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A B S T R A C T

The influences of wildfire through population dynamics and life history for two species of small mammals in a
south-east Queensland heathland on Bribie Island are presented. Trapping results provided information on
breeding, immigration and movement of Melomys burtoni (Grassland melomys) and Rattus lutreolus (Swamp rat).
We first investigated and optimized the design of trapping methodology for producing mark-recapture popu-
lation estimates to compare two adjacent populations, one of which was subjected to an extensive wildfire
during the two year study. We consider how well rodents survive wildfire and whether the immediate impacts of
fire or altered habitat have the greatest impact on each species. We found the R. lutreolus population was far
more influenced by the fire than the M. burtoni population both immediately after the fire and over 18 months of
vegetation recovery.

1. Introduction

Many Australian plant communities, including the coastal heath-
lands of south eastern Australia, have evolved with fire disturbance.
Plant species in fire-adapted communities often have mechanisms to aid
survival from fire (e.g., Land for Wildlife Queensland, 2016a; Watson,
2001, 2002), and numerous plant species benefit from fire at some stage
of their life cycles, employing species survival strategies such as re-
sprouting from epicormic buds and lignotubers, using nutrient pulses,
or having seeds held by the plant until burned or requiring fire to
germinate (Gill, 1975; Karolak, 2005; Land for Wildlife Queensland,
2016a; Watson, 2001, 2002). Fauna, on the other hand, must not only
cope with immediate mortality through exposure to fire, heat and
smoke, but perhaps more importantly, must cope with modified habitat
and recolonization (Catling, 1986; South East Queensland Fire and
Biodiversity Consortium, 2014; Karolak, 2005; Land for Wildlife
Queensland, 2016b; Watson, 2001, 2002). Fire impacts on habitat ex-
tend to factors such as quality and distribution of food resources (in-
cluding insects reliant on removed vegetation), vulnerability to preda-
tion, and the abundance and distribution of structure used as shelter
(Cowley et al., 1969; Watson, 2001, 2002), possibly making fauna more
vulnerable to fire than the flora (Newsome et al., 1975). Various stra-
tegies allow animal species to improve their chances for survival; such

as moving away from fire or sheltering in refuges, especially under-
ground, while some species may lose individuals and recolonize from
populations unaffected by the fire (Karolak, 2005; Land for Wildlife
Queensland, 2016b; Watson, 2001, 2002). A variety of factors also af-
fect population recovery after a fire, especially the size and severity of
the fire, the amount of unburned or refuge areas from which fauna can
recolonize, and the degree to which survivors are faced with diminished
resources, competition from other animals, unfamiliar habitat and
predation (Karolak, 2005; Lindenmayer et al., 2005; Land for Wildlife
Queensland, 2016b; South East Queensland Fire and Biodiversity
Consortium, 2006).

We conducted a mark-recapture trapping study in a relatively un-
disturbed area of coastal heathland on Bribie Island (Queensland,
Australia) on the island's two most abundant native rodent species: the
grassland melomys (Melomys burtoni) and the eastern swamp rat (Rattus
lutreolus lutreolus). Melomys burtoni is a small native rodent found from
northern New South Wales northward along the Queensland and
Northern Territory coasts and islands. It is often associated with
grassland habitats, low lying environments and sugar cane crops (Knox,
1978; Baverstock et al., 1981; Watts and Aslin, 1981; Woinarski et al.,
1999). This species of mosaic tailed rat has a longevity that can exceed
2 years (Watts and Kemper, 1989). Relatively little is known about M.
burtoni reproduction, other than it has a relatively low reproductive
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output, with a typical litter size of 2–3 (Dyer et al., 2011; McDougall,
1946; Watts and Aslin, 1981; Watts and Kemper, 1989). While the
gestation period and number of litters per year is unknown for this
species, the closely related M. cervinipes has a gestation period of 38
days (Geffen et al., 2011). In contrast, Bribie Island and south-east
Queensland is in the northern range of our other study species, Rattus
lutreolus lutreolus (referred to as R. lutreolus from this point onward),
which ranges south through southern and eastern Australia primarily
inhabiting lowlands near the coast. These rats prefer thick vegetation,
especially along watercourses and in swamps (e.g., Fox and Monamy,
2007). As a true rat, this species has a higher reproductive output, as
females may have several litters of 3–5 young per year, with a gestation
period of 22 days (Geffen et al., 2011; Monamy, 1995; Strahan, 1995).
Its longevity usually does not exceed 1 year in the wild (Braithwaite and
Lee, 1979; Lunney, 1978), although a 29-month lifespan has been re-
corded (Watts, 1982).

