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EVALUATION OF A HYBRID REFLECTANCE-BASED  
CROP COEFFICIENT AND ENERGY BALANCE  

EVAPOTRANSPIRATION MODEL FOR  
IRRIGATION MANAGEMENT 

J. B. Barker,  C. M. U. Neale,  D. M. Heeren,  A. E. Suyker 

ABSTRACT. Accurate generation of spatial soil water maps is useful for many types of irrigation management. A hybrid 
remote sensing evapotranspiration (ET) model combining reflectance-based basal crop coefficients (Kcbrf) and a two-source 
energy balance (TSEB) model was modified and validated for use in real-time irrigation management. We modeled spatial 
ET for maize and soybean fields in eastern Nebraska for the 2011-2013 growing seasons. We used Landsat 5, 7, and 8 
imagery as remote sensing inputs. In the TSEB, we used the Priestly-Taylor (PT) approximation for canopy latent heat flux, 
as in the original model formulations. We also used the Penman-Monteith (PM) approximation for comparison. We com-
pared energy balance fluxes and computed ET with measurements from three eddy covariance systems within the study 
area. Net radiation was underestimated by the model when data from a local weather station were used as input, with mean 
bias error (MBE) of -33.8 to -40.9 W m-2. The measured incident solar radiation appeared to be biased low. The net radiation 
model performed more satisfactorily when data from the eddy covariance flux towers were input into the model, with MBE 
of 5.3 to 11.2 W m-2. We removed bias in the daily energy balance ET using a dimensionless multiplier that ranged from 
0.89 to 0.99. The bias-corrected TSEB ET, using weather data from a local weather station and with local ground data in 
thermal infrared imagery corrections, had MBE = 0.09 mm d-1 (RMSE = 1.49 mm d-1) for PM and MBE = 0.04 mm d-1 
(RMSE = 1.18 mm d-1) for PT. The hybrid model used statistical interpolation to combine the two ET estimates. We computed 
weighting factors for statistical interpolation to be 0.37 to 0.50 for the PM method and 0.56 to 0.64 for the PT method. 
Provisions were added to the model, including a real-time crop coefficient methodology, which allowed seasonal crop co-
efficients to be computed with relatively few remote sensing images. This methodology performed well when compared to 
basal crop coefficients computed using a full season of input imagery. Water balance ET compared favorably with the eddy 
covariance data after incorporating the TSEB ET. For a validation dataset, the magnitude of MBE decreased from -0.86 mm 
d-1 (RMSE = 1.37 mm d-1) for the Kcbrf alone to -0.45 mm d-1 (RMSE = 0.98 mm d-1) and -0.39 mm d-1 (RMSE = 0.95 mm  
d-1) with incorporation of the TSEB ET using the PM and PT methods, respectively. However, the magnitudes of MBE and 
RMSE were increased for a running average of daily computations in the full May-October periods. The hybrid model did 
not necessarily result in improved model performance. However, the water balance model is adaptable for real-time irri-
gation scheduling and may be combined with forecasted reference ET, although the low temporal frequency of satellite 
imagery is expected to be a challenge in real-time irrigation management. 

Keywords. Center-pivot irrigation, ET estimation methods, Evapotranspiration, Irrigation scheduling, Irrigation water bal-
ance, Model validation, Variable-rate irrigation. 

ultispectral remote sensing-based evapotran-
spiration (ET) models have been studied for 
use in irrigation management for decades 
(Neale et al., 1989; Hunsaker et al., 2005; 

Campos et al., 2010). Remote sensing-based ET models 
have the benefit of representing local crop conditions 
(Bausch and Neale, 1987). Remote sensing imagery has been 
successfully implemented to estimate ET at varying spatial 
scales (e.g., Allen et al., 2007a; Neale et al., 2012). Remote-
sensing ET models may be particularly well suited for appli-
cation in variable-rate irrigation (VRI), where irrigation is 
managed for individual subareas (or zones) within a field. 
Some recent research has focused on remote or proximal 
sensing of crop status for VRI management (e.g., O’Shaugh-
nessy et al., 2015; Stone et al., 2016). 

Two types of remote sensing ET estimation techniques 
are (surface) energy balance models and reflectance-based 
crop coefficient (Kcbrf) models. Energy balance techniques 
use shortwave reflectance and thermal infrared imagery to 
estimate available energy (Rn−G) and sensible heat flux (H). 
Latent heat flux (LE) may be taken as the residual balance 
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between the two (Neale et al., 2012). Neale et al. (2012) and 
Gowda et al. (2007) discussed the differences between dif-
ferent remote-sensing-based ET models in further detail. In 
the two-source energy balance method (TSEB) originally 
developed by Norman et al. (1995), the soil and plant contri-
butions to energy fluxes are considered separately rather 
than as a combined surface (hence two sources). Neale et al. 
(2012) commented on the advantage of TSEB over other 
methods. However, when applied using satellite imagery, 
the TSEB method does require atmospherically corrected 
thermal infrared imagery (Neale et al., 2012). As not all ther-
mal infrared products include atmospheric corrections, this 
may require additional processing by the user. Furthermore, 
the requirement of input thermal infrared imagery into the 
model may limit the use of the model to times when imagery 
is available. 

In the Kcbrf approach, crop ET (ETc) is computed using 
reference ET (ETr) and a dual crop coefficient, which is as 
follows based on FAO Irrigation and Drainage Paper No. 56 
(FAO-56; Allen et al., 1998): 

 ( ) rescbc KKK ETET +=  (1) 

where Kcb is a basal crop coefficient, Ks is a water stress co-
efficient, and Ke is a soil evaporation coefficient. The Kcbrf 
approach uses vegetation indices, such as the normalized dif-
ference vegetation index (NDVI; Rouse et al., 1974) or the 
soil-adjusted vegetation index (SAVI; Huete, 1988), from 
shortwave reflectance imagery to determine Kcb (Bausch and 
Neale, 1987; Neale et al., 1989; Bausch, 1993). 

Campos et al. (2010) found that a model using Kcbrf-ET 
compared well with eddy covariance ET measurements for 
irrigated grapes. Hunsaker et al. (2005) used a Kcbrf method 
and a traditional, time-based Kcb approach to schedule irri-
gations for cotton of varying stand densities and nitrogen 
treatments. They found that the traditional method outper-
formed the Kcbrf method (in terms of irrigation adequacy and 
yield) in the first year of their study. In the subsequent year, 
both methods were site-adjusted and both performed simi-
larly, on average, although the Kcbrf method performed better 
when stand density was taken into consideration. Their re-
sults demonstrate the utility of the Kcbrf method and a poten-
tial need for local calibration. Stone et al. (2016) used NDVI-
based Kcbrf values and FAO-56 methodologies (Allen et al., 
1998) to manage VRI in maize in South Carolina. This 
method performed similarly to irrigation management based 
on measurements of soil water potential. 

The Spatial EvapoTranspiration Modelling Interface 
(SETMI) developed by Geli and Neale (2012) includes a hy-
brid of the TSEB method and a Kcbrf-based water balance 
method (Neale et al., 2012). The Kcbrf portion of the model 
allows ET to be computed within and extrapolated beyond 
the input image date range because a full-season Kcb may be 
computed from relatively infrequent or few images (Neale et 
al., 2012). Thus, a daily water balance may be computed for 
use in real-time irrigation scheduling. The inclusion of the 
TSEB method provides a self-adjusting capability to the 
model (Neale et al., 2012). The Kcbrf-ET is dependent on the 
accuracy of the water balance model in predicting Ks and Ke 
components of the estimated ET (Allen et al., 1998). For in-

stance, errors in water balance inputs and assumptions could 
provide undesired feedback into the model. This is of partic-
ular concern if irrigation is scheduled based on the modeled 
soil water depletion. The TSEB provides a spatial estimate 
of ET at the time an image is taken that is independent of the 
water balance (Neale et al., 2012), except in sharing 
shortwave reflectance imagery and weather data. In this way, 
the water balance can be adjusted when each new image is 
incorporated into the model. 

We hypothesize that the hybrid model represents an im-
provement over using either the TSEB or Kcbrf alone (see 
Neale et al., 2012) and is thus well suited for irrigation man-
agement. Irrigation prescriptions development with the 
SETMI interface have the potential to account for spatially 
variable water requirements with the added benefit of incor-
porating multispectral imagery as an indirect indication of 
actual crop status. The modeled spatial water balance could 
then be applied to VRI or traditional irrigation methods. 

