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In this paper, we present a simple model of a three-dimensional insulating magnetic structure which represents
a magnonic analog of the layered electronic system described by A. A. Burkov and L. Balents [Phys. Rev. Lett.
107, 127205 (2011)]. In particular, our model realizes Weyl magnons as well as surface states with a Dirac
spectrum. In this model, the Dzyaloshinskii-Moriya interaction is responsible for the separation of opposite Weyl
points in momentum space. We calculate the intrinsic (due to the Berry curvature) transport properties of Weyl
and so-called anomalous Hall effect magnons. The results are compared with fermionic analogs.

DOI: 10.1103/PhysRevB.97.174407

I. INTRODUCTION

Recently, studies of intrinsic (topological) properties of
fermionic systems have received tremendous interest from the
research community. Some of these studies have concentrated
on the quantum Hall effect [1,2], Chern insulators [3], topolog-
ical insulators [4–7], and Dirac (Weyl) [8–10] semimetals. Of
particular interest are the transport properties and transitions
between various topological phases. The Berry curvature [11]
plays an important role in descriptions of the intrinsic transport
properties such as the Hall, Nernst, and axial or chiral current
responses [12].

In a phase transition that separates two insulating phases
with different topological numbers, a semimetal phase nec-
essarily occurs. This semimetal phase is characterized by a
band touching and, in general, is called the Dirac semimetal, a
condensed-matter analog of relativistic fermions. Under break-
ing of either time-reversal or inversion symmetry, opposite
chiralities separate either in momentum or energy, and in this
way the so-called Weyl semimetal is stabilized. This scenario is
realized in an analytical model presented in Ref. [10]. The Weyl
semimetal phase is of interest as it exhibits the anomalous Hall
effect (AHE), surface Fermi arcs, and chiral-anomaly-driven
responses.

Similar topological effects are recognized in magnetic
insulating systems. Due to a combination of the underly-
ing lattice geometry and Dzyaloshinskii-Moriya interaction
(DMI) [13,14], the magnon bands can acquire a nontrivial
Berry curvature and nonvanishing Chern numbers [15–20].
As in the case of fermions, magnons can exhibit spin Nernst
[21–23] and thermal Hall responses [15,17,24–27] and induce
dissipative torques [21] on the magnetic order. For example,
the thermal Hall effect carried by magnons has been exper-
imentally observed in insulating collinear ferromagnets with
pyrochlore crystal structure [28,29]. The spin Nernst effect
carried by magnons [22,23] was recently observed [30] in an
antiferromagnet.

Different magnetic models have been proposed for re-
alizations of the aforementioned intrinsic effects. These

include two-dimensional kagome [20,21,31] and honeycomb
[27,32–34] magnets as well as pyrochlore [29,35] and layered
structures. By tuning exchange parameters some of the above
magnetic systems reveal magnons described by a Weyl spec-
trum [36–43].

In this paper, we propose a model that realizes Weyl
magnons and the magnon analog of Fermi arcs. The model
contains interchanging layers of honeycomb ferromagnets and
antiferromagnets (see Fig. 1). This is needed to establish the
opposite chiralities of magnons. We show that in this model
the magnon spectrum and topology qualitatively resemble
those considered in Refs. [10,44] for fermions. For example,
by varying interlayer exchange parameters the nodal-line
spectrum of magnons emerges (see Fig. 2). Furthermore, we
observe magnon surface states with the Dirac spectrum. These
surface states might hybridize with the bulk states as they
are shifted in energy. Our model can also be interpreted as a
magnon analog of the three-dimensional (3D) Shockley model
[45,46]. When the DMI is switched on, either Weyl magnons
or the magnon analog of stacked two-dimensional anomalous
Hall effect layers (the so-called AHE magnons) are obtained.

We study intrinsic (due to the Berry curvature) spin transport
properties of the Weyl and AHE magnons. Magnon pumping
due to magnetization dynamics was discussed in Ref. [47].
Importantly for the present paper, one can draw an analogy
between fermions responding to electric field and magnons
responding to magnetization dynamics. As mentioned in
Ref. [10], in the case of a Weyl semimetal the AHE is semi-
quantized, and it is proportional to the splitting of Weyl points
in momentum space. In this paper, we show that the vicinity
of the Weyl points leads to the magnon-driven spin current
proportional to the splitting of Weyl points. However, other
regions of the Brillouin zone also contribute to the response.
For the AHE magnons, at small temperatures we recover
the results of Ref. [47]; that is, the response is proportional
to the DMI strength, and it is a response of a number of
stacked layers of two-dimensional Chern magnons. At higher
temperatures, the response from the Weyl points acquires an
extra logarithmic factor corresponding to the energy cutoff. In
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both cases the responses are temperature dependent, vanishing
at zero temperature.