During the course of our study an intense wildfire swept through
much of Bribie Island, including one of our two study sites, thereby
producing a treatment versus control opportunity to examine the re-
sponse of both species' populations to wildfire. Thus, in our study we
aimed to: 1) investigate how populations of these two species coped
with wildfire's direct impacts as well as the resulting altered habitats,
and 2) to also obtain measures of their population dynamics and po-
pulation sizes from which future monitoring in this region can be based.

2. Methods

2.1. Study sites

Our study was conducted on Bribie Island (26° 59′ 38″ S, 153° 9′ 33″
E), located on the southern coast of Queensland, Australia. Our study
area was on the east coast of the island in a relatively undisturbed re-
serve consisting of coastal heathland, swamp, dunes and two forest
types, Melaleuca quinquenervia (paper barked tea tree) open forest and
woodland and Melaleuca quinquenervia - Eucalyptus robusta open forest
(Elsol and Sattler, 1979). We established two study sites (4.34 and
3.98 ha), 228m apart, and separated by a crude beach access track
acting as a fire break.

Wildfire burned a large area of native vegetation and Pinus elliotii
(slash pine) plantation on Bribie Island during mid November 1994
(Fig. 1). The fire was intense and removed all understorey vegetation to
reveal bare ground. The southern site (Site 1) and an adjacent area to
the south were not burned (∼1 km2 total unburned area of surrounding
20 km2). No other areas (including Site 2 and all dune habitats) within
5 km of the study area escaped the wildfire. For both study sites, there
was a zone of M. quinquenervia open forest with a swamp-based un-
derstory habitat (13–16% of site area) behind the beach ridge open
scrub, potentially providing animals with a fire refuge in the burned
site. While the fire removed all ground litter and vegetation other than
mature trees in this habitat, the root material survived in the damp,
unburned layer, resulting in rapid regrowth. Two months after the fire
the ground layer of the swamp zone had recovered with vegetation
cover equal to that before the fire, with shrub species taking longer to
recover. In contrast, all vegetation in open heathland habitat was re-
moved to reveal a sandy substrate. Although many plant species re-
appeared after 3 months, recovery was slower than in the swamp ha-
bitat, and was still recovering 21 months after the fire due to the slow
growth of the shrub and tree layer species. The Melaleuca quinquenervia
- Eucalyptus robusta woodland habitat held a thick matted understorey
of grasses and sedges producing complex structure up to 75 cm in
height before the fire. While 7 months after the fire the vegetative cover
at about 50 cm was similar to before the fire, the matted nature of the
ground vegetation only began to reappear 18 months after the fire. The
beach ridge open scrub habitat was severely damaged by the fire, with
virtually all ground and shrub vegetation removed and a large number
of mature trees defoliated or completely removed. Most of this habitat

remained bare sand with no canopy after 6 months, with many of the
tree and shrub species still recovering after 18 months and some species
not observed again after the fire.

2.2. Trapping design, methodology, and analyses

We applied mark-recapture field procedures aimed at providing
estimates of population size and variance for two species and to com-
pare the two sites. We were in the fortunate position to have access to
results from a previous trapping study at Site 1 and we used that in-
formation to conduct an additional eleven night pilot study at the same
site. Both of these sources of information were used to comprehensively
design our study to minimize the potential for violating the underlying
assumptions necessary for valid mark-recapture population size esti-
mation, especially satisfying the main assumptions of population clo-
sure and equal probability of capture among all individuals on each
occasion. Almost every aspect of the trapping regime can affect capture
probabilities, including trap placement, the number of nights trapped,
and the time of the study. It is critical to consider all these before
trapping commences. Apart from ensuring equal capture probabilities,
the primary objective of the trapping regime is to ensure that the
greatest number of captures possible are obtained, both in terms of the
number of individuals caught and the number of recaptures. Access to
traps as a result of trap placement can be a cause of capture hetero-
geneity and so the methodology used must ensure that traps are ac-
cessible to the entire population. Temporal variability in the probability
of capture is often associated with the number of nights trapped. Using
the minimum number of trapping nights required to obtain adequate
data without violating the closed population assumption due to
breeding and migration will reduce temporal variability.

The detailed preliminary information indicated that our design at
each site using 5 parallel traplines, spaced 23m apart, with traps

Fig. 1. Map showing the location of the study sites on Bribie Island, Queensland,
Australia, and the areas burned by wildfire.
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located every 10m along the traplines would be sufficient to: avoid trap
saturation, result in about three-quarters of the populations being
caught within 5 nights, result in similar numbers of captures each trap-
night, and allow individuals to freely move more than the inter-trap
distance in the east-west direction (6 traps on average) while not being
confined to a single trapline (movements across 2–4 traplines on
average).