OBJECTIVES 
The objective of this research was to determine whether 

the hybrid model in SETMI was well suited for ET modeling 
in eastern Nebraska, with the ultimate intent being applica-
tion in real-time irrigation management. This was accom-
plished by validating and calibrating the TSEB energy flux 
and ET and water balance ET estimates from SETMI for 
three years for an experimental area near Mead, Nebraska, 
with eddy covariance energy flux data. Some additions to the 
SETMI program are also discussed herein. 

METHODS 
MODEL FORMULATIONS 

The hybrid model (Neale et al., 2012) was implemented 
within the SETMI interface (Geli and Neale, 2012). The 
SETMI interface as employed here operated as a tool within 
ArcGIS 10.4. The version of SETMI used herein was modi-
fied by us. Modifications were made to both the water bal-
ance and TSEB models. 

Two-Source Model 
The original formulation of the TSEB used the Priestly-

Taylor (PT) equation to approximate canopy latent heat flux 
(LEc; Norman et al., 1995). This is given in equation 2, fol-
lowing notation similar to Colaizzi et al. (2014), and solved 
for canopy sensible heat flux (Hc) as in Norman et al. (1995). 
The sign convention of Rnc = Hc + LEc, where Rnc is the can-
opy portion of net radiation is followed: 

 



















γ+Δ

Δ
α−= gPTncc fRH 1  (2) 

where αPT is a constant, fg is the fraction of green leaf area, 
Δ is the slope of the vapor pressure-temperature curve, and γ 
is the psychrometric constant. In this study, αPT was given 
an initial value of 1.26 (Kustas and Norman 1997), which 
was reduced in 0.01 increments until the energy balance was 
satisfied, as programmed by Geli et al. (2014); see also Li et 
al. (2005). 
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We modified the TSEB in SETMI to optionally include 
the Penman-Monteith (PM) approximation of LEc following 
Colaizzi et al. (2014). This is equation 3 when solved for Hc 
and following the previously mentioned sign convention: 
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where cpm is the specific heat of moist air, ρm is the density 
of moist air, es and ea are the saturated and actual vapor pres-
sures, respectively, ra is the aerodynamic resistance to heat 
transfer, and γ* is given, following Colaizzi et al. (2012b), 
as γ* = γ(1 + rc/ra), where rc is the bulk canopy resistance. 
The rc was set to an initial value of 50 s m-1 and adjusted to 
prevent negative soil latent heat flux as in Colaizzi et al. 
(2012b). In computing Δ and γ, we used the average of air 
temperature and canopy temperature, applying an iterative 
solution similar to Colaizzi et al. (2016), except that we in-
cluded the process for γ in addition to Δ. 

Other notable additions to the TSEB model in SETMI in-
cluded provisions to enable better model performance during 
senescence. The model computed leaf area index (LAI) and 
crop height using the optimized soil-adjusted vegetation in-
dex (Rondeaux et al., 1996) and relationships reported by 
Anderson et al. (2004). It computed fc using the equation of 
Choudhury et al. (1994) similar to Li et al. (2005): 

 
c

nx

x
c VIVI

VIVI
f 









−
−

−= 1  (4) 

where VI is a vegetation index, in this case the normalized 
difference vegetation index (NDVI), the subscripts x and n 
represent maximum and minimum, respectively, and c is a 
constant. NDVIx and NDVIn were set to 0.9 and 0.2, respec-
tively, and c was hard coded in SETMI as 0.7 (Geli et al., 
2014). 

When vegetation indices decrease with senescence, the 
modeled vegetation-index-based LAI, crop height, and fc 
also decrease. We added the capability to input LAI, crop 
height, and fc for previous dates to the model. The model was 
then able to maintain the peak LAI, height, and/or fc during 
senescence. We also computed fg as the fraction of current 
date LAI to peak LAI. This was similar to the work of 
Houborg et al. (2009), who computed fg as the fraction of 
current LAI over average LAI during the peak period. In 
model implementation, we computed fg this way for all im-
ages in September and October. We maintained crop height 
at the peak crop height for all images after peak (practically 
applied after early July). We did not incorporate the peak na-
dir fc option because it did not improve model results in pre-
liminary analysis. 

Vegetation absorptivities used in the net radiation (Rn) 
model (Campbell and Norman, 2012) for the TSEB are listed 
in table 1. Soil heat flux (G) was computed as 0.3(Rns) fol-
lowing Norman et al. (1995), but using 0.3 as recommended 
by Brutsaert (1982) for use with bare soil. For vegetation 
clumping (Kustas and Norman, 1999), we assumed canopy 
widths of 0.76 m in all cases, even low cover. Temporal scal-
ing of LE to daily ET followed one method of Chavez et al. 

(2008): 
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where the subscripts d and i are for daily and instantaneous 
values, respectively. The units for the constant are s mm m2 
h-1 kg-1 with LEi in W m-2, λ in J kg-1, ETr,i in mm h-1, and 
daily ETd and ETr,d in mm d-1. We computed λ following 
Ham (2005). 

Water Balance Model 
In the water balance model, crop coefficients were ob-

tained from reflectance data using the SAVI-to-Kcbrf rela-
tionships developed by Campos et al. (2017): Kcbrf = 
a(SAVI) + b, where a and b were 1.414 and -0.020, respec-
tively, for maize and 1.258 and -0.006, respectively, for soy-
bean. The regression method of Campos et al. (2017) was 
used to produce daily Kcb values. This method can be given 
as: 

 
[

( )])CGDDexp(expSAVI

),CGDDexp(minSAVI

22

11

ba

ba

jx

jj

+−

+=
 (6) 

where SAVIj is the estimated SAVI for the current day, 
SAVIx is a maximum SAVI, taken here to be the peak com-
puted value for a given pixel, CGDDj is the cumulative 
growing degree days for the current day (NDAWN, 2017), a 
and b are linear regression coefficients, and the subscripts 1 
and 2 represent the two stages of growth described in fig-
ure 1. 

The focus of the current analysis was to improve and test 
the model for real-time irrigation scheduling. As future im-
ages are not available in real-time application, functionality 
was added to enable computation of the Kcb beyond the most 

Table 1. Net radiation parameters used in the two-source model for 
both maize and soybeans. 

Surface 
Absorptivity 

Emissivity Visible Near-Infrared 
Green vegetation 0.85[a] 0.20[b] 0.98[b] 

Senesced vegetation 0.49[c] 0.13[c] 0.95[d] 
Soil 0.15[a] 0.25[a] 0.96[c] 

[a] Source: Colaizzi et al. (2012a). 
[b] Source: Brunsell and Gillies (2002). 
[c] Source: Houborg et al. (2009). 
[d] Default for corn and soybeans in SETMI (Geli et al., 2014). 

Figure 1. Idealized SAVI curve showing stages used in computing SAVI 
regression coefficients with form based on Campos et al. (2017) and 
stages defined by us. 

S
A
V
I

Time

Stage 1 Stage 2 

Peak SAVI
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recent input image date. This methodology included two 
parts: (1) a forecasted peak SAVI value and (2) a projected 
end of season SAVI. Both values were model inputs; the for-
mer also required input of an upper bound day-of-year for 
which the peak could occur; and the latter the day-of-year on 
which to apply the value. 

In forecasting the peak SAVI, a minimum of two reflec-
tance images during stage 1 (fig. 1) crop development were 
required to compute the daily SAVI estimates. The SAVI 
values were then computed for the stage 1 portion of the sea-
son using equation 6. The forecasted day-of-peak-SAVI was 
computed as the day on which SAVI exceeded the input 
forecasted SAVI value or the input upper bound day-of-year, 
whichever was earlier. A forecasted SAVI slightly smaller 
than the peak (e.g., 0.999 times the input forecast peak value) 
was then inserted on this forecasted peak day and became 
the first day of the stage 2 curve. The input forecasted peak 
SAVI value was used as SAVIx as defined in equation 6. The 
aforementioned slight reduction in SAVI following the pro-
jected peak prevented a calculation error (eq. 6). In the event 
that a forecasted peak SAVI was input and an image with a 
SAVI value greater than the forecasted peak occurred, the 
projected peak date was still used, but SAVIx was taken to 
be slightly larger than the actual peak SAVI. Again, this was 
to prevent a logarithm error (eq. 6). 