This paper is organized as follows. In Sec. II, we briefly
review the Shockley model given in Ref. [45]. Then, we
construct a more general model that contains the Weyl and
AHE magnons. We discuss how different phases emerge as the
parameters of the model, such as DMI and exchange interac-
tions, change. In Sec. III, we study the intrinsic responses of the
Weyl and AHE magnons, both analytically and numerically.
For the analytical calculations, we adopt a simplified model
that captures the contribution from the Weyl points. In the
Appendix, we give details of the calculations.

II. TOPOLOGICAL MAGNONS IN LAYERED SYSTEMS

A. Three-dimensional Shockley-like model

Before we formulate our model of Weyl magnons, we
give here a brief description of the 3D Shockley-like model
introduced in Refs. [45,46]. In such Shockley-like models one
can obtain different topological phases with surface states.
It is also known that a Weyl semimetal occurs at the phase
transitions between the topological phases [8]. Therefore, in
the magnon version of the Shockley-like model one can expect
magnon analogs of known topological phases, including the
Weyl phase, which is of particular interest to us. The Shockley-
like model is described by the Hamiltonian

H =
(

h(k‖) t(kz,k‖)

t∗(kz,k‖) −h(k‖)

)
, (1)

where two types of interchanging layers are described by
±h(k‖) and the interlayer hopping amplitudes are described
by t(kz,k‖). Note that h(k‖) could, in principle, correspond
to a matrix, e.g., due to the spin or sublattice degrees of
freedom. Taking t(kz,k‖) = t1(k‖)e−ikz + t2(k‖)eikz , one can
obtain that such a model can describe surface states when
|t1(k‖)| < |t2(k‖)|, where the layers have to be interrupted at
the t2(k‖) bond. In (kx,ky) regions where such a condition is
satisfied the surface states are described by the spectrum h(k‖)
and can contain a Dirac cone. As we will show below, our
model of Weyl magnons given by Eq. (3) without the DMI
corresponds to the model in Eq. (1).

B. A realization with magnons

We study spins located at the sites of a three-dimensional
lattice made of honeycomb layers stacked in the AA type. The
unit cell of the system contains two honeycomb layers [see
Fig. 1(a)]. For the bottom layer of the unit cell the first- and
second-nearest-neighbor exchange couplings are assumed to
be ferromagnetic and antiferromagnetic, respectively. For the
top layer the types of exchange couplings are switched [see
Fig. 1(a)]. For simplicity, the exchange coupling between the
layers J ′

a within the unit cell is chosen to be ferromagnetic.
We also include the DMI and an external magnetic field. A
three-dimensional system is obtained by translating the unit
cell in the z direction with the inter-unit-cell exchange coupling

1

2

3

a1

a2

+

-

d1

d2

d3+J

-J'

-J

-J
1

2

+J2
1 (b)(a)

p=2

p=1 x

y

z

a

FIG. 1. (a) Unit cell of the system. Constants J1, J2, and J ′
a

denoting the exchange interactions are all chosen to be positive.
(b) Schematics of the honeycomb-lattice parameters used in the
derivation of the noninteracting magnon spectrum. Vectors con-
necting nearest neighbors are τ 1 = 1

2 ( 1√
3
,1), τ 2 = 1

2 ( 1√
3
, − 1), and

τ 3 = 1√
3
(−1,0). Vectors a1 = 1

2 (
√

3,1) and a2 = 1
2 (

√
3, − 1) are

used in deriving second-nearest-neighbor exchange interaction and
DMI. Green plus and minus signs denote the signs of the D[z]

(ij ) vector
for the (ij ) link defined by green arrows.

