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ORIGINAL PAPER
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Abstract Efficient implementation of management

programs for invasive species depends on accurate

surveillance for guiding prioritization of surveillance

and control resources in space and time. Occupancy

probabilities can be used to determine where surveil-

lance should occur. Conversely, knowledge of the

certainty of site-level absence is of special interest

in situations where the objective is to completely

remove populations despite substantial risk of re-

invasion. Indeed, the decision to shift from emphasiz-

ing control activities over the full range to emphasiz-

ing reinvasion prevention, surveillance, and response

near the borders, depends on accurate knowledge of

absence across space. We used a dynamic occupancy

model to monitor changes in the distribution of an

invasive species, feral swine (Sus scrofa), based on

camera-trap data collected as part of a management

program from June 2014 to January 2016 in San Diego

County, California. Site usage of feral swine declined

overall. The most informative predictors of site usage

were spatial (latitude and longitude). Site-level non-

usage rates increased over time and in response to

management removal efforts; and site-level usage

rates were heavily impacted by having neighboring

sites that were used. Combining the detection proba-

bility estimated from the occupancy model and Bayes

Theorem, we demonstrated how certainty of local

(site-level) absence can be estimated iteratively in

time in areas with negative surveillance (no detec-

tions) data. Our framework provides a means for using

management-based surveillance data to quantify cer-

tainty of site-level absence of an invasive species,

allowing for adaptive prioritization of surveillance and

control resources. Our approach is flexible for appli-

cation to other species and types of surveillance (e.g.,

track-plates, eDNA).

Keywords Camera trap � Dynamic occupancy �
Elimination � Eradication � Invasive species �
Surveillance � Sus scrofa

Introduction

Wildlife managers are often tasked with protecting

resources in a defined area by reducing invasive

species populations, completely when possible,

despite a substantial risk of reinvasion from neigh-

boring populations (Edge et al. 2011; Myers et al.
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2000; Parkes et al. 2017), which precludes eradication

(Bomford and O’Brien 1995). When the objective of

management is complete removal, but there is reinva-

sion potential, the terminology for invasive species

work ranges from control (Allendorf and Lundquist

2003), area-wide suppression (Myers et al. 2000),

complete removal (Robertson et al. 2016), to extirpa-

tion (Edge et al. 2011; Parkes et al. 2017). Using the

term ‘control’ does not distinguish between objectives

where complete removal is desired versus some other

intensity of removal. Management and spread of

invasive species are similar to that of emerging

infectious diseases (Crowl et al. 2008), for which

there is a clear set of definitions for levels of control in

populations with reinvasion risk (Dowdle 1998).

Adapted for invasive species, these terms are (also

see Fig. 1).

• Sustained control: reduction of invasive species to

a locally acceptable level as a result of control;

continued control measures are required to main-

tain reduced populations.

• Elimination: reduction to zero of the invasive

species in a defined geographical area as a result of

control; continued prevention, surveillance, and

control of reinvaders is needed.

• Eradication: reduction to zero of the invasive

species in a defined geographical area as a result of

control with little or no chance of reinvasion (as

per Bomford and O’Brien 1995).

If natural borders, or funding to create artificial

borders, do not exist then eradication will not be

possible and reduction of invasive species will fall into

either sustained control or elimination categories.

When areas are at the boundaries of new invasions it

may be preferable to focus on elimination instead of

sustained control to prevent future spread of the

invasion. Additionally, in areas with low densities and

low immigration rates elimination may be more

efficient than sustained control. Elimination must be

done through a two-step process: (1) removal of the

population in the target area (maximum control;

Fig. 1b), and (2) ongoing early detection and rapid

response (EDRR) to reinvasions (perpetual EDRR;

Fig. 1b). There are many studies that explore the

challenges with the EDRR step of this process, for

example: how to implement monitoring for negative

surveillance under resource limitations, what are the

cost trade-offs for implementing surveillance (spend

money now) versus risking reinvasions (don’t spend

money now but risk spending money for damage

recovery and control later), and what strategies for

rapid response programs are most effective for the

invasive species of interest (e.g., Rabaglia et al. 2008;

Simpson et al. 2009; Westbrooks 2004). Determining

there is a high probability of elimination in most of the

Fig. 1 Schematic showing the distinction between manage-

ment objections given different reinvasion risks. The darkness

of the arrows represent the population level (dark indicates

higher density, white represents no population). The manage-

ment action is perpetual for objectives A and B. The

management actions change from maximum control to perpet-

ual early detection and rapid response (EDRR) for elimination

objective (B), but management ends when eradication is

successful for the eradication objective (C). The resulting ideal

status is shown by objective in dashed boxes
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study area is critical before addressing other chal-

lenges of EDRR programs.

