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Abstract

Aquatic invertebrate communities are important to shallow lake ecosystem form and function, providing vital
components to the food web and thereby important to achieving lake management goals. We characterized lake
invertebrate communities and physicochemical variables in six Nebraska Sandhill lakes and examined these
characteristics within an alternative stable state framework. Surveys were conducted during 2005 within each of these
lakes by sampling aquatic macroinvertebrate abundance, zooplankton abundance and biomass, phytoplankton
biomass, and physicochemical variables. When placed within an alternative stable state framework, the response
variables exhibited a gradient of different ecosystem states. Two lakes appeared congruent with the clear water state
(dense submergent vegetation, high invertebrate abundance and diversity, and low phytoplankton), two lakes were
congruent with the turbid water state (high phytoplankton, low vegetation coverage, and low invertebrate abundance
and diversity), and two lakes were intermediate, likely in a state of hysteresis (i.e, multiple states under equal
environmental conditions). Principal component groupings further supported these findings by following similar lake-
specific patterns with attributes of each stable state grouping meaningfully according to the observed lake states. The
lakes contained varied fish communities, potentially influencing many measured metrics, through a top-down
mechanism. Generally, lakes dominated by piscivorous fish displayed the clear water state, whereas lakes with
abundant planktivores displayed the turbid water state. Shallow lakes containing dense invertebrate communities
likely provide a rich food base to important fauna (migratory waterfowl) that aid in reaching desired management
objectives for these systems. Multiple small lakes, in proximity, displaying divergent ecosystem states invites the
opportunity for more in-depth analyses of driving mechanisms that will undoubtedly add to our ability to effectively
manage these systems in the future.
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Introduction

Aquatic invertebrate communities, including benthic
macroinvertebrates and pelagic zooplankton, of temper-
ate lakes have long been recognized as vital to the
ecosystem function (Forbes 1925). They form a large part
of the food web serving as vital links in energy pathways
(Vadeboncoeur et al. 2002) linking primary producers
and associated microorganisms to the fish community
(Welker et al. 1994; Post et al. 1997; Bunnell et al. 2003).
They also link aquatic and terrestrial ecosystems
(DuBowy 1988; Werner et al. 1995; Cummins and Merritt
1996), ultimately affecting nutrient dynamics on a
landscape scale (Kitchell et al. 1999). Therefore, assessing
invertebrate communities in aquatic systems could
provide insight into current lake states. Aquatic inverte-
brate communities vary in their diversity, density, and
abundance among lakes that exist in alternative stable
states (Blindow et al. 1993; Mallory et al. 1994; Bayley
and Prather 2003; Van de Meutter et al. 2005). These
alternative stable states in aquatic communities (Beisner
et al. 2003) may exist as 1) clear water with low nutrients
in the water column, low phytoplankton biomass, high
aquatic macrophytes, and a diverse aquatic biota or 2)
turbid water, high phytoplankton biomass, and limited
submersed vegetation (Scheffer 1990; Scheffer et al.
1993; Hansel-Welch et al. 2003; Zimmer et al. 2003, 2009).
In addition, lakes with intermediate nutrient levels may
occur in either stable state, and the switch from one state
to the other may follow different pathways depending
on the direction of the shift, a phenomena termed
hysteresis (Scheffer 1998; Ibelings et al. 2007). Therefore
the quantification of parameters that are characteristic of
a stable state is often lake-specific, and the determina-
tion of lake state is made using an examination of the
characteristics described above.

Many factors may play a role in affecting aquatic
community structure, and fish may be central to
influencing the ecosystem state (Carpenter et al. 1985;
Carpenter and Kitchell 1988; Northcote 1988; Drenner
and Hambright 2002). Planktivorous fish are often
associated with the turbid water state by predation on
zooplankton that, in turn, results in abundant phyto-
plankton through a top-down mechanism (Scheffer et al.
2001). Abundant piscivorious fish populations are often
associated with the clear water state by predatory
regulation of planktivorous fishes, thereby allowing
zooplankton to proliferate and release the phytoplank-
ton from top-down control (Spencer and King 1984;
Carpenter et al. 1985; Scheffer et al. 1993; Duffy 1998;
Ward et al. 2008). Furthermore, Diehl (1992) suggested
that fish and macroinvertebrates could coexist in
vegetated habitats by reducing foraging efficiency of
fish. Alternatively, Paukert and Willis (2003a) summarized
abundance estimates for zooplankton and macroinver-
tebrates in 30 Nebraska Sandhill lakes that contained fish
communities. Relations among invertebrate abundances
and physicochemical measures and vegetation coverage
were found, whereas no relation between the fish
community and invertebrate abundance was apparent.
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The lack of relation between invertebrate abundance
and fish community dynamics may indicate a bottom-up
effect governed by nutrient availability or other indirect
pathways (e.g., water level fluctuations) that may further
explain these findings.