The projected end-of-season SAVI represented mature, 
senesced, or harvested conditions (depending on the crop 
and modeling conditions). This allowed the stage 2 portion 
of the SAVI curve to decrease at an appropriate rate, with 
the end of the season having a more realistic performance 
than if only imagery early in stage 2 were included. The pro-
jected end-of-season SAVI was imposed on the correspond-
ing input projected end-SAVI day-of-year. In a given season, 
as more reflectance images became available, the intent was 
that the forecasted peak and end SAVI values would only be 
used until sufficient imagery were obtained so that the pro-
jected values were no longer needed to produce the Kcb. 

In computing the daily SAVI values, a final constraint 
was applied so that no images after day-of-year 232 
(a changeable input value) were allowed to be considered in 
stage 1 of the curve (fig. 1). This is because in years with 
sparse imagery, such as 2012 and 2013, it is possible to have 
a peak SAVI from the imagery that occurs well after effec-
tive full cover. This can cause the stage 1 portion of the 
SAVI to be stretched out unreasonably late in the season. 
When this constraint was imposed, SAVIx was computed to 
be slightly larger than the actual peak SAVI from the im-
agery to prevent a calculation error. In the ET comparisons 
herein, only this final constraint was applied, the forecasting 
methods were not. 

The water balance model itself generally followed FAO-56 
(Allen et al., 1998), not including some of the methods de-
scribed by Jensen and Allen (2016). Some notable exceptions 
to the methodology are detailed here. Tall reference ETr was 
used; soil evaporation was therefore modeled similarly to Al-
len et al. (2007b). We used a maximum root zone depth of 1.2 
m for maize and 1.0 m for soybean. We assumed an evapora-
tive layer depth of 0.05 m. The evaporation model requires an 
estimate of fc (Allen et al., 1998). The SETMI water balance 
model was modified to compute fc using the equation of 

Choudhury et al. (1994) as in equation 4, but using SAVI for 
the VI instead of NDVI and using an exponent (c) value of 1 
per the discussion of Choudhury et al. (1994) and limits as in 
Allen et al. (1998). The maximum and minimum values of 
SAVI were set to 0.68 and 0.12, respectively, based on the Kcb 
relationships of Campos et al. (2017), particularly that for 
maize, and in the case of the 0.68 value, based on a spread-
sheet provided by I. Campos (personal communication, 
April 4, 2016); see also Campos et al. (2017). 

Some other model parameterizations are provided here. A 
minimum root zone depth of 0.1 m was assumed for both 
crops. The fraction of depletion before water stress occurred 
was assumed to be 0.55 and 0.5 for maize and soybeans, re-
spectively. These values were adjusted for evaporative de-
mand as in Allen et al. (1998). The water balance was run from 
day 120 to 305, approximately April through October. Other 
model parameterizations included effective rainfall and irriga-
tion computations. We used the USDA Natural Resources 
Conservation Service runoff equation (USDA, 2004) to com-
pute rainfall runoff with a curve number of 80. We assumed 
an application efficiency of 90% in computing net irrigation. 

Hybrid Model 
In the hybrid methodology, the TSEB ET was incorpo-

rated using the simplified statistical interpolation equation 
presented in the form of (Neale et al., 2012): 

 ( )WB
B

TSEBWB
B

WB
A W ETETETET −+=  (7) 

where ETA
WB is the water balance ET after including the 

TSEB ET (ETTSEB), ETB
WB is the water balance ET before the 

incorporation, and W is a Kalman gain. This gain was com-
puted using the error variance of the water balance and 
TSEB ET following Neale et al. (2012) and H. Geli (personal 
communication). Differences between ETA

WB and ETB
WB 

were attributed to modeled water stress (Ks in eq. 1; Geli, 
2012). This was done by back-calculating for Ks using equa-
tion 1 and substituting ETA

WB for ETc (Geli, 2012). The mod-
eled previous day root zone depletion (Allen et al., 1998) af-
ter incorporating TSEB ET (DA

rLast) was then computed fol-
lowing Geli (2012) and Geli et al. (2014) by rearranging 
equation 84 of Allen et al. (1998) as DA

rLast = TAW – 
Ks(TAW – RAW), where TAW and RAW are total and read-
ily available water, respectively. Finally, DA

rLast was limited 
to be ≥ 0 (Geli et al., 2014). 

For actual TSEB ET incorporation, a constraint was added 
for cases where neither model indicated water stress. The con-
straint was as follows: if TSEB ET was greater than water bal-
ance ET, and the water balance did not indicate water stress 
(Ks = 1), then no adjustment was made to the root zone deple-
tion. However, ETA

WB was still used for the water balance 
computations. Without this logic, the incorporation method 
would compute DA

rLast to be at the brink of water stress in this 
condition. In reality, there was no justification for adjusting 
the soil water depletion in such a case. The ability to similarly 
incorporate soil water content measurements into the model 
was also added, although it was beyond the scope of the cur-
rent research to test. With this addition, root zone depletion, 
evaporated depth, and lower layer soil water content may be 
incorporated using statistical interpolation, as for actual ET 
(eq. 7). Each dataset may have its own unique W (eq. 7). 
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MODEL VALIDATION 
Research Sites 

The research for this study focused on three fields approx-
imately 50 to 65 ha in size, planted in maize and maize-soy-
bean crop rotations under irrigated and rainfed management, 
located at the University of Nebraska Eastern Nebraska Re-
search and Extension Center (ENREC) near Mead, Nebraska 
(fig. 2). Soils are predominantly silt loam and silty clay loam 
series (Soil Survey Staff, 2016b). Three eddy covariance 
systems have been maintained as part of the University of 
Nebraska’s Carbon Sequestration Project (CSP) at the site 
since 2001 (e.g., Suyker et al., 2004). Energy fluxes from the 
three sites were used to validate the hybrid model. A sum-
mary of the crops and cropping dates for the three CSP sites 
is presented in table 2. 

Eddy Covariance Data 
Energy flux measurements were obtained for the three 

eddy covariance (EC) systems within the study area, one in 
each field listed in table 2. The EC systems are hereafter re-
ferred to using the field names in table 1. These EC systems 
were part of the previously mentioned CSP project (Suyker 

et al., 2004; Suyker and Verma, 2009), and data are available 
through the AmeriFlux program (USDOE, 2017a), through 
which the 2011 and 2012 flux data were obtained. Ameri-
Flux site names for CSP1, CSP2, and CSP3 are US-Ne1 
(Suyker, 2018a), US-Ne2 (Suyker, 2018b), and US-Ne3 
(Suyker, 2018c), respectively (USDOE, 2017b). Each sta-
tion was equipped with a 3D research anemometer (model 
R3, Gill Instruments, Lymington, U.K.), an open-path 
CO2/H2O analyzer (LI7500, Li-Cor Biosciences, Lincoln, 
Neb.), a net radiometer (CNR 1, Kipp & Zonen, Delft, The 
Netherlands), and soil heat flux plates (HFT3, Radiation and 
Energy Balance Systems, Inc., Seattle, Wash.) (Suyker et al., 
2004). Aerodynamic sensors were mounted at 6.2 m above 
the ground surface when the crop was more than 1 m tall in 
maize and 3 m above the ground surface otherwise (Suyker 
et al., 2004). Net radiometers were mounted 5.5 m above the 
ground surface, and soil heat flux plates were installed at a 
depth of 6 cm (Suyker et al., 2004). Eddy covariance correc-
tions were applied as in Suyker and Verma (2009). Missing 
data were filled as in Suyker and Verma (2009). 

Eddy covariance energy balance closure was forced for 
all analyses in this study. That is, H and LE were adjusted 
proportionally to satisfy Rn – G = H + LE, similar to Twine 
et al. (2000). In forcing closure, limits were imposed on the 
amount of adjustment that could be applied to H and LE. 
These limits were determined based on daytime (Rn > 50 W 
m-2) fluxes between day-of-year 120 and 305 (roughly May 
through October) for 2011-2013. Twine et al. (2000) used 
the same Rn criterion for identifying daytime fluxes. Upper 
and lower limits of the mean ratio of energy balance closure 
of forced H and LE over non-forced fluxes were imposed in 
the closure forcing process. These limits were computed us-
ing the inner 95% probability values (assuming a normal dis-
tribution). The imposed upper and lower bounds were about 
0.05 to 2.52 times the non-forced flux. 