J ′
e. The spin Hamiltonian is

H =
∑

mp〈ij〉
(−1)pJ1SmpiSmpj − (−1)pJ2SmpiSmpj

+
∑

mp〈〈ij〉〉
D[z]

(ij )[Smpi × Smpj ] − μB

∑
mki

BSmpi

+
∑

mp〈ij〉
(−1)pD[R]

(ij )[Smpi × Smpj ]

−
∑
mi

J ′
aSm1iSm2i −

∑
mi

J ′
eSm2iSm+1,1i , (2)

where constants the J1, J2, J ′
a, and J ′

e denoting the exchange
coupling are chosen to be positive and index p = 1,2 denotes
the bottom and top layers of the unit cell. The unit cell is
translated in the z direction, and m = 1,2,3, . . . denotes the
number of the unit cell. The vector D[z]

(ij ) = D[z]ezνij is the
out-of-plane second-nearest-neighbor DMI with νij = ± for
an (ij ) link [shown in green in Fig. 1(b)], and the vector D[R]

(ij ) =
D[R]dl is the in-plane DMI of the Rashba type. Index l = 1,2,3
denotes an (ij ) link on a lattice corresponding to a τ l vector [see
Fig. 1(b)] along which the spins interact. For a link l the Rashba
DMI vectors are d1 = 1

2 (
√

3, − 1), d2 = 1
2 (−√

3, − 1), and
d3 = (0,1), defined in red in Fig. 1(b). Note that the sign of the
Rashba DMI for the same bond is opposite in the bottom and
top layers. The reason for such a choice of DMI will be seen in
the next section, where we study the responses of the system.
Such DMI can be achieved by placing an extra nonmagnetic
charged layer between the top and bottom layers, such that the
Rashba spin-orbit coupling is generated with opposite signs
in the top and bottom layers. Note that there might also be
a second-nearest-neighbor in-plane DMI of the Rashba type.
We omitted it as it does not lead to qualitatively different
physical picture and is smaller than the first-neighbor Rashba
DMI. All DMIs are small, such that D[z]

J1
� 1 and D[R]

J1
� 1.

We assume that the magnetic field B is above the saturation
value so that all spins align with the field. The direction of the
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field and hence of the magnetization is assumed to be general,
namely, (mx,my,mz), however, with the main component in
the z direction, i.e., mz 	 mx,my . Alternatively, the magnetic
anisotropy in the z direction could also be used instead of the
magnetic field to align spins in the z direction.

We are now ready to study the magnons, fluctuations
around the magnetization direction. The unit cell contains
four elements, and a set of four boson operators is needed
to describe the magnons. We perform the Holstein-Primakoff
transformation, Sz

n(r) = S − a
†
n(r)an(r) and S+

n (r) = Sx
n (r) +

iS
y
n (r) =

√
2S − an(r)†an(r)an(r), with an(r) and a

†
n(r) for

n = 1,2,3,4 denoting the four inequivalent sites of the unit
cell being the boson operators. Assuming S 	 1, we obtain
the Hamiltonian for noninteracting magnons written in Fourier
space as

H =J1S

⎡
⎢⎢⎢⎣

λk + �k γ̃k tkz
0

γ̃−k λk − �k 0 tkz

t∗kz
0 −λk + �k −γ̃k

0 t∗kz
−γ̃−k −λk − �k

⎤
⎥⎥⎥⎦

+ μBBS + S(J ′
a + J ′

e), (3)

where γ̃k = 2e
ik̃x

1
2
√

3 cos ( k̃y

2 ) + e
−ik̃x

1√
3 , with k̃x =

kx + √
3D[R]

J1
my and k̃y = ky − √

3D[R]

J1
mx . We also

introduced �k = 2�[sin(ky) − 2 sin ( ky

2 ) cos (
√

3kx

2 )], with

� = D[z]

J1
mz, and tkz

= tae
ikz + tee

−ikz , with ta/e = J ′
a/e

J1
. For

the diagonal elements we introduce λk = λ − ζk, with
ζk = 2δ[cos(ky) + 2 cos(

√
3kx

2 ) cos( ky

2 )], where δ = J2
J1

and
λ = 3 − 6δ. The different signs in front of γk and λk for
the top and bottom layers are due to the difference in
the sign of the exchange interaction, i.e., ferromagnetic
or antiferromagnetic. The space of the Hamiltonian is
defined by the spinor �(k) = [a1(k),a2(k),a3(k),a4(k)]T. A
straightforward diagonalization of the Hamiltonian gives the
energy spectrum

(ε±)2/(SJ1)2 = λ2
k + �2

k + |tkz
|2 + |γ̃k|2

± 2
√

λ2
k

(
�2

k + |γk|2
) + |tkz

|2�2
k, (4)

where we define magnon energy by E±, with ε± ≡ E± −
μBBS − S(J ′

a + J ′
e).

