgical. “The Da Vinci® Surgical System.” Da Vinci® Surgery, Oct. 2017,

www.davincisurgery.com/da-vinci-surgery/da-vinci-surgical-system/.

Intuitive Surgical, Inc. “The Da Vinci® Surgical System.” Intuitive Surgical®, 2018,

www.intuitivesurgical.com/products/davinci_surgical_system/.

Lehman, Amy C., et al. “Dexterous Miniature Robot for Advanced Minimally Invasive

Surgery.” Surgical Endoscopy, vol. 25, no. 1, Jan. 2011, pp. 119–123. doi:10.1007/s00464-

010-1143-6. Accessed 6 Feb. 2018.

Leo, C. A., et al. “Initial Experience of Restorative Proctocolectomy for Ulcerative Colitis by

Transanal Total Mesorectal Rectal Excision and Single-Incision Abdominal Laparoscopic

Surgery.” Colorectal Disease, vol. 18, no. 12, Dec. 2016, pp. 1162–1166.

doi:10.1111/codi.13359. Accessed 6 Feb. 2018.

Lerman, Jerrold, et al. “General Abdominal and Urologic Surgery.” Clinical Gate, 5 Feb. 2015,

clinicalgate.com/general-abdominal-and-urologic-surgery/.

Lin, David W., et al. “Computer-Based Laparoscopic and Robotic Surgical Simulators:

Performance Characteristics and Perceptions of New Users.” Surgical Endoscopy, vol. 23,

no. 1, Jan. 2009, pp. 209–214. doi:10.1007/s00464-008-9805-3. Accessed 6 Feb. 2018.

Liu, May, and Myriam Curet. “A Review of Training Research and Virtual Reality Simulators

for the Da Vinci Surgical System.” Teaching & Learning in Medicine, vol. 27, no. 1, Jan.

2015, pp. 12–26. doi:10.1080/10401334.2014.979181. Accessed 6 Feb. 2018.

Lyons, Calvin, et al. “Which Skills Really Matter? Proving Face, Content, and Construct

Validity for a Commercial Robotic Simulator.” Surgical Endoscopy, vol. 27, no. 6, June

2013, pp. 2020–2030. doi:10.1007/s00464-012-2704-7. Accessed 6 Feb. 2018.

Markar, Sheraz, et al. “Single-Incision versus Conventional Multiport Laparoscopic Colorectal

Surgery-Systematic Review and Pooled Analysis.” Journal of Gastrointestinal Surgery,

vol. 18, no. 12, Dec. 2014, pp. 2214–2227. doi:10.1007/s11605-014-2654-6. Accessed 6

Feb. 2018.

Markvicka, Eric John, and Shane M. Farritor. “Design and Development of a Miniature In Vivo

Surgical Robot with Distributed Motor Control for Laparoendoscopic Single-Site Surgery.”

DigitalCommons@University of Nebraska - Lincoln, University of Nebraska-Lincoln, 16

Aug. 2014, digitalcommons.unl.edu/mechengdiss/75/.

Mimic Technologies, Inc. “DV-Trainer®.” Mimic Simulation, 20 Dec. 2017,

mimicsimulation.com/dv-trainer/.

Nelson, Ryan J., et al. “Current Status of Robotic Single‑Port Surgery.” Urology Annals, vol. 9,

no. 3, July 2017, pp. 217–222. doi:10.4103/UA.UA_51_17. Accessed 6 Feb. 2018.

Nugent, Emmeline, et al. “Development and Evaluation of a Simulator-Based Laparoscopic

Training Program for Surgical Novices.” Surgical Endoscopy, vol. 27, no. 1, Jan. 2013, pp.

214–221. doi:10.1007/s00464-012-2423-0. Accessed 26 Feb. 2018.

Palmowski, Joseph, and Shane Farritor. “Mobility, Dexterity, and Insertion Improvements of

Current Miniature In Vivo Robotic Minimally Invasive Surgical Techniques.”

49

DigitalCommons@University of Nebraska - Lincoln, University of Nebraska Lincoln, Dec.

2017, digitalcommons.unl.edu/embargotheses/123/.

Patel, Ankit, et al. “Can We Become Better Robot Surgeons through Simulator Practice?”

Surgical Endoscopy, vol. 28, no. 3, Mar. 2014, pp. 847–853. doi:10.1007/s00464-013-

3231-x. Accessed 6 Feb. 2018.

Perrenot, Cyril, et al. “The Virtual Reality Simulator DV-Trainer Is a Valid Assessment Tool for

Robotic Surgical Skills.” Surgical Endoscopy, vol. 26, no. 9, Sept. 2012, pp. 2587–2593.

doi:10.1007/s00464-012-2237-0. Accessed 6 Feb. 2018.

Python Software Foundation. “General Python FAQ.” Python, 3 Feb. 2018,

docs.python.org/2/faq/general.html.

Reichenbach, Mark A. “Gross Positioning Arm for in Vivo Robotic Surgery.” Digital

Commons@University of Nebraska Lincoln, University of Nebraska Lincoln, 2016,

digitalcommons.unl.edu/embargotheses/96/.

Rink, Andreas, et al. “Single-Incision Laparoscopic Surgery for Colorectal Malignancy-Results

of a Matched-Pair Comparison to Conventional Surgery.” International Journal of

Colorectal Disease, vol. 30, no. 1, Jan. 2015, pp. 79–85. doi:10.1007/s00384-014-2041-5.

Accessed 6 Feb. 2018.

Schout, B. M. A., et al. “Validation and Implementation of Surgical Simulators: a Critical

Review of Present, Past, and Future.” Surgical Endoscopy, vol. 24, no. 3, Mar. 2010, pp.

536–546. doi:10.1007/s00464-009-0634-9. Accessed 6 Feb. 2018.

Scott, Daniel J., and Gary L. Dunnington. “The New ACS/APDS Skills Curriculum: Moving the

Learning Curve out of the Operating Room.” Journal of Gastrointestinal Surgery, vol. 12,

no. 2, Feb. 2008, pp. 213–221. doi:10.1007/s11605-007-0357-y. Accessed 6 Feb. 2018.

Simulated Surgical Systems, LLC. “Robotic Surgery Simulator.” Simulated Surgical Systems:

Digital Agency, 2018, www.simulatedsurgicals.com/ross2.html.

Smith, Roger, et al. “Comparative Analysis of the Functionality of Simulators of the Da Vinci

Surgical Robot.” Surgical Endoscopy, vol. 29, no. 4, Apr. 2015, pp. 972–983.

doi:10.1007/s00464-014-3748-7. Accessed 6 Feb. 2018.

Society of American Gastrointestinal and Endoscopic Surgeons. “FLS Program Description”

Fundamentals of Laparoscopic Surgery, 15 Aug. 2017, www.flsprogram.org/index/fls-

program-description/.

Spana, Gregory, et al. “Is Robotics the Future of Laparoendoscopic Single-Site Surgery

(LESS)?” BJU International, vol. 108, no. 6b, 20 Sept. 2011, pp. 1018–1023.

doi:10.1111/j.1464-410X.2011.10513.x. Accessed 6 Feb. 2018.

Teishima, Jun, et al. “Psychological Factor, Metacognition, Is Associated with the Advantage of

Suturing Techniques Acquired on a Virtual Reality Simulator of Robot-Assisted Surgery.”

International Journal of Urology, vol. 21, no. 3, Mar. 2014, pp. 349–350.

doi:10.1111/iju.12286. Accessed 6 Feb. 2018.

University of Nebraska Medical Center. “Skills Training.” College of Medicine Department of

Surgery, University of Nebraska Medical Center, 2018,

50

www.unmc.edu/surgery/residencies-fellowships/gensurgery-residency/ed-

activities/training/index.html.

Wang, L.-C.t., and C.c. Chen. “A Combined Optimization Method for Solving the Inverse

Kinematics Problems of Mechanical Manipulators.” IEEE Transactions on Robotics and

Automation, vol. 7, no. 4, 1991, pp. 489–499., doi:10.1109/70.86079.

White, Michael A., et al. “Robotic Laparoendoscopic Single-Site Surgery.” BJU International,

vol. 106, no. 6b, 30 Sept. 2010, pp. 923–927. doi:10.1111/j.1464-410X.2010.09671.x.

Accessed 6 Feb. 2018.

WorldViz. “Vizard VR Software Features.” WorldViz Virtual Reality Software, 2018,

www.worldviz.com/virtual-reality-software-features/#RAD.

Wortman, Tyler, et al. “Miniature Surgical Robot for Laparoendoscopic Single-Incision

Colectomy.” Surgical Endoscopy, vol. 26, no. 3, Mar. 2012, pp. 727–731.

doi:10.1007/s00464-011-1943-3. Accessed 6 Feb. 2018.

Zahiri, Mohsen, "Application of computer vision in surgical training and surgical robotics"

(2017). ETD collection for University of Nebraska - Lincoln. AAI10260082.

https://digitalcommons.unl.edu/dissertations/AAI10260082

Zawadzki, Marek, et al. “Comparison of Inflammatory Responses Following Robotic and Open

Colorectal Surgery: a Prospective Study.” International Journal of Colorectal Disease, vol.

32, no. 3, Mar. 2017, pp. 399–407. doi:10.1007/s00384-016-2697-0. Accessed 6 Feb. 2018.

https://digitalcommons.unl.edu/dissertations/AAI10260082

51

APPENDIX A. Simulation Code
import viz

import vizinput

import vizact

import viztask

import vizshape

import vizproximity

import math

import datetime

import os

import vizmat

import vizdlg

sensable=viz.add('sensable3.dle')

viz.go()

#This Section allows initialization without integrated menu use

global foreArmChoice

#foreArmChoice="GRASPER"

#foreArmChoice="CAUTERY"

foreArmChoice="NONE"

global vertPegBoxSpawn

#vertPegBoxSpawn="NO"

vertPegBoxSpawn="NONE"

global simulationType

#simulationType="TESTING"

#simulationType="SANDBOX"

#simulationType="TIME LIMIT"

simulationType="NONE"

global getInputValue

getInputValue=True

global userName

#userName="Testing"

userName="NONE"

#Remove Screen Elements to get the user input before starting the simulation

def PlaceScreen():

 viz.MainScene.visible(0,viz.WORLD) #Remove MainScene Rendering

 viz.clearcolor(viz.SKYBLUE) #Set Background Color to light blue

 buttonAlphaValue=0 #Remove Buttons by making them transparent

 timerButton.alpha(buttonAlphaValue)

 viewButton.alpha(buttonAlphaValue)

 timerButton.alpha(buttonAlphaValue)

 resetButton.alpha(buttonAlphaValue)

#Initialize Program Parameter Questions---Initialize Program

Parameter Questions

def GetInputForeArm():

 global foreArmChoice #which forearm should be rendered for the left arm

 global getInputValue #are further input questions needed or is a question in progress

 global userName #username to attach to the recorded metrics

 #Check for Username. If none, ask for username

 while userName=="NONE":

 userName = vizinput.input("Please Input a User Name:")

 userName.replace(" ","")

 yield viztask.waitTime(1)

 yield viztask.waitTime(1)

 options=[("Grasper"),("Cautery")]

52

 foreArmQuestion=vizdlg.AskDialog(None,options=options,title="Forearm Choice")

 foreArmQuestion.setScreenAlignment(viz.ALIGN_CENTER)

 if foreArmChoice == "NONE" and getInputValue==True and userName!="NONE":

 getInputValue=False

 foreArmQuestion.selection = 0

 yield foreArmQuestion.show()

 if foreArmQuestion.accepted:

 foreArmChoice=options[foreArmQuestion.selection].upper()

 foreArmQuestion.remove()

 getInputValue=True

 else:

 getInputValue=True

vizact.ontimer(0.1,viztask.schedule,GetInputForeArm)

def GetInputPegBox():

 global foreArmChoice

 global vertPegBoxSpawn

 global getInputValue

 options2=[("No"),("Yes")]

 vertPegBoxQuestion=vizdlg.AskDialog(None,options=options2,title="Generate Vertical Peg Box")

 vertPegBoxQuestion.setScreenAlignment(viz.ALIGN_CENTER)

 if getInputValue==True and foreArmChoice!="NONE" and vertPegBoxSpawn=="NONE":

 getInputValue=False

 vertPegBoxQuestion.selection = 0

 yield vertPegBoxQuestion.show()

 if vertPegBoxQuestion.accepted:

 vertPegBoxSpawn=options2[vertPegBoxQuestion.selection].upper()

 vertPegBoxQuestion.remove()

 getInputValue=True

 else:

 getInputValue=True

vizact.ontimer(.2,viztask.schedule,GetInputPegBox)

def GetInputSimuType():

 global foreArmChoice

 global vertPegBoxSpawn

 global simulationType

 global getInputValue

 options3=[("Sandbox"),("Time Limit"),("Completion"),("Testing")]

 simulationTypeQuestion=vizdlg.AskDialog(None,options=options3,title="Simulation Choice")

 simulationTypeQuestion.setScreenAlignment(viz.ALIGN_CENTER)

 if getInputValue==True and foreArmChoice!="NONE" and vertPegBoxSpawn!="NONE" and simulationType=="NONE":

 getInputValue=False

 simulationTypeQuestion.selection = 0

 yield simulationTypeQuestion.show()

 if simulationTypeQuestion.accepted:

 simulationType=options3[simulationTypeQuestion.selection].upper()

 simulationTypeQuestion.remove()

 getInputValue=True

 RemoveScreen()

 ChooseSimulation()

 else:

 getInputValue=True

53

vizact.ontimer(.3,viztask.schedule,GetInputSimuType)

#Return the rendered portions to the simulation after paramaters are determined

def RemoveScreen():

 global simulationType

 viz.MainScene.visible(1,viz.WORLD)

 #Sets background color

 viz.clearcolor(lightblue)

 #viz.clearcolor(white)

 buttonAlphaValue=1

 timerButton.alpha(buttonAlphaValue)

 viewButton.alpha(buttonAlphaValue)

 resetButton.alpha(buttonAlphaValue)

 StaticText(False)

 #Remove User Functionality Buttons while testing

 if simulationType=="TESTING":

 timerButton.remove()

 viewButton.remove()

 resetButton.remove()

 StaticText(True)

 #Need to deal with timer

#Enable the physics engine

viz.phys.enable()