Campos et al. (2017) used data from these EC systems to 
develop their Kcbrf and daily SAVI estimation methodology, 
including data from 2011 and 2012, also used here. How-
ever, we did not follow the exact water balance formulations 
and parameterizations that Campos et al. (2017) used, and 
we forced EC energy balance closure, as mentioned above, 
while they used different methodology 

Satellite Imagery 
Imagery from Landsat 5 Thematic Mapper (TM), Landsat 

7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 
Operational Land Imager (OLI) and Thermal Infrared Sen-
sor (TIRS) were obtained from the U.S. Geological Survey 
(“data available from the U.S. Geological Survey”; 
https://lta.cr.usgs.gov/citation) for a combined total of 22 
overpasses in the 2011 to 2013 growing seasons. Pre-collec-
tion Landsat imagery were used for this study (USGS EROS 
User Services, personal communication, September 21, 
2017). Imagery dates are listed in table 3. Four of the images 
were excluded from TSEB computations because of insuffi-
cient green vegetative cover early or late in the growing sea-
son. We anticipated that the function of the model at higher 
vegetation cover was most pertinent, particularly in maize 
and soybean systems. Additional filtering was applied dur-
ing analysis to exclude TSEB results if the comparison pixels 

Table 2. Summary of cropping system information for three fields with
eddy covariance systems. 

Field[a] Year Crop Planting Harvest 
CSP1 2011 Maize May 17 Oct. 26-27 

 2012 Maize Apr. 23 Oct. 10-11 
 2013 Maize Apr. 29 Oct. 22-23 

CSP2 2011 Maize May 17 Oct. 26-28 
 2012 Maize Apr. 24 Oct. 9-10 
 2013 Maize Apr. 30 Oct. 22-23 

CSP3 2011 Maize May 2 Oct. 18 
 2012 Soybean May 15 Oct. 1 
 2013 Maize May 13 Nov. 21-22 

[a] CSP1 = irrigated continuous maize, CSP2 = irrigated maize-soybean 
rotation, and CSP3 = rainfed maize-soybean rotation. 

Figure 2. Study area map with August 1, 2011, Landsat 5 false color
surface reflectance image background. Nebraska county map source:
USDA (2009b). Nebraska state map source: USDA (2009a). The flux
towers are CSP1 (irrigated continuous maize), CSP2 (irrigated maize-
soybean rotation), and CSP3 (rainfed maize-soybean rotation). Loca-
tions of flux towers were obtained from USDOE (2017c, 2017d, 2017e). 
Location of the Nebraska Mesonet station is from G. Roebke and
J. Buescher (personal communication, September 24, 2014). 
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had a computed nadir fraction of vegetative cover (fc) less 
than 0.2. This is within the range of minimum cover ob-
served in other studies, e.g., 25% or greater in (Li et al., 
2005) and 17% or greater in Colaizzi et al. (2012b). The fc 
was computed using equation 4 and associated text. 

Landsat surface reflectance products were provided 
through the courtesy of the U.S. Geological Survey (“data 
available from the U.S. Geological Survey”; https://lta. 
cr.usgs.gov/citation). Landsat thermal infrared imagery was 
corrected for atmospheric interference using parameters cal-
culated with the Atmospheric Correction Parameter Calcu-
lator web application (Barsi et al., 2003; Barsi, 2018). Cor-
rection parameters were computed for atmospheric profiles 
that were spatially interpolated to the location of a local elec-
tronic weather station described later. For comparison, cor-
rection parameters were computed using profiles that both 
did and did not include input of local surface weather data 
from the weather station. Surface emissivities for the correc-
tions were calculated following Brunsell and Gillies (2002). 
Surface emissivity was computed using linear scaling-based 
fc between bare surface emissivity (0.96; Houborg et al., 
2009) and vegetation emissivity (0.98; Brunsell and Gillies, 
2002). The fc equation used by Brunsell and Gillies (2002) 
was: 
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Again, NDVI was used as the VI, with NDVIx and NDVIn 
as listed for equation 4. Atmospheric and emissivity (Neale 
et al., 2012) corrections were applied using ERDAS Imagine 
2014 (Hexagon Geospatial, Madison, Ala.). 

The ground spatial resolution of shortwave bands for 
Landsat 5, 7, and 8 is 30 m (USGS, 2016). The spatial reso-

lution of the thermal infrared imagery is 120 m for Landsat 
5, 60 m for Landsat 7, and 100 m for Landsat 8 (USGS, 
2016). All thermal infrared imagery was resampled to 30 m 
for the commonly available data products (USGS, 2016). 
This resolution is likely too coarse for some precision agri-
culture activities. However, this resolution may be adequate 
for many irrigation applications, including some VRI appli-
cations. For example, Higgins et al. (2016) found that the 
minimum management zone size, for which the center of the 
zone might receive the intended application rate, was 23 m 
for a certain VRI-equipped center pivot. 

Soil Properties and Land Cover 
The SETMI interface requires the input of land use clas-

sifications and soil property data. The land use was classified 
manually using outlines of the study fields that were based 
on USDA aerial imagery (USDA, 2012). 

The required soil data included field capacity (FC), per-
manent wilting point (WP), and initial profile-average volu-
metric water content maps as model inputs. Wilting point 
was obtained from the USDA-NRCS Soil Survey Geo-
graphic (SSURGO) database (Soil Survey Staff, 2016a). Soil 
survey shape files were converted into 30 m raster files for 
input into SETMI using ArcGIS 10.4 (ESRI, Redlands, 
Cal.). The SSURGO data were collected at a “mapping 
scale” of 1:12,000 to 1:63,360 (metadata associated with 
SSURGO database; Soil Survey Staff, 2016a), which is ad-
mittedly coarse for precision agriculture or VRI manage-
ment. However, the dataset was used for this study because 
of the impracticality of obtaining higher-resolution soil 
property information for the entire study area. Field capacity 
was assumed to be 400 mm m-1 over the entire study area 
based on pre-planting neutron probe soil water content ob-
servations in a nearby VRI field (fig. 2) (Barker et al., 2018). 
Initial profile-average water content on day-of-year 120 was 
assumed to be at FC. We generally considered the soils at 
this site to be at FC in the spring (D. L. Martin, personal 
communication). Rainfall at the local weather station in 
April ranged from about 82 to 93 mm during the study, and 
May rainfall ranged from about 80 to 161 mm. Furthermore, 
the earliest irrigation events (not including fertigation, test-
ing, etc.) were in early June (in 2012, the dry year) during 
the study. 

Weather Data 
The SETMI model requires ground-based point and/or 

raster weather data. The TSEB requires instantaneous values 
of air temperature, incident solar radiation, wind speed, va-
por pressure, and barometric pressure. Instantaneous and 
daily total ETr were also input to scale modeled instantane-
ous LE to daily ET values (eq. 5). The water balance requires 
input of daily total ETr, precipitation, gross irrigation, and 
maximum and minimum daily air temperatures. Irrigation 
data were obtained from management records; although 
there was some uncertainty in the data, we feel the final val-
ues used herein were accurate enough for our purposes. We 
used point weather data obtained from the High Plains Re-
gional Climate Center for the Nebraska Mesonet’s Memphis 
5N weather station, located within the study area (fig. 1). 
Barometric pressure data were obtained from a COsmic-ray 
Soil Moisture Observing System (COSMOS; Zreda et al., 

Table 3. Landsat images included in the study near Mead, Nebraska.
Date Satellite WB[a] TSEB[b] 

6 June 2011 Landsat 7 x - 
30 June 2011 Landsat 5 x x 
8 July 2011 Landsat 7 x x 

24 July 2011 Landsat 7 x x 
1 Aug. 2011 Landsat 5 x x 
9 Aug. 2011 Landsat 7 x x 
17 Aug. 2011 Landsat 5 x x 
25 Aug. 2011 Landsat 7 x x 
2 Sept. 2011 Landsat 5 x x 

10 Sept. 2011 Landsat 7 x x 
4 Oct. 2011 Landsat 5 x x 
8 June 2012 Landsat 7 x x 

24 June 2012 Landsat 7 x x 
10 July 2012 Landsat 7 x x 
26 July 2012 Landsat 7 x x 
27 Aug. 2012 Landsat 7 x x 
14 Oct. 2012 Landsat 7 x - 
3 June 2013 Landsat 8 x - 