The invertebrate community is often evaluated to
assess ecosystem health (Hilsenhoff 1987; Karr 1991;
Rosenberg and Resh 1996) or fish community structure
(Mills and Shiavone 1982; Mills et al. 1987). The aquatic
invertebrate community is of seminal importance to the
management goals of many lake ecosystems. For
example, shallow lakes provide important breeding,
brooding, and nursery habitats to economically impor-
tant waterfowl species and shorebirds that rely on
invertebrate populations as a major source of nutrition
(Swanson and Nelson 1970; Bouffard and Hanson 1997;
Cox et al. 1998). The Nebraska Sandhills are an important
waterfowl production area (Bellrose 1980), and Valentine
National Wildlife Refuge has specific wetland manage-
ment objectives to maximize the food base (i.e,
invertebrates and plants) for indigenous wildlife and
migratory birds (U.S. Fish and Wildlife Service [USFWS]
1999). In addition, the refuge has a goal of maintaining
sustainable and harvestable sport fish in those lakes
where fishing is permitted. Thus, information regarding
lake state and function can be obtained by collecting
invertebrate and physicochemical data and ultimately
used to evaluate these objectives. Furthermore, this
information may aid with prioritization in space and time
of management goals and actions.

In an effort to further understand lake-to-lake variability
in form and function, we surveyed six lakes that we
suspected may contain variable communities possibly
related to different ecosystem states. Alternative lake
states were defined as clear water (i.e., low phytoplankton,
high macrophytes) or turbid water (high phytoplankton,
low macrophytes). Our goals were to characterize lake
invertebrate communities and physicochemical variables
in six Nebraska Sandhill lakes and examine these
characteristics within an alternative stable state frame-
work. Our specific objectives related to lake form (i.e.,
objectives 1 and 2) and function (i.e., objectives 3 and
4) were to 1) compare macroinvertebrate and zoo-
plankton densities and biomass among lakes; 2)
compare physicochemical metrics among lakes; 3) use
multivariate data reduction techniques to make infer-
ences on related independent variables; and 4) describe
and compare lake ecosystem state. Future decisions
regarding priority and management can be evaluated
based on these results.

Methods

Five lakes (within Sandhills ecoregion of north central
Nebraska) were located on the Valentine National
Wildlife Refuge in Cherry County and privately owned
Cameron Lake in adjacent Rock County were sampled for
water quality parameters in June and July 2005 (Table 1).
Water levels are primarily governed by groundwater;
surface runoff is minimal (Ginsberg 1985; Rundquist et al.
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Table 1.

J.C. Jolley et al.

Descriptions of Nebraska Sandhill lakes sampled for aquatic invertebrates in 2005. Submergent vegetation coverage

and year of observation was qualitatively assigned using existing literature; available source is given.

Surface Mean Maximum Vegetation Observation

Lake area (ha) depth (m) depth (m) density year Source

Cameron 39 1.8 2.9 Low 2005 Jolley (2009)

McKeel 19 0.9 1.6 Low 2005 J. C. Jolley, personal
observation

Pelican 332 13 2.8 High 2005 Jolley (2009)

Pony 64 1.0 1.8 Low 2005 Jolley and Willis (2009)

Rice 19 1.2 1.7 High 2006 Wanner (2007)

West Long 25 13 1.8 High 2005 Jolley et al. (2008)

1987). The lakes were generally stable throughout the
study; they contained stable water levels throughout the
year and experienced normal annual conditions (i.e.,
north-temperate climate). Winter kills of fish are uncom-
mon due to flowing springs even though ice coverage
may last up to 3 mo (McCarraher 1960).