In the following, we will search for the degeneracies (band
touching) of the spectrum. We note that they can occur only
for the ε2

− spectrum branch. It is straightforward to see that
the degeneracy occurs at the K′ = (0, 4π

3 ) and K = (0, − 4π
3 )

points of the two-dimensional Brillouin zone and at values
of kz determined from the following considerations. Close
to the K′ point, we approximate γ̃k ≈ −

√
3

2 (k̃y + ik̃x), �k ≈
−3

√
3�, ζk ≈ −3δ, and λk ≈ 3(1 − δ). The points of possible

degeneracy are defined by the equation(
�2

k + |tkz
|2 + |γ̃k|2 − λ2

k

)2 = 4|tkz
|2(�2

k − λ2
k

)
. (5)

Let us carefully analyze different cases of the parameters,
in particular focusing on the strength of the DMI and interlayer
exchange interactions.

(i) When �2
k > λ2

k, this inequality can be rewritten as
3�2 > (1 − δ)2 at the K′ point (the same consideration

FIG. 2. The spectrum of Weyl magnons for the case λk = 0
described in Eq. (8) at kz = const corresponding to the vicinity of
the Weyl points. The Weyl points are located at the K and K′ points at
kz = ± arccos ( 1

2
√

ta te

√
3�2 − 1). The red and blue colors correspond

to positive and negative Berry curvatures, respectively.

applies to the K point), and Eq. (5) is reduced to
|γ̃k|2 + (

√
�2

k − λ2
k − |tkz

|)2 = 0. It is satisfied only when
1

2
√

ta te

√
3�2 − (1 − δ)2 − (ta − te)2 < 1, which sets another

condition for the DMI strength, namely, 3�2 > (1 − δ)2 +
(ta − te)2. We derive the values of kz that nullify the bracket and
get k±

z = ± arccos ( 1
2
√

ta te

√
3�2 − (1 − δ)2 − (ta − te)2). The

condition γ̃k = 0 is easy to satisfy, and therefore, we find two
Weyl points at the K′ point, namely, at (0, 4π

3 ,k±
z ) (for D[R] =

0). See Fig. 2 for the magnon spectrum in the simplified case.
When the condition 1

2
√

ta te

√
3�2 − (1 − δ)2 − (ta − te)2 > 1 is

satisfied, the system is gapped, and the system is an analog of
the AHE phase for magnons (magnon AHE phase). This phase
is discussed in Figs. 3 and 4.

WAHE AHE

NL
1 2

t - ta e

FIG. 3. Phase diagram of the model. The X axis is the strength of
the DMI, and the Y axis is the difference of the interlayer exchange
interaction. NL is the unstable nodal line, which occurs only when ta =
te and D[z] = 0; AHE stands for the anomalous Hall effect magnons,
and W stands for the Weyl magnons. Boundaries are defined by the
conditions on the DMI strength derived in the text: �1 = 1√

3
|1 − δ|

and �2 = 1√
3

√
(1 − δ)2 + 4t2

e . Schematics of the phase diagram are
presented for 1 − δ = 0.5 and 2te = 0.5.
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M K H A

6

3

0

−3

−6

(a)

M K H A

6

3

0

−3

−6

SJ

(b)

M K H A

6

3

0

−3

−6

(c)

M K H A

6

3

0

−3

−6

SJ

(d)

FIG. 4. Spectrum of magnons ε(k) in Eq. (4). (a) Vanishing DMI,
D[z] = 0, results in the formation of the Dirac node between the K and
H points in the Brillouin zone. (b) DMI, D[z] = 0.2J ′, splits the Dirac
node into two Weyl points where the splitting is proportional to the
strength of DMI. (c) and (d) The Weyl points annihilate at 3

√
3D[z] �

2J ′, which leads to the formation of the AHE magnon phase. Here
J2 = J1/3, J ′ = J1, and J stands for J1. We use the following notation
for points in the Brillouin zone: � = (0,0,0), M = (π/

√
3, − π,0),

K = (0, − 4π/3,0), H = (0, − 4π/3,π ), and A = (0,0,π ).