11 June 2013 Landsat 7 x x 
21 July 2013 Landsat 8 x x 
23 Sept. 2013 Landsat 8 x x 
9 Oct. 2013 Landsat 8 x - 

[a] Imagery included in water balance computations. 
[b] Imagery included in two-source energy balance computations. October 

9, 2013, was included in TSEB computations but excluded from analy-
sis because of low vegetative cover. Individual fields were excluded 
based on fraction of vegetative cover also, including: CSP1 11 June 
2013, and CSP3 4 Oct. 2011, 8 June 2012, and 11 June 2013. 
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2012) site located in the CSP3 field (COSMOS, 2017). The 
ETr was calculated with an hourly time step using the ASCE 
standardized reference ET equation for a tall reference crop 
(ASCE, 2005). Wind speed was adjusted to reference condi-
tions (ASCE, 2005), similar to Allen and Wright (1997). We 
assumed a fetch length of 400 m, and vegetation to be about 
0.5 m both regionally and in the vicinity of the weather sta-
tion. A similar wind adjustment was performed in computing 
the TSEB; however, wind speed was adjusted to represent 
values measured over the modeled crops using modeled crop 
height and the assumed 400 m fetch length. We acknowledge 
that this adjustment methodology does not account for at-
mospheric stability (Allen and Wright, 1997; R. G. Allen, 
personal communication, June 22, 2017). 

We observed that the solar radiation records from the 
Memphis 5N weather station were typically lower than the 
modeled clear-day solar radiation (ASCE, 2005) and solar 
radiation measured at the eddy covariance flux towers. How-
ever, the weather station pyranometers had been replaced ap-
proximately annually (S. Cooper, personal communication, 
January 13, 2017). There was also concern about the accu-
racy of adjusting the wind speed measured at the weather 
station to be representative of that over the crops. Thus, we 
also included weather data measured at the flux towers in the 
modeling. The TSEB and water balance were both computed 
with both datasets. In this study, weather data from a partic-
ular flux field were used only for that field; however, precip-
itation inputs for the flux tower dataset were taken only from 
CSP3 (the rainfed site, which had no irrigation data in the 
precipitation record). In computing reference ET using the 
flux tower data, we adjusted the wind speed data similarly to 
Allen and Wright (1997), using fetch lengths for measured 
and modeled surfaces of 400 m, an assumed regional vege-
tation height of 0.5 m, and crop height datasets provided by 
A. E. Suyker for each of the respective CSP fields. 

No adjustments were applied to the flux tower wind speed 
data when used in the TSEB model fluxes. In using the flux 
tower datasets, some minor gap filling of air temperature and 
relative humidity was needed beyond that provided in the 
AmeriFlux datasets. This was done using the average of data 
from the nearest adjacent hour with data before and after the 
gap. Maximum and minimum daily air temperatures for the 
flux tower datasets were computed from hourly averages and 
were assumed adequate for growing degree day computations. 

MODEL PERFORMANCE 
The TSEB model was validated using the PT approxima-

tion, per the original model development (Norman et al., 
1995). The TSEB was also validated using the PM method 
(Colaizzi et al., 2014). The TSEB was computed using ther-
mal infrared imagery that was corrected by both using and 
not using local ground weather data, as described earlier. 
The TSEB was also computed using both weather datasets. 

The water balance was computed with and without TSEB 
ET incorporation. Only model computations using the Ne-
braska Mesonet (Mesonet) weather data and with ground 
data in the atmospheric corrections for the thermal infrared 
imagery were used for this purpose. The justification for this 
is described later in the Discussion section. Crop coefficients  
 

were also computed with forecasted peak and end SAVI val-
ues to assess the performance for real-time functionality. 

Modeled instantaneous energy flux components (from the 
TSEB) and daily ET (from the TSEB, Kcbrf, and hybrid 
method) were compared with eddy covariance measure-
ments. The primary metrics of model performance were the 
root mean squared error (RMSE) and mean bias error (MBE) 
of the model as compared with the eddy covariance data. 
Nine-pixel average values from the modeled output were 
used in most of these comparisons (based on I. Campos, per-
sonal communication). The nine pixels were in the vicinity 
south of each flux tower (tower locations for this purpose 
were obtained from Google Earth). Nine pixels represented 
an area of 0.81 ha. The pixels were selected south of the tow-
ers to correspond approximately with the prevailing wind di-
rection. Because of missing data in the Landsat 7 images, the 
distance south of each tower varied, so the same nine pixels 
were used for each tower for all comparisons herein. The 
center pixel was the pixel immediately south of the flux 
tower (about 30 m away) for CSP1, the third pixel south of 
the tower and (perhaps unnecessarily) about one pixel west 
(about 90 m away) for CSP2, and about 240 m south of the 
tower for CSP3. In comparing the total season ET, only one 
pixel was used for each eddy covariance tower. 

RESULTS 
EXPERIMENTAL CONDITIONS 

The 2012 growing season was particularly dry at the re-
search site. Total precipitation for May through October in 
2012 for the nearby (NCEI, 2017) National Weather Service 
Global Climatic Data Network Mead 6 S site was about 
310 mm. This was considerably below the 1981-2010 nor-
mal of about 540 mm (NCEI 2018). Precipitation amounts 
for May through October in 2011 and 2013 were similar to 
the normal, i.e., about 600 and 540 mm, respectively. Total 
May-October eddy covariance ET for CSP1 ranged from 
about 715 mm in 2011 to 779 mm in 2012. The May-October 
ET for CSP2 similarly ranged from about 700 mm in 2011 
and 2013 to 752 mm in 2012. For CSP 3, the May-October 
ET was about 552 mm in 2012 and 573 mm in 2011. The 
average May-October ET was about 4 mm d-1 for the irri-
gated locations (CSP1 and CSP2) and about 3 mm d-1 for the 
rainfed location (CSP3). 

TWO-SOURCE ENERGY BALANCE MODEL 
Plots of the modeled instantaneous energy fluxes versus 

the measured fluxes are presented in figure 3 for an example 
set of conditions. The conditions were thermal infrared cor-
rections with local ground data, using the Mesonet weather 
data, and with peak LAI and crop height used in the late sea-
son. The modeled crop heights appeared to be biased low on 
average, as compared to observations in the CSP fields. Both 
PM and PT approximations were used in computing the 
fluxes presented in figure 3. 

A summary of the model fit statistics for the various 
TSEB model conditions as compared with eddy covariance 
data is presented in table 4. The RMSE for ET ranged from 
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1.0 to 2.3 mm d-1, with MBE ranging from 0.1 to 1.4 mm  
d-1. Generally, the time-scaled ET in table 4 had similar 
MBE (in relation to the mean measured values), as did the 
instantaneous LE. Therefore, we did not suspect the scaling 
method to be introducing notable bias (eq. 5). However, to 
avoid introducing additional bias into the water balance 
model, we computed scaling factors (CET) to adjust for this 
discrepancy as CETETd as used for a different scaling method 
by Gonzalez-Dugo et al. (2009), who cite Anderson et al. 
 

(1997), and who were referred to by I. Campos (personal 
communication). In computing the scaling factors, we split 
the data into calibration and validation sets. We anticipated 
that both year and location (because of the presence of both 
rainfed and irrigation conditions) would affect results. 
Therefore, we randomly selected one site from each year, 
also constrained to include only one year for each site for the 
validation dataset. The validation set included 2011 CSP3, 
2012 CSP1, and 2013 CSP2. Note that all of the validation 

Figure 3. Comparison of two-source energy balance (TSEB) modeled energy fluxes with measured fluxes for Penman-Monteith (PM) and Priestly-
Taylor (PT) approximations. The solid lines are unity. The TSEB was run using peak LAI in September and October and peak crop height up to the 
current image throughout the season (practically applied after early July). Mesonet weather data were used and ground data were used in thermal 
infrared imagery corrections. Rn, G, H, and LE are net radiation, soil heat flux, sensible heat flux, and latent heat flux, respectively. 

 
Table 4. Model performance statistics summary for two-source model compared with closure-forced eddy covariance data (n = 50). 