The watersheds are primarily mixed- and tall-grass
prairie, and livestock grazing is the principal land use
(Bleed and Flowerday 1989). The lakes varied in surface
area from 19 to 332 ha, were shallow (maximum depth
1.6-2.9 m), and almost entirely littoral (mean depth 0.9-
1.8 m). Submergent vegetation coverage in Sandhill lakes
is variable, commonly ranging from approximately 15 to
nearly 100% (Paukert and Willis 2003a; Jolley 2009; Jolley
and Willis 2009).

The study lakes contained fish communities common
to Sandhill lakes, including bluegill Lepomis macrochirus,
green sunfish Lepomis cyanellus, largemouth bass Micro-
pterus salmoides, yellow perch Perca flavescens, northern
pike Esox lucius, grass pickerel Esox americanus vermicu-
latus, common carp Cyprinus carpio, golden shiner
Notemigonus crysoleucas, fathead minnow Pimephales
promelas, and black bullhead Ameiurus melas. In addi-
tion, records of introduced Sacramento perch Archoplites
interruptus in  McKeel Lake exist from the 1970s
(McCarraher and Gregory 1970). Angler exploitation
was allowed on Pelican and Rice lakes and was
presumably minimal (Paukert et al. 2002), and Cameron
Lake was commercially harvested (i.e, modified fyke-
nets) for adult yellow perch by the landowner. McKeel
and Pony lakes were closed to fishing, and most of the
lakes were remote and difficult to access. Vegetation
coverage was described using published literature and
agency reports, when available from the year of the
study, for Cameron and Pelican (Jolley 2009), Pony and
West Long (Jolley and Willis 2009), and Rice lakes
(vegetation information was from the following year;
Wanner 2007).

Invertebrates were sampled at 8 randomly chosen
sites in Cameron Lake; 10 sites in Pelican Lake; and 4 sites
each in McKeel, Pony, Rice, and West Long lakes. Site
visits among lakes were unbalanced due to differing lake
size (more sites were visited in the larger Pelican and
Cameron lakes; Table 1). Two replicate benthic macroin-
vertebrate samples were collected using an Ekman
dredge bottom sampler (231 cm?) at each site, strained
through a 583-um mesh sieve in the field, and stored in
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90% ethanol. Replicate samples were collected and
processed separately. Macroinvertebrates were identified
to order or class and enumerated using a dissecting
microscope in the laboratory. In addition, midges were
categorized as family Chironomidae or order Diptera for
all other midges. The most common macroinvertebrate
taxa were reported, and less common taxa were counted
and expressed as taxa diversity. Individuals of all taxa
combined were summed and expressed as totals at each
site. Up to 20 individuals of each taxon were measured
(total length in millimeters) per site, and all individuals
were counted. Density was calculated by dividing the
number of benthic invertebrates of each taxon by the
area sampled with the Ekman dredge (i.e, 231 cm?).
Macroinvertebrates also were collected from duplicate
sweep net (30.5 x 25.4 c¢cm net opening; 800-um bar
mesh size) samples taken in the vegetation at each site
or the closest patch of vegetation to the site. Sweep net
catches were expressed as mean number per sweep net
sample (only available for McKeel, Pony, Rice, and West
Long lakes).

Zooplankton was collected during the daytime as two
replicates at each site using a 2-m-long tube sampler
(Rabeni 1996). Samples were filtered through a 65-um
mesh net and stored in 90% ethanol. Zooplankton were
enumerated and identified to family for cladocerans (i.e.
Bosminidae, Chydoridae, and Daphnidae [Daphnia or
Ceriodaphnia spp.]) and as cyclopoid (i.e., Cyclops spp.)
and total copepods, copepod nauplii, class Ostracoda,
and phylum Rotifera. Each sample was diluted with water
to a measured volume of 30 mL. Three subsamples were
then taken with a 5-mL Hensen-Stempel pipette and
placed in a Ward counting wheel. Up to 20 individuals of
each category were measured (millimeters total length),
and all individuals were counted. The total number of
zooplankton of each taxon in a sample was calculated
by dividing the number of organisms counted by the
proportion of the sample volume processed. Density was
then calculated by dividing the number of zooplankters
of each taxon by the volume of the water filtered with
the tube sampler. Zooplankton biomass was estimated
using taxon-specific, length-dry weight equations (Ma-
son 1977; McCauley and Kalff 1981; Culver et al. 1985;
Lynch et al. 1986). Potential differences in mean
invertebrate density, catch per sweep net, zooplankton
density, and biomass among lakes were assessed using a
nonparametric bootstrapping method (50,000 iterations,
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PROC MULTTEST; Westfall et al. 1999) because the
multivariate assumptions of normality for ANOVA were
rarely met. We also performed ANOVA on total
macroinvertebrate density (all taxa combined) among
lakes (data were log-transformed to meet the assump-
tion of normality). Post hoc comparisons were performed
using the Tukey multiple range test (Ruxton and
Beauchamp 2008).