(ii) When �2
k < λ2

k, the degeneracy occurs at |tkz
| = 0 and

at the points defined by the equation |γ̃k|2 = λ2
k − �2

k. The first
condition is satisfied only when ta = te. When both conditions
are met, we obtain nodal-line touching of the spectrum close to
the K′ point. The nodal-line phase is unstable, and it separates
two distinct phases which are characterized by a surface state.
Namely, when the DMI is absent, the surface Dirac state exists
if the bulk is interrupted by breaking the largest of the two
interlayer exchange couplings, J ′

a and J ′
e. This is consistent

with the Shockley model discussed in Ref. [45]. Since the same
scenario occurs at both K and K′, we obtain two Dirac surface
magnon states occurring at the K and K′ points. Finite values
of the DMI will gap the surface Dirac state, and one obtains
the AHE magnons. Such transitions are shown in Fig. 3. We
note that this behavior is expected as the above model is a
honeycomb-layer-based magnon analog of a Weyl semimetal
proposed in Ref. [10] and with details elaborated in Ref. [44].

(iii) According to Fig. 4, there is a special point (0,0,π/2) in
the Brillouin zone at which an accidental degeneracy occurs.
Exactly at this point, the DMI vanishes �k = 0, a small k

expansion around the point gives �k ≈ 1
4�ky(3k2

x − k2
y) and

Reγ̃k ≈ 3 − 1
4 k̃2, and given � � 1, we can neglect the DMI

in the spectrum (see Ref. [47] for details). The spectrum (for
DR = 0) is then (ε±)2 = (|λk| ± |γk|)2 + |tkz

|2, and there is a
gap closing for ε− at kz = π

2 for the special case of ta = te.
According to Ref. [47], the Berry curvature at this point is
defined by the DMI and is ∝ �k2

yk
2
x , which is not of a monopole

type. Therefore, this point is not topological.

III. SPIN CURRENT DUE TO THE BERRY CURVATURE

In this section, we focus on the intrinsic transport properties
of the Weyl and AHE magnons. Intrinsic transport properties
are those defined by the Berry curvature and are nondissipative

in nature. Therefore, we study the contributions from the points
in the magnon Brillouin zone where the Berry curvature is
the most singular, i.e., from the degeneracies. We simplify the
model so the integrals can be calculated analytically. The prime
task of the simplified model is to highlight the characteristic
dependences of the intrinsic response. Also we would like to
identify differences in the response structures of the Weyl and
AHE magnons. Numerical calculations for the full model are
presented as well.

A. Analytical results

We consider a small-angle magnetization precession about
the dc magnetic field that points in the z direction. A small
magnetic field rotating about the z axis can be used to induce
such precession. As shown in Ref. [47], the dynamic x-y part
of the magnetization will cause spin and heat currents carried
by the magnons to flow. In the following, we focus on the
currents that are due to nontrivial topology of the magnon band
structure. For the magnon particle current we obtain (see the
Appendix for details)

J [M]
x = 1

V

√
3D[R]

J1

∑
μν

∑
k

�(μν)
xy (k)g(Eμν)(∂tm)x, (6)

where �
(μν)
xy (k) is the Berry curvature and g(ε) = (eβε − 1)−1

is the Bose-Einstein distribution function with β = J1/T . One
notices that a combination

√
3D[R]

J1
is an effective charge of the

magnons, while (∂tm)x is a fictitious electric field. The opposite
signs of D[R] in the top and bottom layers of a unit cell [see
Eq. (2)] result in the same response of the magnons to the
magnetization dynamics (the same sign would have resulted
in a mutual compensation of the magnon response within a
unit cell). Thus, the remaining part in Eq. (6) has the meaning
of the particle Hall conductivity of magnons,

σxy = 1

V

∑
μν

∑
k

�(μν)
xy (k)g(Eμν). (7)

Note that this response can also be associated with a spin Hall
response defined by the spin Hall conductivity σ s

xy = −h̄σxy .
In order to make a comparison with the known anomalous
Hall responses of Weyl semimetals in the case of fermions,
we analytically estimate contributions from the Weyl points,
where the Berry curvature is singular (of monopole type).
We adopt a simplified model of Weyl magnons for which
the spectrum is εμν = Eμν − h = μv

√
k2
‖ + (�νz)2, where

μ = ±, ν = ±, v�±z = � ± 2t | cos(kz)|, with v = S, � =
3
√

3D[z]/J1, h = μBB/J1, and t = J ′/J1. This is a spectrum
of the model (4) close to the K or K′ points in the hypothetical
case with λk = 0 and ta = te ≡ t = J ′/J1 (see Fig. 2). The
Weyl points occur for the ν = − spectrum. For this model we
derive the Berry curvature

�(±;ν)
xy (k) = ∓1

2

�νz(
k2
‖ + �2

νz

)3/2 , (8)

which is also shown in Fig. 2. We calculate the current Eq. (6)
in the limit βh > 1 and βv|�±z| < 1 (temperature larger than
either the DMI strength or the interlayer exchange interaction)
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to be