Data Source Method[a] 
Senescence 

LAI and hc
[b] 

Mean Biased Error (RMSE in parentheses)[c] 
Rn 

(W m-2) 
G 

(W m-2) 
H 

(W m-2) 
LE 

(W m-2) 
ET 

(mm d-1) 
Mesonet, with ground data for  

thermal infrared correction 
PM Current -34.5 (40.1) -5.0 (37.7) -124.6 (176.5) 95.1 (157.4) 1.4 (2.3) 

Peak -38.6 (44.4) -9.1 (37.2) -78.2 (120.4) 48.6 (110.3) 0.8 (1.7) 
PT Current -37.8 (42.6) -0.4 (38.5) -70.9 (113.1) 33.5 (83.5) 0.5 (1.2) 

Peak -40.9 (46.1) -5.4 (37.4) -39.8 (87.3) 4.3 (74.6) 0.1 (1.1) 
Mesonet, without ground data  
for thermal infrared correction 

PM Current -33.8 (39.5) -4.9 (36.7) -124.2 (174.8) 95.3 (159.3) 1.4 (2.3) 
Peak -37.9 (43.9) -8.8 (36.2) -77.9 (119.1) 48.9 (114.1) 0.8 (1.8) 

PT Current -37.1 (42.0) -0.2 (37.2) -69.3 (106.8) 32.4 (81.1) 0.5 (1.1) 
Peak -40.2 (45.5) -5.2 (36.1) -38.3 (79.3) 3.3 (72.0) 0.1 (1.0) 

Flux tower, with ground data for  
thermal infrared correction 

PM Current 10.4 (26.5) 5.8 (37.6) -87.5 (137.2) 92.1 (138.6) 1.3 (2.0) 
Peak 6.0 (25.1) 1.1 (35.6) -50.5 (90.9) 55.4 (97.1) 0.8 (1.5) 

PT Current 9.1 (25.8) 5.9 (38.4) -66.4 (109.2) 69.6 (104.0) 0.9 (1.4) 
Peak 5.3 (25.3) 0.7 (35.8) -35.3 (78.4) 39.9 (80.4) 0.5 (1.1) 

Flux tower, without ground data  
for thermal infrared correction 

PM Current 11.2 (26.5) 5.7 (36.5) -86.8 (134.6) 92.4 (138.6) 1.3 (1.9) 
Peak 6.8 (25.2) 1.1 (34.5) -50.2 (88.1) 55.8 (98.4) 0.8 (1.5) 

PT Current 9.8 (25.6) 6.0 (37.3) -65.5 (104.4) 69.4 (101.5) 0.9 (1.3) 
Peak 6.0 (25.1) 0.9 (34.6) -34.5 (71.8) 39.7 (77.3) 0.6 (1.0) 

Mean eddy covariance values  606.7 76.9 110.3 419.6 5.9 
[a] LEc approximation method: PM is Penman-Monteith, and PT is Priestly-Taylor. 
[b] Method for computing leaf area index and crop height during senescence: “Current” uses values computed for the current date, and “Peak” uses the maxi-

mum of current and previous values. 
[c] Here, Rn, G, H, and LE are instantaneous net radiation, soil heat flux, sensible heat flux, and latent heat flux, respectively. The ET is scaled daily ET. 
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samples were maize. The other six site-year combinations 
were included in the calibration set. The total number of 
samples in the validation set was 17, with 33 in the calibra-
tion set. 

The CET values were computed using the TSEB compu-
tations with crop height and LAI maintained at peak during 
senescence, as described earlier. The CET values were sim-
ilar for both thermal infrared correction methods; there-
fore, an average of the two was used in subsequent analy-
sis. However, the CET values were notably different for PM 
and PT. The factors were also different if Mesonet or flux 
tower weather data were used. The CET values for the PM 
method were 0.89 for all model conditions. The CET values 
for PT were 0.93 and 0.99 using the flux tower and 
Mesonet weather data, respectively. The MBE and RMSE 
for daily ET with and without scaling factors (CET) are pre-
sented in table 5 for the validation data. All results in table 
5 include the peak crop height and LAI methodologies. 

Weights (W, eq. 7) for statistical interpolation (Neale et 
al., 2012, who cite Daley, 1991) were computed for PM 
and PT using a variety of TSEB modeling conditions (table 
5). The same calibration set as described for the ET scaling 
computations was maintained for computing W. In all 
cases, the PT approximation resulted in larger W. The W 
value represents the ratio of water balance ET error vari-
ance over the sum of water balance and TSEB error vari-
ance (Neale et al., 2012). The W value ranges from 0 (water 
balance ET perfectly fit to measured values) to 1 (TSEB 
perfectly fit to measured values). A value of 0.5 means that 
the TSEB and water balance ET have the same error vari-
ance, although not necessarily identically modeled values. 
The PT approximation resulted in W values in the 0.56 to 
0.64 range, while the PM W was 0.37 to 0.50. 

REFLECTANCE-BASED CROP COEFFICIENTS 
One major modification to the SETMI water balance 

model was the inclusion of a Kcb methodology after Cam-
pos et al. (2017). Plots of computed Kcb curves and indi-
vidual image Kcbrf values for each site and year, following 
Campos et al. (2017) as modified by us, are presented in fig-
ure 4. The Kcb plots were presented for a single pixel in the 
center of the nine pixels used in each field for model com-
parisons. The limit (or maximum date) for which a peak 
SAVI value could be considered stage 1 (fig. 2) was reached 
for at least some pixel-year(s) in the analysis, causing such 

pixel-year(s) to be considered as stage 2. In figure 4, the 
2012 Kcb for CSP3 was included in this constraint; the other 
eight pixel-years in this figure did not reach this constraint. 

Because the intent of the current study was to validate the 
model for real-time irrigation management, an example plot 
of Kcb progression with various numbers of input images for 
a single maize pixel in CSP1 in 2011 is provided in figure 5. 

Table 5. Two-source model performance statistics for validation dataset (n = 17) and computed weighting factors (W; Neale et al., 2012) from 
calibration dataset (n = 33) for use in incorporating two-source energy balance evapotranspiration into the water balance model. 

Data Source 
TIR 

Correction[a] 
TSEB 

Method[b] 

Without ET Scaling[c] With ET Scaling[c] 
MBE (RMSE) 

(mm d-1) 
W 
(-) 

MBE (RMSE) 
(mm d-1) 

W 
(-) 

Nebraska Mesonet With ground data PM 0.80 (1.88) 0.39 0.09 (1.49) 0.44 
PT 0.10 (1.20) 0.56 0.04 (1.18) 0.57 

Without ground data PM 0.98 (1.82) 0.37 0.25 (1.36) 0.42 
PT 0.19 (0.98) 0.59 0.13 (0.96) 0.60 

Flux towers With ground data PM 0.99 (1.63) 0.47 0.26 (1.19) 0.50 
PT 0.63 (1.19) 0.59 0.19 (0.94) 0.62 

Without ground data PM 1.07 (1.57) 0.45 0.33 (1.10) 0.49 
PT 0.71 (1.04) 0.61 0.26 (0.75) 0.64 

[a] Thermal infrared atmospheric corrections with and without including local ground data from the Nebraska Mesonet weather station. 
[b] TSEB LEc approximation method: PM = Penman-Monteith, and PT = Priestly-Taylor. 
[c] “ET Scaling” indicates whether or not the TSEB evapotranspiration scaling factor was included. 

Figure 4. Plots of SETMI modeled Kcbrf with computed Kcb curve fol-
lowing Campos et al. (2017) as modified by us for one pixel in each of 
the three flux tower fields. The Mesonet data were used to compute 
these Kcb values. 
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The first four plots are a demonstration of real-time opera-
tion with forecasted peak and/or ending SAVI values. The 
first of these plots includes the first three early-season im-
ages before peak, as listed in table 3. In this case, a forecasted 
peak SAVI of 0.686 (Kcbrf ≈ 0.95) was applied and allowed 
to occur at any time up to day-of-year 232. A projected end 
SAVI of 0.099 (Kcbrf ≈ 0.12) was also added on day-of-year 
304. The next Kcb curve in figure 5 includes four input im-
ages, one of which was the peak, so the forecasted peak was 
no longer used, but this plot still includes the projected end 
SAVI. The next two curves include the first 5 images and all 
11 images, still with the projected end SAVI. The final plot 
in figure 5 includes all 11 images from 2011, with no pro-
jected end SAVI. 