#Set the user's viewpoint to the correct position and orientation

viz.MainView.setPosition([-.35,6.9,-4.7])

viz.MainView.setEuler([0,35,0])

window = viz.MainWindow

window.fov(90, 1.3)

#Define the Color Values for Reference Later

black=[0,0,0]

gray=[.13,.13,.13]

lightgray=[.15,.15,.15]

blue=[0,0,1]

red=[1,0,0]

white=[1,1,1]

green=[0,1,0]

darkgreen=[0,.1,0]

darkgray=[.08,.08,.08]

crimson=[.5,0,0]

lightblue=[.1,.4,1]

#Define Alpha Values For What is Rendered

colAlphaValues=0

colGrasperAlphaValues=0

grasperAlphaValues=1

colCautAlphaValues=0

cautAlphaValues=1

vectorAlphaValues=0

staticTextAlpha=1

shoulderAlphaValues=0

#Various Physical Values

robotDensity=100000000

tipFriction=1

#Scale applied to the imported models

scaleValue=.05

scale=[scaleValue,scaleValue,scaleValue]

54

#Generate a sphere to attach to the camera

cameraObject= vizshape.addSphere()

cameraObject.setScale([.1,.1,.1])

cameraObject.setPosition([-.4,6.9,-4.6])

cameraObject.alpha(0)

#Link the camera to the sphere so that it can be moved around with mouse functions

global viewLink

viewLink=viz.link(cameraObject,viz.MainView)

viewLink.preEuler([0, 35, 0])

pegBox = vizshape.addBox(size=(10,1.5,8),right=True,left=True,top=True,bottom=True,front=True,back=True,splitFaces=False, pos = (0,-.75,-

1))

pegBox.collideMesh()

pegBox.enable(viz.COLLIDE_NOTIFY)

pegBox.color(lightgray)

base_grid = vizshape.addGrid(boldStep=1,pos=(0,-2,0))

base_grid.collidePlane() #Make Ground Plane Collidable

base_grid.color(viz.BLACK)

pegBoxVert=vizshape.addBox(size=(10,8,1.5))

pegBoxVert.setPosition([0,2,7])

pegBoxVert.collideMesh()

pegBoxVert.color(gray)

pegBoxAnchor=viz.grab(base_grid,pegBoxVert)

#Pin and Ring Models Values

height=1

radius=.2

#Generating the Peg Visual Models

cylinder1pos=[-2.5,.5,2]

cylinder2pos=(-1,.5,2)

cylinder3pos=(-2.5,.5,0.5)

cylinder4pos=(-1,.5,0.5)

cylinder5pos=(-2.5,.5,-1)

cylinder6pos=(-1,.5, -1)

cylinder7pos=(1,.5,2)

cylinder8pos=(2.5,.5,2)

cylinder9pos=(1,.5,0.5)

cylinder10pos=(2.5,.5,0.5)

cylinder11pos=(1,.5,-1)

cylinder12pos=(2.5,.5,-1)

cylinder1=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20,

bottom=True,top=True)

cylinder2=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20,

bottom=True,top=True)

cylinder3=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20,

bottom=True,top=True)

cylinder4=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20,

bottom=True,top=True)

cylinder5=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20,

bottom=True,top=True)

cylinder6=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20,

bottom=True,top=True)

cylinder7=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20,

bottom=True,top=True)

cylinder8=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20,

bottom=True,top=True)

55

cylinder9=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20,

bottom=True,top=True)

cylinder10=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20,

bottom=True,top=True)

cylinder11=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20,

bottom=True,top=True)

cylinder12=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Y, slices=20,

bottom=True,top=True)

cylinder1.color(darkgray)

cylinder2.color(darkgray)

cylinder3.color(darkgray)

cylinder4.color(darkgray)

cylinder5.color(darkgray)

cylinder6.color(darkgray)

cylinder7.color(darkgray)

cylinder8.color(darkgray)

cylinder9.color(darkgray)

cylinder10.color(darkgray)

cylinder11.color(darkgray)

cylinder12.color(darkgray)

cylinder1.collideMesh()

cylinder2.collideMesh()

cylinder3.collideMesh()

cylinder4.collideMesh()

cylinder5.collideMesh()

cylinder6.collideMesh()

cylinder7.collideMesh()

cylinder8.collideMesh()

cylinder9.collideMesh()

cylinder10.collideMesh()

cylinder11.collideMesh()

cylinder12.collideMesh()

cylinder1.enable(viz.COLLIDE_NOTIFY)

cylinder2.enable(viz.COLLIDE_NOTIFY)

cylinder3.enable(viz.COLLIDE_NOTIFY)

cylinder4.enable(viz.COLLIDE_NOTIFY)

cylinder5.enable(viz.COLLIDE_NOTIFY)

cylinder6.enable(viz.COLLIDE_NOTIFY)

cylinder7.enable(viz.COLLIDE_NOTIFY)

cylinder8.enable(viz.COLLIDE_NOTIFY)

cylinder9.enable(viz.COLLIDE_NOTIFY)

cylinder10.enable(viz.COLLIDE_NOTIFY)

cylinder11.enable(viz.COLLIDE_NOTIFY)

cylinder12.enable(viz.COLLIDE_NOTIFY)

for position in range(0,6,2):

 cylinder1.collideSphere(radius=radius, pos=(0,position*.1,0))

 cylinder2.collideSphere(radius=radius, pos=(0,position*.1,0))

 cylinder3.collideSphere(radius=radius, pos=(0,position*.1,0))

 cylinder4.collideSphere(radius=radius, pos=(0,position*.1,0))

 cylinder5.collideSphere(radius=radius, pos=(0,position*.1,0))

 cylinder6.collideSphere(radius=radius, pos=(0,position*.1,0))

 cylinder7.collideSphere(radius=radius, pos=(0,position*.1,0))

 cylinder8.collideSphere(radius=radius, pos=(0,position*.1,0))

 cylinder9.collideSphere(radius=radius, pos=(0,position*.1,0))

 cylinder10.collideSphere(radius=radius, pos=(0,position*.1,0))

 cylinder11.collideSphere(radius=radius, pos=(0,position*.1,0))

 cylinder12.collideSphere(radius=radius, pos=(0,position*.1,0))

56

#Link the Cylinders to the base_grid so they can't move and offset them into the correct position

cylinder1Link=viz.link(base_grid,cylinder1)

cylinder1Link.setOffset([-2.5,2.5,1.4])

cylinder2Link=viz.link(base_grid,cylinder2)

cylinder2Link.setOffset([-1,2.5,1.4])

cylinder3Link=viz.link(base_grid,cylinder3)

cylinder3Link.setOffset([-2.5,2.5,-0.1])

cylinder4Link=viz.link(base_grid,cylinder4)

cylinder4Link.setOffset([-1,2.5,-0.1])

cylinder5Link=viz.link(base_grid,cylinder5)

cylinder5Link.setOffset([-2.5,2.5,-1.4])

cylinder6Link=viz.link(base_grid,cylinder6)

cylinder6Link.setOffset([-1,2.5,-1.4])

cylinder7Link=viz.link(base_grid,cylinder7)

cylinder7Link.setOffset([1,2.5,1.4])

cylinder8Link=viz.link(base_grid,cylinder8)

cylinder8Link.setOffset([2.5,2.5,1.4])

cylinder9Link=viz.link(base_grid,cylinder9)

cylinder9Link.setOffset([1,2.5,-0.1])

cylinder10Link=viz.link(base_grid,cylinder10)

cylinder10Link.setOffset([2.5,2.5,-0.1])

cylinder11Link=viz.link(base_grid,cylinder11)

cylinder11Link.setOffset([1,2.5,-1.4])

cylinder12Link=viz.link(base_grid,cylinder12)

cylinder12Link.setOffset([2.5,2.5,-1.4])

#Vertical PegBox Cylinders

cylinder1Vert=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Z, slices=20,

bottom=True,top=True,parent=pegBoxVert)

cylinder2Vert=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Z, slices=20,

bottom=True,top=True,parent=pegBoxVert)

cylinder3Vert=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Z, slices=20,

bottom=True,top=True,parent=pegBoxVert)

cylinder4Vert=vizshape.addCylinder(height, radius, topRadius=None, bottomRadius=None, axis=vizshape.AXIS_Z, slices=20,

bottom=True,top=True,parent=pegBoxVert)

cylinder1Vert.setPosition([-3,1.6,-1.2])

cylinder2Vert.setPosition([-1,1.6,-1.2])

cylinder3Vert.setPosition([1,1.6,-1.2])

cylinder4Vert.setPosition([3,1.6,-1.2])

cylinder1Vert.collideMesh()

cylinder2Vert.collideMesh()

cylinder3Vert.collideMesh()

cylinder4Vert.collideMesh()

cylinder1Vert.color(gray)

cylinder2Vert.color(gray)

cylinder3Vert.color(gray)

cylinder4Vert.color(gray)

def RemoveVertPegBox():

 global vertPegBoxSpawn

 if vertPegBoxSpawn=="NO":

 pegBoxVert.remove(children=True)

vizact.ontimer2(1,30,RemoveVertPegBox)

#Ring parameter values

RADIUS = .5

TUBE_RADIUS = 0.12

57

density = 2

friction = 5

hardness = .01

bounce=0

#Generating the Ring Visual Models

torus1 = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS)

torus2 = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS)

torus3 = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS)

torus4 = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS)

torus5 = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS)

torus6 = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS)

torus1.color(green)

torus2.color(green)

torus3.color(green)

torus4.color(green)

torus5.color(green)

torus6.color(green)

#Creating Nodes for the Torus Collision Objects

torus1weight = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS)

torus2weight = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS)

torus3weight = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS)

torus4weight = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS)

torus5weight = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS)

torus6weight = vizshape.addTorus(radius=RADIUS,tubeRadius=TUBE_RADIUS)

#Generate the Collision Objects for the Torus

for degree in range(0,360, 5):

 xx = math.sin(viz.radians(degree))*RADIUS

 zz = math.cos(viz.radians(degree))*RADIUS

 torus1weight.collideSphere(radius=TUBE_RADIUS*.8, pos=(xx,0,zz), bounce = bounce, friction=friction, density = density,

hardness = hardness)

 torus2weight.collideSphere(radius=TUBE_RADIUS*.8, pos=(xx,0,zz), bounce = bounce, friction=friction, density = density,

hardness = hardness)

 torus3weight.collideSphere(radius=TUBE_RADIUS*.8, pos=(xx,0,zz), bounce = bounce, friction=friction, density = density,

hardness = hardness)

 torus4weight.collideSphere(radius=TUBE_RADIUS*.8, pos=(xx,0,zz), bounce = bounce, friction=friction, density = density,

hardness = hardness)

 torus5weight.collideSphere(radius=TUBE_RADIUS*.8, pos=(xx,0,zz), bounce = bounce, friction=friction, density = density,

hardness = hardness)

 torus6weight.collideSphere(radius=TUBE_RADIUS*.8, pos=(xx,0,zz), bounce = bounce, friction=friction, density = density,

hardness = hardness)

#Initial placement of torus over the rings

torus1weight.setPosition((-1,.5,1.5))

torus2weight.setPosition((-1,.5,0.0))

torus3weight.setPosition((-1,.5,-1.5))

torus4weight.setPosition((-2.5,.5,1.5))

torus5weight.setPosition((-2.5,.5,0))

torus6weight.setPosition((-2.5,.5,-1.5))

#Enable Collision Reporting For the torus

torus1weight.enable(viz.COLLIDE_NOTIFY)

torus2weight.enable(viz.COLLIDE_NOTIFY)

torus3weight.enable(viz.COLLIDE_NOTIFY)

torus4weight.enable(viz.COLLIDE_NOTIFY)

torus5weight.enable(viz.COLLIDE_NOTIFY)

torus6weight.enable(viz.COLLIDE_NOTIFY)

58

#Disable the rendering from the collision torus, leaving only one set of torus visable

torus1weight.disable(viz.RENDERING)

torus2weight.disable(viz.RENDERING)

torus3weight.disable(viz.RENDERING)

torus4weight.disable(viz.RENDERING)

torus5weight.disable(viz.RENDERING)

torus6weight.disable(viz.RENDERING)

#Position balls for torus placement information

posBall1=vizshape.addSphere(radius=RADIUS/2,pos=(0,0,0),parent=torus1)

posBall1.collideMesh()

posBall1.enable(viz.COLLIDE_NOTIFY)

posBall1.disable(viz.RENDERING)

posBall2=vizshape.addSphere(radius=RADIUS/2,pos=(0,0,0),parent=torus2)

posBall2.collideMesh()

posBall2.enable(viz.COLLIDE_NOTIFY)

posBall2.disable(viz.RENDERING)

posBall3=vizshape.addSphere(radius=RADIUS/2,pos=(0,0,0),parent=torus3)

posBall3.collideMesh()

posBall3.enable(viz.COLLIDE_NOTIFY)

posBall3.disable(viz.RENDERING)

posBall4=vizshape.addSphere(radius=RADIUS/2,pos=(0,0,0),parent=torus4)

posBall4.collideMesh()

posBall4.enable(viz.COLLIDE_NOTIFY)

posBall4.disable(viz.RENDERING)

posBall5=vizshape.addSphere(radius=RADIUS/2,pos=(0,0,0),parent=torus5)

posBall5.collideMesh()

posBall5.enable(viz.COLLIDE_NOTIFY)

posBall5.disable(viz.RENDERING)

posBall6=vizshape.addSphere(radius=RADIUS/2,pos=(0,0,0),parent=torus6)

posBall6.collideMesh()

posBall6.enable(viz.COLLIDE_NOTIFY)

posBall6.disable(viz.RENDERING)

#Function to link the position and orientation of the Collision Torus to the Visable Torus

def CombineTorus():

 torus1.setPosition(torus1weight.getPosition())

 torus1.setEuler(torus1weight.getEuler())

 torus2.setPosition(torus2weight.getPosition())

 torus2.setEuler(torus2weight.getEuler())

 torus3.setPosition(torus3weight.getPosition())

 torus4.setPosition(torus4weight.getPosition())

 torus4.setEuler(torus4weight.getEuler())

 torus5.setPosition(torus5weight.getPosition())

 torus5.setEuler(torus5weight.getEuler())

 torus6.setPosition(torus6weight.getPosition())

 torus6.setEuler(torus6weight.getEuler())