J [M]
x ≈ e− μBB

T
6
√

3D[z]

πV T
ln

[
�

P

][√
3D[R]

J1
(∂tm)x

]
, (9)

where P = max(3
√

3D[z],2J ′) and � < μBB is a cutoff (see
the Appendix for details). Parameter P distinguishes the two
phases: the Weyl magnons when 3

√
3D[z] < 2J ′ and the AHE

magnons in the opposite case. We comment on the βv|�±z| >

1 case in the Appendix.
We now comment on the special point (0,0, π

2 ) (see Fig. 4).
The Berry curvature expanded close to this point in small k

is ∝ k4 (see Ref. [47] for details); therefore, the temperature
behavior of the spin Hall response for small temperatures T �
J1 is ∝ ( T

J1
)
7
e− μBB

T , and consequently, it is suppressed.
We can now see a difference between fermions and bosons.

Importantly, in the case of Weyl semimetals (fermions), the
Hall conductivity is semiquantized. This means that it is pro-
portional to the splitting between the Weyl points in momentum
space times e2

h̄
. In the case of bosons, as can be seen from

Eq. (9), the calculated anomalous response is also proportional
to the splitting between the Weyl points, which is proportional
to D[z]. However, the response is temperature dependent,
∝ 1

T
e− μBB

T , and hence by no means quantized. Because the
Berry curvature for the E±,ν energy bands is opposite in sign,
the integrand defining the current in Eq. (6) is less singular at
the Weyl points for bosons compared to fermions. Technically,
it is due to the vanishing of the difference of the Bose-Einstein
distribution functions for E±ν energy bands at the Weyl points,
where E−− = E+−. In the case of fermions, the contribution
to the anomalous Hall response comes only from fully filled
bands, say, E−− when Fermi energy is larger than h, and the
cancellation of the Fermi distribution functions does not occur.

For the sake of generality, we also calculate the magnon
spin Nernst current,

J [T ]
x = αxy(∇T )y, (10)

where αxy is the spin Nernst coefficient and the temperature
gradient is applied to the system in the y direction, namely,
(∇T )y . A generalization of the spin Nernst effect in fermion
systems to boson systems, in particular to magnons in fer-
romagnets, was given in Ref. [21]. The transverse to the
temperature gradient response is again expressed via the Berry
curvature, and it is given by

αxy = 1

T V

∑
μν

∑
k

�(μν)
xy (k)c1(Eμν), (11)

where c1(x) = ∫ x

0 dηη
dg(η)
dη

. By studying the simplified model
and after making the same approximations (see the Appendix
for details), we obtain the expression for the spin-density
current,

J [T]
x ≈μBB

T
e− μBB

T
6
√

3D[z]

πV T
ln

[
�

P

]
(∇T )y

T
. (12)

Both currents, Eqs. (9) and (12), have similar features because
of their dependence on the Berry curvature. The extra factor
of μBB

T
in Eq. (12) is due to the energy dependence of c1(x).
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FIG. 5. The Hall and spin Nernst responses of Weyl magnons.
The top plots correspond to values of the Dzyaloshinskii-Moriya
interaction strength, D[z] = 0.1J ′ (red), D[z] = 0.2J ′ (blue), and
D[z] = 0.3J ′ (green). The bottom plots correspond to values of tem-
peratures, T = 0.1J (red), T = 0.2J (blue), and T = 0.3J (green).
Here J2 = J1/3, J ′ = J1, μBB = 13J1/2, D stands for D[z], and J

stands for J1.

B. Numerical results

In Fig. 4, we explore the magnon bands by varying the
strength of DMI. We observe that the Weyl points split by
DMI and the splitting in the momentum space is proportional
to the strength of DMI. We further observe annihilation of
Weyl points when the condition 3

√
3D[z] = 2J ′ is satisfied.

Increasing DMI further leads to the formation of the AHE
magnons. In Fig. 5, we plot numerical results for the tem-
perature and the DMI strength dependence of the magnon
Hall and Nernst conductivities, corresponding to Eqs. (7) and
(11) for the model in Fig. 1. Note that this calculation also
accounts for the terms λk in Eq. (3). We observe that the
effect rapidly increases with temperature, which reflects the
exponential dependence on temperature in Eqs. (9) and (12). In
addition, we observe a linear dependence on the DMI strength
D[z], again in agreement with Eqs. (9) and (12). Nevertheless,
we note that there can also be contributions due to the Berry
curvature of other regions in the Brillouin zone in addition to
the contributions of the Weyl points discussed in the previous
section. Note also that Fig. 5 corresponds to the Weyl magnon
phase as in all plots 3

√
3D[z] < 2J ′.