WATER BALANCE AND HYBRID MODELS 
In validating the Kcbrf and hybrid model ET, herein re-

ferred to as water balance ET, the full set of input imagery 
listed in table 3 was used, as opposed to the real-time meth-
odology as in figure 5. As both the PM and PT methods in 
the TSEB were of interest, water balance ET was computed 
by incorporating TSEB ET using both methods. However, 
TSEB ET was only computed for the conditions that were 
stated above for developing figure 3. Water balance results 
are presented for the validation dataset only. The water bal-
ance was computed without incorporating TSEB ET for the 
calibration dataset to compute the W factors presented in  
table 5. Two resulting plots of TSEB and water balance ET 
using the PM and PT approaches as just described, as com-
pared with eddy covariance ET, are presented in figure 6 for 
the validation dataset (n = 17). A similar figure is presented 
in figure 7 in which ET computed over the period of May 
through October was included for only one pixel in each of 
the site-years in the validation set. All ET values in figure 7 

were seven-day running averages, starting on May 1 (i.e., in-
cluding the last six days of April in the average) and ending 
on October 31. A visible lobe of underestimated data is ap-
parent in figure 7 for the hybrid ET using the PM and PT 
methods in the TSEB. These data were primarily following 
incorporation of TSEB ET from June 11, 2013. When this 
date was excluded from the TSEB ET incorporation, the 
“Excluding June 11, 2013” graph resulted. 

Model fit statistics were computed for the water balance 
by comparing the nine-pixel average ET with the eddy co-
variance ET for the same periods that were used in the TSEB 
evaluation. The fit statistics were also computed for a single 
pixel in each of the three site-years in the validation set for 
the seven-day running averages of ET for May through Oc-
tober. The model fit statistics were computed for ET with 
and without TSEB ET incorporation. The combined results 
are presented in table 6. For demonstration purposes, model 
statistics are also presented excluding June 11, 2013, for 
CSP2 from both the validation dataset and the TSEB ET in-
corporation. 

DISCUSSION 
TWO-SOURCE ENERGY BALANCE MODEL 

The underestimation of Rn when using the Mesonet data 
is observable in figure 3 and was presumably caused by the 
low solar radiation data. There is notable scatter in H and LE 
as compared with the results of Neale et al. (2012) using the 
TSEB with the PT approximation over cotton. One possible 
cause could be that the atmospheric corrections for some of 
the thermal infrared imagery were perhaps not accurate in 
our study. We did not exclude imagery on the basis of ther-
mal infrared correction parameters. Therefore, some correc-
tion parameters may have been such that they resulted in 

Figure 5. Plot of progression of SETMI-modeled maize Kcb for one pixel in CSP1 in 2011 using only images (Image Only) and in real-time mode 
with a projected end SAVI on day-of-year 304. A forecasted peak SAVI was also used in the first plot (3 Images). The Kcbrf points are the actual 
pixel values. A total of 11 images were included in 2011. The Mesonet data were used to compute these Kcb values. 
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overcorrection. We assumed that the imagery was adequate 
based on the apparent absence of clouds and cloud shadows 
over necessary areas of the study. There is a cluster of six LE 
points in the PM plot in figure 3 that appear to be notably 
more overestimated than others. These points were all from 
the two irrigated fields and occurred on June 30, 2011, on 
June 8, 2012, and on August 27, 2012. This cluster was not 
clearly apparent in the PT plot. 

Many of the RMSE and MBE values for the modeled Rn, 

H, and LE fluxes reported in table 4 were greater in magni-
tude than those reported by Neale et al. (2012), who used the 
PT method. They reported RMSE values of 46 and 41 W  
m-2 for H and LE, respectively. Our RMSE values were in 
the range of 72 to 120 W m-2 for H when peak crop height 
and LAI were included. We also found RMSE for LE to be 
about 72 to 114 W m-2 under these same model conditions. 
One reason for the difference could be that Neale et al. 
(2012) ran the model as part of a much more detailed exper-

Figure 6. Plot of SETMI water balance (left) and TSEB (right) modeled ET with eddy covariance measured ET for the validation data set (n = 
17). Solid lines are unity. Only the Mesonet weather data were used here. Ground data were used in thermal infrared image corrections. The 
TSEB ET was scaled to reduce bias. PM and PT are Penman-Monteith and Priestly-Taylor approximations in the TSEB, respectively. “TSEB” 
and “No TSEB” are with and without incorporating TSEB ET, respectively. 

 

Figure 7. Plot of SETMI water balance modeled seven-day running average ET with seven-day running average eddy covariance ET for the 
validation dataset for May through October. The “entire validation set” graph includes incorporated TSEB ET for all 17 validation images. 
“Excluding June 11, 2013” does not include TSEB ET from that date. The solid line is unity. Only the Mesonet weather data were used here.
Ground data were used in thermal infrared image corrections. The TSEB ET was scaled to reduce bias. PM and PT are Penman-Monteith and
Priestly-Taylor approximations in the TSEB, respectively. “TSEB” and “No TSEB” are with and without incorporating TSEB ET, respectively.
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iment using high-resolution multispectral and thermal infra-
red imagery from the Utah State University airborne system 
with more frequent data inputs. Their modeling period in-
cluded the first half of the growing season, with multiple re-
mote sensing inputs during the vegetative stage of growth 
and full cover periods. The current study included more im-
ages but at generally lower temporal frequency. This study 
also included late-season images and different crops than 
Neale et al. (2012). 

The RMSE values for Rn in table 4 were similar to Co-
laizzi et al. (2012b), who found the RMSE to be 28 W m-2 
over many measurements and times of day. Our RMSE was 
about 25 to 46 W m-2. Colaizzi et al. (2012b) used the PM 
method. Note that Rn was better fit when the flux tower data 
were used. 

We modeled H with somewhat better accuracy when the 
flux tower data were used. The LE estimates had similar to 
greater variability as compared to Colaizzi et al. (2012b), 
who used a PM formulation of the TSEB. Our RMSE values 
ranged from about 72 to 114 W m-2, when peak LAI and crop 
height were used, as compared to about 67 W m-2 for Co-
laizzi et al. (2012b). Our MBE values for both LE and Rn 
were of greater magnitude, in general, than those reported by 
Colaizzi et al. (2012b). 

Modeled LE was comparable or better (in the case of PT) 
when the Mesonet data were used as model input. However, 
this was at the expense of Rn bias. Modeled LE was overes-
timated by PM in all cases, as it was for PT when the flux 
tower data were used. Because the flux tower data are not 
readily available in real-time, using the Mesonet data may 
be most reasonable in real-time applications with current 
model parameterizations. The model performed similarly re-
gardless of the thermal infrared correction method. 

Daily ET was overestimated for all model options  
(table 4). The PM ET was greater than the PT ET in all cases 
in table 4. Colaizzi et al. (2014) found that the PT method 
resulted in an underestimation of ET while the PM did not 
for measurements at 11:15 a.m. (comparable with the Land-
sat overpass times in our study). Colaizzi et al. (2014) used 
infrared thermometers rather than satellite imagery, and their 
study was over cotton in Texas. They found that PT ET had 
a larger RMSE than PM ET, which was the opposite of our 
results. One cause of the difference could be that our EN-
REC site may be more humid than their site. 

The computed CET values in the 0.9 range were compara-
ble to the results of Chavez et al. (2008), who found that this 
type of temporal scaling method was biased high, with 
MBEs in the 9% to 24% range in their study of maize and 

soybean, although they forced EC closure differently than 
we did for this part of their analysis. In all conditions, RMSE 
improved with ET scaling (table 5), which followed expec-
tations. 

The W results in table 5 reveal that the PM ET had greater 
error variance than the PT ET. This follows the results in 
table 4. It is clear that further improvements may be needed 
in the model. The W values in table 5 for both models were 
much smaller than the value of 0.78 for the PT method re-
ported by Geli (2012) for maize and soybean in Iowa. 

Overall, the TSEB performed well when compared with 
the eddy covariance data. The PM and PT methods both re-
sulted in relatively low bias compared to measurements. It 
appears that the PT method in this version of SETMI may be 
the better choice for our location and for the crop conditions 
in this study. However, the performance of the PM method 
was not dramatically different. We anticipate that the PM 
method is more broadly applicable than the PT method, par-
ticularly when applied in more arid conditions than in the 
present study (e.g., Colaizzi et al., 2014; D. L. Martin, per-
sonal communication). 