Phytoplankton biomass was indexed using chloro-
phyll-a estimated from replicate water samples at each
site using a 2-m-long tube sampler. Raw lake water
(100 mL) was filtered (Whatman glass fiber filters,
0.45 um) in the field and extracted in the laboratory
following the methods described by Lind (1985).
Duplicate samples of lake water were collected at each
site and frozen; total phosphorous was determined
following the methods of Wetzel and Likens (1991) in
the laboratory. From the same sampling locations, total
alkalinity was measured using a water chemistry analysis
kit (Hach Company, Loveland, CO), and total dissolved
solids were recorded 0.5 m below the surface using an
electronic meter (Hach Company). Secchi disk transpar-
ency also was measured at each site. Physical and
chemical parameters were compared with a nonpara-
metric bootstrapping technique described above.

Analyses of the biotic and abiotic variables described
above were performed to identify meaningful relation-
ships among variables and to investigate potential
differences among lakes. Factor analysis (PCAs with
varimax rotation) was used to reduce the dimensionality
of the data sets because of the large number of variables
that were measured. The PCA was used to identify
meaningful combined (i.e., created) variables. Indepen-
dent variables and the subsequent PC groupings
included benthic macroinvertebrate density (sweep net
samples omitted due to lack of data for all lakes),
zooplankton density and biomass, and physicochemical
variables. Benthic macroinvertebrate and zooplankton
variables included common taxa and combined catego-
ries (i.e., copepods, cladocerans, total benthic macroin-
vertebrates, and zooplankton). Physicochemical variables
included measures of Secchi depth, conductivity, total
dissolved solids, alkalinity, pH, lake area, and lake depth.
Principal components were retained based on a combi-
nation of the eigenvalue-one criteria (Kaiser 1960) and
the proportion of variance method. Principal compo-
nents with eigenvalues greater than 1.0 were retained
until the cumulative proportion of variance accounted
for by the PCs was greater than or equal to 0.70 (Stevens
2002). Variables that loaded (>40%) on more than one
factor were omitted in interpretation (Stevens 2002)
because it is unclear which dimension these complex
variables described. All statistical procedures were
conducted using SAS software (SAS Institute 2002).

Results

The diversity and abundance of macroinvertebrates
varied among lakes (Data S1, Supplemental Material). The
diversity of taxa ranged from 2 to 8 for dredge samples
and from 4 to 11 for sweep net samples. Specifically, for
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Figure 1. Mean density of common macroinvertebrate taxa
collected in dredge samples in Nebraska Sandhill lakes in 2005.
Different letters indicate significant differences (bootstrap
procedure, P < 0.05) among lakes, and vertical bars represent
1 SE of the mean; bars without letters indicate no differences
detected; n denotes number of sites sampled in each lake.

dredge samples, Cameron Lake was the least diverse
(taxa = 2), followed by McKeel (3), Pony (3), Pelican (4),
West Long (6), and Rice (8) lakes. For sweep net samples,
McKeel Lake was the least diverse (taxa = 4), followed by
Pony (5), Rice (10), and West Long (11) lakes. Sweep net
samples were not available for Cameron or Pelican lakes.
Total macroinvertebrate densities differed among lakes
indexed by dredge (F3997; df = 5; P < 0.05; Figure 1) and
sweep net samples (P < 0.05). Pelican (mean = 1,383
invertebrates/m?, SE = 417) and Cameron lakes (1,264
invertebrates/m?, SE = 164) had the highest total density
indexed by dredge samples, whereas McKeel (120
invertebrates/m?, SE = 26) and Pony (130 inverte-
brates/m?, SE = 31) lakes had the lowest density. Total
catch per sweep net sample was higher in Rice Lake than
McKeel or Pony lakes. Multiple differences in individual
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Figure 2. Mean catch of common macroinvertebrate taxa
collected in sweep net samples in Nebraska Sandhill lakes in
2005. Different letters indicate significant differences (bootstrap
procedure, P < 0.05) among lakes, and vertical bars represent 1
SE of the mean; bars without letters indicate no differences
detected; n denotes number of sites sampled in each lake.

