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Joint Asymptotics for Estimating the

Fractal Indices of Bivariate Gaussian

Processes∗

Yuzhen Zhou1 and Yimin Xiao2

1University of Nebraska-Lincoln e-mail: yuzhenzhou@unl.edu

2Michigan State University e-mail: xiao@stt.msu.edu

Abstract: Multivariate (or vector-valued) processes are important for mod-
eling multiple variables. The fractal indices of the components of the under-
lying multivariate process play a key role in characterizing the dependence
structures and statistical properties of the multivariate process.

In this paper, under the infill asymptotics framework, we establish joint
asymptotic results for the increment-based estimators of bivariate fractal
indices. Our main results quantitatively describe the effect of the cross-
dependence structure on the performance of the estimators.

Keywords and phrases: Fractal Indices, Bivariate Gaussian Process, Bi-
variate Matérn Field, Joint Asymptotics.

1. Introduction

The fractal index of a stochastic process is useful for measuring the rough-
ness of its sample paths (e.g., it determines the Hausdorff dimension of the
trajectories of the process), and it is an important parameter in geostatistical
models. The problem of estimating the fractal index of a real-valued Gaus-
sian or non-Gaussian process has attracted the attention of many authors in
past decades. Hall and Wood [21] studied the asymptotic properties of the box-
counting estimator of the fractal index. Constantine and Hall [11] constructed
estimators of the effective fractal dimension based on the variogram. Kent and
Wood [25] developed increment-based estimators for stationary Gaussian pro-
cesses on R, which can achieve improved performance under infill asymptotics
(namely, asymptotic properties of statistical procedures as the sampling points
grow dense in a fixed domain, see, e.g., [8, 12]). Chan and Wood [6, 7] extended
the method to a class of stationary Gaussian random fields defined on R2 and
their transformations, which are non-Gaussian in general. Zhu and Stein [42] ex-
panded the work of Chan and Wood [6] by considering the fractional Brownian
surface. More recently, Coeurjolly [10] introduced a new class of consistent esti-
mators of the fractal dimension of locally self-similar Gaussian processes on R
using sample quantiles and derived the almost sure convergence and asymptotic
normality for these estimators. Bardet and Surgailis [5] provided estimators of
the fractal index based on increment ratios for several classes of real-valued
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processes with rough sample paths, including Gaussian processes, and studied
their asymptotic properties. Loh [29] constructed estimators from irregularly
spaced data on Rd with d = 1 or 2 via higher-order quadratic variations. We
refer to [20] and the references therein for further information on various types
of estimators and their assessments.

In recent years, multivariate (or vector-valued) Gaussian processes and ran-
dom fields have become popular in modeling multivariate spatial datasets (see,
e.g., [17, 36]). Several classes of multivariate spatial models were introduced in
[4, 13, 14, 19, 26, 30, 33]. Two of the challenges in multivariate modeling are to
specify the cross-dependence structures and to quantify the effect of the cross-
dependence on the estimation and prediction performance. We refer to [18] for an
excellent review of the recent developments in multivariate covariance functions.
They also raised many open questions and called for theoretical development
of estimation and prediction methodology in the multivariate context. To the
best of our knowledge, only a few authors have worked in this direction; see,
for example, [16, 28, 31, 34, 41]. While with respect to focusing on estimating
the fractal indices of a multivariate Gaussian process, we are only aware of the
work by Amblard and Coeurjolly [3], in which they constructed estimators for
the fractal indices of a class of multivariate fractional Brownian motions using
discrete filtering techniques and studied their joint asymptotic distribution. By
estimating the fractal index of each component separately, they found that the
quality of these estimates was almost independent of the cross correlation of the
multivariate fractional Brownian motion.

In this work, we consider a class of bivariate stationary Gaussian processes
X , {(X1(t), X2(t))>, t ∈ R} (the operator (·)> means the transpose of a
vector or a matrix) and study the joint asymptotic properties of the estimators
for the fractal indices of the components X1 and X2 under the infill asymptotics
framework. Our main purpose is to clarify the effect of cross covariance on the
performance of the joint estimators.

More specifically, we assume that X has mean EX(t) = 0 and matrix-valued
covariance function

C(t) =

(
C11(t) C12(t)
C21(t) C22(t)

)
, (1.1)

where Cij(t) := E[Xi(s)Xj(s+ t)], i = 1, 2. Further, we assume that the follow-
ing conditions are satisfied

C11(t) = σ2
1 − c11|t|α11 + o(|t|α11),

C22(t) = σ2
2 − c22|t|α22 + o(|t|α22),

C12(t) = C21(t) = ρσ1σ2(1− c12|t|α12 + o(|t|α12)),

(1.2)

where α11, α22 ∈ (0, 2), σ1, σ2 > 0, |ρ| ∈ (0, 1) and c11, c22, c12 > 0 are constants.
Under the assumption (1.2), in order for (1.1) to be a valid covariance function,
it is necessary to impose some restrictions on the parameters (α11, α22, α12). In
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this paper, we assume

α11 + α22

2
< α12, or

α11 + α22

2
= α12 and c212ρ

2σ2
1σ

2
2 < c11c22.

(1.3)

This is a mild assumption. See Appendix A for justification.
Henceforth, we refer to (1.2) and (1.3) as Condition (A1). Under the as-

sumption (1.2), it is well known (see, e.g., [2], Theorem 8.4.1) that the fractal
dimensions of the trajectories of each component X1 and X2 are given by

dim GrX1([0, 1]) = 2− α11

2
, a.s.

and
dim GrX2([0, 1]) = 2− α22

2
, a.s.,

respectively. Above, for i ∈ {1, 2}, GrXi([0, 1]) = {(t,Xi(t)) : t ∈ [0, 1]} is
the trajectory (or graph set) of the real-valued process Xi = {Xi(t), t ∈ R}
over the interval [0, 1]. A bivariate stationary Gaussian process X with matrix-
valued covariance function (1.1) that satisfies Condition (A1) has richer fractal
properties. For example, we consider the trajectory of X on [0, 1], which is
GrX([0, 1]) = {(t,X1(t), X2(t))> : t ∈ [0, 1]} ⊆ R3. For notational convenience,
we further assume that α11 ≤ α22 (otherwise we may relabel the components of
X). Then, we can apply Theorem 2.1 in [37] to show that, with probability 1,

dim GrX([0, 1]) = min

{
2 + α22 − α11

α22
, 3− α11 + α22

2

}
=

{
2+α22−α11

α22
, if α11 + α22 ≥ 2,

3− α11+α22

2 , if α11 + α22 < 2.

(1.4)

This result shows that the indices α11 and α22 determine the fractal dimension
of the trajectory of the bivariate Gaussian process X. Furthermore, one can
characterize many other fractal properties of X explicitly in terms of these
indices. See [38] for a recent overview. Hence, analogous to the univariate case, it
is natural to call (α11, α22) the fractal indices of X. For the reader’s convenience,
we include a proof of (1.4) in Appendix B.

Although the parameters α11 and α22 can be estimated separately from ob-
servations of the coordinate processes X1 and X2, (1.4) suggests that, in doing
so, one might miss some important information about the structures of the bi-
variate process X. For example, although the estimator of dim GrX([0, 1]) can
be obtained by plugging the estimators of α11 and α22 into (1.4), say (α̂11, α̂22),
we cannot evaluate the estimation efficiency without the joint asymptotic prop-
erties of (α̂11, α̂22). Hence, it is necessary to study these estimators jointly and
to quantify the effect of the cross-covariance on their performance.