#Repeatedly Call the Function to Overlay the Separate Torus Objects

vizact.onupdate(0,CombineTorus)

59

#Robot Model Generation--

Robot Model Generation

baseObject=vizshape.addSphere()

baseObject.alpha(0)

shoulder = viz.addChild("shoulder.dae",parent=baseObject)

shoulder.setScale(scale)

shoulder.setCenter([-.35,0,0])

shoulder.setPosition([.35,5,-5])

shoulder.setEuler([0,-90,180])

shoulder.alpha(shoulderAlphaValues)

#Link the camera view to the tilt/pan of the body of the robot

cameraObjectLink=viz.grab(shoulder,cameraObject)

upperArmLeft = viz.addChild("UpperArmLeft.dae",parent=shoulder)

upperArmLeft.setCenter([15,0,0])

upperArmLeft.color(gray)

upperArmLeft.alpha(grasperAlphaValues)

colUpArmLeft=vizshape.addBox([15,60,20],parent=shoulder)

colUpArmLeft.collideBox([.75,3,1],density=robotDensity)

colUpArmLeft.setCenter([-10,-30,0])

colUpArmLeft.setPosition([30,25,4.5])

colUpArmLeft.alpha(colAlphaValues)

colUpArmLeft.color(lightgray)

pivotPointLeft=vizshape.addSphere(radius=.5,parent=shoulder)

pivotPointLeft.setPosition([-.75,5,-5],viz.ABS_GLOBAL)

pivotPointLeft.alpha(0)

elbowPointLeft=vizshape.addSphere(radius=.5,parent=upperArmLeft)

elbowPointLeft.setPosition([-1.7,5,-1.4],viz.ABS_GLOBAL)

elbowPointLeft.alpha(0)

upperArmRight = viz.addChild("UpperArmRight.dae",parent=shoulder)

upperArmRight.alpha(grasperAlphaValues)

upperArmRight.color(gray)

colUpArmRight=vizshape.addBox([15,60,20],parent=shoulder)

colUpArmRight.collideBox([.75,3,1],density=robotDensity)

colUpArmRight.setCenter([10,-30,0])

colUpArmRight.setPosition([-15,26,4.5])

colUpArmRight.alpha(colAlphaValues)

colUpArmRight.color(lightgray)

pivotPointRight=vizshape.addSphere(radius=.5,parent=shoulder)

pivotPointRight.alpha(0)

elbowPointRight=vizshape.addSphere(radius=.5,parent=upperArmRight)

elbowPointRight.setPosition([.73,5,-1.4],viz.ABS_GLOBAL)

elbowPointRight.alpha(0)

grasperLeft = viz.addChild("graspLeft.dae", parent=upperArmLeft)

grasperLeft.setCenter([28,75,0])

grasperLeft.color(gray)

grasperLeft.alpha(grasperAlphaValues)

colGraspLeft=vizshape.addBox(size=([15,75,20]),parent=upperArmLeft)

colGraspLeft.setCenter([0,-42,0])

colGraspLeft.collideBox([15*scaleValue,75*scaleValue,20*scaleValue],density=robotDensity)

60

colGraspLeft.setPosition([30,116,2.5])

colGraspLeft.enable(viz.COLLIDE_NOTIFY)

colGraspLeft.alpha(colGrasperAlphaValues)

colGraspLeft.color(lightgray)

turnSphereLeft=vizshape.addSphere(parent=grasperLeft)

turnSphereLeft.setCenter([30.5,0,5])

turnSphereLeft.alpha(0)

linkSphereLeft=vizshape.addSphere(parent=grasperLeft)

linkSphereLeft.setPosition([30.55,154.9,4.7])

linkSphereLeftOrientLink=viz.link(turnSphereLeft, linkSphereLeft)

linkSphereLeftOrientLink.setMask(viz.LINK_ORI)

linkSphereLeft.alpha(0)

tipLeft1 = viz.addChild("LeftTip1.dae", parent=turnSphereLeft)

tipLeft1.setCenter([31,155,5])

tipLeft2 = viz.addChild("LeftTip2.osgb", parent=turnSphereLeft)

tipLeft2.setCenter([31,155,5])

tipLeft1.alpha(grasperAlphaValues)

tipLeft2.alpha(grasperAlphaValues)

colBoxLeft1=vizshape.addBox(size=[3,14,4],parent=turnSphereLeft)

colBoxLeft1.collideBox([3*scaleValue,14*scaleValue,4*scaleValue],density=robotDensity)

colBoxLeft1.setPosition([32,168,4.6])

colBoxLeft1.setCenter([0,-12,0])

colBoxLeft1.setEuler([0,0,-35])

colBoxLeft1.enable(viz.COLLIDE_NOTIFY)

colBoxLeft1.alpha(colGrasperAlphaValues)

colBoxLeft1.color(lightgray)

colBoxLeft2=vizshape.addBox(size=[3,14,4],parent=turnSphereLeft)

colBoxLeft2.collideBox([3*scaleValue,14*scaleValue,4*scaleValue],density=robotDensity)

colBoxLeft2.setPosition([29,167.5,4.4])

colBoxLeft2.setCenter([0,-12,0])

colBoxLeft2.setEuler([0,0,35])

colBoxLeft2.enable(viz.COLLIDE_NOTIFY)

colBoxLeft2.alpha(colGrasperAlphaValues)

colBoxLeft2.color(lightgray)

grasperRight = viz.addChild("graspRight.dae", parent=upperArmRight)

grasperRight.setCenter([-13,74,0])

grasperRight.alpha(grasperAlphaValues)

grasperRight.color(gray)

colGraspRight=vizshape.addBox(size=([15,75,20]),parent=upperArmRight)

colGraspRight.setCenter([0,-42,0])

colGraspRight.collideBox([15*scaleValue,75*scaleValue,20*scaleValue],density=robotDensity)

colGraspRight.setPosition([-12,116,2.8])

colGraspRight.enable(viz.COLLIDE_NOTIFY)

colGraspRight.alpha(colAlphaValues)

colGraspRight.color(lightgray)

cauteryLeft = viz.addChild("singleCaut.osgb", parent=upperArmLeft)

cauteryLeft.setPosition([-108,133,45])

cauteryLeft.setCenter([135,-58,37])

cauteryLeft.alpha(cautAlphaValues)

cauteryLeft.color(gray)

linkSphereLeft_caut=vizshape.addSphere(parent=cauteryLeft)

61

linkSphereLeft_caut.setPosition([135.55, 13.89, -41.3])

#linkSphereLeft_caut.alpha(0)

colCautLeft=vizshape.addBox([15,57,17], parent=upperArmLeft)

colCautLeft.setPosition([30,110,5])

colCautLeft.collideBox([15*scaleValue,57*scaleValue,17*scaleValue],density=robotDensity)

colCautLeft.setCenter([-2,-35,3])

colCautLeft.alpha(colCautAlphaValues)

turnSphereRight=vizshape.addSphere(parent=grasperRight)

turnSphereRight.setCenter([-10.5,0,5])

turnSphereRight.alpha(0)

linkSphereRight=vizshape.addSphere(parent=grasperRight)

linkSphereRight.setPosition([-10.7,154.9,4.6])

linkSphereRightOrientLink=viz.link(turnSphereRight, linkSphereRight)

linkSphereRightOrientLink.setMask(viz.LINK_ORI)

linkSphereRight.alpha(0)

turnSphereLeftCaut=vizshape.addSphere(parent=cauteryLeft)

turnSphereLeftCaut.setCenter([136.2,6.1,-41.7])

turnSphereLeftCaut.alpha(0)

tipRight1 = viz.addChild("RightTip1.dae", parent=turnSphereRight)

tipRight1.setCenter([-11,155,5])

tipRight2 = viz.addChild("RightTip2.dae", parent=turnSphereRight)

tipRight2.setCenter([-11,155,5])

tipRight1.alpha(grasperAlphaValues)

tipRight2.alpha(grasperAlphaValues)

tipRight1.color(gray)

tipRight2.color(gray)

tipLeft1.color(gray)

tipLeft2.color(gray)

colBoxRight1=vizshape.addBox(size=[3,14,4],parent=turnSphereRight)

colBoxRight1.collideBox([3*scaleValue,14*scaleValue,4*scaleValue],density=robotDensity,friction=tipFriction)

colBoxRight1.setPosition([-9,168,5])

colBoxRight1.setCenter([0,-12,0])

colBoxRight1.setEuler([0,0,-35])

colBoxRight1.enable(viz.COLLIDE_NOTIFY)

colBoxRight1.alpha(colAlphaValues)

colBoxRight1.color(lightgray)

colBoxRight2=vizshape.addBox(size=[3,14,4],parent=turnSphereRight)

colBoxRight2.collideBox([3*scaleValue,14*scaleValue,4*scaleValue],density=robotDensity,friction=tipFriction)

colBoxRight2.setPosition([-11.82,167.4,4.9])

colBoxRight2.setCenter([0,-12,0])

colBoxRight2.setEuler(0,0,35)

colBoxRight2.enable(viz.COLLIDE_NOTIFY)

colBoxRight2.alpha(colAlphaValues)

colBoxRight2.color(lightgray)

cauteryLeftTip = viz.addChild("cautTip.osgb", parent=cauteryLeft)

cauteryLeftTip.setCenter([136.2,6.1,-41.7])

cauteryLeftTip.alpha(cautAlphaValues)

cauteryLeftTip.color(lightgray)

colCautLeftTip1=vizshape.addBox(size=[5,15.5,5],parent=turnSphereLeftCaut)

colCautLeftTip1.setPosition([136,14,-41.5])

colCautLeftTip1.collideBox([5*scaleValue,15.5*scaleValue,5*scaleValue], density=robotDensity)

62

colCautLeftTip1.alpha(colCautAlphaValues)

colCautLeftTip2=vizshape.addBox(size=[2,6,2],parent=turnSphereLeftCaut)

colCautLeftTip2.setPosition([136,25,-41.5])

colCautLeftTip2.collideBox([2*scaleValue,6*scaleValue,2*scaleValue],density=robotDensity)

colCautLeftTip2.alpha(colCautAlphaValues)

#cautLink2=viz.grab(colCautLeftTip1,colCautLeftTip2)

colCautLeftTip3=vizshape.addBox(size=[2,5,2],parent=turnSphereLeftCaut)

colCautLeftTip3.setPosition([135.3,31,-41.5])

colCautLeftTip3.collideBox([2*scaleValue,5*scaleValue,2*scaleValue],density=robotDensity)

colCautLeftTip3.setEuler([0,0,15])

#cautLink3=viz.grab(colCautLeftTip2,colCautLeftTip3)

colCautLeftTip3.alpha(colCautAlphaValues)

colCautLeftTip4=vizshape.addBox(size=[5,2,2],parent=turnSphereLeftCaut)

colCautLeftTip4.setPosition([136,36,-41.5])

colCautLeftTip4.collideBox([5*scaleValue,2*scaleValue,2*scaleValue],density=robotDensity)

colCautLeftTip4.alpha(colCautAlphaValues)

cautLink4=viz.grab(colCautLeftTip3,colCautLeftTip4)

#Used to remove the forearm not chosen as well as all linked parts

def RemoveForearm():

 global foreArmChoice

 if foreArmChoice=="CAUTERY":

 grasperLeft.remove(children=True)

 colGraspLeft.remove(children=True)

 if foreArmChoice=="GRASPER":

 cauteryLeft.remove(children=True)

 colCautLeft.remove(children=True)

vizact.ontimer2(1,30,RemoveForearm)

#Do once:Rotate the collison boxes for the tips into the correct position

initialize=0

global rightEuler

global leftEuler

if initialize==0:

 rightEuler=colBoxRight1.getEuler()[2]

 leftEuler=colBoxLeft1.getEuler()[2]

 initialize=1

#Function to Combine Visual Models and Collide Objects

def LockDownPosition():

 global leftEuler

 global rightEuler

 global foreArmChoice

 colBoxRight1.setPosition([-9,168,5])

 colBoxRight1.setVelocity([0,0,0],mode=viz.ABS_GLOBAL)

 colBoxRight1.setAngularVelocity([0,0,0],mode=viz.ABS_GLOBAL)

 offsetAngle=colBoxRight1.getEuler()

 offsetAngle[0]=0

 offsetAngle[1]=0

 offsetAngle[2]=rightEuler

 colBoxRight1.setEuler(offsetAngle)

 offsetAngle[2]=offsetAngle[2]+35 #35 is the Offset Difference Between the Tip Model and the Collision Box

 tipRight1.setEuler(offsetAngle)

 colBoxRight2.setPosition([-11.82,167.4,4.9])

 colBoxRight2.setVelocity([0,0,0],mode=viz.ABS_GLOBAL)