taxa abundance among lakes were detected in dredge
and sweep net samples (Figures 1 and 2). Most notably,
Rice Lake often had a higher abundance of invertebrates,
followed by West Long Lake, whereas McKeel and Pony
lakes often had depressed abundances. McKeel Lake had
relatively high-to-moderate abundances of chaoborids
and hemipterans, and Cameron Lake had the highest
density of oligochaetes (Figures 1 and 2).

Mean total zooplankton density ranged from 201 to
3,491 zooplankters/L, and dominant taxa varied among
lakes (Figure 3). Differences were detected among lakes
for all taxa examined except ostracods. Pony Lake had
the highest density of total zooplankton as well as
Bosmina spp., cladocerans, nauplii, and rotifers. Cameron
Lake was dominated by Daphnia spp., whereas Rice Lake
had high densities of Ceriodaphnia spp. and Chydorus
spp. Copepods were most abundant in Pony and Rice
lakes.

Patterns in zooplankton biomass were largely similar
to those of zooplankton density (Figure 4). Overall
biomass was greatest in Cameron Lake (largely driven
by Daphnia spp.), lowest in McKeel Lake, and moderate
in the other lakes (Table 2). Cameron and Pelican lakes
were dominated by Daphnia spp., McKeel Lake was
dominated by nauplii, and Pony Lake was dominated by
Bosmina spp. Rice and West Long lakes had a more
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Figure 3. Mean density of zooplankton taxa from Nebraska
Sandhill lakes in 2005. Different letters indicate significant
differences (bootstrap procedure, P < 0.05) among lakes, and
vertical bars represent 1 SE of the mean; bars without letters
indicate no differences detected; n denotes number of sites
sampled in each lake.

balanced biomass of several taxa of zooplankton
(Figure 4), although copepods were more abundant
here than in the other lakes.

Water quality parameters exhibited a spectrum of
conditions among the lakes (Figure 5). Mean Secchi depth
ranged from 16 to 160 cm and was highest in Rice and
West Long lakes (water clarity was often to the lake
bottom), moderate in Pelican (mean = 78 cm, SE = 7 cm)
and Cameron lakes (mean = 57 cm, SE = 5 ¢cm), and the
lowest in McKeel (mean = 16 cm, SE = 2 ¢cm) and Pony
lakes (mean = 16 cm, SE = 1 cm). Chlorophyll-a was also
variable and ranged from 5 to 192 ug/L. Chlorophyll-a was
significantly higher in McKeel and Pony lakes than in the
other lakes (Figure 5). Total phosphorous ranged from
18.5 to 50.9 ug/L and was significantly higher in West Long
Lake than in the other lakes. Alkalinity ranged from 120 to
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Figure 4. Percent biomass of zooplankton taxa in six Nebraska Sandhill lakes in 2005.

385 mg/L CaCO; and multiple statistical differences were
detected (Figure 5). McKeel Lake was the most alkaline
and Cameron Lake was the least alkaline.

The PCA indicated that the first three PCs explained
79% of variability. The PC1 was interpreted primarily as
an index of macroinvertebrate taxa density and density
and biomass of small zooplankters (Ceriodaphnia and
Chydorus spp.). The PC2 was interpreted primarily as an
index of small-bodied zooplankter density. The PC3 was
interpreted as an index of the biomass of Daphnia, all
Cladocera combined, and total zooplankton biomass as
well as total density of macroinvertebrates (Table 3).

Physical, biological, and chemical parameters varied
widely in these lakes and were placed in a gradient of
alternative ecosystem states (Figure 6). Rice and West
Long lakes displayed the clear water state, high
invertebrate abundance and diversity, and low phyto-
plankton as indexed by chlorophyll-a. These lakes also
had high submergent aquatic macrophyte coverage
(Jolley 2009). McKeel and Pony lakes were at the
opposite end of the spectrum, with turbid water (low
water clarity due to abundant phytoplankton), low
invertebrate abundance and diversity, high levels of
phytoplankton, and low vegetation coverage (Jolley
2009). Cameron and Pelican lakes were intermediate

(Figure 6) to the other lakes, with moderate levels of
many metrics examined.