Elimination programs (Fig. 1b) require an accurate

assessment of the status of the invasive species in the

area, a targeted effort to remove the species, and

continued surveillance to determine success of elim-

ination efforts. Surveillance is a critical element to

effective management regardless of the objectives, but

particularly for successful programs where the objec-

tive is complete removal (Anderson et al. 2013; Lyons

et al. 2008). An inherent challenge with quantifying

the certainty a species is truly eliminated from an area

is knowing when lack of detection indicates true

absence (Anderson et al. 2013). Therefore quantifying

detection probability given a species is present is an

important quantity for evaluating the certainty of

absence (MacKenzie 2005; Ramsey et al. 2009; Regan

et al. 2006; Rout et al. 2014). Detection probabilities

are notoriously low as populations diminish (e.g.,

MacKenzie et al. 2005), requiring more intensive

surveillance to be certain of elimination. If detection is

low, either due to minimal surveillance or poor

allocation of efforts, the target species may have a

chance to persist and rebound (Bomford and O’Brien

1995; Regan et al. 2006). One way to increase

detection at low densities within budget constraints

is to use an adaptive surveillance plan within the larger

study area, where sites (e.g., gridded partitions of the

study area) with high probability of absence are

prioritized for resource allocation compared with sites

with low probability of absence. Specifically, surveil-

lance data can be analyzed to determine the certainty

of site-level absence across the area of interest in order

to guide allocation of surveillance and control

resources as the system changes in time.

There are many methods for surveillance wildlife

populations for example aerial surveys, animal mark-

ing methods, removal sampling, camera traps, track

plots, etc. (Engeman et al. 2013; O’Connell et al.

2010). However, some analytical methods for esti-

mating population metrics (e.g., density, abundance)

and quantifying associated detection rates are not well

suited for low density populations, for example,

removal modeling (Davis et al. 2016) and capture/re-

capture methods (Seber 1982). Other methods such as

occupancy analysis using passive detectors like cam-

era traps are commonly used for low-density species

(MacKenzie et al. 2006). Camera traps can be

particularly useful for managers as cameras give time

and date information which can guide managers in

targeting individuals for removal.

Occupancy analysis is becoming increasingly com-

mon as a management tool for surveillance wildlife

populations (MacKenzie et al. 2009), and is well

suited to camera trap data (Shannon et al. 2014; Thorn

et al. 2009; Tobler et al. 2015). Occupancy is

estimated from presence/absence data while account-

ing for imperfect detection (MacKenzie et al. 2009).

Dynamic occupancy models evaluate patterns in

occupancy status across time, determine factors

related to local extinctions (occupied sites that become

unoccupied), colonizations (unoccupied sites that

become occupied), and detection (probability of

detecting an individual given the site is occupied).

Occupancy analysis assumes that the sites are closed

to changes in the occupancy status during the study

(MacKenzie et al. 2006). When closure assumptions

are relaxed, occupancy can be thought of as the

probability of site ‘usage’ (Kendall et al. 2013). Thus

the definitions in dynamic occupancy change slightly:

local extinctions are used sites becoming unused, local

colonizations are unused sites that become used, and

detection is the probability of detecting a species given

the site was used. The occupancy framework can be

used to determine the conditional probability of non-

site-usage (‘certainty of absence’) given sampling

effort by a species (MacKenzie et al. 2006). Using

occupancy models and probability theory we can

determine the certainty within the larger study area, of

site-level absence from recent negative surveillance

data iteratively, based on the current effort employed

and site-level probability of non-usage, allowing

adaptive prioritization of surveillance resources.