In this paper, we consider the increment-based estimators of α11 and α22,
denoted by α̂11 and α̂22, respectively, and study the bias, mean square error
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matrix and joint asymptotic distribution under the infill asymptotics framework.
The main results are given in Theorems 3.3 ∼ 3.5. In particular, we prove that√
nα̂11 and

√
nα̂22 are asymptotically uncorrelated if (α11 + α22)/2 < α12,

while they are asymptotically correlated if (α11 + α22)/2 = α12. Our results
are applicable to a wide class of bivariate Gaussian processes, including the
bivariate Matérn model introduced by Gneiting, Kleiber and Schlather [19], the
bivariate powered exponential model and bivariate Cauchy model of Moreva
and Schlather [30], and a class of bivariate models introduced by Du and Ma
[14].

This paper raises several open questions. First, the method of joint asymp-
totics developed in this paper and the recent work by Loh [29] on constructing
estimators for the univariate fractal index given irregularly spaced data make
it possible to study the joint asymptotics in estimating bivariate fractal indices
when data are observed irregularly on R2. This problem is interesting from
both theoretical and application viewpoints, but it appears to be challenging.
Second, the work by Ruiz-Medina and Porcu [34], which established conditions
for the equivalence of Gaussian measures of multivariate random fields, makes
it promising to generalize the consistency and asymptotic normality results of
maximum likelihood estimators for a univariate random field to the case of mul-
tivariate Gaussian fields. The existing results in the univariate case were estab-
lished under the assumption that the smoothness parameter is known (see, e.g.,
[15, 23, 40]). It would be interesting to study whether the asymptotic properties
hold in either the univariate or multivariate case while plugging in estimators
of the smooth parameters.

The rest of this paper is organized as follows. We follow Chan and Wood
[6] and Kent and Wood [25] and formulate the increment-based estimators for
(α11, α22) in Section 2. In Section 3, we state the main results of the joint asymp-
totics of the bivariate estimators. An application to the non-smooth bivariate
Matérn processes is given in Section 4. In Section 5, we present a simulation
study on the efficiency of the estimators. The proofs of our main results are
given in Section 6. Finally, some auxiliary results and their proofs are included
in the Appendix.

We end the introduction with some notation. Z+ denotes the set of all positive
integers, and B(R) is the collection of all Borel sets on R. For any real-valued
sequences {an}∞n=1, {bn}∞n=1, an ∼ bn means limn→∞ bn/an = 1, an & bn means
that there exists a constant c > 0 such that an ≥ c bn for all n sufficiently large
and an � bn means an & bn and bn & an. Similar notation is used for functions
of continuous variables.

An unspecified positive and finite constant will be denoted by C0. More
specific constants are numbered as C1, C2, . . . .

2. The increment-based estimators

Assume that the values of the bivariate process X are observed regularly on
an interval I, say I = [0, 1]. More specifically, we have n pairs of observations
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(X(1/n), . . . ,X(1))>. By applying the increment-based method introduced by
Kent and Wood [25] for estimating the fractal index of a real-valued locally
self-similar Gaussian process (see also [6, 7] for further development), we can
estimate the fractal indices (α11, α22) of X. Our emphasis is on studying the
joint asymptotic properties of the estimators. In particular, we study the effect
of cross-covariance on their joint performance.

Let m ≥ 2 be a fixed integer. For each component Xi, i = 1, 2 and integer
u ∈ {1, . . . ,m}, we define the dilated filtered discretized process with second
difference (see, e.g., [25]),

Y un,i(j) := n
αii
2

(
Xi

(j − u
n

)
− 2Xi

( j
n

)
+Xi

(j + u

n

))
, j = 1, . . . , n.

Denote by a−1 = 1, a0 = −2, a1 = 1. Y un,i can be rewritten as

Y un,i(j) = n
αii
2

1∑
k=−1

akXi

(
j + ku

n

)
.

As in Kent and Wood [25], one can verify that, under (1.2), Y un,i(j) is a Gaussian

random variable with mean 0, and its variance converges to cii(8− 2αii+1)uαii

(this follows from (3.2) below). Let Zun,i(j) := (Y un,i(j))
2 and define

Z̄un,i :=
1

n

n∑
j=1

Zun,i(j). (2.1)

For i = 1, 2, it follows from [25] that, under certain regularity conditions on the
covariance function Cii(t), we have

Z̄un,i
p−→ Ciu

αii ,

where
p−→ represents convergence in probability and Ci = cii(8− 2αii+1). Hence,

ln Z̄un,i
p−→ αii lnu+ lnCi, i = 1, 2,

where ln represents natural logarithm. Consequently, the fractal indices αii (i =
1, 2) can be estimated by linear regression of ln Z̄un,i on lnu for u = 1, . . . ,m.

In this paper, we employ Chan and Wood [6]’s linear estimators for αii based
on ln Z̄un,i, that is,

α̂ii =

m∑
u=1

Lu,i ln Z̄un,i, (2.2)

where {Lu,i, u = 1, . . . ,m} (i = 1, 2) are finite sequences of real numbers such
that

m∑
u=1

Lu,i = 0 and

m∑
u=1

Lu,i lnu = 1. (2.3)
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Both the ordinary least squares and generalized least squares estimators intro-
duced by Kend and Wood [25] are examples of the above estimators. We remark
that due to the first condition in (2.3), the estimators α̂ii (i = 1, 2) defined in
(2.2) can be computed from the observed values (X(1/n), . . . ,X(1))> and do
not depend on the unknown indices αii.

3. Joint asymptotic properties

For i = 1, 2, let

Z̄n,i = (Z̄1
n,i, . . . , Z̄

m
n,i)
>

and denote

Z̄n = (Z̄>n,1, Z̄
>
n,2)>.

Under the infill asymptotics framework, we first study the asymptotic properties
of Z̄n in Section 3.1. In Section 3.2, the joint asymptotic properties of the
estimators (α̂11, α̂22)> are obtained.

3.1. Variance of Z̄n and asymptotic normality

First, given u, v = 1, . . . ,m, we consider the covariance matrix of (Y un,1, Y
v
n,2)>.

For i = 1, 2, it follows from Kent and Wood [25] that the marginal covariance
function for Y un,i and Y vn,i is

σuvn,ii(h) := E[Y un,i(`)Y
v
n,i(`+ h)]

→ −cii
1∑

j,k=−1

ajak|h+ kv − ju|αii , σuv0,ii(h), (3.1)

as n→∞. In particular, we derive that the variance of Y un,i(`) satisfies

σuun,ii(0)→ Ci u
αii , as n→∞, (3.2)

where Ci = cii(8− 2αii+1).
Under the assumption (1.2), the cross covariance between Y un,1 and Y vn,2 can

be derived as follows.

σuvn,12(h) := E[Y un,1(`)Y vn,2(`+ h)]

= n
α11+α22

2

1∑
j,k=−1

ajakC12

(
h+ kv − ju

n

)

→
{

0, if α11+α22

2 < α12,

−ρσ1σ2c12
∑1
j,k=−1 ajak|h+ kv − ju|α12 , if α11+α22

2 = α12

, σuv0,12(h).

(3.3)
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Therefore, if (α11+α22)/2 < α12, the covariance matrix of (Y un,1(`), Y vn,2(`+h))>

satisfies

Var

(
Y un,1(`)
Y vn,2(`+ h)

)
→
(
σuu0,11(0) 0
0 σvv0,22(0)

)
, as n→∞.

If (α11 + α22)/2 = α12, the covariance matrix of (Y un,1(`), Y vn,2(`+ h))> satisfies

Var

(
Y un,1(`)
Y vn,2(`+ h)

)
→
(
σuu0,11(0) σuv0,12(h)
σuv0,12(h) σvv0,22(0)

)
, as n→∞.