IV. CONCLUSIONS

To conclude, we have constructed a model of Weyl
magnons, which is used to add understanding of the structure
and response functions of the Weyl magnons. Previous mod-
els utilized ferromagnets or antiferromagnets on pyrochlore,
hyperhoneycomb, stacked honeycomb, and kagome lattices
[36–43].

The honeycomb model in Ref. [40] assumes anisotropic
interlayer exchange interaction, which leads to the ∝ σzkz term
in the magnon Hamiltonian. This term is needed together with
the dispersion linear in kx and ky space at the K and K′ points
to fulfill the requirement of the Dirac Hamiltonian in three
dimensions. Our model is different from the one introduced
in Ref. [40], and it is based on stacked ferromagnet and
antiferromagnet honeycomb layers. At zero external magnetic
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field, in general, there might not be a magnetic order due to
frustration of the exchange interactions. The external magnetic
field above the saturation level aligns all spins, and one can dis-
cuss magnons in such a system. Different intralayer exchange
couplings (ferromagnetic/antiferromagnetic) create opposite
magnon chiralities at the K or K′ points. The interlayer
exchange coupling then hybridizes the opposite chiralities of
the magnons at the K and K′ points. Furthermore, the DMI
separates the opposite chiralities in momentum, thus creating
the Weyl points. In the absence of DMI, the model can also
realize surface states with the Dirac spectrum. The model is a
magnon analog of the fermion model given in Ref. [10].

We have used the proposed model to calculate the intrinsic,
due to the Berry curvature, responses of Weyl magnons. In

particular, we have calculated responses to magnetization
dynamics (magnon Hall effect) and temperature gradient
(magnon Nernst effect) driven spin currents. The results are
presented in Eqs. (9) and (12). Using the similarity of our model
to the fermion model given in Ref. [10], we have compared
the differences of the corresponding responses for magnons
(bosons) and fermions [see the discussion after Eq. (9)].
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APPENDIX: CALCULATION OF THE SPIN CURRENT

In the following, we will be using the notations in the main text. We calculate a spin-density current as a response first to the
magnetization dynamics and then to the temperature gradient. The latter is also called the magnon spin Nernst effect.

1. Magnetization dynamics (magnon Hall effect)

We assume the magnetic order is in the z direction. According to Ref. [47], the spin current flowing in the x direction driven
by magnetization dynamics in the x-y plane is

J [M]
x = 1

V

√
3D[R]

J1

∑
μν

∑
k

�(μν)
xy (k)g(Eμν)(∂tm)x, (A1)

where �
(μν)
xy (k) is the Berry curvature and g(ε) = (eβε − 1)−1 is the Bose-Einstein distribution function with β = J1/T . We

assume a simplified model for which the dimensionless spectrum is Eμν = h + μv
√

k2
‖ + (�νz)2, where μ = ± denote the upper

and lower Dirac cones with respect to the energy parameter h, ν = ± are the gapped and ungapped cases, again, with respect to
the energy parameter h, v�±z = � ± 2t | cos(kz)|, and the dimensionless velocity is v = S. Specifically, only the ν = − energy
bands are degenerate at the Weyl points. We assume that momenta are bound such that h 	 v

√
k2
‖ + (�νz)2. This is a spectrum

close to the K or K′ points in the case when λk = 0 and ta = te ≡ t = J ′/J1 for the model discussed in the text. We chose such
parameters to highlight the differences in calculations of the anomalous Hall effect between known fermion Weyl systems and
the present Weyl boson model. The identity

1

eβE+ν − 1
− 1

eβE−ν − 1
=

sinh
(
βv

√
k2
‖ + �2

νz

)
cosh

(
βv

√
k2
‖ + �2

νz

) − cosh(βh)
(A2)

is of use. We now calculate the current due to the Berry curvature in a case when analytic approximation is possible. The Berry
curvature of the model for various bands is calculated as

�(±;ν)
xy (k) = ∓1

2

�νz(
k2
‖ + �2

νz

)3/2 . (A3)

We note that the Berry curvature is the same for both the K and K′ points. The expression defining the current is