Trapping was conducted for five nights every month from July 1994
to June 1996 (except for May 1996 when flooding made the study area
inaccessible) using a grid of 192 traps (43470 trapping nights), and 176
traps (39560 trapping nights) at Site 1 and Site 2, respectively. At each
trap location a single collapsible small mammal trap (33×10×9 cm,
Elliott Scientific, Upwey Victoria) was set, baited with a mixture of
peanut butter and rolled oats and checked and cleared each morning
after sunrise. Upon first capture each individual was uniquely marked
by toe clipping. For all captures, the trap position, species, sex, re-
productive condition and head-body length were recorded and the in-
dividual was released at the point of capture. Males were considered
mature when testes were scrotal while females were classed mature
after the vagina became perforate. Females were also classed as preg-
nant in the late stages of pregnancy by palpation.

Head-body lengths were used as an indication of the age of in-
dividuals. Live weight measurements were considered too variable for
assessing age, because total body weight for small mammals could be
affected by the fullness of the stomach and bladder, the amount of bait
consumed and pregnancy in females. The size class delineation between
immature and mature M. Burtoni individuals was 110mm for each sex,
with these individuals approximately ten weeks old (Redhead, 1973),
and a head-body length of 80mm or less represented recently in-
dependent individuals approximately three to four weeks old (Redhead,
1973; Taylor and Horner, 1973). Similar to M. Burtoni, juvenile R. lu-
treolus with head-body lengths of 110mm or less were considered re-
cently independent, and less than 40 days old with individuals
70–80mm being 12–20 days old, while both male and female were
found to mature from 140 to 150mm in head-body length representing
an age between 100 and 130 days old (Fox, 1979; Taylor and Horner,
1973).

3. Results

3.1. General capture results

Besides M. burtoni and R. lutreolus, incidental captures of nontarget
species included 2 introduced rodent species, house mice (Mus domes-
ticus, 198 individuals captured all months, both sites combined) and
black rats (R. rattus, 48 individuals captured all months, both sites
combined), as well as 3 other native species: common planigale
(Planigale maculata, 4 individuals captured all months, both sites com-
bined), water rat (Hydromys chryogaster, 1 individual captured all
months, both sites combined), and brush-tailed phascogale (Phascogale
tapoatafa, 1 individual captured all months, both sites combined).

Both M. burtoni and R. lutreolus were readily caught by live trapping
with some individuals caught four or five times each month. The mean
number of M. burtoni captures per individual per month was 2.62
(se= 0.05, n=791) for males and 2.73 (se= 0.05, n=612) for fe-
males. The average number of R. lutreolus captures per individual per
month was 2.87 (se= 0.08, n= 366) for males and 3.03 (se= 0.07,
n=391) for females. Trap saturation was not an issue, as 90% of the
trappable M. burtoni individuals were caught on the first four nights in
18 of the 23 months. Behavioral, temporal and heterogeneity effects on
captures were found at both sites between sexes, captures between wet
and dry habitat, and between immature and mature strata.

The null model (M0) from programs CAPTURE or MARK (White and
Burnham, 1999) provided a general indication of the probability of
capture for M. burtoni and R. lutreolus each month at each site. For a
particular data set, CAPTURE can be applied to select the most

appropriate model, including accommodating sources of capture het-
erogeneity. The null model is the one usually selected as most appro-
priate for small data sets even though a different model might better
represent the underlying population (e.g., Hammond and Anthony,
2006). In such cases the investigator must be aware of small sample
limitations of CAPTURE, and that M0 is unlikely to be the most suitable
model (e.g., Hammond and Anthony, 2006). Notwithstanding its
functionality, CAPTURE requires large amounts of data for the chi-
square goodness-of-fit tests for model selection (e.g., Hammond and
Anthony, 2006). In particular, CAPTURE has been found to frequently
fail to correctly select the model for simulated data sets having<50
individuals, thereby producing biased estimates that result from an
inappropriate model (Hammond and Anthony, 2006; Menkens and
Anderson, 1988; White et al., 1982). For useful capture–recapture re-
sults, Hammond and Anthony (2006) recommended that using>5
trapping sessions resulting in ≥40 individuals captured and capture
probability> 0.2 for CAPTURE's model selection criteria to be con-
sidered reliable. Additionally, open population models (Jolly, 1965;
Seber, 1965) also exist for estimating population size while accom-
modating deaths, births, or immigration and emigration. Unfortunately,
open model estimation requires even larger data sets (> 100 captures/
occasion) (Jolly, 1965). As seen below, our capture results necessitated
rethinking how to characterize the population sizes each month of the
study.