Discussion

Alternative ecosystem states were identified in these
Sandhill lakes and existed across a gradient from clear
water to turbid water, with two lakes intermediate and in
a possible state of hysteresis (Scheffer et al. 1993, 2001;
Beisner et al. 2003). The lakes studied were all in
proximity; refuge lakes were all within 19 km and
Cameron Lake was located 109 km from the refuge
lakes. Although this study lacks a temporal component
to assess the stability of conditions in these lakes, a wide
range of conditions were observed, providing evidence
for different lake form and function across these Sandhill
lakes.

Our ordinations revealed meaningful groupings that
followed lake-specific patterns. Variables associated with
a lake in the clear water state (Scheffer et al. 1993) loaded
similarly (i.e., Secchi depth and abundance of benthic
invertebrate taxa associated with aquatic vegetation). In
addition, density and biomass of the small-bodied
Ceriodaphnia and Chydorus species also loaded similarly
and were abundant in the clear water lakes Rice and

Table 2. Mean (and SE in parentheses) estimated biomass (ug/L) of zooplankton taxa in Nebraska Sandhill lakes in 2005. Results
of one-way ANOVA among lakes for each taxa are given as F statistic, degrees of freedom (df), and associated P value. Different

letters indicate significant differences among lakes for each taxa.

Ceriodaphnia Daphnia All All

Lake Bosminidae spp. Chydoridae spp. Nauplii Ostracoda cladocerans copepods Total
Cameron  19.0 (2.9)b 0 (—)b 334 (39b 2,323.4 (259.4)a 16.0 (29)b 1.1 (0.3)ab 2,375.7 (260.5)a 51.0 (5.0)b 2,442.7 (266.8)a
McKeel 2.0 (0.4)b 1(0.1)b 0 (—)b 11.9 3.7)b 22.0 (0.7)b 0.0 (—)b 13.9 3.4)b 3(1.00b 433 (4.1)c
Pelican 19.2 (2.5)b 0.05 (0.05) b  45.8 (10.4)b  229.2 (35.3)b 20.8 (5.2)b 1.2 (0.5)ab 294.2 (34.8)b 27.5 (3.8)b 339.4 (34.7)bc
Pony 556.0 (154.4)a 2 (0.2)b 403 (17.1)b 1409 (69.7)b 107.8 (17.8)a 3.1 (1.8)ab  738.4 (129.6)b 121.2 (16.5)a 967.4 (140.8)b
Rice 0.0 (—)b 93.0 (13.5)a 194.3 (95.4)a 2.7 2.7)b 75.0 (27.8)a 0.0 (—)b 290.1 (106.2)b 1085 (24.2)a 473.5 (124.8)bc
West Long 4.5 (4.5)b 883 (41.0)a 93.6 (49.3)ab  28.2 (25.6)b 13.9 (3.5)b 4.1 (1.7)a 214.6 (98.0)b  46.7 (10.5)b 275.2 (108.5)bc

[F 21.15 13.10 3.77 44.13 12.27 3.19 36.45 18.56 34.30

df 5 5 5 5 5 5 5 5 5

P <0.01 <0.01 0.01 <0.01 <0.01 0.02 <0.01 <0.01 <0.01
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Figure 5. Mean values of physicochemical measures from
Nebraska Sandhill lakes in 2005. Different letters indicate
significant differences (bootstrap procedure, P < 0.05) among
lakes, and vertical bars represent 1 SE of the mean; bars without
letters indicate no differences detected; n denotes number of
sites sampled in each lake. Asterisk (*) indicates that Secchi
depth was greater than the bottom depth at all sites, and
vertical bars represent 1 SE of the mean.

West Long. Paukert and Willis (2003a) also found that
Ceriodaphnia spp. associated with submersed vegetation
but not Chydorus spp. Variables associated with a lake in
the turbid water state also loaded similarly (i.e., density
and biomass of nondaphnid smaller-bodied zooplankters
and total dissolved solids). Small-bodied zooplankters
have been previously associated with eutrophic lakes
(Bays and Chrisman 1983) but not related to productivity
in others (Pace 1986).