We adapt the method of derivation in Section 3 of Kent and Wood [25] to
find the covariance matrix of the random vector Z̄n. Using the fact that if

(U, V ) ∼ N
(( 0

0

)
,
( 1 ξ
ξ 1

))
is a bivariate normal random vector, then

cov(U2, V 2) = 2ξ2, we obtain

cov(Zun,i(`), Z
v
n,j(`+ h)) = 2(σuvn,ij(h))2, i, j = 1, 2;

hence,

φuvn,ij := cov(Z̄un,i, Z̄
v
n,j) =

1

n

n−1∑
h=−n+1

(
1− |h|

n

)
× 2(σuvn,ij(h))2.

Denote by Φn,ij = (φuvn,ij)
m
u,v=1 the covariance matrix of Z̄n,i and Z̄n,j . Then,

the covariance matrix of Z̄n can be written as

Φn =

(
Φn,11 Φn,12

Φn,21 Φn,22

)
.

To study the asymptotic properties of Φn and Z̄n, we impose an additional
regularity condition on the fourth derivative of the functions Cij(t) in (1.1)
around the origin, which is analogous to the condition (A4) in [25] and will be
called Condition (A2):

C
(4)
11 (t) = − c11α11!

(α11 − 4)!
|t|α11−4 + o(|t|α11−4),

C
(4)
22 (t) = − c22α22!

(α22 − 4)!
|t|α22−4 + o(|t|α22−4),

C
(4)
12 (t) = C

(4)
21 (t) = −ρσ1σ2

c12α12!

(α12 − 4)!
|t|α12−4 + o(|t|α12−4).

Above, for any α > 0, α!/(α− 4)! = α(α− 1)(α− 2)(α− 3).
For i, j = 1, 2, let φuv0,ij = 2

∑∞
h=−∞(σuv0,ij(h))2, which is convergent, Φ0,ij =

(φuv0,ij)
m
u,v=1, and let

Φ0 =

(
Φ0,11 Φ0,12

Φ0,21 Φ0,22

)
.

The following theorems describe the asymptotic properties of the random
vector Z̄n.
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Theorem 3.1. If Conditions (A1) and (A2) hold, then

nΦn → Φ0, as n→∞. (3.4)

Moreover, if (α11 + α22)/2 < α12, then Φ0,12 = Φ0,21 = 0.

Theorem 3.2. If Conditions (A1) and (A2) hold, then

n1/2(Z̄n − E[Z̄n])
d−→ N2m(0,Φ0), as n→∞,

where N2m(0,Φ0) is the (2m)-dimensional normal distribution with mean 0 and
covariance matrix Φ0.

Remark 3.1. Theorem 3.2 extends Theorem 2 in Kent and Wood [25] to the
bivariate case, and shows that

√
nZ̄n,1 and

√
nZ̄n,2 are asymptotically indepen-

dent when (α11 + α22)/2 < α12. The proofs of Theorems 3.1 and 3.2 are given
in Appendix D.

Remark 3.2. The class of matrix-valued covariance functions whose properties
around the origin satisfy (A1) and (A2) is large, including such significant
examples as the bivariate Matérn model of Gneiting, Kleiber and Schlather
[19], the bivariate powered exponential model and bivariate Cauchy model of
Moreva and Schlather [30], the bivariate Wendland-Gneiting covariance function
of Daley, Procu and Bevilacqua [13] and a class of bivariate models introduced
by Du and Ma [14], such as Example 3. Since the matrix-valued covariance
functions in these references have explicit closed forms, Conditions (A1) and
(A2) can be verified directly by using Taylor’s expansion or L’Hospital’s rule.

Remark 3.3. Another way to verify Conditions (A1) and (A2) is to make use
of the spectral representation of Cij :

Cij(t) =

∫
R

cos(tξ)Fij(dξ),

where Fij is the spectral measure of Cij . Writing

Cij(0)− Cij(t) =

∫
R

(1− cos(tξ))Fij(dξ),

one can see that Condition (A1) may follow from an Abelian-type theorem and
the tail behavior of the spectral measure Fij at infinity (see, for example, [32]).

To verify Condition (A2), we may assume that Fij has a density function
fij(ξ) which decays faster than certain polynomial rate as |ξ| → ∞. A change
of variable yields that for t 6= 0,

Cij(0)− Cij(t) =
1

t

∫
R

(
1− cos ξ

)
fij
(ξ
t

)
dξ.

Then we can differentiate Cij(t) as follows:

C ′ij(t) =
1

t2

∫
R

(
1− cos ξ

)
fij
(ξ
t

)
dξ +

1

t

∫
R

(
1− cos ξ

)
f ′ij
(ξ
t

) ξ
t2
dξ

=
Cij(0)− Cij(t)

t
+

1

t

∫
R

(
1− cos ξ

)
f ′ij
(ξ
t

) ξ
t2
dξ.
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Consequently, the asymptotic behavior of C ′ij(t) as t → 0 can be derived from
(A1) and another application of the Abelian-type theorem in [32] to the second
integral. Iterating this procedure three more times, we can verify Condition
(A2).

3.2. Asymptotic properties of (α̂11, α̂22)>

This section contains the main results of this paper. We make a stronger as-
sumption by specifying the remainder terms in Assumption (1.2). Suppose that
for some constants β11, β22, β12 > 0,

C11(t) = σ2
1 − c11|t|α11 +O(|t|α11+β11),

C22(t) = σ2
2 − c22|t|α22 +O(|t|α22+β22),

C12(t) = C21(t) = ρσ1σ2(1− c12|t|α12 +O(|t|α12+β12)).

(3.5)

We label the three conditions in (3.5), together with (1.3), as Condition (A3).
Let α̂ = (α̂11, α̂22)> be the estimators of the fractal indices α = (α11, α22)>,

as defined in (2.2). The theorems below establish the asymptotic properties
of α̂, including the bias, mean square error matrix and their joint asymptotic
distribution.

Theorem 3.3 (Bias). Assume Conditions (A2) and (A3) hold. Then, for the
estimators α̂ii, i = 1, 2, we have

E
[
α̂ii − αii

]
= O(n−1) +O(n−βii), i = 1, 2.

Theorem 3.4 (Mean square error matrix). Assume (A2) and (A3) hold. If
(α11 + α22)/2 = α12, then

E[(α̂−α)(α̂−α)>]

=

(
O(n−1)) O(n−1)
O(n−1) O(n−1)

)
+

(
O(n−ψ(β11,β11)) O(n−ψ(β11,β22))
O(n−ψ(β11,β22)) O(n−ψ(β22,β22))

)
. (3.6)

Here and below, ψ(x1, x2) := min{1 + x1, 1 + x2, x1 + x2}.
If (α11 + α22)/2 < α12, then

E[(α̂−α)(α̂−α)>]

=

(
O(n−1) o(n−1)
o(n−1) O(n−1)

)
+

(
O(n−ψ(β11,β11)) O(n−ψ(β11,β22))
O(n−ψ(β11,β22)) O(n−ψ(β22,β22))

)
. (3.7)

Remark 3.4. The constants β11, β22 and β12 from (3.5) appear in both the bias
and mean square error matrix (Theorems 3.3 and 3.4) because the remainder
terms O(|t|αii+βii) in the covariance function are ignored in the estimation pro-
cedure, which might strongly affect the efficiency of the estimators (see, e.g.,
[25]). The statistical performance of the estimators (α̂11, α̂22)> can be signifi-
cantly improved if more detailed information on the remainder term is available.
In Section 4, we show that this is indeed the case when X is a nonsmooth bi-
variate Matérn process.
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Finally, we study the asymptotic distribution of α̂ by applying multivariate
delta methods (see, e.g., [3, 27]). By (2.1), (3.1), and (3.5), we have

EZ̄un,i = E[(Y un,i(0))2] = τu,i(1 +O(n−βii)), (3.8)

where τu,i = cii(8− 2αii+1)uαii . Let

L̃i = (L1,i/τ1,i, . . . , Lm,i/τm,i)
>, i = 1, 2.