2
1

2(2π )2

∑
ν

∫ π/2

−π/2
�νzdkz

∫ �

0
k‖dk‖

1(
k2
‖ + �2

νz

)3/2

sinh
(
βv

√
k2
‖ + �2

νz

)
cosh

(
βv

√
k2
‖ + �2

νz

) − cosh(βh)

= βv

(2π )2

∑
ν

∫ π/2

−π/2
�νzdkz

∫ βv�

βv|�νz|

dy

y2

sinh(y)

cosh(y) − cosh(βh)
(A4)

≈ − 2

cosh(βh)

βv

(2π )2

∑
ν

∫ π/2

−π/2
�νzdkz ln

[
�

|�νz|
]

(A5)

≈ −2e−βh β�

π
ln

[
�

max(�,2t)

]
, (A6)
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where the factor of 2 in the first line is due to equal contributions from the K and K′ points. Here the cutoff is � > μBB. Going
from the second line to third, we assumed that βv|�νz| < 1 and approximated the integral within logarithmic accuracy. Going
from the third to fourth line, we again estimated the integral within logarithmic accuracy and assumed βh 	 1. The current,
recalling � = 3

√
3D[z]/J1, h ≈ μBB/J1, and t ≈ J ′/J1, is then

J [M]
x ≈ e−μBB/T 6

√
3D[z]

πV T
ln

[
�

max(3
√

3D[z],2J ′)

]√
3D[R]

J1
(∂tm)x. (A7)

We stress that the spin current of the magnetic system discussed in the main text will contain contributions from all regions of the
Brillouin zone. In the expression above, we have considered only the contribution from the K and K′ points for the very special
case of λk = 0 and ta = te.

In the � > 2t case, it is instructive to obtain a result for the spin current that is a sum of a number of stacked AHE Chern
magnon layers. This regime happens at small temperatures, βv|�νz| > 1:

βv

2(2π )2

∑
ν

∫ π/2

−π/2
�νzdkz

∫ βv�

βv|�νz|

dy

y2

sinh(y)

cosh(y) − cosh(βh)

≈ − 1

cosh(βh)

βv

2(2π )2
sinh

(
β

3
√

3D[z]

J1

)∑
ν

∫ π/2

−π/2
sgn(�νz)dkz (A8)

= − 1

cosh(βh)

βv

4π
sinh

(
β

3
√

3D[z]

J1

)
. (A9)

The response in this case is then

J [M]
x ≈ 2e− μBB

T
SJ1

2πV T
sinh

(
J1

T

3
√

3D[z]

J1

)√
3D[R]

J1
(∂tm)x. (A10)

We stress that in all of the above calculations of the current we have focused primarily on the low-k contribution to the integrals.
This is the only contribution that distinguishes the Weyl and AHE magnons.

2. Temperature gradient (magnon spin Nernst effect)

Spin current due to the Berry curvature driven by the temperature gradient (∇T )y
T

is (magnon spin Nernst effect)

J [T]
x = 1

V

∑
μν

∑
k

�(μν)
xy (k)c1[g(Eμν)]

(∇T )y
T

. (A11)

To extract the analytic results, we approximate

c1[g(ε)] = [1 + g(ε)] ln [1 + g(ε)] − g(ε) ln [g(ε)] (A12)

= ln [g(ε)] + βε[1 + g(ε)] (A13)

≈ e−βε(1 + βε). (A14)

For our simplified model we approximate

c1[g(E+ν)] − c1[g(E−ν)] ≈ −2β2he−βhv

√
k2
‖ + (�νz)2. (A15)

We apply the same approximations as in the previous section, namely, βh 	 1 and βv|�νz| < 1. We then get for the integral
defining the spin Nernst current the expression

2
1

2(2π )2

∑
ν

∫ π/2

−π/2
mνzdkz

∫ �

0
k‖dk‖

1(
k2
‖ + �2

νz

)3/2 {c1[g(E+ν)] − c1[g(E−ν)]} (A16)

≈ 2e−βh β2h�

2π
ln [βmax(�,2t)]. (A17)

The spin Nernst current then reads

J [T]
x ≈ μBB

T
e− μBB

T
6
√

3D[z]

πV T
ln

[
�

max(3
√

3D[z],2J ′)

]
(∇T )y

T
. (A18)
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In the � > 2t case, at small (βv|�νz| < 1) temperatures we get

J [T]
x ≈ 2

μBB

T
e− μBB

T
SJ1

2πV T
sinh

(
J1

T

3
√

3D[z]

J1

)
(∇T )y

T
. (A19)
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