Specifically in our case, and given that a target population greater
than 50 individuals is required when capture probabilities are around
0.4 or 0.5 and that 200 individuals are necessary when capture prob-
abilities fall to 0.2 (Otis et al., 1978), the population sizes we witnessed
in this study seldom provided enough individuals to accurately estimate
the population size. Considering that mean probabilities of capture for
M. burtoni were 0.519 (se= 0.018) at Site 1 and 0.543 (se= 0.017) at
Site 2, at least 50 individuals would have been required to provide an
accurate estimate of population size. Importantly, such required sample
sizes were greater than the average population sizes of 28.8 (se= 2.91)
and 33.0 (se= 2.64) individuals caught at Site 1 and 2 respectively.
The capture probabilities and number of M. burtoni were sufficient to
calculate a population estimate in only 3months at Site 1 and
5months at Site 2. Similar probabilities of capture for R. lutreolus of
0.586 (0.016) at Site 1 and 0.590 (0.026) at Site 2 also required po-
pulations of around 50 individuals. However, the average populations
found for R. lutreolus of 23.3 (se= 1.20) at Site 1 and 9.7 (se= 1.67)
suggest that trapping data estimates for this species also would likely be
biased.

The number of individuals added to the capture frequency by the
‘Known to Be Alive’ (KTBA) calculation (Caughley and Sinclair, 1994;
Hopkins and Kennedy, 2005; Madsen and Shine, 1999; McKelvey and
Pearson, 2001) was very low for both species. On average less than two
individuals were KTBA but not caught during each trapping period. A
maximum of four additional individuals were added to M. burtoni and
R. lutreolus capture frequencies in any month. With a high probability of
capture for M. burtoni and R. lutreolus in this study, relatively low
movements determined in the preliminary and pilot studies, and a small
difference between the capture frequency and KTBA, the KTBA method
produced only minimal changes to the capture frequency. The number
of individuals caught each month severely limited the use of population
estimators while the frequency of capture provided a good index of
population size for this study and is used for analytical purposes.

3.2. General population dynamics

3.2.1. Melomys burtoni
The number of M. burtoni caught each month (Fig. 2a) ranged from

12 to 57 individuals at Site 1 (3.0/ha to 14.4/ha) and from 13 to 51
individuals at Site 2 (3.9/ha to 15.2/ha). Ignoring the month im-
mediately after the fire (December 1994), we wanted to evaluate
whether the population levels observed at both sites were a product of
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sequentially random fluctuations or if a non-random pattern was in-
dicated. Runs tests above and below the median (Sokal and Rohlf,
1995) revealed that the population changes at both sites represented
real trends and were not the result of random fluctuations (critical
u0.05(1),10,11 ≥7, Site 1, u10,11= 3; site 2, u10,11= 3), with both popu-
lations displaying similar trends. A comparison of capture frequencies
revealed a difference between the two sites (Wilcoxon signed rank test,
paired by month. Z(0.05,22)= 2.54, p= 0.011) due to the different
magnitude of population increases after October 1995 (a year after the
fire). No difference in the capture frequencies between the sites was
found when the months prior to November 1995 were tested
(Z0.05,15= 0.63, p=0.53).

The monthly breakdown of the population into sex and reproductive
status at each site suggested trickle breeding, with (late stage) pregnant
females found in the majority of months. The lowest number of im-
mature individuals was found during October each year with the largest
numbers of new individuals entering the populations (30–50% new
captures) during spring and summer and an average monthly recruit-
ment of 27% (se= 14 at Site 1, 12 at Site 2). Individuals caught for the
first time and classified as a result of breeding (< 80mm) were found
between October and May each year. Between 15 and 20 of these in-
dividuals were recorded at each site each year.

Immigration of mature individuals into each study site was low,
which was a logical expectation because we observed few individuals
moving between the two study sites. By the second month of trapping,
the average number of adults found to immigrate into the sites in the
remaining months (except December 1994) was 2.14 (se= 0.52) at Site
1 and 2.62 (se= 0.38) at Site 2. The remaining recruitment was

immature individuals greater than 80mm in length. After August 1994
(excluding December 1994) the average number of individuals in this
category was 2.86 (se= 0.66) at Site 1 and 3.19 (se= 0.72) at Site 2.