The objectives of our study were to (1) quantify

changes in site (i.e. gridded partitions of the study

area) usage of an invasive species and factors driving

changes over time, (2) evaluate effectiveness of

management actions on site-level usage, (3) identify

priority areas for increased surveillance and removal

while the invasive species is still present in the study

area, and (4) demonstrate how our approach could be

adapted to estimate a spatial surface for the certainty

of site-level absence through time, by iteratively

updating estimates with the most recent surveillance

data, and using results to guide resource allocation

decisions adaptively. It is best to design surveillance

studies to have random sampling, replication, and

large sample sizes. However, this is often not feasible,

Quantifying elimination certainty 879
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especially for surveillance during large-scale elimina-

tion. To address these resource challenges, we applied

an occupancy modeling framework to data collected

by managers tasked with surveillance and controlling

feral swine to demonstrate the utility of this approach

to non-standard sampling designs. Our method could

be easily adapted to determine elimination certainty

for other species using other types of detectors.

Study species and area

Feral swine (Sus scrofa) are an invasive species in

North America whose range has expanded in the

United States (Bevins et al. 2014). Feral swine cause

significant damage to natural resources, agriculture,

private land, and endangered species (Roemer et al.

2002; Seward et al. 2004). In California there are a

combination of free ranging domestic pigs interbred

with Eurasian wild boar that were first released in

Monterey County in 1925 (Hoehne 1994; Mayer and

Brisbin 2008). Populations of feral swine have

increased in California over the last three decades

and they have expanded to 56 of 58 counties (Cali-

fornia Department of Fish and Wildlife report). The

study area comprised of * 4500 km2 in San Diego

County, California (Fig. 2). The area included federal

land (BLM and Forest Service), state and city land

(county parks and city of San Diego Public Utilities),

and private property. Habitat in the study area consists

of chaparral and riparian areas, oak woodland and

grasslands in isolated areas, pasture, and pine forests at

higher elevations. Elevations range from 152 to 1830

m, however feral swine were most often detected at

elevations of 380–1100 m.

Methods

Camera trapping

Camera trapping was conducted in San Diego County,

California from June 2014 thru January 2016. We

placed 285 passive infrared camera traps on properties

throughout the study area (Fig. 2). Camera placements

were not randomly selected, but selected by managers

to optimize spatial coverage in areas of concern for

feral swine presence. To increase probability of

detections, cameras were placed in areas with old

feral swine sign (e.g., rooting, tracks, tree scars), travel

corridors, water sources, suitable habitat, and where

feral swine had been reported in the past. Camera

placement was not limited by road access, if there

were no roads in an area we hiked (on and off trail) to

remote locations to place cameras and bait. We used

Moultrie M880 IR trail cameras placed on trees or

t-posts baited with corn mixed with yeast, dyed sugar

mix, and water. The cameras were initially baited with

approximately 15 pounds of bait and rebaited when

needed. Cameras were motion activated and set to take

3 pictures immediately (no delay). Photographs were

cataloged and the location of the camera, date and time

of the picture, and number and identification of wild

pigs were recorded in a spreadsheet.

Management control activities

In addition to camera trapping for surveillance feral

swine, feral swine were removed in the area as part of

the United States Department of Agriculture’s

(USDA) National Feral Swine Damage Management

Program. Managers conducted removal events in

target areas and in response to land owners requests.

Removals were conducted either by ground shooting

(conducted with dogs or using night vision equipment)

or trapping (baited corral or cage traps, foot snares).

Removals recorded in this study were conducted by

USDA-Animal and Plant Health Inspection Service

(APHIS)-Wildlife Services (WS) personnel who rou-

tinely provide wildlife-control assistance based on the

authority of the Animal Damage Control Program of

1985 in compliance with the National Environmental

Policy Act.

Site-usage analysis

Estimates of home range sizes for feral swine in

California are near 2 km2 for females; male home

ranges can be 50% larger (Baber and Coblentz 1986;

Saunders and McLeod 1999). Using female home

range size as a guide we placed a 2 km2 grid over the

study area for the occupancy framework. We consid-

ered each grid cell a ‘site’. The camera locations were

management based which resulted in some grids cells

having multiple cameras and many grid cells having

no cameras. Since we were interested in site-usage,

and not abundance or density, identification of indi-

vidual feral swine was not necessary, which reduced

880 A. J. Davis et al.
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the time spent examining photos. Detections of feral

swine in the area were generally low; therefore, we

considered each week a single sampling occasion (any

feral swine observed on a camera within 1 week was

counted as a detection). We were interested in changes

in feral swine site-usage across space and time and

thus used months as a primary sampling period (the

population is assumed to be open to changes in site-

usage status among months) and weeks as the

secondary sampling period as per dynamic occu-

pancy-model terminology (MacKenzie et al. 2006).