The following theorem provides the joint asymptotic distribution of α̂.

Theorem 3.5 (Asymptotic distribution). Assume (A2) and (A3) hold with
β11, β22 > 1/2. Then,

√
n(α̂−α) follows the asymptotic properties below.

√
n

(
α̂11 − α11

α̂22 − α22

)
d−→ N

((
0
0

)
,

(
L̃>1 Φ0,11L̃1 L̃>1 Φ0,12L̃2

L̃>2 Φ0,21L̃1 L̃>2 Φ0,22L̃2

))
.

Specifically, if (α11 + α22)/2 < α12, then
√
nα̂11 and

√
nα̂22 are asymptotically

independent.

Remark 3.5. The current estimation procedure and asymptotic properties are
derived for nonsmooth bivariate Gaussian models, that is, the smoothness pa-
rameters αii ∈ (0, 2) for i = 1, 2. If the sample function of the component Xi

is almost surely differentiable, then the corresponding index αii ≥ 2 in (1.2).
In this case, one may extend the idea of Kent and Wood [24] and consider the
covariance functions with the following local properties

C11(t) = σ2
1 −

q∑
k=1

b1,kt
2j − c11|t|α11 + o(|t|α11),

C22(t) = σ2
2 −

q∑
k=1

b2,kt
2j − c22|t|α22 + o(|t|α22),

C12(t) = C21(t) = ρσ1σ2

(
1−

q∑
k=1

b12,kt
2j − c12|t|α12 + o(|t|α12)

)
,

where q is a positive integer and αii ∈ (2q, 2q + 2). Then, the qth derivative

process X(q) := (X
(q)
1 , X

(q)
2 )> would satisfy Condition (A1) with smoothness

parameters (α11 − 2q, α22 − 2q)>. Thus, the framework proposed in our paper
can be extended to smooth bivariate Gaussian fields via estimating the fractal
indices of their derivative processes.

4. An example: nonsmooth bivariate Matérn processes on R

The Matérn correlation function M(h|ν, a) on RN , where a > 0, ν > 0 are scale
and smoothness parameters, is widely used to model covariance structures in
spatial statistics. It is defined as

M(h|ν, a) :=
21−ν

Γ(ν)
(a|h|)νKν(a|h|), h ∈ RN ,
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where Kν is a modified Bessel function of the second kind. Recently, Gneit-
ing, Kleiber and Schlather [19] introduced the full bivariate Matérn field X =
{(X1(s), X2(s))>, s ∈ RN}, which is an R2-valued Gaussian random field on
RN with zero mean and matrix-valued covariance function:

C(h) =

(
C11(h) C12(h)
C21(h) C22(h)

)
, (4.1)

where Cij(h) := E[Xi(s+ h)Xj(s)] are specified by

C11(h) = σ2
1M(h|ν11, a11),

C22(h) = σ2
2M(h|ν22, a22),

C12(h) = C21(h) = ρσ1σ2M(h|ν12, a12).

A necessary and sufficient condition for C(h) in (4.1) to be valid is given by
[19]. We assume that the parameters νij , aij , σi, (i, j = 1, 2) and ρ satisfy the
condition in Theorem 3 of [19], as well as our condition (1.3).

To apply the results in Section 3, we focus on the case of N = 1 and 0 <
ν11, ν22 < 1. Then, X = {(X1(s), X2(s))>, s ∈ R} is a stationary bivariate
Gaussian process with nonsmooth sample functions. For simplicity, we call X a
bivariate Matérn process.

Recall that the Matérn correlation function has the following asymptotic
expansion at h = 0,

M(h|ν, a) = 1− b1|h|2ν + b2|h|2 +O(|h|2+2ν), as |h| → 0, (4.2)

where b1 and b2 are explicit constants depending only on ν and a (Eq. (4.2)
follows from (9.6.2) and (9.6.10) in [1]). Therefore, (A3) is satisfied with βij =
2−νij for i, j = 1, 2. Moreover, one can check that the regularity condition (A2)
regarding the fourth derivatives of the covariance function is also satisfied (see
the proof in Appendix C).

According to (4.2) and the fact that
∑1
j,k=−1 ajak|k − j|2 = 0, we have

σuun,ii(0) := E(Y un,i(0))2 = n2νii
1∑

j,k=−1

ajakCii

(
(k − j)u

n

)

= −b1σ2
ii

1∑
j,k=−1

ajak|k − j|2νiiu2νii +O(n−2). (4.3)

Observe that, unlike (3.8), the constants βij = 2 − νij do not appear in (4.3)
because the related terms sum to 0. Consequently, we can prove the following
results, which are stronger than what can be obtained by directly applying
Theorems 3.3∼ 3.5 to bivariate Matérn processes. Their proofs are modifications
of those of Theorems 3.3 ∼ 3.5 in Section 6 and will be omitted.

Proposition 4.1 (Bias). For the bivariate Matérn process X with 0 < ν11, ν22 <
1, the bias of ν̂ii is

E
[
ν̂ii − νii

]
= O(n−1), i = 1, 2.
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For the next proposition, we write ν = (ν11, ν22)> and ν̂ = (ν̂11, ν̂22)>.

Proposition 4.2 (Mean square error matrix). For the bivariate Matérn process
X with 0 < ν11, ν22 < 1, if (ν11 + ν22)/2 = ν12, then

E[(ν̂ − ν)(ν̂ − ν)]> =

(
O(n−1) O(n−1)
O(n−1) O(n−1)

)
;

if (ν11 + ν22)/2 < ν12, we have

E[(ν̂ − ν)(ν̂ − ν)]> =

(
O(n−1) o(n−1)
o(n−1) O(n−1)

)
.

Proposition 4.3 (Asymptotic distribution). For the bivariate Matérn process
X with 0 < ν11, ν22 < 1,

√
n

(
ν̂11 − ν11
ν̂22 − ν22

)
d−→ N

((
0
0

)
,

(
L̃>1 Φ0,11L̃1 L̃>1 Φ0,12L̃2

L̃>2 Φ0,21L̃1 L̃>2 Φ0,22L̃2

))
.

Specifically, if (ν11 + ν22)/2 < ν12,
√
nν̂11 and

√
nν̂22 are asymptotically inde-

pendent.

5. Simulation Study

In this section, we simulate data from a nonsmooth bivariate Matérn process
and illustrate that when (ν11 + ν22)/2 = ν12, the decay rates of the bias and
mean square error matrix for ν̂11 and ν̂22 are n−1. Then, we compare with the
case when (ν11 + ν22)/2 < ν12.

We take ν11 = 0.2, ν22 = 0.7, ν12 = 0.45, ρ = 0.5, σ2
1 = σ2

2 = 1 and
a11 = a22 = a12 = 1. We simulated the corresponding bivariate Matèrn process
on regular grids within the interval [0, 1], where the length of the grid was set
to 1/n with n = 200, 210, 220, . . . , 1000. For each n, we used generalized least
squares (abbr. GLS ) to obtain the estimators of the fractal indices, say (ν̂11,
ν̂22) (see, e.g., [25]). Here, we fixed the number of dilations to m = 50. The
weight matrix Ωi = (ωuvi )mu,v=1 of the GLS estimator with a Matérn covariance
function is given by

ωuvi =
2

(n− 2u+ 1)(n− 2v + 1)

∑n−u
h=u

∑n−v
`=v (

∑1
j,k=−1 ajak|h− `+ kv − ju|2νii)2

(
∑1
j,k=−1 ajak|k − j|2νii)2u2νiiv2νii

,

which can be approximated by plugging in the ordinary least squares estimators
of νii, i = 1, 2. To evaluate the efficiency of the estimators, we repeated the above
procedure 1000 times independently.