63

 colBoxRight2.setAngularVelocity([0,0,0],mode=viz.ABS_GLOBAL)

 offsetAngle[2]=-(offsetAngle[2]-35)

 colBoxRight2.setEuler(offsetAngle)

 offsetAngle[2]=offsetAngle[2]-35

 tipRight2.setEuler(offsetAngle)

 colBoxLeft1.setPosition([32,168,4.6])

 colBoxLeft1.setVelocity([0,0,0],mode=viz.ABS_GLOBAL)

 colBoxLeft1.setAngularVelocity([0,0,0],mode=viz.ABS_GLOBAL)

 offsetAngle=colBoxLeft1.getEuler()

 offsetAngle[0]=0

 offsetAngle[1]=0

 offsetAngle[2]=leftEuler

 colBoxLeft1.setEuler(offsetAngle)

 offsetAngle[2]=offsetAngle[2]+35 #35 is the Offset Difference Between the Tip Model and the Collision Box

 tipLeft1.setEuler(offsetAngle)

 colBoxLeft2.setPosition([29,168.5,4.4])

 colBoxLeft2.setVelocity([0,0,0],mode=viz.ABS_GLOBAL)

 colBoxLeft2.setAngularVelocity([0,0,0],mode=viz.ABS_GLOBAL)

 offsetAngle[2]=-(offsetAngle[2]-35)

 colBoxLeft2.setEuler(offsetAngle)

 offsetAngle[2]=offsetAngle[2]-35

 tipLeft2.setEuler(offsetAngle)

 grasperAngle=colGraspRight.getEuler()

 colGraspRight.setPosition([-12,116,2.8])

 colGraspRight.setVelocity([0,0,0],mode=viz.ABS_GLOBAL)

 grasperAngle[0]=0

 grasperAngle[1]=0

 colGraspRight.setEuler(grasperAngle)

 grasperRight.setEuler(grasperAngle)

 grasperAngle=colGraspLeft.getEuler()

 if grasperAngle[2]>121:

 grasperAngle[2]=121

 colGraspLeft.setPosition([30,116,2.5])

 colGraspLeft.setVelocity([0,0,0],mode=viz.ABS_GLOBAL)

 grasperAngle[0]=0

 grasperAngle[1]=0

 colGraspLeft.setEuler(grasperAngle)

 grasperLeft.setEuler(grasperAngle)

 grasperAngle=colUpArmRight.getEuler()

 colUpArmRight.setPosition([-15,26,4.5])

 colUpArmRight.setVelocity([0,0,0],mode=viz.ABS_GLOBAL)

 colUpArmRight.setEuler(grasperAngle)

 upperArmRight.setEuler(grasperAngle)

 grasperAngle=colUpArmLeft.getEuler()

 colUpArmLeft.setPosition([30,25,4.5])

 colUpArmLeft.setVelocity([0,0,0],mode=viz.ABS_GLOBAL)

 colUpArmLeft.setEuler(grasperAngle)

 upperArmLeft.setEuler(grasperAngle)

 grasperAngle=colCautLeft.getEuler()

 colCautLeft.setPosition([30,110,5])

 colCautLeft.setVelocity([0,0,0],mode=viz.ABS_GLOBAL)

 grasperAngle[0]=0

 grasperAngle[1]=0

64

 colCautLeft.setEuler(grasperAngle)

 cauteryLeft.setEuler(grasperAngle)

 cauteryLeftTip.setEuler(turnSphereLeftCaut.getEuler())

 colCautLeftTip1.setPosition([136,14,-41.5])

 colCautLeftTip1.setEuler([0,0,0])

 colCautLeftTip2.setPosition([136,25,-41.5])

 colCautLeftTip2.setEuler([0,0,0])

 colCautLeftTip3.setPosition([135.3,31,-41.5])

 colCautLeftTip3.setEuler([0,0,15])

 colCautLeftTip4.setPosition([136,36,-41.5])

 colCautLeftTip1.setVelocity([0,0,0])

 colCautLeftTip2.setVelocity([0,0,0])

 colCautLeftTip3.setVelocity([0,0,0])

 colCautLeftTip4.setVelocity([0,0,0])

vizact.onupdate(0, LockDownPosition)

#Cyclic Coordinate Descent Section---

Cyclic Coordinate Descent Section

#The Position x y z position we want the tip to be in r indicates right l indicates left

#Initializing the global variables

global theta1r; global theta2r; global theta3r; global extRatioR

global theta1l; global theta2l; global theta3l; global extRatioL

theta1r=0;theta2r=0;theta3r=0; extRatioR=1;

theta1l=0;theta2l=0;theta3l=0; extRatioL=1;

base_x=[1,0,0]

base_neg_x=[-1,0,0]

base_y=[0,1,0]

base_z=[0,0,1]

shoulderEulerVector=vizshape.addArrow(length=10*scaleValue,radiusRatio=.006,tipRadiusRatio=1.5, tipLengthRatio=.3,parent=shoulder)

shoulderEulerVector.setScale([1/scaleValue,1/scaleValue,1/scaleValue])

shoulderEulerVector.setEuler([0,0,0],viz.ABS_GLOBAL)

shoulderEulerVector.alpha(0)

upperVectorRight=vizshape.addArrow(length=77*scaleValue,radiusRatio=.006,tipRadiusRatio=1.5, tipLengthRatio=.3,parent=shoulder)

upperVectorRight.setScale([1/scaleValue,1/scaleValue,1/scaleValue])

upperVectorRight.setCenter([0,0,-77*scaleValue])

upperVectorRight.setPosition([0,-.3,2])

upperVectorRight.setEuler([0,0,0],viz.ABS_GLOBAL)

upperVectorRight.alpha(vectorAlphaValues)

upperVectorRightBase=vizshape.addSphere(radius=.05,parent=upperVectorRight)

upperVectorRightBase.setPosition([0,0,-77*scaleValue])

upperVectorRightBase.color(red)

upperVectorRightBase.alpha(vectorAlphaValues)

foreArmVectorRight=vizshape.addArrow(length=90*scaleValue,radiusRatio=.006,tipRadiusRatio=1.5,

tipLengthRatio=.3,parent=upperVectorRight)

foreArmVectorRight.setCenter([0,0,-90*scaleValue])

foreArmVectorRight.setPosition([0,0,90*scaleValue])

foreArmVectorRight.setEuler([0,0,0],viz.ABS_PARENT)

foreArmVectorRight.alpha(vectorAlphaValues)

foreArmVectorRightBase=vizshape.addSphere(radius=.05,parent=foreArmVectorRight)

foreArmVectorRightBase.setPosition([0,0,-90*scaleValue])

foreArmVectorRightBase.color(red)

foreArmVectorRightBase.alpha(vectorAlphaValues)

65

tipPositionRight=vizshape.addSphere(radius=.05,parent=foreArmVectorRight)

tipPositionRight.color(red)

tipPositionRight.alpha(vectorAlphaValues)

endPositionRight=vizshape.addSphere(radius=.05/scaleValue,parent=shoulder)

endPositionRight.color(blue)

endPositionRight.alpha(vectorAlphaValues)

endPositionRight.setPosition([0,.78,4.55],viz.ABS_GLOBAL)

upperVectorLeft=vizshape.addArrow(length=77*scaleValue,radiusRatio=.006,tipRadiusRatio=1.5, tipLengthRatio=.3,parent=shoulder)

upperVectorLeft.setScale([1/scaleValue,1/scaleValue,1/scaleValue])

upperVectorLeft.setCenter([0,0,-77*scaleValue])

upperVectorLeft.setPosition([13.8,-.3,2])

upperVectorLeft.setEuler([0,0,0],viz.ABS_GLOBAL)

upperVectorLeft.alpha(vectorAlphaValues)

upperVectorLeftBase=vizshape.addSphere(radius=.05,parent=upperVectorLeft)

upperVectorLeftBase.setPosition([0,0,-77*scaleValue])

upperVectorLeftBase.color(red)

upperVectorLeftBase.alpha(vectorAlphaValues)

foreArmVectorLeft=vizshape.addArrow(length=90*scaleValue,radiusRatio=.006,tipRadiusRatio=1.5,

tipLengthRatio=.3,parent=upperVectorLeft)

foreArmVectorLeft.setCenter([0,0,-90*scaleValue])

foreArmVectorLeft.setPosition([0,0,90*scaleValue])

foreArmVectorLeft.alpha(vectorAlphaValues)

foreArmVectorLeftBase=vizshape.addSphere(radius=.05,parent=foreArmVectorLeft)

foreArmVectorLeftBase.setPosition([0,0,-90*scaleValue])

foreArmVectorLeftBase.color(red)

foreArmVectorLeftBase.alpha(vectorAlphaValues)

tipPositionLeft=vizshape.addSphere(radius=.05,parent=foreArmVectorLeft)

tipPositionLeft.color(red)

tipPositionLeft.alpha(vectorAlphaValues)

endPositionLeft=vizshape.addSphere(radius=.05/scaleValue,parent=shoulder)

endPositionLeft.color(blue)

endPositionLeft.setPosition([-1,4.85,3.4],viz.ABS_GLOBAL)

endPositionLeft.alpha(vectorAlphaValues)

def CyclicCoordDes(basePoint,side):

 #The Position x y z position we want the tip to be in r indicates right l indicates left

 global theta1r; global theta2r; global theta3r; global extRatioR

 global theta1l; global theta2l; global theta3l; global extRatioL

 if side=="Right":

 #p_t is the desired end position

 p_t=endPositionRight.getPosition(viz.ABS_GLOBAL)

 #p_e is the current tip position

 p_e=tipPositionRight.getPosition(viz.ABS_GLOBAL)

 elbowPosition=foreArmVectorRightBase.getPosition(viz.ABS_GLOBAL)

 if side=="Left":

 p_t=endPositionLeft.getPosition(viz.ABS_GLOBAL)

 p_e=tipPositionLeft.getPosition(viz.ABS_GLOBAL)

 elbowPosition=foreArmVectorLeftBase.getPosition(viz.ABS_GLOBAL)

 #p_c is the current base point

 p_c=basePoint.getPosition(viz.ABS_GLOBAL)

 neg_p_c=[-p_c[0],-p_c[1],-p_c[2]]

66

 A=[sum(x) for x in zip(p_e,neg_p_c)]

 B=[sum(x) for x in zip(p_t,neg_p_c)]

 A[1]=0

 B[1]=0

 angleDiff=vizmat.AngleBetweenVector(A,base_x)-vizmat.AngleBetweenVector(B,base_x)

 A=[sum(x) for x in zip(p_e,neg_p_c)]

 B=[sum(x) for x in zip(p_t,neg_p_c)]

 A[0]=0

 B[0]=0

 angleDiff_z=vizmat.AngleBetweenVector(A,B)

 A=[sum(x) for x in zip(p_e,neg_p_c)]

 B=[sum(x) for x in zip(p_t,neg_p_c)]

Determines the direction of The Rotation for angleDiff

 if side=="Right":

 if basePoint==foreArmVectorRightBase:

 if elbowPosition[2]<p_t[2] and elbowPosition[2]>p_e[2]:

 A[1]=0

 B[1]=0

 angleDiff=-360+vizmat.AngleBetweenVector(A,B)

 if elbowPosition[2]>p_t[2]:

 if elbowPosition[2]< p_e[2]:

 A[1]=0

 B[1]=0

 angleDiff=360-vizmat.AngleBetweenVector(A,B)

 else:

 angleDiff=-angleDiff

 if side=="Left":

 if basePoint==foreArmVectorLeftBase:

 if elbowPosition[2]<p_t[2] and elbowPosition[2]>p_e[2]:

 A[1]=0

 B[1]=0

 angleDiff=360-vizmat.AngleBetweenVector(A,B)

 if elbowPosition[2]>p_t[2]:

 if elbowPosition[2]< p_e[2]:

 A[1]=0

 B[1]=0

 angleDiff=-360+vizmat.AngleBetweenVector(A,B)

 else:

 angleDiff=-angleDiff

#Applies the angleDiff and angleDiff_z rotations to the Vectors

 if side=="Right":

 if basePoint==foreArmVectorRightBase:

 foreArmVectorRight.setEuler([angleDiff,0,0],viz.REL_LOCAL)

 if basePoint==upperVectorRightBase:

 upperVectorRight.setEuler([angleDiff,0,0],viz.REL_LOCAL)

 if (p_t[1]-p_e[1])>0:

 upperVectorRight.setEuler([0,-angleDiff_z,0],viz.ABS_LOCAL)

 else:

 upperVectorRight.setEuler([0,angleDiff_z,0],viz.ABS_LOCAL)

 if side=="Left":

 if basePoint==foreArmVectorLeftBase:

 foreArmVectorLeft.setEuler([angleDiff,0,0],viz.REL_LOCAL)

 if basePoint==upperVectorLeftBase:

 upperVectorLeft.setEuler([angleDiff,0,0],viz.REL_LOCAL)

 if (p_t[1]-p_e[1])>0:

67

 upperVectorLeft.setEuler([0,-angleDiff_z,0],viz.ABS_LOCAL)

 else:

 upperVectorLeft.setEuler([0,angleDiff_z,0],viz.ABS_LOCAL)

 #Ensures elbow bends correct direction

 if foreArmVectorRight.getEuler(viz.ABS_PARENT)[0]>0 and basePoint==foreArmVectorRightBase and side=="Right":

 foreArmVectorRight.setEuler([-.2,0,0],viz.ABS_PARENT)

 if foreArmVectorLeft.getEuler(viz.ABS_PARENT)[0]<0 and basePoint==foreArmVectorLeftBase and side=="Left":

 foreArmVectorLeft.setEuler([.2,0,0],viz.ABS_PARENT)

 #Acquire Theta Values used for moving each arm into the correct position

 [theta1r,theta2r,theta3r,extRatioR]=GetThetaValues("Right")

 [theta1l,theta2l,theta3l,extRatioL]=GetThetaValues("Left")

 #Ensures a good elbow height

 PlanarRotation(side)

global iteration; iteration=0

def CheckError(side):

 global iteration

 margin=.05

 maxLength=8.3

 if side=="Right":

 p_e=tipPositionRight.getPosition(viz.ABS_GLOBAL)

 p_t=endPositionRight.getPosition(viz.ABS_GLOBAL)

 curLength=math.sqrt(math.pow(upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[0]-

p_t[0],2)+math.pow(upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1]-

p_t[1],2)+math.pow(upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[2]-p_t[2],2))

 if curLength>maxLength:

 value1=(endPositionRight.getPosition(viz.ABS_GLOBAL)[0]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[0])*(maxLength/curLength)

 value2=(endPositionRight.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])*(maxLength/curLength)

 value3=(endPositionRight.getPosition(viz.ABS_GLOBAL)[2]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[2])*(maxLength/curLength)

 endPositionRight.setPosition(upperVectorRightBase.getPosition(viz.ABS_GLOBAL),viz.ABS_GLOBAL)

 endPositionRight.setPosition([value1,value2,value3],viz.REL_GLOBAL)

 if abs(p_e[0]-p_t[0])>margin or abs(p_e[1]-p_t[1])>margin or abs(p_e[2]-p_t[2])>margin:

 CyclicCoordDes(foreArmVectorRightBase,side)