We used a simple binary value ‘1’ indicating the

species was detected during the sampling occasion and

‘0’ indicating non-detection, regardless of the number

of detections in a sampling period (Otis et al. 1978).

We analyzed the dynamic site-usage data using

Robust Design Occupancy analysis implemented in

programMARK (White and Burnham 1999). We used

the parameterizations that models probability of site-

usage for the first time step (W1) and allows for

modeling time-varying transition parameters on the

local extinction rate (e-probability of a used site

becoming unused) and local colonization (c-probabil-
ity of an unused site becoming used). The site-usage

probability for all remaining time steps can be

calculated by site ‘i’ and time ‘t’ as follows:

wit ¼ wit�1 � 1� eit�1ð Þ þ 1� wit�1ð Þ � cit�1 ð1Þ

These models also allowed detection probability (p) to

vary by time and visit.

The time frame that each camera was active was not

consistent across all cameras due to the accessibility of

certain properties, logistical constraints of manage-

ment actions, and the fact that some cameras were

stolen. To account for the staggered nature and lack of

consistent effort among all cameras we modeled

detection as a function of the number of days cameras

were active during each sampling period in each site

(termed ‘effort’). Additionally, some sites had more

than one camera and therefore the number of camera

nights accounts for the number of active cameras per

site.

Fig. 2 Camera trap locations (black dots) for feral swine surveillance in San Diego County, California. Locations of feral swine

removals are shown as red triangles
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Changes in distribution over time

We tested changes in site-usage across space and time.

To test these effects we compared models with a linear

time trend (by month, ‘‘T’’) and spatial movement

(latitude and longitude, termed ‘North’ and ‘East’ for

simplicity in displaying results) and an interaction

between time and spatial effects for local extinction

and colonization rates. We also tested whether the

probability of local colonization was impacted by

having a neighboring site being used to account for

site-level movement of feral swine (0—no queen’s

neighbors were used at time t, 1—at least one queen’s

neighbors site was used at time t).

Factors affecting distribution

First, we used the most parameterized models on

initial site-usage (wi1 East and North, Eq. 2) and the

local extinction rate (East 9 Trend ? North 9 -

Trend, Eq. 3) to determine which factors were impor-

tant to the local colonization rate (cit including: East,
North, Trend, East 9 Trend, North 9 Trend, and

Neighbor effects, Eq. 4). Using the most parsimonious

model on the colonization rate we compared models

on the local extinction rate (eit). Using the most

parsimonious models on the local extinction and

colonization rates we compared factors on initial site-

usage. We compared models using Akaike informa-

tion criterion corrected for small sample size (AICc,

Burnham and Anderson 2002). We used a DAICc of 2
as the cutoff to indicate substantial differences

between models (Burnham and Anderson 2002).

logit wi1ð Þ ¼ bw0 þ bw1 � Easti þ bw2 � Northi ð2Þ

logit eitð Þ ¼ be0 þ be1 � Easti þ be2 � Northi þ be3 � T
þ be4 � Easti � T þ be5 � Northi � T

ð3Þ

logit citð Þ ¼ bc0 þ bc1 � Easti þ bc2 � Northi þ bc3
� T þ bc4 � Easti � T þ bc5 � Northi � T
þ bc6 � Neighborit

ð4Þ

Effects of removals on site-usage rates

To examine the impact of feral swine removal efforts

on site-usage rates we added the monthly removal

totals by grid cell as a covariate on the probability of

non-usage of sites to the top model. We used a

likelihood-ratio test to compare the relative parsimony

of the top model with and without the removal

covariate.

Certainty in non-site-usage

To estimate detection probability accounting for the

number of active cameras and the number of nights the

cameras were active:

P non�detectionitjusageitð Þ ¼ hit ¼ 1� pitð Þkit ð5Þ

logit pitð Þ ¼ b0 þ b1 � Cit ð6Þ

where pit is the detection probability given the effort in

site ‘i’ at time ‘t’ and kit is the number of visits within a

primary period (i.e., number of weeks in a month, 4 or

5). hit is the probability of non-detection given a site is
occupied. Detection probability (pit) is modeled as a

logit linear function of the number of camera nights

(Cit—sum of the number of active nights for each

camera in the site) in a given site ‘i’ at time ‘t’.