The 95% confidence intervals for (ν11, ν22)> with varying n are shown in
FIG 1 (a). FIG 1 (c) and (e) show how the bias, marginal variances and cross
covariance decrease when n increases from 200 to 1000. By fitting the natural
logarithm of the absolute value of the bias, marginal variances and absolute
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values of the cross covariance with respect to lnn, we find the power of the
decay rate for each is very close to −1. This is consistent with the conclusions
in Proposition 4.1 and Proposition 4.2 when (ν11 + ν22)/2 = ν12.

Further, we show how the decay rate changes if (ν11+ν22)/2 < ν12. Fixing all
previously assigned parameters but setting ν12 to 0.6, we rerun the simulation
and repeat the estimation procedures. The results are shown on the right side
of FIG 1, where we can see that the results are mostly the same, but the cross
covariance decays much faster than n−1. Indeed, the power of the decay rate is
approximately −1.5, which is consistent with the conclusion in Proposition 4.2.

6. Proof of the main results

To prove Theorems 3.3 ∼ 3.5, we make use of the following key lemma.

Lemma 6.1. For u = 1, . . . ,m and i = 1, 2, let Tun,i = (Z̄un,i − EZ̄un,i)/EZ̄
u
n,i.

Then, for any k ∈ Z+, there exist positive and finite constants C3 and C4 (which
may depend on u and k) such that for all n ≥ 1 and ξ > 0,

E
[∣∣ ln(1 + Tun,i)

∣∣k; |Tun,i| > ξ] ≤ C3 e
−C4ξ

√
n.

The proof of Lemma 6.1 is given at the end of this section. Now, we proceed
to prove our main theorems.

Proof of Theorem 3.3. Recall that Tun,i = (Z̄un,i − EZ̄un,i)/EZ̄
u
n,i. Then,

α̂ii =

m∑
u=1

Lu,i ln(1 + Tun,i) +

m∑
u=1

Lu,i ln EZ̄un,i. (6.1)

It follows from (3.8) that

EZ̄un,i = σuun,ii(0) = Ci u
αii(1 +O(n−βii)),

Hence, using the conditions on Lu,i in (2.3), we conclude

m∑
u=1

Lu,i ln EZ̄un,i = αii +O(n−βii). (6.2)

Next, we estimate the first sum in (6.1). By Taylor’s expansion, we obtain

ln(1 + Tun,i) = Tun,i −
1

2
(Tun,i)

2 +Run,i,

where Run,i is the residual term. Hence,

E[ln(1 + Tun,i)] = E
[
Tun,i −

1

2
(Tun,i)

2 +Run,i

]
= −1

2
E(Tun,i)

2 + ERun,i.

By Theorem 3.1, it is easy to verify that

E(Tun,i)
2 = O(n−1). (6.3)
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Fig 1. Confidence intervals, absolute value of the bias, marginal variances and absolute value
of the cross covariance for (ν̂11, ν̂22) with varying n. The plots on the left side (i.e., a, c,
e) show the results for (ν11 + ν22)/2 = ν12, whereas those on the right side (i.e., b, d, f)
correspond to the situation where (ν11 + ν22)/2 < ν12.
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Using the fact that if |Tun,i| ≤ ξ ≤ 1/2, then |Run,i| ≤ ξ(Tun,i)2, we have

E[|Run,i|; |Tun,i| ≤ ξ] ≤ ξE[(Tun,i)
2; |Tun,i| ≤ ξ] = O(n−1), (6.4)

where the last equality follows from (6.3). On the other hand, by applying
Lemma 6.1, the Cauchy-Schwarz inequality and (6.3), we obtain

E[|Run,i|; |Tun,i| > ξ]

≤ E[| ln(1 + Tun,i)|+ |Tun,i|+
1

2
(Tun,i)

2; |Tun,i| > ξ] = O(n−1). (6.5)

By combining (6.3), (6.4) and (6.5), we obtain

E[ln(1 + Tun,i)] = O(n−1). (6.6)

This, together with (6.1) and (6.2), proves Theorem 3.3.

Proof of Theorem 3.4. For i = 1, 2, we expand E
[
(α̂ii − αii)2

]
as follows.

E
[
(α̂ii − αii)2

]
=

m∑
u=1

m∑
v=1

Lu,iLv,iE
[(

ln(1 + Tun,i) + ln EZ̄un,i − αii lnu
)

×
(

ln(1 + T vn,i) + ln EZ̄vn,i − αii ln v
)]

=

m∑
u=1

m∑
v=1

Lu,iLv,iE
[

ln(1 + Tun,i) ln(1 + T vn,i)
]

+

m∑
u=1

m∑
v=1

Lu,iLv,iE
[

ln(1 + Tun,i)
](

ln EZ̄vn,i − αii ln v
)

+

m∑
u=1

m∑
v=1

Lu,iLv,i
(

ln EZ̄un,i − αii lnu
)
E
[

ln(1 + T vn,i)
]

+

m∑
u=1

m∑
v=1

Lu,iLv,i
(

ln EZ̄un,i − αii lnu
)(

ln EZ̄vn,i − αii ln v
)

, I + II + III + IV. (6.7)

By (6.2) and (6.6), we have

II = O(n−1−βii), III = O(n−1−βii), IV = O(n−2βii). (6.8)

To bound the first term I in (6.7), we take ξ = 1/2 and decompose the probability
space into the union of the following four disjoint events, {|Tun,i| ≤ ξ, |T vn,i| ≤ ξ},
{|Tun,i| > ξ, |T vn,i| ≤ ξ}, {|Tun,i| ≤ ξ, |T vn,i| > ξ}, and {|Tun,i| > ξ, |T vn,i| > ξ}.

i). For the event {|Tun,i| ≤ ξ, |T vn,i| ≤ ξ}, we use the elementary inequality
| ln(1 + x)| ≤ 2|x| for all |x| ≤ ξ to derive

| ln(1 + Tun,i) ln(1 + T vn,i)| ≤ 4 |Tun,i||T vn,i|.

It follows from the Cauchy-Schwarz inequality and Theorem 3.1 that

E
[

ln(1 + Tun,i) ln(1 + T vn,i); |Tun,i| ≤ ξ, |T vn,i| ≤ ξ
]

= O(n−1).
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ii). By Lemma 6.1, we have

E
[∣∣ ln(1 + Tun,i) ln(1 + T vn,i)

∣∣; |Tun,i| > ξ, |T vn,i| ≤ ξ
]

≤ ln 2 E[| ln(1 + Tun,i)|; |Tun,i| > ξ]

= o(n−1).

iii). As in ii), we have

E[ln(1 + Tun,i) ln(1 + T vn,i); |Tun,i| ≤ ξ, |T vn,i| > ξ]

≤ ln 2 E[| ln(1 + T vn,i)|; |T vn,i| > ξ]

= o(n−1).

iv). By Lemma 6.1 and the Cauchy-Schwarz inequality, we have

E
[∣∣ ln(1 + Tun,i) ln(1 + T vn,i)

∣∣; |Tun,i| > ξ, |T vn,i| > ξ
]

≤
√

E
[

ln2(1 + Tun,i); |Tun,i| > ξ]
√

E
[

ln2(1 + T vn,i); |T vn,i| > ξ
]

= o(n−1).

By combining i)-(iv) above, we see that

I = O(n−1). (6.9)

By (6.8) and (6.9), we have

E
[
(α̂ii − αii)2

]
= O(n−1) +O(n−2βii).