 CyclicCoordDes(upperVectorRightBase,side)

 if side=="Left":

 p_e=tipPositionLeft.getPosition(viz.ABS_GLOBAL)

 p_t=endPositionLeft.getPosition(viz.ABS_GLOBAL)

 curLength=math.sqrt(math.pow(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[0]-

p_t[0],2)+math.pow(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1]-

p_t[1],2)+math.pow(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[2]-p_t[2],2))

 if curLength>maxLength:

 value1=(endPositionLeft.getPosition(viz.ABS_GLOBAL)[0]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[0])*(maxLength/curLength)

 value2=(endPositionLeft.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])*(maxLength/curLength)

 value3=(endPositionLeft.getPosition(viz.ABS_GLOBAL)[2]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[2])*(maxLength/curLength)

 endPositionLeft.setPosition(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL),viz.ABS_GLOBAL)

 endPositionLeft.setPosition([value1,value2,value3],viz.REL_GLOBAL)

 if abs(p_e[0]-p_t[0])>margin or abs(p_e[1]-p_t[1])>margin or abs(p_e[2]-p_t[2])>margin:

68

 CyclicCoordDes(foreArmVectorLeftBase,side)

 CyclicCoordDes(upperVectorLeftBase,side)

def GetThetaValues(side):

 if side=="Right":

 p_t=endPositionRight.getPosition(viz.ABS_GLOBAL)

 theta1r= upperVectorRight.getEuler(viz.ABS_GLOBAL)[0]-shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[0]

 theta2r=foreArmVectorRight.getEuler(viz.ABS_PARENT)[0]

 theta3r=-upperVectorRight.getEuler(viz.ABS_GLOBAL)[1]+shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[1]

 maxLength=8.414

 curLength=math.sqrt(math.pow(upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[0]-

p_t[0],2)+math.pow(upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1]-

p_t[1],2)+math.pow(upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[2]-p_t[2],2))

 extRatio=curLength/maxLength/1.2

 return [theta1r,theta2r,theta3r,extRatio]

 if side=="Left":

 p_t=endPositionLeft.getPosition(viz.ABS_GLOBAL)

 theta1l=upperVectorLeft.getEuler(viz.ABS_GLOBAL)[0]-shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[0]

 theta2l=foreArmVectorLeft.getEuler(viz.ABS_PARENT)[0]

 theta3l=-upperVectorLeft.getEuler(viz.ABS_GLOBAL)[1]+shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[1]

 maxLength=8.414

 curLength=math.sqrt(math.pow(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[0]-

p_t[0],2)+math.pow(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1]-

p_t[1],2)+math.pow(upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[2]-p_t[2],2))

 extRatio=curLength/maxLength/1.2

 return [theta1l,theta2l,theta3l,extRatio]

vizact.onupdate(1,CheckError,"Right")

vizact.onupdate(1,CheckError,"Left")

def PlanarRotation(side):

 margin=.05

 rotDeg=2

 if side=="Right":

 p_e=tipPositionRight.getPosition(viz.ABS_GLOBAL)

 p_c=upperVectorRightBase.getPosition(viz.ABS_GLOBAL)

 neg_p_c=[-p_c[0],-p_c[1],-p_c[2]]

 A=[sum(x) for x in zip(p_e,neg_p_c)]

 if abs((foreArmVectorRightBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionRight.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])*.416)>margin and (foreArmVectorRightBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionRight.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])*.416<0:

 upperVectorRight.setAxisAngle([A[0],A[1],A[2],rotDeg],viz.REL_GLOBAL)

 if abs((foreArmVectorRightBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionRight.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])*.416)>margin and (foreArmVectorRightBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionRight.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorRightBase.getPosition(viz.ABS_GLOBAL)[1])*.416>0:

 upperVectorRight.setAxisAngle([A[0],A[1],A[2],-rotDeg],viz.REL_GLOBAL)

 if side=="Left":

 p_e=tipPositionLeft.getPosition(viz.ABS_GLOBAL)

 p_c=upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)

 neg_p_c=[-p_c[0],-p_c[1],-p_c[2]]

 A=[sum(x) for x in zip(p_e,neg_p_c)]

 if abs((foreArmVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionLeft.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])*.416)>margin and (foreArmVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1]-

69

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionLeft.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])*.416>0:

 upperVectorLeft.setAxisAngle([A[0],A[1],A[2],rotDeg],viz.REL_GLOBAL)

 if abs((foreArmVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionLeft.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])*.416)>margin and (foreArmVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])-(tipPositionLeft.getPosition(viz.ABS_GLOBAL)[1]-

upperVectorLeftBase.getPosition(viz.ABS_GLOBAL)[1])*.416<0:

 upperVectorLeft.setAxisAngle([A[0],A[1],A[2],-rotDeg],viz.REL_GLOBAL)

global theta1_l_List; global theta2_l_List; global theta3_l_List

global theta1_r_List; global theta2_r_List; global theta3_r_List

#Initialize the length of the lists to ten

theta1_l_List=[0]*10

theta2_l_List=[0]*10

theta3_l_List=[0]*10

theta1_r_List=[0]*10

theta2_r_List=[0]*10

theta3_r_List=[0]*10

#Averages the Theta Values Sent to the Arm Models to smooth the motion

def AvgThetaValues(inp_type,inp_list):

 #Theta Values that are applied

 global theta1r; global theta2r; global theta3r

 global theta1l; global theta2l; global theta3l

 #List of last 10 theta values

 global theta1_l_List; global theta2_l_List; global theta3_l_List

 global theta1_r_List; global theta2_r_List; global theta3_r_List

 if inp_type=="theta1l":

 inp_value=theta1l

 if inp_type=="theta2l":

 inp_value=theta2l

 if inp_type=="theta3l":

 inp_value=theta3l

 if inp_type=="theta1r":

 inp_value=theta1r

 if inp_type=="theta2r":

 inp_value=theta2r

 if inp_type=="theta3r":

 inp_value=theta3r

 #Sum of the theta values in list and apply them to the global theta value

 for i in range(0,10):

 if i==0:

 tempValue_1=inp_list[i]

 inp_list[i]=inp_value

 else:

 tempValue_2=inp_list[i]

 inp_list[i] = tempValue_1

 tempValue_1=tempValue_2

 sum=0

 for element in inp_list:

 sum+=element

 inp_value=sum/10

 return inp_value

#Move the robot model to the theta values determined by the CCD

def MoveArms(colUpArm,colGrasp):

 global theta1r; global theta2r; global theta3r; global extRatioR;

 global theta1l; global theta2l; global theta3l; global extRatioL;

70

 if colUpArm==colUpArmRight:

 theta1=AvgThetaValues("theta1r",theta1_r_List); theta2=AvgThetaValues("theta2r",theta2_r_List);

theta3=AvgThetaValues("theta3r",theta3_r_List);

 if colUpArm==colUpArmLeft:

 theta1=AvgThetaValues("theta1l",theta1_l_List); theta2=AvgThetaValues("theta2l",theta2_l_List);

theta3=AvgThetaValues("theta3l",theta3_l_List);

 upperArmPushFast=300000000*1.2

 upperArmPushSlow=upperArmPushFast/3

 foreArmPushFast=700000000

 foreArmPushSlow=foreArmPushFast/3

 #Get the Current Angle Values for the Collision Models

 theta1_c=colUpArm.getEuler(viz.ABS_PARENT)[2]

 theta2_c=colGrasp.getEuler(viz.ABS_PARENT)[2]

 if colUpArm==colUpArmRight:

 theta3_c=colUpArm.getEuler(viz.ABS_PARENT)[1]*extRatioR

 elif colUpArm==colUpArmLeft or colUpArm==colCautLeft:

 theta3_c=colUpArm.getEuler(viz.ABS_PARENT)[1]*extRatioL

 #Stop the Movement so the Part Doesn't Accelerate Uncontrollably

 colUpArmRight.setVelocity([0,0,0])

 colUpArmRight.setAngularVelocity([0,0,0])

 colGraspRight.setVelocity([0,0,0])

 colGraspRight.setAngularVelocity([0,0,0])

 colUpArmLeft.setVelocity([0,0,0])

 colUpArmLeft.setAngularVelocity([0,0,0])

 colGraspLeft.setVelocity([0,0,0])

 colGraspLeft.setAngularVelocity([0,0,0])

 colCautLeft.setVelocity([0,0,0])

 colCautLeft.setAngularVelocity([0,0,0])

 slowMargin=10

 errorMargin=.5

 #Rotate UpperArm Left and Right

 if theta1-theta1_c>0 and abs(theta1-theta1_c)>slowMargin:

 colUpArm.applyTorque([0,0,upperArmPushFast],duration=0.2,mode=viz.ABS_LOCAL)

 elif theta1-theta1_c>0 and abs(theta1-theta1_c)<=slowMargin and abs(theta1-theta1_c)>=errorMargin:

 colUpArm.applyTorque([0,0,upperArmPushSlow],duration=0.2,mode=viz.ABS_LOCAL)

 if theta1-theta1_c<0 and abs(theta1-theta1_c)>slowMargin:

 colUpArm.applyTorque([0,0,-upperArmPushFast],duration=0.2,mode=viz.ABS_LOCAL)

 elif theta1-theta1_c<0 and abs(theta1-theta1_c)<=slowMargin and abs(theta1-theta1_c)>=errorMargin:

 colUpArm.applyTorque([0,0,-upperArmPushSlow],duration=0.2,mode=viz.ABS_LOCAL)

 #Rotate Forearms Left and Right

 #If Cautery arm is used, alters the force values to compensate for the change

 if colGrasp==colCautLeft:

 if theta2-theta2_c>0 and abs(theta2-theta2_c)>slowMargin:

 colGrasp.applyTorque([0,0,foreArmPushFast/2],duration=0.2,mode=viz.ABS_LOCAL)

 elif theta2-theta2_c>0 and abs(theta2-theta2_c)<=slowMargin and abs(theta2-theta2_c)>=errorMargin:

 colGrasp.applyTorque([0,0,foreArmPushSlow/2],duration=0.2,mode=viz.ABS_LOCAL)

 if theta2-theta2_c<0 and abs(theta2-theta2_c)>slowMargin:

 colGrasp.applyTorque([0,0,-foreArmPushFast/2],duration=0.2,mode=viz.ABS_LOCAL)

 elif theta2-theta2_c<0 and abs(theta2-theta2_c)<=slowMargin and abs(theta2-theta2_c)>=errorMargin:

 colGrasp.applyTorque([0,0,-foreArmPushSlow/2],duration=0.2,mode=viz.ABS_LOCAL)

 else:

 if theta2-theta2_c>0 and abs(theta2-theta2_c)>slowMargin:

71

 colGrasp.applyTorque([0,0,foreArmPushFast],duration=0.2,mode=viz.ABS_LOCAL)

 elif theta2-theta2_c>0 and abs(theta2-theta2_c)<=slowMargin and abs(theta2-theta2_c)>=errorMargin:

 colGrasp.applyTorque([0,0,foreArmPushSlow],duration=0.2,mode=viz.ABS_LOCAL)

 if theta2-theta2_c<0 and abs(theta2-theta2_c)>slowMargin:

 colGrasp.applyTorque([0,0,-foreArmPushFast],duration=0.2,mode=viz.ABS_LOCAL)

 elif theta2-theta2_c<0 and abs(theta2-theta2_c)<=slowMargin and abs(theta2-theta2_c)>=errorMargin:

 colGrasp.applyTorque([0,0,-foreArmPushSlow],duration=0.2,mode=viz.ABS_LOCAL)

 #Rotate UpperArm Up

 if theta3-theta3_c>0 and abs(theta3-theta3_c)>slowMargin:

 colUpArm.applyTorque([upperArmPushFast,0,0],duration=0.2,mode=viz.ABS_LOCAL)

 elif theta3-theta3_c>0 and abs(theta3-theta3_c)<=slowMargin and abs(theta3-theta3_c)>=errorMargin:

 colUpArm.applyTorque([upperArmPushSlow,0,0],duration=0.2,mode=viz.ABS_LOCAL)

 #Rotate UpperArm Down

 if theta3-theta3_c<0 and abs(theta3-theta3_c)>slowMargin:

 colUpArm.applyTorque([-upperArmPushFast,0,0],duration=0.2,mode=viz.ABS_LOCAL)

 elif theta3-theta3_c<0 and abs(theta3-theta3_c)<=slowMargin and abs(theta3-theta3_c)>=errorMargin:

 colUpArm.applyTorque([-upperArmPushSlow,0,0],duration=0.2,mode=viz.ABS_LOCAL)

 #Twist Upper Arm

 margin=.05

 rotDeg=.5

 setPoint=.416#-.116

 if colUpArm==colUpArmLeft and colGrasp==colGraspLeft:

 p_e=linkSphereLeft.getPosition(viz.ABS_GLOBAL)

 p_c=pivotPointLeft.getPosition(viz.ABS_GLOBAL)

 neg_p_c=[-p_c[0],-p_c[1],-p_c[2]]

 A=[sum(x) for x in zip(p_e,neg_p_c)]

 if abs((elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint)>margin and

(elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint>0:

 colUpArmLeft.setAxisAngle([A[0],A[1],A[2],rotDeg],viz.REL_GLOBAL)

 if abs((elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint)>margin and

(elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint<0:

 colUpArmLeft.setAxisAngle([A[0],A[1],A[2],-rotDeg],viz.REL_GLOBAL)

 if colUpArm==colUpArmLeft and colGrasp==colCautLeft:

 p_e=linkSphereLeft_caut.getPosition(viz.ABS_GLOBAL)

 p_c=pivotPointLeft.getPosition(viz.ABS_GLOBAL)

 neg_p_c=[-p_c[0],-p_c[1],-p_c[2]]

 A=[sum(x) for x in zip(p_e,neg_p_c)]

 if abs((elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft_caut.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint)>margin and

(elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft_caut.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint>0:

 colUpArmLeft.setAxisAngle([A[0],A[1],A[2],rotDeg],viz.REL_GLOBAL)

 if abs((elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft_caut.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint)>margin and

(elbowPointLeft.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereLeft_caut.getPosition(viz.ABS_GLOBAL)[1]-pivotPointLeft.getPosition(viz.ABS_GLOBAL)[1])*setPoint<0:

 colUpArmLeft.setAxisAngle([A[0],A[1],A[2],-rotDeg],viz.REL_GLOBAL)

 if colUpArm==colUpArmRight:

 p_e=linkSphereRight.getPosition(viz.ABS_GLOBAL)

 p_c=pivotPointRight.getPosition(viz.ABS_GLOBAL)

 neg_p_c=[-p_c[0],-p_c[1],-p_c[2]]

72

 A=[sum(x) for x in zip(p_e,neg_p_c)]

 if abs((elbowPointRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])*setPoint)>margin and

(elbowPointRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])*setPoint<0:

 colUpArmRight.setAxisAngle([A[0],A[1],A[2],rotDeg],viz.REL_GLOBAL)

 if abs((elbowPointRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])*setPoint)>margin and

(elbowPointRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])-

(linkSphereRight.getPosition(viz.ABS_GLOBAL)[1]-pivotPointRight.getPosition(viz.ABS_GLOBAL)[1])*setPoint>0:

 colUpArmRight.setAxisAngle([A[0],A[1],A[2],-rotDeg],viz.REL_GLOBAL)

global moveArmLimiter

moveArmLimiter=False

#Used to determine which of the forearms were chosen and should be moving

def SetForearmMovement():

 global foreArmChoice

 global moveArmLimiter

 if moveArmLimiter==False:

 if foreArmChoice=="GRASPER":

 vizact.onupdate(0,MoveArms,colUpArmLeft,colGraspLeft)

 moveArmLimiter=True

 elif foreArmChoice=="CAUTERY":

 vizact.onupdate(0,MoveArms,colUpArmLeft,colCautLeft)

 moveArmLimiter=True

vizact.onupdate(0,MoveArms,colUpArmRight,colGraspRight)

vizact.ontimer2(1,30,SetForearmMovement)

#GEOMAGIC___

____________GEOMAGIC

geoMagicLeft=sensable.addHapticDevice("Left")

geoMagicRight=sensable.addHapticDevice("Right")

#Get the positional values of the GeoMagic Touches, scale them, and assign the data to the endPositions or desired position of the vector tips

def ReadGeoMagic():

 #Bounding Boxes for Scaling

 firstBBoxLimitRight=[-6.25,-2.5,3.4] #[Left,Lower,Out]

 secondBBoxLimitRight=[4.3,6.7,-2] #[Right,Upper,In]

 firstBBoxLimitLeft=[-7.25,-2.5,3.4]#[Left,Lower,Out]

 secondBBoxLimitLeft=[3.3,6.7,-2]#[Right,Upper,In]

 #Limits for the GeomMagics

 firstGeoLimit=[-.136,-.106,.098]#[Left,Lower,Out]

 secondGeoLimit=[.1,.135,-.06]#[Right,Upper,In]

 #Scale the inputs into three coordinate values to assing to the endPositions

 right_x=GeoCoordTrans(firstGeoLimit[0],secondGeoLimit[0],firstBBoxLimitRight[0],secondBBoxLimitRight[0],geoMagicRight.get

Position()[0])

 right_y=GeoCoordTrans(firstGeoLimit[1],secondGeoLimit[1],firstBBoxLimitRight[1],secondBBoxLimitRight[1],geoMagicRight.get

Position()[1])

 right_z=GeoCoordTrans(firstGeoLimit[2],secondGeoLimit[2],firstBBoxLimitRight[2],secondBBoxLimitRight[2],geoMagicRight.get

Position()[2])

 endPositionRight.setPosition([right_x,right_y,right_z],viz.ABS_GLOBAL)

 left_x=GeoCoordTrans(firstGeoLimit[0],secondGeoLimit[0],firstBBoxLimitLeft[0],secondBBoxLimitLeft[0],geoMagicLeft.getPositi

on()[0])

 left_y=GeoCoordTrans(firstGeoLimit[1],secondGeoLimit[1],firstBBoxLimitLeft[1],secondBBoxLimitLeft[1],geoMagicLeft.getPositi

on()[1])

73

 left_z=GeoCoordTrans(firstGeoLimit[2],secondGeoLimit[2],firstBBoxLimitLeft[2],secondBBoxLimitLeft[2],geoMagicLeft.getPositi

on()[2])

 endPositionLeft.setPosition([left_x,left_y,left_z],viz.ABS_GLOBAL)

 #Read the ButtonStates of the geoMagics to see if the graspers should open or close

 state=geoMagicLeft.getButtonState()

 if geoMagicLeft.isButtonDown(1):

 OpenClose("Left","Close")

 elif geoMagicLeft.isButtonDown(0):

 OpenClose("Left","Open")

 state2=geoMagicRight.getButtonState()

 if geoMagicRight.isButtonDown(1):

 OpenClose("Right","Close")

 elif geoMagicRight.isButtonDown(0):

 OpenClose("Right","Open")

 #Read the twist of the geoMagics wrist to see if the graspers should rotate

 if geoMagicLeft.getEuler()[2]<-50:

 RotateGrasper("Left","CW")

 if geoMagicLeft.getEuler()[2]>50:

 RotateGrasper("Left","CCW")

 if geoMagicRight.getEuler()[2]<-50:

 RotateGrasper("Right","CW")

 if geoMagicRight.getEuler()[2]>50:

 RotateGrasper("Right","CCW")

#Here to Turn Geomagic Reading ON/OFF---

vizact.ontimer(.1,ReadGeoMagic)

#Linear Scaling Function for the GeoMagic Inputs

def GeoCoordTrans(x1,x2,y1,y2,x):

 m=(y1-y2)/(x1-x2)

 b=.5*(y1+y2-m*(x1+x2))

 y=m*x+b

 return y

#Testing Functions Used to Move and Rotate Objects Manually

def retrievePosition(key):

 if key == "p":

 printValue=linkSphereLeft_caut.getPosition()

 #printValue=upperVectorRight.getEuler()

 print printValue

viz.callback(viz.KEYDOWN_EVENT,retrievePosition)

def movement(first,second,third):

 vizact.onkeydown("w", first.setPosition, [0,1,0],viz.REL_LOCAL)

 vizact.onkeydown("s", first.setPosition, [0,-1,0],viz.REL_LOCAL)

 vizact.onkeydown("a", first.setPosition, [1,0,0],viz.REL_LOCAL)

 vizact.onkeydown("d", first.setPosition, [-1,0,0],viz.REL_LOCAL)

 vizact.onkeydown("q", first.setPosition, [0,0,1],viz.REL_LOCAL)

 vizact.onkeydown("e", first.setPosition, [0,0,-1],viz.REL_LOCAL)

vizact.onkeydown("i", second.setEuler, [0,1,0],viz.REL_LOCAL)

vizact.onkeydown("k", second.setEuler, [0,-1,0],viz.REL_LOCAL)

vizact.onkeydown("j", second.setEuler, [0,0,1],viz.REL_PARENT)

vizact.onkeydown("l", second.setEuler, [0,0,-1],viz.REL_PARENT)

vizact.onkeydown("m", third.setEuler, [1,0,0],viz.REL_LOCAL)

vizact.onkeydown("n", third.setEuler, [-1,0,0],viz.REL_LOCAL)

vizact.onkeydown("1", third.setEuler, [1,0,0],viz.REL_PARENT)

74

vizact.onkeydown("2", third.setEuler, [-1,0,0],viz.REL_PARENT)

movement(endPositionLeft,upperArmRight,upperVectorRight)

#Duplicate Tip Position Spheres with shoulder parent for shoulder rotation

dupTipPosRight=vizshape.addSphere(radius=.1,parent=shoulderEulerVector)

dupTipPosRight.alpha(vectorAlphaValues)

dupTipPosLeft=vizshape.addSphere(radius=.1,parent=shoulderEulerVector)

dupTipPosLeft.alpha(vectorAlphaValues)

#Checks the positioning of the arms to see if the shoulders should be rotated

def TiltShoulderCheck():

 #Threshold Values needed to be exceeded to trigger rotation

 x_avg_threshold=4

 x_l_threshold=5

 x_r_threshold=-5

 y_threshold_up=2

 y_avg_threshold_up=2.3

 y_threshold_down=-3

 y_avg_threshold_down=-3.5

 dupTipPosRight.setPosition(tipPositionRight.getPosition(viz.ABS_GLOBAL),viz.ABS_GLOBAL)

 dupTipPosLeft.setPosition(tipPositionLeft.getPosition(viz.ABS_GLOBAL),viz.ABS_GLOBAL)

 x_r=dupTipPosRight.getPosition(viz.ABS_PARENT)[0]

 y_r=dupTipPosRight.getPosition(viz.ABS_PARENT)[1]

 x_l=dupTipPosLeft.getPosition(viz.ABS_PARENT)[0]+1.325

 y_l=dupTipPosLeft.getPosition(viz.ABS_PARENT)[1]

 if (x_r+x_l)/2>x_avg_threshold and x_l>x_l_threshold:

 TiltShoulder("Right")

 elif (x_r+x_l)/2<-x_avg_threshold and x_r<x_r_threshold:

 TiltShoulder("Left")

 if y_r>y_threshold_up and y_l>y_threshold_up:

 TiltShoulder("Up")

 if y_r<y_threshold_down and y_l<y_threshold_down and (y_r+y_l)/2<y_avg_threshold_down:

 TiltShoulder("Down")

vizact.onupdate(0,TiltShoulderCheck)

def TiltShoulder(direction):

 #Ensure the Shoulder Stays Aligned (Doesn't "Shrug" on one side)

 if shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[2]>.02:

 shoulder.setEuler([-.01,0,0],viz.REL_LOCAL)

 if shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[2]<-.02:

 shoulder.setEuler([.01,0,0],viz.REL_LOCAL)

 #Read direction and move rotate shoulders in that direction

 if direction=="Down":

 if -shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[1]>-30:

 shoulder.setEuler([0,-.1,0],viz.REL_LOCAL)

 if direction=="Up":

 if -shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[1]<30:

 shoulder.setEuler([0,.1,0],viz.REL_LOCAL)

 if direction=="Right":

 if shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[0]<30:

 shoulder.setEuler([0,0,.1],viz.REL_LOCAL)

 if direction=="Left":

 if shoulderEulerVector.getEuler(viz.ABS_GLOBAL)[0]>-30:

 shoulder.setEuler([0,0,-.1],viz.REL_LOCAL)

#Global Variables to Tabulates and Reports Graspers that are opened or closed too long

global overCloseValue

75

overCloseValue=0

global overCloseTrigger

overCloseTrigger=0

#Variable that determines whether a ring can be grabbed, used to prevent the ring from being regrabbed

#right after being dropped

global grabTorusLock

grabTorusLock=True

#Function for Opening and Closing Graspers, Called When An Omni Button is Pressed

def OpenClose(side, direction):

 global leftEuler

 global rightEuler

 global overCloseTrigger

 global grabTorusLock

 triggerValue=30

 if side=="Left" and direction=="Open":

 #if colBoxLeft1.getEuler()[2]>=-50:

 if tipLeft1.getEuler()[2]>=-15:

 colBoxLeft1.setEuler([0,0,-1],viz.REL_LOCAL)

 leftEuler=colBoxLeft1.getEuler()[2]

 ReleaseTorus(side)

 overCloseTrigger=0

 if side=="Left" and direction=="Close":

 if tipLeft1.getEuler()[2]>29.1:

 overCloseTrigger=overCloseTrigger+1

 if overCloseTrigger>triggerValue:

 OverCloseError(side)

 if closeRestrictorLeft==False:

 if tipLeft1.getEuler()[2]<30:

 colBoxLeft1.setEuler([0,0,1],viz.REL_LOCAL)

 leftEuler=colBoxLeft1.getEuler()[2]

 if closeRestrictorLeft==True:

 overCloseTrigger=overCloseTrigger+1

 if overCloseTrigger == triggerValue:

 OverCloseError(side)

 if side=="Right" and direction=="Open":

 if colBoxRight1.getEuler()[2]>=-50:

 colBoxRight1.setEuler([0,0,-1],viz.REL_LOCAL)

 rightEuler=colBoxRight1.getEuler()[2]

 ReleaseTorus(side)

 overCloseTrigger=0

 if side=="Right" and direction=="Close":

 if colBoxRight1.getEuler()[2]>-5.1:

 overCloseTrigger=overCloseTrigger+1

 if overCloseTrigger>triggerValue:

 OverCloseError(side)

 if closeRestrictorRight==False:

 if colBoxRight1.getEuler()[2]<-5:

 colBoxRight1.setEuler([0,0,1],viz.REL_LOCAL)

 rightEuler=colBoxRight1.getEuler()[2]

 if closeRestrictorRight==True:

 overCloseTrigger=overCloseTrigger+1

 if overCloseTrigger == triggerValue:

 OverCloseError(side)

 if direction=="Close":

 grabTorusLock=False

 else:

 grabTorusLock=True

def LockGrab():

76

 global grabTorusLock

 grabTorusLock=True

vizact.ontimer(1.5,LockGrab)

def RotateGrasper(side,direction):

 if side=="Right":

 if direction=="CCW":

 turnSphereRight.setEuler([3,0,0],viz.REL_LOCAL)

 if side=="Right":

 if direction=="CW":

 turnSphereRight.setEuler([-3,0,0],viz.REL_LOCAL)

 if side=="Left":

 if direction=="CCW":

 turnSphereLeft.setEuler([3,0,0],viz.REL_LOCAL)

 turnSphereLeftCaut.setEuler([3,0,0],viz.REL_LOCAL)

 if side=="Left":

 if direction=="CW":

 turnSphereLeft.setEuler([-3,0,0],viz.REL_LOCAL)

 turnSphereLeftCaut.setEuler([-3,0,0],viz.REL_LOCAL)

#Displayed Text Size Variables

small=10

medium=40

large=200

#Following functions are used to display

def RemoveText(dispObject):

 dispObject.remove()

def DisplayText(message,quadrant,color,size,time):

 global dispObject

 dispObject=viz.addText(message, viz.ORTHO)

 dispObject.fontSize(size)

 dispObject.color(color)

 if quadrant=="TOP_LEFT":

 dispObject.setPosition(155,983)

 if quadrant=="BOTTOM_LEFT":

 dispObject.setPosition(5,5)

 vizact.ontimer2(time,0, RemoveText,dispObject)

 if quadrant=="CENTERED":

 dispObject.setPosition(500,600)

 if quadrant=="BOTTOM_CENTER":

 dispObject.setPosition(700,10)

 if quadrant=="TOP_CENTER_1":

 dispObject.setPosition(800,983)

 if quadrant=="TOP_CENTER_2":

 dispObject.setPosition(965,983)

 if color==red:

 dispObject.setBackdrop(viz.BACKDROP_OUTLINE)

 dispObject.setBackdropColor(black)