An additional objective of this study was to

determine areas in our study that had lower certainty

of not being used during time ‘t’ (referred to as

absence) to highlight areas where increased manage-

ment effort would be beneficial. We used site-usage

information from our analyses and the sampling effort

to determine the certainty of absence (MacKenzie

et al. 2006).

P absenceitjno detectionsitð Þ

¼ 1�Witð Þ
Wit � 1� pitð Þkitþ 1�Witð Þ

ð7Þ

where Wit is the probability of site-usage at site ‘i’ at

the last time step, and pit and kit are defined as above.

Certainty in elimination

Next we demonstrated how our approach could be

used to predict the certainty of site-level absence

across space in our study area. Because elimination

certainty is only relevant when a species is not
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detected for some period of time (not the case in our

data), we simulated a camera sampling design similar

to our study area during the last month of observations

but with negative surveillance data during the 5

months following the end of our study. Based on the

monthly negative surveillance data during the last

5 months, we then projected the certainty in site-level

absence in the study area given no feral swine were

detected and using the detection probability from

times when feral swine were present. We used the top

model determined from our analysis to predict elim-

ination certainty.

Costs

We recorded the hours worked for both camera

surveillance and removal activities for the duration

of the study. We also recorded the numbers of cameras

and traps used in our study in order to give calculate

average costs for similar work.

Results

During the study there were 933 total photographs of

feral swine taken (Fig. 3), which resulted in 351

sampling events with detections (pooled by week and

grid cell). The total amount of effort employed for the

camera trapping was 54,420 camera nights (sum of the

total number of nights that all cameras were active).

There were 48 feral swine removed as a result of

trapping or ground shooting (locations shown in

Fig. 2).

The most parsimonious model on colonization rates

included both spatial direction parameters (East and

North) as well as a neighbor effect (Tables 1 and S1).

Colonization rates were higher in the south than in the

north and were higher in the west than the east

(Tables 1 and S1). Colonization rates were 4.6 times

higher (95% CI 4.1–5.1 times higher) for sites that did

not have a neighboring site that was used compared to

those that did have a neighboring site that was used.

The most parsimonious model on the local extinction

rate included an east effect added with a time trend

(Tables 1 and S1). Local extinction rates were higher

in the west than in the east (Table 1), and local

extinction rates increased across months from 0.16

(SE 0.05) at the start of the study to 0.63 (SE 0.12) at

the end of the study (Table 1).

Site-usage probabilities were higher in the south

than the north, generally. Overall site-usage in San

Diego County was fairly low at the beginning of our

study (W
_

= 0.13, SE 0.13) and was reduced by 82%

by the end of the study (W
_

= 0.024, SE 0.007; Fig. 4;

variance of estimates bymonth are shown in Appendix

Fig S2). We examined the impact of removal efforts

on local extinction rates by adding removal to the top

model as a covariate on e. The likelihood ratio test did
not support addition of the removal effect as a factor

influencing overall occupancy (p value for the L-R test

0.51). However, the parameter estimate for the

removal effect did suggest that removal events

Fig. 3 Number of sites with active cameras over time (solid

line) and the number of detections of feral swine across time

(dashed line)

Table 1 Parameter estimates and standard error for the top

model on dynamic occupancy of feral swine in San Diego

County, California

Parameter Estimate SE

W1 Intercept 16.35 9.42

W1 North - 0.90 0.54

W1 East - 0.67 0.32

e Intercept 1.17 0.91

e East - 0.29 0.08

e Trend 0.12 0.04

c Intercept - 1.97 0.98

c Neighbor 1.58 0.51

c East - 0.14 0.06

c North - 0.07 0.04

p Intercept - 0.85 0.14

p Effort 0.03 0.01
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increased local extinction rates (i.e. one additional

removal results in an increase of 0.03 extinction rate

SE 0.04), resulting in a decline in overall site-usage.

We highlighted spatial areas that needed more

surveillance coverage by calculating the probability of

not detecting feral swine if the site was used through-

out the entire study (Fig. 5). There were larger areas

with gaps in coverage in the north than in the south.

We estimated the certainty of site-level absence during

the last month of the study to highlight areas where

increased surveillance should be focused and removal

efforts should be concentrated (Fig. 6). Areas in the

south and near previous detections had lower certain-

ties of absence. The northern sites, despite having

lower coverage, had higher certainties of not being

used based on the dynamics of site-usage that we

observed.