Next, we study the cross term E
[
(α̂11−α11)(α̂22−α22)

]
, which can be written

as

E
[
(α̂11 − α11)(α̂22 − α22)

]
=

m∑
u=1

m∑
v=1

Lu,1Lv,2E
[

ln(1 + Tun,1) ln(1 + T vn,2)
]

+

m∑
u=1

m∑
v=1

Lu,1Lv,2E
[

ln(1 + Tun,1)
]
(ln EZ̄vn,2 − α22 ln v)

+

m∑
u=1

m∑
v=1

Lu,1Lv,2
(

ln EZ̄un,1 − α11 lnu
)

E
[

ln(1 + T vn,2)
]

+

m∑
u=1

m∑
v=1

Lu,1Lv,2
(

ln EZ̄un,1 − α11 lnu
)(

ln EZ̄vn,2 − α22 ln v
)

, I + II + III + IV. (6.10)

Applying similar arguments as used in evaluating E
[
(α̂ii − αii)2

]
, we obtain

II = O(n−1−β22), III = O(n−1−β11), IV = O(n−β11−β22). (6.11)

In order to bound the term I, we distinguish two cases.
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1). If (α11 + α22)/2 = α12, then by a similar argument as that for proving
(6.9) (using Lemma 6.1 and Theorem 3.1) and the fact that Φ0,12 6= 0, we
have

m∑
u=1

m∑
v=1

Lu,1Lv,2E
[

ln(1 + Tun,1) ln(1 + T vn,2)
]

= O(n−1).

This, together with (6.10) and (6.11), implies

E
[
(α̂11 − α11)(α̂22 − α22)

]
= O(n−1) +O(n−1−β11) +O(n−1−β22) +O(n−β11−β22).

2). If (α11 + α22)/2 < α12, then by an argument similar to that for proving
(6.9) and the fact that Φ0,12 = 0, we obtain

m∑
u=1

m∑
v=1

Lu,1Lv,2E
[

ln(1 + Tun,1) ln(1 + T vn,2)
]

= o(n−1).

Consequently,

E
[
(α̂11 − α11)(α̂22 − α22)

]
= o(n−1) +O(n−1−β11) +O(n−1−β22) +O(n−β11−β22).

Therefore, we have proved (3.6) and (3.7).

Proof of Theorem 3.5. Recall (3.8) for EZ̄un,i and denote

τ = (τ1,1, . . . , τm,1, τ1,2, . . . , τm,2)>.

Since βii > 1/2 for i = 1, 2, we have
√
n(EZ̄n− τ )→ 0 as n→∞. By Theorem

3.2 and Slutsky’s theorem, we conclude that

n1/2(Z̄n − τ )
d−→ N2m(0,Φ0), as n→∞.

Define a mapping f : R2m → R2, ∀x , (x1,1, . . . , xm,1, x1,2, . . . , xm,2) ∈ R2m,

f(x) :=
( m∑
u=1

Lu,1 lnxu,1,

m∑
u=1

Lu,2 lnxu,2

)>
.

Hence, it is easy to verify that f(·) is continuously differentiable, α̂ = f(Z̄n) and
α = f(τ ). By applying the multivariate delta method [27, Theorem 8.22], we
conclude that

√
n(α̂−α)

d−→ N (0,Of(τ )>Φ0Of(τ )),

where Of(τ ) = (L̃>1 , L̃
>
2 )>.
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Proof of Lemma 6.1. By Hölder’s inequality, we have

E
[∣∣ ln(1 + Tun,i)

∣∣k; |Tun,i| > ξ
]

≤
√

E
[

ln2k(1 + Tun,i)
]√

Pr(|Tun,i| > ξ).
(6.12)

First, we establish an upper bound for Pr(|Tun,i| > ξ). By (3.1), we see that

the covariance matrix of the random vector Yn,i = (Y un,i(1), . . . , Y un,i(n))> is
Σn,i = (σuun,ii(j − k))nj,k=1. Let Λn,i = diag(λj,i)

n
j=1 be the diagonal matrix

whose diagonal entries are the eigenvalues of Σn,i, and let U = (U1, . . . , Un)>,

where Uj
iid∼ N (0, 1), j = 1, . . . , n. Then, we have

Z̄un,i =
1

n
Y>n,iYn,i

d
=

1

n
U>Λn,iU.

Since nEZ̄un,i = E(U>Λn,iU) = trace(Λn,i), we apply the Hanson and Wright
inequality [22] to the tail probability of the quadratic forms to obtain

Pr
(
|Tun,i| > ξ

)
= Pr

(
|U>Λn,iU− trace(Λn,i)| > trace(Λn,i

)
ξ)

≤ exp

{
−min

(
C5ξ

trace(Λn,i)

‖Λn,i‖2
, C6ξ

2 (trace(Λn,i))
2

‖Λn,i‖2F

)}
, (6.13)

where ‖Λn,i‖2 and ‖Λn,i‖F are the `2 norm and Frobenius norm of Λn,i, re-
spectively, and C5, C6 are positive constants independent of Λn,i, n and ξ.

Note that

‖Λn,i‖2F = trace(Λ2
n,i) = trace(Σ2

n) =

n∑
j=1,k=1

(σuun,ii(j − k))2,

and

φuun,ii = Var(Z̄un,ii) =
2

n2

n∑
j=1,k=1

(σuun,ii(j − k))2.

By Theorem 3.1, we have

‖Λn,i‖2F =
n2

2
φuun,ii � nφuu0,ii.

By combining the above with the facts that ‖Λn,i‖2 ≤ ‖Λn,i‖F and trace(Λn,i)/n =
EZ̄un,i → Ciu

αii as n→∞, we have

trace(Λn,i)

‖Λn,i‖2
=
√
n

trace(Λn,i)/n

‖Λn,i‖2/
√
n

& uαii(φuu0,ii)
−1/2√n,

and

(trace(Λn,i))
2

‖Λn,i‖2F
� u2αii(φuu0,ii)−1n, as n→∞.
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Hence, when n → ∞, (6.13) decays exponentially with rate
√
n. Consequently,

when n is sufficiently large,

Pr(|Tun,i| > ξ) ≤ e−C0u
αii (φuu0,ii)

−1/2ξ
√
n. (6.14)

Next, we prove E
[

ln2k(1 + Tun,i)
]

is bounded by C0n. It is easy to see that

E
[

ln2k(1 + Tun,i)
]
≤ 22k−1

(
E ln2k Z̄un,i + ln2k(EZ̄un,i)

)
.

For any fixed k ∈ Z+, there exists ck > 1 such that ln2k x ≤ x2,∀x > ck. Using
the fact that EZ̄un,i → Ci u

αii and nΦn → Φ0 as n→∞, we obtain that for all
sufficiently large n,

E(ln2k Z̄un,i; Z̄
u
n,i > ck) ≤ E(Z̄un,i)

2 = (EZ̄un,i)
2 + Var(Z̄un,i) � u2αii .

Therefore, the problem is reduced to proving E(ln2k Z̄un,i; Z̄
u
n,i ≤ ck) ≤ C0 n. It

is sufficient to show

E
(

ln2k Z̄un,i; Z̄
u
n,i ≤ 1

)
≤ C0 n.

Let U2
min = min1≤i≤nU

2
i . Then,

Z̄un,i
d
=

1

n

n∑
j=1

λj,iU
2
j ≥

trace(Λn,i)

n
U2
min ≥

1

2
Ciu

αiiU2
min , C U2

min. (6.15)

where the second inequality holds for sufficiently large n.
Let fn(x) be the density function of U2

min, that is ∀x > 0,

fn(x) =
n√
2πx

e−x/2
(

2

∫ ∞
√
x

1√
2π
e−y

2/2dy
)n−1

.