#Place for Text Which Stays on the Screen for the Entirety of the Simulation

def StaticText(endScreen):

 timerText=viz.addText("Timer:",viz.ORTHO)

 timerText.fontSize(medium)

 timerText.color(white)

 timerText.setPosition(40,983)

 timerText.alpha(staticTextAlpha)

 unlockViewText=viz.addText("Unlock View:",viz.ORTHO)

 unlockViewText.fontSize(medium)

 unlockViewText.color(white)

77

 unlockViewText.setPosition(1620,983)

 unlockViewText.alpha(staticTextAlpha)

 resetSimulationText=viz.addText("Reset Simulation",viz.ORTHO)

 resetSimulationText.fontSize(medium)

 resetSimulationText.color(white)

 resetSimulationText.setPosition(40,931)

 resetSimulationText.alpha(staticTextAlpha)

 recordMetricsText=viz.addText("Record Metrics:",viz.ORTHO)

 recordMetricsText.setBackdrop(viz.BACKDROP_OUTLINE)

 recordMetricsText.setBackdropColor(white)

 recordMetricsText.fontSize(medium)

 recordMetricsText.color(gray)

 recordMetricsText.setPosition(1580,20)

 recordMetricsText.alpha(.3)

 #Remove's the static text for the completion screen

 if endScreen==True:

 orthoChildrenList=viz.MainWindow.getChildren()

 for number in orthoChildrenList:

 viz.VizText(number).remove()

#Button size and position assignment

timerButton=viz.addButton()

timerButton.setPosition(.01,.98)

timerButton.setScale(.7,1)

timerButton.color(blue)

global timerToggle

timerToggle=0

global timeValue

timeValue=0

viewButton = viz.addButton()

viewButton.setPosition(.98,.98)

viewButton.setScale(.7,1)

viewButton.color(blue)

global viewtoggle; viewtoggle=0

#Function which toggles between various states in the program

def ToggleFunct(object):

 #Turns Timer On and Off

 global timerToggle

 if object=="Timer":

 if timerToggle==2:

 timerToggle=0

 timerToggle=timerToggle+1

 #Locks and Unlocks the View from the shoulder model

 global viewtoggle

 global viewLink

 if object=="View":

 viewtoggle=viewtoggle+1

 if viewtoggle==1:

 viewLink.remove()

 if viewtoggle==2:

 viewLink=viz.link(cameraObject,viz.MainView)

 viewLink.preEuler([0, 35, 0])

 viewtoggle=0

78

vizact.onbuttondown(viewButton, ToggleFunct, "View")

vizact.onbuttondown(timerButton, ToggleFunct, "Timer")

vizact.onupdate(0, LockDownPosition)

#Reset the position of the robot as well as the rings when the button is clicked

resetButton=viz.addButton()

resetButton.setPosition(.01,.93)

resetButton.setScale(.7,1)

resetButton.color(blue)

#Function called when button is pressed to set everything to it's starting position

def ResetSimulation():

 global xr; global yr; global zr

 global xl; global yl; global zl

 xr=0;yr=180;zr=0

 xl=0;yl=180;zl=0

 #Tips Open/Close Angles

 global leftEuler; global rightEuler

 leftEuler=-35

 rightEuler=-35

 #Body of the Robot

 shoulder.setPosition([.35,5,-5])

 shoulder.setEuler([0,-90,180])

 #Upper Arms

 colUpArmLeft.setPosition([30,25,4.5])

 colUpArmLeft.setEuler([0,0,0])

 colUpArmLeft.setVelocity([0,0,0])

 colUpArmRight.setPosition([-15,26,4.5])

 colUpArmRight.setEuler([0,0,0])

 colUpArmRight.setVelocity([0,0,0])

 #Grasper Forearms

 colGraspLeft.setPosition([30,116,2.5])

 colGraspLeft.setEuler([0,0,0])

 colGraspRight.setPosition([-12,116,2.8])

 colGraspRight.setEuler([0,0,0])

 #Cautery Forearm

 colCautLeft.setPosition([30,110,5])

 colCautLeft.setEuler([0,0,0])

 colCautLeft.setAngularVelocity([0,0,0])

 colCautLeft.setVelocity([0,0,0])

 #Grasper Tips

 colBoxRight1.setPosition([-9,168,5])

 colBoxRight1.setEuler([0,0,-35])

 colBoxRight2.setPosition([-11.82,167.4,4.9])

 colBoxRight2.setEuler([0,0,35])

 colBoxLeft1.setPosition([32,168,4.6])

 colBoxLeft1.setEuler([0,0,-35])

 colBoxLeft2.setPosition([29,167.5,4.4])

 colBoxLeft2.setEuler([0,0,35])

 colBoxLeft1.setAngularVelocity([0,0,0])

 colBoxLeft1.setVelocity([0,0,0])

 colBoxLeft2.setAngularVelocity([0,0,0])

 colBoxLeft2.setVelocity([0,0,0])

 colBoxRight1.setAngularVelocity([0,0,0])

 colBoxRight1.setVelocity([0,0,0])

 colBoxRight2.setAngularVelocity([0,0,0])

 colBoxRight2.setVelocity([0,0,0])

79

 #Torus

 torus1weight.setPosition([-1,1,1.4])

 torus1weight.setEuler([0,0,0])

 torus1weight.setVelocity([0,0,0])

 torus1weight.setAngularVelocity([0,0,0])

 torus2weight.setPosition([-1,1,-0.1])

 torus2weight.setEuler([0,0,0])

 torus2weight.setVelocity([0,0,0])

 torus2weight.setAngularVelocity([0,0,0])

 torus3weight.setPosition([-1,1,-1.4])

 torus3weight.setEuler([0,0,0])

 torus3weight.setVelocity([0,0,0])

 torus3weight.setAngularVelocity([0,0,0])

 torus4weight.setPosition([-2.5,1,1.4])

 torus4weight.setEuler([0,0,0])

 torus4weight.setVelocity([0,0,0])

 torus4weight.setAngularVelocity([0,0,0])

 torus5weight.setPosition([-2.5,1,-0.1])

 torus5weight.setEuler([0,0,0])

 torus5weight.setVelocity([0,0,0])

 torus5weight.setAngularVelocity([0,0,0])

 torus6weight.setPosition([-2.5,1,-1.4])

 torus6weight.setEuler([0,0,0])

 torus6weight.setVelocity([0,0,0])

 torus6weight.setAngularVelocity([0,0,0])

 #Sets the forearm end positions to the straight out configuration

 endPositionRight.setPosition([0,4.9,3.4],viz.ABS_GLOBAL)

 endPositionLeft.setPosition([-1,4.85,3.4],viz.ABS_GLOBAL)

#Calls ResetSimulation when button is pressed

vizact.onbuttondown(resetButton,ResetSimulation)

#Event using a counter every second to tabulate every second

class TimerFunction(viz.EventClass):

 def __init__(self):

 viz.EventClass.__init__(self)

 self.starttimer(0,1,viz.FOREVER)

 self.callback(viz.TIMER_EVENT,self.TimerFunction)

 def TimerFunction(self,timerNumber):

 global timerToggle

 global timeValue

 global simulationType

 #timerToggle sets whether or not the timeValue counts up

 if foreArmChoice!="NONE" and vertPegBoxSpawn!="NONE" and simulationType!="NONE":

 if timerToggle==1:

 timeValue=timeValue+1

 if simulationType!="TESTING":

 DisplayText(str(timeValue),"TOP_LEFT",white,medium,.9)

 if timerToggle==2 or timerToggle==0:

 DisplayText(str(timeValue),"TOP_LEFT",white,medium,1)

TimerFunction()

global torus1GrabLeft; global torus2GrabLeft; global torus3GrabLeft

global torus4GrabLeft; global torus5GrabLeft; global torus6GrabLeft

torus1GrabLeft=viz.grab(linkSphereLeft,torus1weight,absolute=True,enabled=False)

torus2GrabLeft=viz.grab(linkSphereLeft,torus2weight,absolute=True,enabled=False)

torus3GrabLeft=viz.grab(linkSphereLeft,torus3weight,absolute=True,enabled=False)

torus4GrabLeft=viz.grab(linkSphereLeft,torus4weight,absolute=True,enabled=False)

torus5GrabLeft=viz.grab(linkSphereLeft,torus5weight,absolute=True,enabled=False)

80

torus6GrabLeft=viz.grab(linkSphereLeft,torus6weight,absolute=True,enabled=False)

global torus1GrabRight; global torus2GrabRight; global torus3GrabRight

global torus4GrabRight; global torus5GrabRight; global torus6GrabRight

torus1GrabRight=viz.grab(linkSphereRight,torus1weight,absolute=True,enabled=False)

torus2GrabRight=viz.grab(linkSphereRight,torus2weight,absolute=True,enabled=False)

torus3GrabRight=viz.grab(linkSphereRight,torus3weight,absolute=True,enabled=False)

torus4GrabRight=viz.grab(linkSphereRight,torus4weight,absolute=True,enabled=False)

torus5GrabRight=viz.grab(linkSphereRight,torus5weight,absolute=True,enabled=False)

torus6GrabRight=viz.grab(linkSphereRight,torus6weight,absolute=True,enabled=False)

global closeRestrictorLeft

global closeRestrictorRight

closeRestrictorLeft=False

closeRestrictorRight=False

global droppedItemCount

droppedItemCount=0

global droppedItemLock

droppedItemLock=False

global completedTorusCount

completedTorusCount=0

#Function Called when Collision Notification Enabled Objects Intersect

def CollisionDetected(e):

 global torus1GrabLeft; global torus2GrabLeft; global torus3GrabLeft

 global torus4GrabLeft; global torus5GrabLeft; global torus6GrabLeft

 global torus1GrabRight; global torus2GrabRight; global torus3GrabRight

 global torus4GrabRight; global torus5GrabRight; global torus6GrabRight

 global closeRestrictorLeft

 global closeRestrictorRight

 global grabTorusLock

 global droppedItemCount; global droppedItemLock

 global completedTorusCount

 completedTorusCount=0

 #Provides List of Object ID's that Intersected the Nodes

 torus1CollideList=viz.phys.intersectNode(torus1weight)

 torus2CollideList=viz.phys.intersectNode(torus2weight)

 torus3CollideList=viz.phys.intersectNode(torus3weight)

 torus4CollideList=viz.phys.intersectNode(torus4weight)

 torus5CollideList=viz.phys.intersectNode(torus5weight)

 torus6CollideList=viz.phys.intersectNode(torus6weight)

 leftGraspColList=viz.phys.intersectNode(colGraspLeft)

 rightGraspColList=viz.phys.intersectNode(colGraspRight)

 leftUpArmColList=viz.phys.intersectNode(colUpArmLeft)

 rightUpArmColList=viz.phys.intersectNode(colUpArmRight)

 leftCautColList=viz.phys.intersectNode(colCautLeft)

 posBall1ColList=viz.phys.intersectNode(posBall1)

 posBall2ColList=viz.phys.intersectNode(posBall2)

 posBall3ColList=viz.phys.intersectNode(posBall3)

 posBall4ColList=viz.phys.intersectNode(posBall4)

 posBall5ColList=viz.phys.intersectNode(posBall5)

 posBall6ColList=viz.phys.intersectNode(posBall6)

 posBallColList=[posBall1ColList,posBall2ColList,posBall3ColList, posBall4ColList, posBall5ColList, posBall6ColList]

81

 #If two parts of the robot collide, flash them red and report a collision error

 if colBoxRight1 in leftGraspColList or colBoxRight2 in leftGraspColList:

 FlashPartsRed(tipRight1,grasperLeft)

 CollisionCount()

 if colBoxRight1 in leftUpArmColList or colBoxRight2 in leftUpArmColList:

 FlashPartsRed(tipRight1,upperArmLeft)

 CollisionCount()

 if colBoxLeft1 in rightGraspColList or colBoxLeft2 in rightGraspColList:

 FlashPartsRed(tipLeft1,grasperRight)

 CollisionCount()

 if colBoxLeft1 in rightUpArmColList or colBoxLeft2 in rightUpArmColList:

 FlashPartsRed(tipLeft1,upperArmRight)

 CollisionCount()

 if colGraspRight in leftUpArmColList:

 FlashPartsRed(grasperRight,upperArmLeft)

 CollisionCount()

 if colGraspLeft in rightUpArmColList:

 FlashPartsRed(grasperLeft,upperArmRight)

 CollisionCount()

 if colGraspRight in leftGraspColList:

 FlashPartsRed(grasperRight,grasperLeft)

 CollisionCount()

 #If a torus collides with both left tips generate a link to the left grasper

 if colBoxLeft1 in torus1CollideList and colBoxLeft2 in torus1CollideList:

 if grabTorusLock==False:

 torus1GrabLeft.remove()

 torus1GrabLeft=viz.grab(linkSphereLeft,torus1weight,absolute=True)

 closeRestrictorLeft=True

 if colBoxLeft1 in torus2CollideList and colBoxLeft2 in torus2CollideList:

 if grabTorusLock==False:

 torus2GrabLeft.remove()

 torus2GrabLeft=viz.grab(linkSphereLeft,torus2weight,absolute=True)

 closeRestrictorLeft=True

 if colBoxLeft1 in torus3CollideList and colBoxLeft2 in torus3CollideList:

 if grabTorusLock==False:

 torus3GrabLeft.remove()

 torus3GrabLeft=viz.grab(linkSphereLeft,torus3weight,absolute=True)

 closeRestrictorLeft=True

 if colBoxLeft1 in torus4CollideList and colBoxLeft2 in torus4CollideList:

 if grabTorusLock==False:

 torus4GrabLeft.remove()

 torus4GrabLeft=viz.grab(linkSphereLeft,torus4weight,absolute=True)

 closeRestrictorLeft=True

 if colBoxLeft1 in torus5CollideList and colBoxLeft2 in torus5CollideList:

 if grabTorusLock==False:

 torus5GrabLeft.remove()

 torus5GrabLeft=viz.grab(linkSphereLeft,torus5weight,absolute=True)

 closeRestrictorLeft=True

 if colBoxLeft1 in torus6CollideList and colBoxLeft2 in torus6CollideList:

82

 if grabTorusLock==False:

 torus6GrabLeft.remove()

 torus6GrabLeft=viz.grab(linkSphereLeft,torus6weight,absolute=True)

 closeRestrictorLeft=True

 #If a torus collides with both right tips generate a link to the right grasper

 if colBoxRight1 in torus1CollideList and colBoxRight2 in torus1CollideList:

 if grabTorusLock==False:

 torus1GrabRight.remove()

 torus1GrabRight=viz.grab(linkSphereRight,torus1weight,absolute=True)

 closeRestrictorRight=True

 if colBoxRight1 in torus2CollideList and colBoxRight2 in torus2CollideList:

 if grabTorusLock==False:

 torus2GrabRight.remove()

 torus2GrabRight=viz.grab(linkSphereRight,torus2weight,absolute=True)

 closeRestrictorRight=True

 if colBoxRight1 in torus3CollideList and colBoxRight2 in torus3CollideList:

 if grabTorusLock==False:

 torus3GrabRight.remove()

 torus3GrabRight=viz.grab(linkSphereRight,torus3weight,absolute=True)

 closeRestrictorRight=True

 if colBoxRight1 in torus4CollideList and colBoxRight2 in torus4CollideList:

 if grabTorusLock==False:

 torus4GrabRight.remove()

 torus4GrabRight=viz.grab(linkSphereRight,torus4weight,absolute=True)

 closeRestrictorRight=True

 if colBoxRight1 in torus5CollideList and colBoxRight2 in torus5CollideList:

 if grabTorusLock==False:

 torus5GrabRight.remove()

 torus5GrabRight=viz.grab(linkSphereRight,torus5weight,absolute=True)

 closeRestrictorRight=True

 if colBoxRight1 in torus6CollideList and colBoxRight2 in torus6CollideList:

 if grabTorusLock==False:

 torus6GrabRight.remove()

 torus6GrabRight=viz.grab(linkSphereRight,torus6weight,absolute=True)

 closeRestrictorRight=True

 #For each torus, look at what they're colliding with and color them appropriately

 for posBall in posBallColList:

 #If torus is in starting cylinders color them blue

 if cylinder1 in posBall or cylinder2 in posBall or cylinder3 in posBall or cylinder4 in posBall or cylinder5 in posBall or

cylinder6 in posBall:

 if posBall==posBall1ColList:

 torus1.color(blue)

 if posBall==posBall2ColList:

 torus2.color(blue)

 if posBall==posBall3ColList:

 torus3.color(blue)

 if posBall==posBall4ColList:

 torus4.color(blue)

 if posBall==posBall5ColList:

 torus5.color(blue)

 if posBall==posBall6ColList:

 torus6.color(blue)

 #If torus is in an ending cylinder color them darkgreen

83

 elif cylinder7 in posBall or cylinder8 in posBall or cylinder9 in posBall or cylinder10 in posBall or cylinder11 in posBall

or cylinder12 in posBall:

 if posBall==posBall1ColList:

 torus1.color(darkgreen)

 completedTorusCount=completedTorusCount+1

 if posBall==posBall2ColList:

 torus2.color(darkgreen)

 completedTorusCount=completedTorusCount+1

 if posBall==posBall3ColList:

 torus3.color(darkgreen)

 completedTorusCount=completedTorusCount+1

 if posBall==posBall4ColList:

 torus4.color(darkgreen)

 completedTorusCount=completedTorusCount+1

 if posBall==posBall5ColList:

 torus5.color(darkgreen)

 completedTorusCount=completedTorusCount+1

 if posBall==posBall6ColList:

 torus6.color(darkgreen)

 completedTorusCount=completedTorusCount+1

 #If they are colliding with only the pegbox color them red and report a dropped item

 elif pegBox in posBall:

 if posBall==posBall1ColList:

 torus1.color(red)

 if posBall==posBall2ColList:

 torus2.color(red)

 if posBall==posBall3ColList:

 torus3.color(red)

 if posBall==posBall4ColList:

 torus4.color(red)

 if posBall==posBall5ColList:

 torus5.color(red)

 if posBall==posBall6ColList:

 torus6.color(red)

 DroppedItemCount()

 #If they aren't colliding with any of the above color them green

 else:

 if posBall==posBall1ColList:

 torus1.color(green)

 if posBall==posBall2ColList:

 torus2.color(green)

 if posBall==posBall3ColList:

 torus3.color(green)

 if posBall==posBall4ColList:

 torus4.color(green)

 if posBall==posBall5ColList:

 torus5.color(green)

 if posBall==posBall6ColList:

 torus6.color(green)

viz.callback(viz.COLLIDE_BEGIN_EVENT, CollisionDetected)

#Timer that limits the link being created by the torus for 2 seconds after a torus has been released

class GrabTorusTimer(viz.EventClass):

 def __init__(self):

 viz.EventClass.__init__(self)

 self.starttimer(0,2,0)

 self.callback(viz.TIMER_EVENT,self.GrabTorusTimer)

 def GrabTorusTimer(self,timerNumber):

 global grabTorusLock

84

 grabTorusLock=False

#Function Called in the OpenClose function to disable the gripper/torus links when

the tips are opened; also allows the gripper tips to close further.

def ReleaseTorus(side):

 global torus1GrabLeft; global torus2GrabLeft; global torus3GrabLeft

 global torus4GrabLeft; global torus5GrabLeft; global torus6GrabLeft

 global torus1GrabRight; global torus2GrabRight; global torus3GrabRight

 global torus4GrabRight; global torus5GrabRight; global torus6GrabRight

 torusGrabLeftList=[torus1GrabLeft,torus2GrabLeft,torus3GrabLeft,torus4GrabLeft,torus5GrabLeft,torus6GrabLeft]

 torusGrabRightList=[torus1GrabRight,torus2GrabRight,torus3GrabRight,torus4GrabRight,torus5GrabRight,torus6GrabRight]

 global closeRestrictorLeft

 global closeRestrictorRight

 if side=="Left":

 for torusGrabbed in torusGrabLeftList:

 torusGrabbed.disable()

 closeRestrictorLeft=False

 GrabTorusTimer()

 grabTorusLock=True

 if side=="Right":

 for torusGrabbed in torusGrabRightList:

 torusGrabbed.disable()

 closeRestrictorRight=False

 GrabTorusTimer()

 grabTorusLock=True

global collisionCounter

collisionCounter=0

global collisionCountLock

collisionCountLock=False

#Prevents Collisions From being reported more than once every 3 seconds

class CollisionLockTimer(viz.EventClass):

 def __init__(self):

 viz.EventClass.__init__(self)

 self.starttimer(0,3,0)

 self.callback(viz.TIMER_EVENT,self.CollisionLockTimer)

 def CollisionLockTimer(self,timerNumber):

 global collisionCountLock

 collisionCountLock=False

#Tabulates the number of collisions

def CollisionCount():

 global collisionCountLock

 global collisionCounter

 if collisionCountLock == False:

 collisionCounter=collisionCounter+1

 collisionCountLock=True

 CollisionLockTimer()

#Resets the color to original after a collision occured

class ReturnPartsColorTimer(viz.EventClass):

 def __init__(self):

 viz.EventClass.__init__(self)

 self.starttimer(0,2,0)

 self.callback(viz.TIMER_EVENT,self.ReturnPartsColorTimer)

 def ReturnPartsColorTimer(self,timerNumber):

 upperArmLeft.color(gray)

 upperArmRight.color(gray)

85

 grasperLeft.color(gray)

 grasperRight.color(gray)

 cauteryLeft.color(gray)

 tipLeft1.color(lightgray)

 tipLeft2.color(lightgray)

 tipRight1.color(lightgray)

 tipRight2.color(lightgray)

 cauteryLeftTip.color(lightgray)

#Sets the color of parts that collided to red

def FlashPartsRed(part1,part2):

 part1.color(red)

 part2.color(red)

 if part1==tipLeft1:

 tipLeft2.color(red)

 if part1==tipRight1:

 tipRight2.color(red)

 ReturnPartsColorTimer()

 errorMessage="Collision Error Detected"

 DisplayText(errorMessage,"BOTTOM_CENTER",red,medium,2)

#Prevents dropped items from being reported more than once every 5 seconds

class DroppedItemLockTimer(viz.EventClass):

 def __init__(self):

 viz.EventClass.__init__(self)

 self.starttimer(0,10,0)

 self.callback(viz.TIMER_EVENT,self.DroppedItemLockTimer)

 def DroppedItemLockTimer(self,timerNumber):

 global droppedItemLock

 droppedItemLock=False

#Tabulates the number of times a ring was dropped

def DroppedItemCount():

 global droppedItemLock

 global droppedItemCount

 if droppedItemLock == False:

 droppedItemCount=droppedItemCount+1

 droppedItemLock=True

 DroppedItemLockTimer()

vizact.onkeydown("/", CollisionCount)

def OverCloseError(side):

 global overCloseValue

 global overCloseTrigger

 overCloseTrigger=0

 overCloseValue=overCloseValue+1

 errorMessage="Closing %s Too Much" %side

 DisplayText(errorMessage,"BOTTOM_CENTER",red,medium,2)

recordMetricsButton=viz.addButton()

recordMetricsButton.setPosition(.98,.03)

recordMetricsButton.setScale(.7,1)

recordMetricsButton.alpha(.3)

recordMetricsButton.color(blue)

global fileNumber

fileNumber=0

def RecordMetrics():

 global simulationType

 global overCloseValue

86

 global collisionCounter

 global droppedItemCount

 global timeValue

 global completedTorusCount

 global userName

 userName=userName.upper()

 global fileNumber

 #Check path for folder. If one doesn't exist already make a new one with that name.

 if not os.path.exists("C:\Users\kcoenbrown\Desktop\Simulation\Results\\"+userName):

 os.makedirs("C:\Users\kcoenbrown\Desktop\Simulation\Results\\"+userName)

 minutes= timeValue//60

 seconds= timeValue%60

 todaysDate=datetime.datetime.now().strftime("%m-%d-%Y")

 OutputFile=userName+"-Results-"+todaysDate+".txt"

 if os.path.exists("C:\Users\kcoenbrown\Desktop\Simulation\Results\\"+userName+"\\"+OutputFile):

 while os.path.exists("C:\Users\kcoenbrown\Desktop\Simulation\Results\\"+userName+"\\"+OutputFile):

 fileNumber=fileNumber+1

 fileNumberString=str(fileNumber)

 OutputFile=userName+"-Results-"+todaysDate+"-"+fileNumberString+".txt"

 with open(os.path.join("C:\Users\kcoenbrown\Desktop\Simulation\Results\\"+userName,OutputFile), "w") as text_file:

 text_file.write("Overclose Errors: %d\nCollision Errors: %d\nDropped Item Count: %d\nElapsed Time: %d

minutes %d seconds\nNumber of Completed Tori: %d" %(overCloseValue, collisionCounter, droppedItemCount, minutes,

seconds,completedTorusCount))

 print "wrote output file"

 else:

 with open(os.path.join("C:\Users\kcoenbrown\Desktop\Simulation\Results\\"+userName,OutputFile), "w") as text_file:

 text_file.write("Overclose Errors: %d\nCollision Errors: %d\nDropped Item Count: %d\nElapsed Time: %d

minutes %d seconds\nNumber of Completed Tori: %d" %(overCloseValue, collisionCounter, droppedItemCount, minutes,

seconds,completedTorusCount))

 print "wrote output file"

vizact.onbuttondown(recordMetricsButton,RecordMetrics)

vizact.onkeydown("'", RecordMetrics)

vizact.ontimer2(.2,1,ResetSimulation)

#Things Done to End the Simulation

global doOnce

doOnce=0

def CompletedScreen():

 global endSimulationState

 global doOnce

 endSimulationState=True

 if doOnce==0:

 StaticText(True)

 viz.MainScene.visible(0,viz.WORLD)

 timerButton.remove()

 viewButton.remove()

 timerButton.remove()

 resetButton.remove()

 recordMetricsButton.remove()

 doOnce=1

 vizact.ontimer2(0,1,DisplayText,"Simulation\n Complete","CENTERED",black,large,10)

 vizact.ontimer2(0,1,DisplayText,"\n\n\n\n\n\n\n\n\n To Restart Please Relaunch Program","CENTERED",black,medium,10)

#Time Limit in Seconds for Testing and TimeLimit Simulation Types

global timeLimit

timeLimit=240

global endSimulationState

endSimulationState=False

87

def CheckEndSimulation():

 global timeValue

 global timeLimit

 global endSimulationState

 if endSimulationState==False:

 if simulationType=="TIME LIMIT":

 if (timeLimit-timeValue)<=10:

 countdownTime=str(timeLimit-timeValue)

 DisplayText(countdownTime,"TOP_CENTER_2",red,medium,.9)

 DisplayText("Warning:","TOP_CENTER_1",red,medium,1)

 if completedTorusCount==6:

 CompletedScreen()

 RecordMetrics()

 if (timeLimit-timeValue)<=0:

 CompletedScreen()

 RecordMetrics()

 if simulationType=="COMPLETION" and completedTorusCount==6:

 CompletedScreen()

 RecordMetrics()

 if simulationType=="TESTING":

 if (timeLimit-timeValue)<=10 and (timeLimit-timeValue)>0:

 countdownTime=str(timeLimit-timeValue)

 DisplayText(countdownTime,"TOP_CENTER_2",red,medium,.9)

 DisplayText("Warning:","TOP_CENTER_1",red,medium,1)

 if (timeLimit-timeValue)<=0:

 CompletedScreen()

 RecordMetrics()

 if completedTorusCount==6:

 vizact.ontimer(.1,CompletedScreen)

 RecordMetrics()

vizact.ontimer(1,CheckEndSimulation)

#Removes User Elements based on the Simulation Type Chosen

def ChooseSimulation():

 if simulationType=="TIME LIMIT":

 ToggleFunct("Timer")

 timerButton.remove()

 if simulationType=="COMPLETION":

 ToggleFunct("Timer")

 if simulationType=="TESTING":

 ToggleFunct("Timer")

 timerButton.remove()

 recordMetricsButton.remove()

 viz.VizText(73).remove()

ChooseSimulation()

#Places A Blue Screen over environment while simulation initialization options are chosen

PlaceScreen()

88

APPENDIX B. Study Results Table

89

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	4-2018

	Ring and Peg Simulation for Minimally Invasive Surgical Robot
	Evan Brown

	tmp.1524256332.pdf.LEoJF