As would be expected, our approach shows

increased certainty in elimination as more negative

Fig. 4 Site-usage probability of feral swine by season in San Diego County, California, lighter shades indicate higher site-usage

probabilities

Fig. 5 Variation in effort across the study area. Probability of

detecting feral swine if the site was used based on the number of

active cameras by grid cell in San Diego County, California June

2014–January 2016
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surveillance data were collected (results for 1, 3, and

5 months out are shown in Fig. 7), being lowest in

sites with no surveillance effort. However, some sites

with no surveillance effort show non-zero certainties

because our model accounts for neighbor effects (i.e.,

sites that are adjacent to sites with high rates of

negative surveillance are more likely to not have pigs).

In our example, after 5 months of negative surveil-

lance in the entire study area, the lowest site-level

certainty of absence (where no surveillance was

conducted) was 94.3%, demonstrating that 5 months

may be long enough to assume maximum control has

been effective and newly observed pigs are likely to be

reinvades.

We recorded a total of 9500 h of labor for the

camera surveillance portion of the study. This includes

time spent visiting sites, baiting cameras, setting up

cameras, monitoring cameras, and reviewing photos

Fig. 6 a Probability of feral swine site-usage at the last time

step in our study (January 2016) in San Diego County, CA.

b Probability of detecting feral swine based on the number of

active cameras per site at the last time step in our study (January

2016). c Probability of site-level absence of feral swine given

they were not detected and given the sampling effort involved.

In areas where no surveillance was conducted the probability of

site-level absence is simply 1-probability of site-usage. White

sites indicate areas where there were detections of feral swine in

the last time step

Fig. 7 The left plot is an average of the site-usage probability

during the entire study (Jun 2014–Jan 2016). The camera

locations are shown with no detections in blue and with feral

swine detections in red. The next three plots are the certainty of

site-level absence by space and time accounting for surveillance

effort when no feral swine have been detected for February,

April, and June 2016 despite ongoing surveillance
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from cameras for wild pig activity. We recorded

1702 h of labor for removal work. This work includes

setting up traps, baiting traps, checking traps, eutha-

nizing wild pigs caught in traps, and hunting for wild

pigs. We used a total of 285 cameras and 12 traps. The

upfront costs per camera were $220 and the average

labor per camera during the study was 33 h. The

upfront costs per trap were $635 and the average labor

per trap was 141 h per trap.

Discussion

For programs in which the goal is to eliminate an

invasive species from a target area when there is risk of

reinvasion, important questions are: ‘‘where are we

most likely to find the species?’’, and ‘‘what is the

probability it is absent at specific sites given our

surveillance effort?’’ Answers to these questions can

improve efficiency of resource distribution by provid-

ing guidance for how to optimize resource allocation

in space and time. Using Bayes theorem we calculated

the conditional probability of site-level absence within

1 month given effort, detection, and site-usage

(MacKenzie et al. 2006). We applied this method to

our management-based surveillance design to demon-

strate how conditional probability of site-level

absence can be estimated temporally using commonly

collected management data. We determined that in

areas with a realistic number of cameras (\ 5) the

certainty of site-level absence can be very high

(* 95%) once no detections occur for 5 months.

Additionally, in areas where there were no cameras,

we were more confident that there was site-level

absence in the northern sites compared to the southern

sites over the course of our study. Therefore, even

though the sampling intensity in the north is much

lower than in the south (fewer grid cells with cameras),

it would be more beneficial to place new cameras in

sites in the south to help address the greater uncer-

tainty in the elimination in the south than in the north.

There are several studies that give guidance as to

the optimal study design for occupancy analyses

depending on the species (e.g., MacKenzie and Royle

2005; Shannon et al. 2014). It has been shown that

effort allocation (e.g., the number of sites monitored

and the number of visits to each site) should be

modified to fit the particular scenario and questions

being asked. Specifically, the estimated site usage and

detection rates influence how sampling should be

allocated. For common species with high detection,

the number of visits should be increased, while for

species with low site usage and low detection, both the

number of sites sampled and the number of visits

should be increased (MacKenzie and Royle 2005;

Shannon et al. 2014). For situations similar to our

study (low site usage and moderate detection), Shan-

non et al. (2014) recommend having a moderate

number of sites sampled but increase the number of

sampling occasions. Based on our sampling approach

(examining weekly detections within a month) we

have a fixed number of repeated samples possible by

primary period (month). MacKenzie and Royle (2005)

suggest that based on the number of visits (weeks in

our model) for the site usage we observed (0.10), and

the detection rate we observed (0.30), we should have

5 visits per primary period, which is encouraging as

4–5 weeks per month was the number of repeated

samples.