It is easy to verify that fn(x) ≤ n/
√

2πx. It follows from (6.15) that

E
(

ln2k Z̄un,i; Z̄
u
n,i ≤ 1

)
≤ E

[
ln2k

(
CU2

min

)
; U2

min ≤ 1/C
]

=

∫ 1
C

0

ln2k(Cx)fn(x)dx ≤ n
√
C√

2π

∫ 1

0

y−
1
2 ln2k ydy = C0 n,

for all sufficiently large n. Therefore, we have proven

E
[

ln2k(1 + Tun,i)
]
≤ C0 n. (6.16)

By (6.12), (6.14) and (6.16), we obtain that when n is large,

E
[∣∣ ln(1 + Tun,i)

∣∣k; |Tun,i| > ξ
]
≤ C7n

1/2e−C8ξ
√
n ≤ C7e

−C9ξ
√
n,

where C7, C8 and C9 are independent of n and ξ and C9 < C8.
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7. Appendix

A. Remark on Condition (A1). Let F11, F22 and F12 be the corresponding spec-
tral measures of C11(·), C22(·) and C12(·). By (1.2) and the Tauberian Theorem
(see, e.g., [35]), we have that as x→∞,

Fij(x,∞) ∼ Cij(0)− Cij(1/x) ∼ c̃ij |x|−αij , i, j = 1, 2,

where c̃ii = cii for i = 1, 2 and c̃12 = c12ρσ1σ2.
According to Cramer’s theorem ([9], [36], and [39] p.315), a necessary and

sufficient condition for the matrix (1.1) to be a valid covariance function for
X(t) is

(F12(B))2 ≤ F11(B)F22(B), ∀B ∈ B(R).

Hence, it is necessary to assume the following conditions on the parameters αij ,
cij , σi (i = 1, 2) and ρ:

α11 + α22

2
< α12, or

α11 + α22

2
= α12 and c212ρ

2σ2
1σ

2
2 ≤ c11c22.

(7.1)

This shows that (1.3) is only slightly stronger than (7.1) in the second case,
which guarantees that the bivariate process X is not degenerate and satisfies
(7.2) below.

B. Proof of (1.4). In order to apply Theorem 2.1 in [37] to prove (1.4), it is
sufficient to verify that there is a constant c > 0 such that

detCov
(
X(s)−X(t)

)
≥ c |s− t|α11+α22 (7.2)

for all s, t ∈ [0, 1] with sufficiently small |s − t|. Here, detCov(ξ) denotes the
determinant of the covariance matrix of the random vector ξ. Under Condition
(A1), we see that for i = 1, 2,

E
[
(Xi(s)−Xi(t))

2
]

= 2Cii(0)− 2Cii(s− t) ∼ 2cii|s− t|αii ,
E
[
(X1(s)−X1(t))(X2(s)−X2(t))

]
= 2C12(0)− 2C12(s− t)
∼ 2c12ρσ1σ2|s− t|α12

as |s− t| → 0. Consequently,

detCov
(
X(s)−X(t)

)
∼ 4 c11c22|s− t|α11+α22 − 4 c212ρ

2σ2
1σ

2
2 |s− t|2α12 .

This implies (7.2) and hence proves (1.4).

C. Checking the condition (A2) for the bivariate Matérn process. Without loss
of generality, assume that a = 1 and Mν(h) := M(h|ν, 1). Denote by κν =
21−ν/Γ(ν), which satisfies κν+1 = (2ν)−1κν . Recall that the derivative of the
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Bessel function of the second kind Kν satisfies the following recurrence formula
(see, e.g., [1], Section 9.6)

K ′ν(z) = −Kν+1(z) +
ν

z
Kν(z),

and for ` ∈ Z+ ∪ {0}, when ` < ν < `+ 1, we have the following expansion for
M(·)

Mν(h) =
∑̀
j=0

bjh
2j − b|h|2ν + o(|t|2l+2),

where b0, . . . , b` are constants and b = Γ(1− ν)/(22νΓ(1 + ν)) (see, e.g., [35], p.
32). Hence,

M ′ν(h) = sgn(h)(κνν|h|ν−1Kν(|h|) + κν |h|νK ′ν(|h|))
= 2ν · sgn(h)|h|−1(Mν(h)−Mν+1(h))

= −2νb · sgn(h)|h|2ν−1 + o(|h|2ν−1),

where sgn(h) is the sign function. Similarly,

M ′′ν (h) = (2ν − 1)sgn(h)|h|−1M ′ν(h)− 2ν · sgn(h)|h|−1M ′ν+1(h)

= −2ν(2ν − 1)b · sgn2(h)|h|2ν−2 + o(|h|2ν−2),

M (3)
ν (h) = (2ν − 2)sgn(h)|h|−1M ′′ν (h)− 2ν · sgn(h)|h|−1M ′′ν+1(h),

= −2ν(2ν − 1)(2ν − 2)b · sgn3(h)|h|2ν−3 + o(|h|2ν−3),

· · ·

M (q)
ν (h) = (2ν − q + 1)sgn(h)|h|−1M (q−1)

ν (h)− 2ν · sgn(h)|h|−1M (q−1)
ν+1 (h)

= − b(2ν)!

(2ν − q)!
sgnq(h)|h|2ν−q + o(|h|2ν−q).

When q = 4, the nonsmooth bivariate Matérn field X satisfies the regularity
condition (A2).

D. Proof of Theorems 3.1 ∼ 3.2. To prove Theorem 3.1 and Theorem 3.2, we
make use of the following lemma.

Lemma 7.1. If Conditions (A1) and (A2) hold, then as |h| → ∞,

σuvn,ii(h) = O(|h|αii−4), uniformly for n > |h|, i = 1, 2 (7.3)

and

σuvn,12(h) = n
α11+α22

2 −α12O(|h|α12−4) = O(|h|
α11+α22

2 −4) (7.4)

uniformly for n > |h|.

We postpone the proof of Lemma 7.1 to the end of this section.
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Proof of Theorem 3.1. Let

duvn,ij(h) :=


(

1− |h|n

)
(σuvn,ij(h))2, |h| < n

0, otherwise.

By (3.1) and (3.3), for any fixed h, we have duvn,ij(h) → σuv0,ij(h) as n → ∞. By
Lemma 7.1, we know

duvn,ij(h) ≤ C0|h|αii+αjj−8,

with the power αii + αjj − 8 < −4. Therefore,
∑∞
h=−∞ duvn,ij(h) is bounded by

a summable series, and (3.4) can be concluded by the dominated convergence
theorem.

Proof of Theorem 3.2. The argument in the following generalizes Kent and Wood
[24]’s method to the bivariate case. According to the Cramér-Wold theorem, it
is equivalent to prove that for ∀γ = (γ1,1, . . . , γm,1, γ1,2, . . . , γm,2)> ∈ R2m,

n1/2γ>(Z̄n − E[Z̄n])
d−→ N (0,γ>Φ0γ), as n→∞.

Let γi := (γ1,i, . . . , γm,i)
>, i = 1, 2 and

Γn = diag(γ>1 , . . . ,γ
>
1︸ ︷︷ ︸

n times

,γ>2 , . . . ,γ
>
2︸ ︷︷ ︸

n times

)>.

Therefore, Γn is a (2mn) × (2mn) matrix including n copies of γ1 and γ2 on
the diagonal. Let

Yn,i(j) := (Y 1
n,i(j), . . . , Y

m
n,i(j))

>, i = 1, 2, j = 1, . . . , n,

and

Wn = (Y>n,1(1), . . . ,Y>n,1(n),Y>n,2(1), . . . ,Y>n,2(n))>.

Therefore, Wn is a (2mn)-dimensional vector. Then, we have

Sn , n1/2γ>(Z̄n − EZ̄n) = n−1/2(W>
nΓnWn − E(W>

nΓnWn)).