As an indicator of residency time, 61.9% of M. burtoni were caught
in at least two months. There was no difference in mean residency time
between Site 1 and Site 2 for individuals caught in the first twelve
months of trapping (Wilcoxon signed rank test paired by number of
months present Z(n=12)= 1.17, p= 0.24). Of the individuals caught
during only one month, 65.4% and 63.5% were immature at Site 1 and
2 respectively. Individuals which were immature at first capture were
never caught for more than six months with the majority only present
for around four months. On average individuals caught in at least two
months were present for four months (males; X =4.20 months,
se= 0.31, n= 147: females; X =4.10, se= 0.32, n=124). Five per-
cent of individuals were present for more than 12 months.

3.2.2. Rattus lutreolus
The number of R. lutreolus caught each month at Site 1 (Fig. 2b)

ranged from 15 to 37 individuals (3.5/ha to 8.5/ha). Prior to the fire at
Site 2, 20 to 28 individuals (∼7.0/ha) were present with around 5
individuals (∼1.4/ha) found each month after the November 1994
wildfire (Fig. 2b). No population trend was detected at Site 1 (runs test,
u0.05 (1), 9, 11= 6, u=9) with changes in the population explained by
random fluctuation around the median. Population sizes were too low
after November 1994 at site two to confidently perform any analysis.
The dramatic decline in numbers at Site 2, from around 25 prior to the
fire to less than five after, resulted in a difference between the capture
densities at the two sites (t0.05,22= 5.90, p < 0.001).

The R. lutreolus populations were predominately mature individuals
with more than 60% of the population mature in all months and greater
than 80% mature in 15 of the 23 months. The occurrence of pregnant
females suggested breeding occurred during spring and summer with
breeding at Site 2 recorded from late winter to spring. Captures of
pregnant females were recorded in 8months at Site 1 with a maximum
of three individuals in October 1995 and three individuals at Site 2.

Recently independent juveniles were found to enter the population
from October to December and as late as February each year at Site 1
and from September until the fire at Site 2. These individuals only ac-
counted for 17% of captures at Site 1 (n= 161) with 64.6% being
mature individuals with head-body lengths ranging from 110 to
190mm (159.32 ± 17.22, n=103). Seventy-seven of the 94 in-
dividuals recruited into the population at Site 2 were mature with only
7.4% (seven individuals) a direct result of breeding. Newly recruited
individuals (from breeding and immigration) accounted for around
20% of the monthly population outside breeding periods and 50%–60%
during breeding. Recruitment from breeding added 28 individuals to
the population at Site 1. Of these, 13 individuals (46.4%) were not
caught again and a further six individuals were only caught in one
additional month. Of the remaining nine individuals, three were found
to reach maturity (140mm). This suggests that juvenile mortality was
high or there was a degree of emigration soon after individuals became
independent.

3.3. Effects of fire

3.3.1. Melomys burtoni
Of the 46 individuals present at Site 2 immediately before the fire,

25 (54.3%) were found three weeks afterwards, with a further 11 in-
dividuals caught for the first time in December 1994. Thus, M. burtoni
individuals were able to survive the passing of the fire and the popu-
lation was able to persist at the burned site after the fire. The habitat
type in which individuals were located influenced their ability to
withstand wildfire. Twenty four out of the 25 individuals recaptured
after the fire and nine of the 11 new captures were caught in the swamp
based vegetation zones. Therefore 91.6% of individuals caught three
weeks after the fire were in the moist vegetation zones which consisted

Fig. 2. Number of individual (a) Melomys burtoni and (b) Rattus lutreolus caught each
month at study Site 1 (●) and study Site 2 (◯) on Bribie Island, Queensland, Australia.
The vertical line shows the time at which the wildfire occurred at Site 2.
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of a spongy ground layer of root material unburned by the fire pro-
viding tunneling and food resources. Of the 21 individuals caught prior
to the fire and never caught again, 16 (76.2%) were from the drier
vegetation zones with a sandy substrate. Further, six of the recaptures
found in the moist habitats after the fire used the dry habitats prior to
the fire. The fire had little influence on the distribution of surviving
individuals with average capture locations before and after the fire
separated by less than 50m for all recaptured individuals and less than
30m for 15 of the 25 individuals. While the M. burtoni population de-
clined over the eight months preceding the fire, the trend and abun-
dance was comparable with the unburned site. The population structure
with respect to sex and reproductive condition was also similar to that
of the unburned site after the fire. The fire appeared to have little
overall effect on the M. burtoni population of Site 2.