The lakes studied had varied fish communities, and
this variation may have influenced the invertebrate and
zooplankton communities. Rice and West Long lakes had
fish populations consisting of abundant piscivorous
largemouth bass and northern pike (Jolley et al. 2008;
Jolley 2009). Furthermore, Rice Lake had a direct
connection to Duck Lake that contained bluegill, yellow
perch, and largemouth bass (Paukert and Willis 2003b;
Jolley 2009), species that were also observed in 2005 (i.e.,
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largemouth bass, J. C. Jolley, USFWS, personal observa-
tion). The lakes with these fish communities (i.e.,
piscivore dominated) had relatively clear water, dense
vegetation, high invertebrate abundance, and low
phytoplankton levels. These characteristics are likely
influenced by the fish community (Ward et al. 2008).
Cameron Lake contained abundant planktivores consist-
ing of yellow perch and fathead minnows and the
benthivorous common carp (Jolley et al. 2010); Pelican
Lake also had abundant bluegill, yellow perch, and
common carp but also contained piscivorous northern
pike and largemouth that likely mediated the planktivore
population. Pony Lake contained abundant fathead
minnows, common carp, and black bullhead that made
up 94% of the fish standing stock (Jolley and Willis 2009).
The fish community of McKeel Lake was unknown and
recent survey data are nonexistent. Studies from the late
1960s and early 1970s indicated fathead minnow and
Sacramento perch were present (McCarraher and Thom-
as 1968; McCarraher and Gregory 1970). McKeel Lake
displayed characteristics most similar to Pony Lake,
which was dominated by planktivores.

Fish communities can have varied effects on inverte-
brate communities. Overly abundant yellow perch can
reduce size structure of zooplankton and macroinverte-
brates (Lott et al. 1996, 1998), and a similar situation may
exist in Pony Lake with its abundant planktivores and
invertivores. Fishes can affect benthic invertebrate
populations (Crowder and Cooper 1982; Lott 1991;
Zimmer et al. 2001), although effects may be mixed
(Gilinsky 1984). Finally, the presence of the benthivorous
common carp may further influence the results. Com-
mon carp can have mixed influences on aquatic
communities (Parkos et al. 2003) but have been most
noted to negatively affect aquatic macrophytes (Cham-
berlain 1948; Crivelli 1983; Fletcher et al. 1985; Kolterman
1990). Common carp can influence the invertebrate
community (Parkos et al. 2003; Stewart and Downing
2008) by direct consumption or typically by reducing
complex invertebrate habitat provided by macrophyte
beds. Common carp were present in Cameron, Pelican,
and Pony lakes (all of which had moderate-to-low
macroinvertebrate communities) and were absent in
West Long and Rice lakes (both of which had abundant
macroinvertebrate communities).

The zooplankton communities among lakes were
more complex as different suites of species dominated
on a lake-by-lake basis. Cameron Lake was dominated by
large-bodied Daphnia spp. (sample taken in June), and
many lakes experience a midsummer decline in Daphnia
spp. abundance (Kaemingk et al. 2012). Cameron Lake
did not display this decline in 2005, but it was observed
in 2004, and may be attributed to a weak year-class of
the planktivorous yellow perch (Jolley et al. 2010).
Predation on Daphnia spp. by yellow perch has been
reported previously (Whiteside et al. 1985; Prout et al.
1990), and this predation may explain the relative dearth
of Daphnia spp. in most lakes (Kaemingk et al. 2012).
Small-bodied zooplankters may have flourished due to a
competitive release from the absence of Daphnia spp.
McKeel Lake had a relatively depressed zooplankton
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Table 3.

J.C. Jolley et al.

Results of factor analysis (i.e., PCA with varimax rotation) of independent variables measured in Sandhill lakes in 2005.

Factor scores with an asterisk (*) were those selected for the factor (loadings >40). Variables that loaded (>40) on more than one

factor were omitted in interpretation.