REFLECTANCE-BASED CROP COEFFICIENTS 
Overall, the Kcb relationships in figure 4 are reasonable, 

although it is clear that the performance was better when 
more images were available (see 2011 as compared with 
2012 and 2013). The Kcb curves tend to show a cusp at peak 
values, which may be attributed to a lack of images in the 
middle of the growing season in 2012 and 2013. However, 
this behavior appears even in 2011 when multiple mid-sea-
son images were available (compared to other years) and ap-
pears to follow the Kcbrf values well. 

The Kcb curves in figure 5 rapidly approach the curve with 
all 11 images. It is clear that there was some overestimation 
with three images and four images, but with five images 
there was a drop below the eventual level. This demonstrates 
the dependence of the model on input imagery near the peak 
of the season. The methodology still presents benefits over 
traditional time-only-based Kcb curves, as have been identi-
fied by others (e.g., Hunsaker et al., 2005). The real-time 
method also requires few inputs beyond the reflectance im-
agery. 

HYBRID METHODOLOGY 
The water balance appeared to have less negative bias af-

ter incorporation (fig. 6). The lobe of underestimated ET on 
the high end of the graph in figure 7 is mostly data points 
from the summer of 2012. As mentioned earlier, the 2012 

Table 6. Model performance statistics for the validation dataset (nine-pixel) and May through October seven-day running averages (one-pixel) 
for the validation site-years as compared with eddy covariance seven-day average ET. 

Data Source Dataset 

MBE (mm d-1, RMSE in parentheses) for Different Water Balance Options[a] 
Entire Validation Set (n = 17) Excluding June 11, 2013 (n = 16)[b] 

TSEB PM TSEB PT No TSEB TSEB PM TSEB PT No TSEB 
Mesonet Validation -0.45 (0.98) -0.39 (0.95) -0.86 (1.37) -0.29 (1.02) -0.22 (0.99) -0.86 (1.37) 

 May-October -0.12 (1.29) -0.14 (1.33) -0.06 (1.12) 0.07 (1.08) 0.05 (1.09) -0.06 (1.12) 
Flux tower Validation -0.28 (0.98) -0.22 (0.84) -0.88 (1.51) -0.16 (1.03) -0.08 (0.92) -0.88 (1.51) 

 May-October -0.03 (1.25) -0.05 (1.28) -0.01 (1.13) 0.14 (1.08) 0.12 (1.08) -0.01 (1.13) 
[a] “TSEB” is with TSEB ET incorporation, and “No TSEB” is without doing so. PM and PT are Penman-Monteith and Priestly-Taylor approximations 

in the TSEB. The water balance was computed using the Mesonet data only, with ET bias scaling and with ground data for thermal infrared corrections 
in the TSEB ET. 

[b] The TSEB ET for CSP2 from June 11, 2013, was not incorporated into the model, and validation statistics were not computed for that date. The statistics 
under this heading are for demonstration purposes only. 
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growing season was a particularly dry year. While it would 
have been possible to calibrate the root zone depth for that 
year (Campos et al., 2017; Allen et al., 2015; I. Campos, per-
sonal communication), such an effort was not consistent 
with the objectives of this study. The considerable lobe of 
underestimated ET in the “entire validation set” graph in fig-
ure 7 occurred as a result of incorporating TSEB ET from 
June 11, 2013, which was low. Excluding this date from the 
hybrid model resulted in better model performance. How-
ever, excluding that date is not justifiable, statistically speak-
ing, and was done only for demonstration purposes. Noting 
these exceptions, the water balance model appeared to have 
performed well, considering that it was not calibrated to the 
site, beyond computing W and CET, and acknowledging that 
the Kcbrf relationships used here were developed using data 
from the same flux towers (Campos et al., 2017). The model 
performance may be improved by modifying the wet soil 
evaporation term (e.g., Torres and Calera, 2010; I. Campos, 
personal communication). 

Incorporation of TSEB ET for both the PM and PT meth-
ods resulted in less bias and less RMSE than the unaided wa-
ter balance if only the validation dataset was considered. 
However, for the May through October analysis, the hybrid 
methodology did not result in model improvement unless 
June 11, 2013, was dropped from the analysis and TSEB ET 
incorporation (table 6). In this case, the model performance 
was not always improved, and when it was improved it was 
not by much. In terms of the MBE and RMSE values in  
table 6 for the three included pixels (including the seven-day 
averaging), the PM and PT methods performed quite simi-
larly. The reduced bias in the validation dataset following 
TSEB ET incorporation supports the hypothesis that the hy-
brid model would perform better than the Kcbrf (or TSEB) 
alone. However, the May through October analysis suggests 
otherwise. It is evident that, without further improvements, 
the water balance may be best run at this location without the 
hybrid methodology. 

The low availability of satellite imagery may have caused 
some of the poor model performance in this study. Only 
Landsat 7 was operational in 2012, and imagery was limited 
due to cloud cover in 2013. This highlights the importance 
of frequent image inputs for this model. Future work should 
include additional data sources such as aerial imagery, in-
cluding unmanned aircraft. Gowda et al. (2007) discussed 
that a challenge with using Landsat imagery for irrigation 
management is the temporal availability of data, mentioning 
both the temporal frequency of imagery and the time be-
tween data collection and availability. The former is of par-
ticular concern in eastern Nebraska and in other locations, 
where frequent cloud cover limits the number of usable sat-
ellite images during the growing season. We expect that the 
hybrid model is less sensitive to the time between image ac-
quisition and availability (within reason). 

We feel that the water balance model is adequately pa-
rameterized for use as an irrigation scheduling tool at the re-
search location. However, the hybrid methodology will re-
quire additional development. In irrigation management, the 
model could be applied with forecasted ETr, which is not 
discussed here. The use of satellite imagery or aerial imagery 
in the model allows computation of a spatial water balance 

that may be used for irrigation scheduling, including VRI 
management. 

SUMMARY AND CONCLUSIONS 
A hybrid remote sensing ET and soil water balance model 

was evaluated for use in irrigation management. The model 
included ET computed using a version of the TSEB of Nor-
man et al. (1995) and Kcbrf values. The TSEB energy fluxes 
were compared with eddy covariance fluxes for three sites 
within the study area. The Priestly-Taylor (PT) approxima-
tion method performed better than the Penman-Monteith 
(PM) method in modeling ET at the study location. This is 
contrary to the results of Colaizzi et al. (2014), who found 
the opposite in northern Texas. We acknowledge the inter-
dependence of the Rn computations in the temperature parti-
tioning (D. L. Martin, personal communication), but we do 
not expect that the SETMI model is formulated in a way that 
favors the PT method. The similar results for Rn and G be-
tween the two methods, in contrast to H and LE, suggest that 
the primary differences between PT and PM reside in H and 
LE. Further work at other sites is recommended to identify 
the conditions under which the PT or PM method may per-
form best. We expect the PM method to be broadly applica-
ble (D. L. Martin, personal communication). The inclusion 
of input peak past crop height throughout the season and LAI 
in September and October improved the model performance 
in general. 

The Kcbrf method of Campos et al. (2017) as modified by 
us appears to have performed well for years with many 
shortwave reflectance images (2011) and for years with few 
images (2012 and 2013). The methods implemented to com-
pute the Kcb in real time, including adding forecasted peak 
and ending SAVI values, produced reasonable results. The 
robustness of the model for irrigation scheduling should be 
tested over a wider range of climate conditions. 

Water balance modeled ET generally compared well with 
the eddy covariance data for the validation dataset. However, 
the model computed water stress that was not represented in 
the eddy covariance data. Inadequate root zone depth may 
have been a cause. This suggests that a single modeled root 
zone depth may not be adequate for all years or conditions. 
However, this may be less problematic if the model is used 
for irrigation scheduling. Improved parameterization of the 
water balance soil evaporation model may also help address 
some of the model bias. Poor temporal frequency of satellite 
imagery because of cloud cover and satellite operation in 
2012 and 2013 was identified as a challenge in applying this 
methodology. Future work should focus on model testing 
and further parameterization of the model in other locations 
and the use of aerial imagery to improve the frequency of 
remote sensing inputs. 
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