Denote by Vn = E(WnW>
n ) the covariance matrix of Wn and by V

1/2
n ,

the Cholesky factor of Vn, i.e., the lower triangular matrix satisfying Vn =

V
1/2
n (V

1/2
n )>. Denote by Λn = diag(λn,j)

2mn
j=1 the diagonal matrix whose di-

agonal entries are eigenvalues of 2n−1/2(V
1/2
n )>ΓnV

1/2
n . Then, for a (2mn)-

dimensional vector εn = (ε1,n, . . . , ε2mn,n)> of i.i.d. standard normal random
variables, we obtain

n−
1
2 W>

nΓnWn
d
= ε>n

(
n−

1
2 (V

1
2
n )>ΓnV

1
2
n

)
εn

d
=

1

2
ε>nΛnεn.
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Therefore, for ∀θ < min1≤j≤2mnλ
−1
n,j , the cumulant generating function Sn is

given by

kn(θ) , ln EeθSn = −1

2

2mn∑
j=1

(ln(1− θλn,j) + θλn,j)

To obtain the limit of kn(θ) as n→∞, we first prove

trace(Λ4
n) =

2mn∑
j=1

λ4n,j → 0, as n→∞. (7.5)

For 1 ≤ i1, i2 ≤ 2, 1 ≤ j1, j2 ≤ n, 1 ≤ k1, k2 ≤ m, let

`1 = (i1 − 1)mn+ (j1 − 1)m+ k1,

`2 = (i2 − 1)mn+ (j2 − 1)m+ k2.

The (`1, `2) entry of Wn is

Vn(`1, `2) = E[Y k1n,i1(j1)Y k2n,i2(j2)] = σk1k2n,i1i2
(j2 − j1).

Therefore,

trace(Λ4
n) =

16

n2
trace((VnΓn)4)

=
16

n2

2mn∑
`1,...,`4=1

(VnΓn)(`1, `2)(VnΓn)(`2, `3)(VnΓn)(`3, `4)(VnΓn)(`4, `1)

=
16

n2

2∑
i1,...,i4=1

m∑
k1,...,k4=1

γk1,i1γk2,i2γk3,i3γk4,i4∆n(k1, . . . , k4, i1, . . . , i4), (7.6)

where

∆n(k1, . . . , k4, i1, . . . , i4)

:=

n∑
j1,...,j4=1

σk1k2n,i1i2
(j2 − j1)σk2k3n,i2i3

(j3 − j2)σk3k4n,i3i4
(j4 − j3)σk4k1n,i4i1

(j4 − j1).

Letting hi = ji+1 − ji, i = 1, 2, 3, we have

∆n(k1, . . . , k4, i1, . . . , i4)

=

n∑
j1,...,j4=1

σk1k2n,i1i2
(h1)σk2k3n,i2i3

(h2)σk3k4n,i3i4
(h3)σk4k1n,i4i1

(h1 + h2 + h3).

Given fixed h1, h2 and h3, the cardinality of the set

#{(j1, . . . , j4) | 1 ≤ j1, . . . , j4 ≤ n} ≤ n.
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Hence,

|∆n(k1, . . . , k4, i1, . . . , i4)|

≤n
∑

|h1|,|h2|,|h3|≤n−1

|σk1k2n,i1i2
(h1)σk2k3n,i2i3

(h2)σk3k4n,i3i4
(h3)σk4k1n,i4i1

(h1 + h2 + h3)|

Further, by Lemma 7.1, we have

|∆n(k1, . . . , k4, i1, . . . , i4)|

≤C0n

3∏
r=1

n−1∑
hr=−n+1

h
αirir

2 +
αir+1ir+1

2 −4
r

≤C0n

3∏
r=1

∞∑
hr=−∞

h
αirir

2 +
αir+1ir+1

2 −4
r

=O(n). (7.7)

The last equality holds since αirir/2 +αir+1ir+1
/2− 4 < −2. By (7.6) and (7.7),

we have

trace(Λ4
n) = O(n−1)→ 0, as n→∞.

Now, we are ready to prove the asymptotic normality of Sn. By applying Taylor’s
expansion to ln(1− θλn,j) at θ = 0, we obtain

kn(θ) =
θ2

4

2mn∑
j=1

λ2n,j +
θ3

6

2mn∑
j=1

λ3n,j +
θ4

8

2mn∑
j=1

(1− θn,jλn,j)−4λ4n,j ,

where θn,j is between 0 and θ.

Let us first consider the term
∑2mn
j=1 λ

2
n,j/2. Since

1

2

2mn∑
j=1

λ2n,j =
1

2
trace(Λ2

n) =
2

n
trace((VnΓn)2)

=
2

n

2∑
i1,i2=1

m∑
k1,k2=1

n∑
j1,j2=1

γk1,i1γk2,i2
(
σk1k2n,i1i2

(j2 − j1)
)2
,

and

γ>Φnγ =

2∑
i1,i2=1

m∑
k1,k2=1

γk1,i1γk2,i2φ
k1k2
n,i1i2

=
2

n2

2∑
i1,i2=1

m∑
k1,k2=1

n∑
j1,j2=1

γk1,i1γk2,i2
(
σk1k2n,i1i2

(j2 − j1)
)2
,
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it follows from Theorem 3.1 that

1

2

2mn∑
j=1

λ2n,j = γ>(nΦn)γ → γ>Φ0γ, as n→∞. (7.8)

Secondly, by (7.5), we have

max1≤j≤2mn|λn,j | ≤
( 2mn∑
j=1

λ4n,j

) 1
4

→ 0, as n→∞, (7.9)

which implies∣∣∣∣ 2mn∑
j=1

λ3n,j

∣∣∣∣ ≤ max1≤j≤2mn|λn,j |
2mn∑
j=1

λ2n,j → 0, as n→∞. (7.10)

Thirdly, note that δ := supn≥1max1≤j≤2mn |λn,j | is positive and finite by (7.9).
If we restrict attention to |θ| ≤ (2δ)−1, we have (1 − θn,jλn,j)−4 ≤ 16; hence,
for θ ∈ (−(2δ)−1, (2δ)−1),

2mn∑
j=1

(1− θn,jλn,j)−4λ4n,j → 0, as n→∞. (7.11)

Therefore, by (7.8),(7.10) and (7.11), for ∀θ ∈ (−(2δ)−1, (2δ)−1), we have

kn(θ)→ θ2

2
γ>Φ0γ,

which leads to

Sn := n1/2γ>(Z̄n − EZ̄n)
d−→ N (0, γ>Φ0γ), as n→∞.

This proves Theorem 3.2.

Finally, we prove Lemma 7.1.

Proof of Lemma 7.1. (7.3) comes directly from the proof of Theorem 1 in Kent
and Wood [25]. We only need to prove (7.4). To this end, we expand C12

(
(h+

kv − ju)/n
)

in a Taylor series about h/n to the fourth order to obtain

σuvn,12(h) = n
α11+α22

2

1∑
j,k=−1

ajakC12

(
h+ kv − ju

n

)

= n
α11+α22

2

3∑
r=0

1∑
j,k=−1

ajak
(kv − ju)r

r!nr
C

(r)
12

(
h

n

)

+ n
α11+α22

2

1∑
j,k=−1

ajak
(kv − ju)4

4!n4
C

(4)
12

(
h∗kj
n

)
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= n
α11+α22

2

1∑
j,k=−1

ajak
(kv − ju)4

4!n4
C

(4)
12

(
h∗kj
n

)
, (7.12)

where h∗kj lies between h and h + kv − ju. Since |kv − ju| ≤ u + v ≤ 2m,
h∗kj ≤ 2|h| for all |h| ≥ 2m. By applying Condition (A2) to the last terms in
(7.12), we derive that

|σuvn,12(h)| ≤ C0|h|α12−4 · n
α11+α22

2 −α12 ≤ C0|h|
α11+α22

2 −4

for all |h| ≥ 2m and all n > |h|. This concludes the proof.
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