At the unburned site (Site 1), 30 individuals were caught for the first
time immediately after the fire in December 1994, which was ap-
proximately three times the number of new captures than observed in
any other month after the initial population was accounted for and
twice the largest number found at Site 2. While the fire coincided with
increased breeding activity, only eight (27%) of the individuals had
head-body lengths less than 80mm and were classified as a direct result
of breeding. Twenty-two of the individuals caught for the first time
were not caught again. This group of new capture individuals at the
unburned site was also significantly smaller in head-body length (X=
92.5, se= 3.75) than the population present after the fire at Site 2 (X=
112.9, se= 3.74, t= 3.63, d.f.= 56, p < 0.001) and the remainder of
individuals at Site 1 (X= 115.6, se= 3.10, t= 4.72, d.f. = 54,
p < 0.001) suggesting a juvenile sub-set of the population immigrated
with 70% of the new captures in December identified as immature.

Given that the influx of individuals was not explained by breeding,
22 of the new individuals likely immigrated into Site 1, most likely from
the north in an attempt to escape the fire. Migration from other areas
seemed unlikely, as areas south of Site 1 were unburned, the beach and
dunes were to the east and a large area of open heathland and pine
plantation where M. burtoni occur in low numbers (previous study,
unpublished) lay to the west (Fig. 1). The number of individuals found
to move between the two study sites both within and between trapping
periods was low for both species. None of these movements occurred
between November and December 1994 and no individuals caught at
Site 1 were previously caught at Site 2. Movement around Site 2 during
the fire also suggested that there was limited emigration from the moist
habitats of the burned site.

3.3.2. Rattus lutreolus
Prior to the fire at Site 2, the site had a stable population of ap-

proximately 20 individuals suggesting that the two study sites were
capable of supporting similar populations due to similar areas of sui-
table intermittently inundated swamp habitat. The fire had an im-
mediate influence with the population declining from 26 to 3 in-
dividuals. Although the population was reduced, individuals present
three weeks after the fire remained at the burned site for the remaining
19 months. While 51 individuals were caught in the months after the
fire at the burned site, only two to nine individuals (average 5.7) were
caught in any month, well below the 20 to 30 individuals caught each
month at Site 1. The post-fire population exhibited a high degree of
turnover and comprised almost entirely adult individuals, making
monthly recruitment similar to death or emigration at the burned site.
The low number of juveniles considered to be recently born (110mm or
less) was most likely a result reduced breeding success or juvenile
mortality. A disruption to breeding was expected given that the fire
occurred during the breeding season. The population failed to increase
as a result of immigration by September 1995 when breeding activity
was again expected. Between August 1995 and February 1996, there
were three or less mature females present each month limiting any
breeding potential.

Twenty-four new individuals were caught at the unburned site three

weeks after the fire of which 13 were mature and none resulted from
breeding. Seven of these 24 individuals were never caught again. This
was the largest number of new individuals caught at the site with less
than eight new individuals recorded in 18 of the 23 months.

4. Discussion

The two study sites were separate and considered isolated with re-
spect to individual movements. Nevertheless, they were subjected to
the same environmental processes, and similarities between the popu-
lations at each site were found prior to the wildfire in the reproductive
structure, breeding activity, abundances, and population trends of both
species. Thus, the before-after, burned-unburned aspects of our study
allowed valuable insight to be gained into movements, the effect of fire
and population trends resulting from fire.

4.1. Population dynamics

Even without fire, population stability over time, as was witnessed
in the R. lutreolus population at Site 1, does not necessarily occur. While
the M. burtoni population fluctuated, there was limited immigration
into the population with breeding all year round, but particularly in the
spring and summer months, and the recruitment into the population
was predominantly by immature individuals. The population trends
were therefore associated with local site population changes rather than
immigration. The majority of R. lutreolus recruitment was by mature
individuals with either high juvenile mortality or the emigration of
juveniles from the optimal habitats. Very few of these individuals were
found in other areas of the study site so initial dispersal would be across
significant distances. Given that recruitment from breeding by R. lu-
treolus was low and juveniles did not persist in place for more than five
months, immigration as a result of a mobile portion of the population
may be important for the maintenance of populations at each site. This
was especially evident at Site 2 after the fire where there was a high
turnover of a small population consisting almost entirely of adult in-
dividuals. Mature individuals of both species were found to persist in
the study area for a number of months with some M. burtoni found for
almost the duration of the study. Individual movements suggested that
both species were reasonably sedentary based upon the length time
individual M. burtoni were present, the proportion of individuals caught
in more than one trapping session, and the limited movement between
the two study sites only 228m apart. Even though fire often results in
individuals changing the area they use, our study only revealed a
temporary movement of individuals into the unburned site immediately
after the fire. This occurred with both M. burtoni and R. lutreolus, with
the effect more pronounced for M. burtoni. These individual movements
may have been small in actuality, as none of our marked individuals
were found to move between the sites.