Category Variable PC1 PC2 PC3
Zooplankton density Bosmina spp. —26 95* —=10
Ceriodaphnia spp. 98* —4 —-15
Chydorus spp. 95* 18 —6
Daphnia spp. -23 -6 97*
All cladocerans =17 95% 20
Nauplii 19 96* -16
All copepods 38 89* 20
Rotifers -12 97* —14
Total —10 98* 3
Zooplankton biomass Bosmina spp. —27 94* -8
Ceriodaphnia spp. 88* —18 -19
Chydorus spp. 99* 5 -7
Daphnia spp. =21 -1 97*
All cladocerans -16 12 98*
Nauplii 27 93* —-18
Total —12 20 97*
Physicochemical Mean depth 11 —30 90*
Secchi depth 85* -35 =5
Alkalinity —24 —33 —70
Dissolved oxygen 12 0 —85*%
Total dissolved solids —34 74* —20
Macroinvertebrate density Order Amphipoda 98* -2 -13
Order Trichoptera 55% —31 -20
Order Odonata 97* =1 —13
Order Diptera -13 =11 70*
Class Oligochaeta -18 -19 96
Class Hirudinea 92* 5 —10
Total 34 —31 51*

water transparency/
submersed vegetation density

Ecosystem state

water transparency/
submersed vegetation density

Conditions

Figure 6. Continuum of ecosystem states for six Nebraska
Sandhill lakes in 2005: Rice and West Long (1 and 2), Pelican
and Cameron (3 and 4), and McKeel and Pony (5 and 6). Lakes at
ends of the continuum may be in a stable state, whereas
intermediate lakes (Cameron and Pelican) may be in hysteresis.
Figure adapted from Scheffer et al. (2001).
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community, whereas Pony Lake had a community
dominated by small-bodied zooplankters (i.e., Bosmina
spp. and copepod nauplii). Rice and West Long lakes
contained different small-bodied cladocerans (i.e., Cer-
iodaphnia spp. and Chydorus spp.).

Patterns observed relating to zooplankton and benthic
invertebrates in these lakes could be related to bottom-
up processes as opposed to top-down processes (i.e.,
fish). Water level fluctuations in these systems could
influence primary productivity by releasing nutrients into
each system (McEwen and Butler 2010) as a result of
groundwater or precipitation events. These nutrients
could influence higher trophic levels, such as inverte-
brate communities. Paukert and Willis (2003a) found
some support for this notion; however, limited informa-
tion exists on how natural lakes respond to water level
fluctuations (Coops et al. 2003; Wantzen et al. 2008). Our
study provides empirical data on biotic and abiotic
conditions in lakes located on the Valentine National
Wildlife Refuge and the first data on McKeel and Rice
lakes in recent history. This knowledge of community
state may help managers reach competing, but not
mutually exclusive, goals of waterfowl production and
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quality sport fish populations. For example, Cox et al.
(1998) found the abundance of aquatic macroinverte-
brates was positively related to growth and survival of
mallard Anas platyrhynchos ducklings. Furthermore, fishes
can compete with waterfowl, especially broods, for
invertebrates (Swanson and Nelson 1970; Bouffard and
Hanson 1997). Hanson and Riggs (1995) found that
fathead minnows reduced abundance and biomass of
insects and crustaceans in wetlands to the extent that the
suitability of these habitats was reduced as seasonal
foraging areas for waterfowl. Hill et al. (1987) found lower
survival of mallard ducklings in lakes with high densities of
fish compared with those feeding in riverine habitats with
lower densities of fish. Alternatively, piscivorous fish
populations may mitigate the effect of abundant plankti-
vores. Ward et al. (2008) reported walleye fry stockings
could suppress fathead minnow populations in wetlands,
and the invertebrate communities in walleye-dominated
wetlands were more abundant than those dominated by
fathead minnows. Nevertheless, shallow lakes and wet-
lands containing dense invertebrate communities are of
conservation interest by waterfowl managers (Cox et al.
1998). Specifically, the Comprehensive Conservation Plan
for the Valentine National Wildlife Refuge states goals of
maximizing invertebrate and plant food resources to
provide an appropriate food base for indigenous wildlife
including migratory birds (USFWS 1999). In addition, goals
of providing an unexploited food base for lakes not
designated for sport fishing (i.e,, McKeel and Pony) and
maintaining sustainable and harvestable populations of
sport fish in those lakes open to recreational fishing (i.e.,
Pelican, West Long, and Rice) can be achieved, in part,
with rich invertebrate communities.

Multiple small lakes, in proximity, displaying alternate
ecosystem states invites the opportunity for more in-
depth analyses of driving mechanisms. In addition,
separating the effect of common carp populations from
planktivorous fishes in these lakes warrants further study.
Future work coupling comprehensive empirical data on
multiple variables (i.e., fish, macrophytes, invertebrates,
and physical measures) may be valuable to address these
complex management questions (Jolley and Willis 2009).
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