4.2. Response to wildfire

A species' ability to tolerate wildfire may be more related to its
ability to use the modified habitat than simply survive fire. Thus, the
fire at site 2 provided an opportunity to study the small mammals' re-
sponse to a major habitat modification. M. burtoni appeared to survive
the wildfire by burrowing into the damp, spongy layer present in the
swamp zones, and were therefore present in the same locations before
and after the fire. Whether R. lutreolus also used this structure to survive
the passing of the fire is unknown as few individuals were found three
weeks after the fire.

By removing the majority of vegetation, fire reduces food avail-
ability and can cause a collapse in herbivorous rodent numbers
(Butcher and Dempster, 1970; Catling, 1986; Newsome et al., 1975).
Clearly, M. burtoni were able to find sufficient food following the fire.
Declines in R. lutreolus populations after fire have previously been re-
ported (e.g., Catling, 1984; Monamy and Fox, 2000). Whether the
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decline in R. lutreolus abundance at our burned site was due to removal
of a food source was not determinable. Given that the species is known
to eat monocot leaves and stems, which survived the fire in the moist
ground layer and quickly recovered following the fire, we believe loss
of food was unlikely to have led to the low numbers after the fire.

Fire causes major structural changes to habitats, and population
recovery after fire ultimately depends on the pattern of recovery of the
vegetation (Karolak, 2005; Lindenmayer et al., 2005; Land for Wildlife
Queensland, 2016b; Christensen et al., 1981). R. lutreolus have been
reported to be absent from heathland areas after fire for around three
years while the vegetation structure preferred by the species recovered
(Catling, 1986; Monamy and Fox, 2000). The preference of this species
for areas with high ground cover that permits a system of runways in
the vegetation may account for the low numbers recorded after the fire
(Braithwaite and Lee, 1979; Catling, 1986; Fox and Monamy, 2007;
Monamy and Fox, 2010). In this study, R. lutreolus appeared im-
mediately after the fire, but the population still had not recovered after
considerable vegetation regrowth 18 months after the fire. The rapid
appearance of the species (in low numbers) was probably due to the
close proximity of unburned habitat 50m south. However, Fox (1982)
found little colonisation even when individuals were present 50m
away. We found no period when individuals were absent, as reported in
other studies (Fox, 1982; Catling, 1984). Fox (1982) reported that
successful breeding in R. lutreolus did not occur for five years post-fire.
As already indicted, we found recruitment from breeding to be low with
juveniles not persisting at the site for more than five months, and dis-
persal appeared to be the primary source of recruitment after the fire.
Nonetheless, the number of individuals entering the population from
outside the burned site was low. Fox and Monamy (2007) and Monamy
and Fox (2000, 2010) found R. lutreolus to be a late serial stage spe-
cialist dependent on recovery of vegetative and cover for recoloniza-
tion, rather than time since a burn or other disturbance. Monamy and
Fox (2000) found the species recolonized 3.6 years after one fire, but
only 4 months after another, with the latter example considered an
anomaly based on rapidity of vegetative recovery. Despite vegetative
regrowth during the 18 months we studied the populations after the
wildfire, our results showing slow R. lutreolus population recovery
concur with the above studies and also suggest late vegetative stages
are required for full population recovery.

On a local scale, M. burtoni, which were located in the moist, swamp
habitats, were able to escape the fire. Limited movements around the
time of the fire allowed these individuals to remain in the same areas
after the fire. On a broad scale, this habitat is only available in a band of
approximately 80m west of the dunes. While small areas such as
drainage channels offer similar protection, the vast majority of habitats
in the area surrounding the study sites could not sustain individuals
during and after a fire. The habitats that did not support individuals
after the fire were the dry open heathlands and woodlands. Large areas
of these habitats occur around the study sites and support at least M.
burtoni in low densities. Increased activity in response to the fire is the
most likely reason for the influx of individuals into the unburned site
immediately after the fire, as individuals of both species had to escape
the fire or perish.

Also of consequence environmentally, the coastal heathland region
in which our study took place is exposed to pressures from regional
development, human population increases, and climate change, all of
which can impact and modify habitats. Our results might also provide
insight on population responses to other such potential forms of habitat
modification in this region, as well as providing baseline information
from which to continue monitoring these small mammal populations
(e.g., Fox and Monamy, 2007).

4.3. Population monitoring considerations

This research centered on monitoring populations of two species of
rodents. Besides the general ecological information obtained and the

information obtained on wildfire responses, we also gained insights
about the population monitoring process itself. When conducting a
study involving the trapping and marking of wildlife, the complexity
and variability involved in sampling mobile populations require ap-
propriate effort to be made to ensure trapping techniques lead to ac-
curate population estimates, and not artifacts of methodology. Possible
errors and inefficiencies of the estimation techniques associated with
mark-recapture methods are well-known (e.g., Otis et al., 1978;
Hammond and Anthony, 2006; White et al., 1982). Investigators should
be particularly mindful of CAPTURE's small sample limitations (e.g.,
Hammond and Anthony, 2006). In fact, and related to this, McKelvey
and Pearson (2001) reported that 67% of the small mammal studies in
their thorough five-year literature review used population indices ra-
ther than estimators of population size, but that 98% of small mammal
studies produced insufficient data for valid mark-recapture population
estimates (thereby implying a high proportion of published mark-re-
capture results were not valid).

The availability of previous data and conducting a pilot study
highlighted the value of prior trapping data. This allowed us to opti-
mize the number of traps and trapping nights to minimize the varia-
bility in capture probabilities that could be controlled through study
design, with this optimization a trade-off between maximizing captures
and recaptures, while not allowing immigration and emigration to
violate closure assumptions and also avoiding temporal variation in
capture probabilities. The prior trapping experience also helped de-
termine a sufficient number of traps to avert influencing an individual's
access to traps through trap saturation. The trapping grid layout was
designed to avoid excluding individuals or biasing probabilities of
capture. Nevertheless, our study provided a field-based demonstration
of inherent problems. Even with previous trapping information, we
were unable to prevent localized trap saturation and the presence of
heterogeneous capture probabilities. The population sizes and numbers
of animals we captured each month were not sufficient for CAPTURE to
produce reliable results, especially when considering that, as already
mentioned, CAPTURE often does not select the correct model for data
sets with< 50 individuals, thereby resulting in biased estimates
(Hammond and Anthony, 2006; Menkens and Anderson, 1988; White
et al., 1982). Thus, we turned to an alternative, well-recognized means
to track relative abundance of our study populations.

The capture frequency and relative density calculated from the cu-
mulative catch provided a suitable index of population size for our data,
as sophisticated estimations could not be made due to populations
being too small to calculate population estimates with the given (het-
erogeneous) capture probabilities. The number of unique individuals
captured each month most likely underestimated the true population,
but allowed examination of population changes. That such methods
well-track population abundance and population estimates has been
well-documented by others. For example, Hopkins and Kennedy (2005)
found the number of unique individuals captured to “provide patterns
of population trends proportional to those observed from estimates of
absolute abundance,” and Caughley and Sinclair (1994) stated that
frequency of capture as a relative density index is a valid initial ap-
proach for estimating populations. Madsen and Shine (1999) used the
number of unique individuals caught as the population estimate, be-
cause population estimation models were not suitable even though
monthly populations often exceeded 100 individuals and the popula-
tion was trapped with confidence. Similarly, McKelvey and Pearson
(2001) also found that “the number of unique individuals captured” as
an index frequently outperformed the mark-recapture estimators they
tested, was correlated with the other estimators, has a known negative
bias, is bounded between zero and the true population, and appears
robust to changes in sources of variation. These results support the use
of number of unique individuals captured as a suitable index of popu-
lation size when it is not possible to use other estimators.

If population demographics are necessary to meet monitoring ob-
jectives, then identification of individual animals is likely necessary.
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However, when population demographics are not necessary other in-
dexing methods besides the number of unique individuals might also be
available for population monitoring with statistical properties and
methodologies developed for some (e.g., Engeman, 2005), and methods
have been described for validating the procedures in the absence of
known populations (Allen and Engeman, 2015). In particular, a variety
of approaches have been developed for monitoring many rodent species
(e.g., Engeman and Whisson, 2006; Whisson et al., 2005), with an index
based on camera trap data most likely to provide the ability to si-
multaneously monitor multiple species of rodents (e.g., Baldwin et al.,
2014). In any case, a new approach would require testing and valida-
tion (Allen and Engeman, 2015). Yet, the mark-recapture approach
provides a range of information pertaining to a population, and can be
used in conjunction with simple estimates to gain a better under-
standing of population size and processes, even with difficulties like
those we encountered for avoiding violation of assumptions (which
were apparent even for Melomys, one of the best candidates for mark-
recapture estimation amongst Australian small mammals).
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