An important consideration for our and any elim-

ination program is that surveillance must be ongoing

throughout the maximum control and EDRR phases.

For example, it is inappropriate to assume that

predictions of absence certainty that are based on data

collected during the final stages of maximum control

would apply in the long-term. Rather our framework

would need to be refit iteratively with the most current

surveillance data because animals are mobile such that

reinvasion risk at particular sites will change and

absence cannot be assumed as a permanent state.

However, for elimination programs, being able to

assess the certainty with which an area is devoid of a

species is especially important because there are two

phases of management: maximum control, where

surveillance and control occur throughout the man-

aged area, and EDRR where surveillance and response

are focused on areas with high-reinvasion risk

(Fig. 1b). During the maximum control phase, the

goal of surveillance is to highlight areas where

removal work should be concentrated. Once the

population reaches low-density, control becomes less

efficient and there is uncertainty when to stop search-

ing for individuals throughout the study area. Our

approach can be used to determine when this switch

from area-wide surveillance to surveillance focused

on reinvasions should be made. For any particular

system, a threshold of elimination certainty in the

managed area (for example 95%) can be set for

886 A. J. Davis et al.

123



determining the transition from phase 1 to phase 2

surveillance. In our system, it appeared that a 95%

threshold could be achieved after 5 months of nega-

tive surveillance data, suggesting that surveillance to

declare elimination need not be too long if in fact no

individuals are observed. In addition, cost data could

be included into the decision for choosing which

threshold of certainty is appropriate.

There are several studies that have examined the

probability of detecting differences in certainty in

absence as it relates to survey effort, detection, and

occupancy probabilities (Ellis et al. 2014; Guillera-

Arroita and Lahoz-Monfort 2012). Increasing the

detection (p) relates to greater power to detect changes

in site-usage status compared to increasing the number

of sites visited or the number of visits in some cases

(Ellis et al. 2014; Guillera-Arroita and Lahoz-Monfort

2012). In our situation, a way to increase detection

probability was to increase the number of cameras per

grid cell. Certainty in elimination was more strongly

influenced by an increase in detection than extending

the time spent surveillance (Fig. 7).

Estimating a spatial surface of absence certainty

can be particularly useful in systems where reinvasion

risk is substantial. When analyses show high certainty

of absence over much of the study area, the program

can shift resources to focus on EDRR (Rabaglia et al.

2008; Westbrooks 2004) strategies rather than study-

wide control campaigns. Passive camera traps are a

commonly used, low-cost method to surveillance

wildlife populations, particularly when the only

response of interest is presence/absence (no individual

identification is needed). Our results show the upfront

costs and labor required per camera are considerably

less than is needed for trapping work. This type of

work could be used to optimize the camera design

needed to conduct initial removal and reinvasion

control most efficiently.

Intensive feral swine control has been conducted in

San Diego County, California by managers since

2014. Correspondingly, overall site usage of feral

swine has declined from June 2014 to January 2016.

Although our results indicate that removal events were

related to increases in local extinction rates (and thus

declines in overall site usage), the removal events

were not as strongly tied to extinction rates as other

factors. One likely reason for the weak correspon-

dence is that the number of feral swine removed per

event was small (�x ¼ 4:5 individuals) and thus

individual removals may not have corresponded with

a change in site-usage status (e.g., if one individual

remained at a site after a removal event the site usage

will not have changed). Additionally, other control

actions, that were unaccounted for, may have been

conducted in the area (e.g., ground shooting by other

agencies, hunters, or land owners) and impacted site

usage. This analytical framework is focused on

evaluating patterns of site usage, to examine the

efficacy of removal methods a different analysis

focused on impact of removals should be used (e.g.,

a method that examines population size change and

not site usage). However, when densities are low the

results of an analysis targeted at estimating the

effectiveness of removal actions may be too variable

to produce strong relationships.

One of the objectives of this study was to determine

the spatial distribution of feral swine on the landscape

and to determine if the site-usage patterns were

changing over time. By examining directional changes

in site usage through time, we determined that the

range of feral swine has contracted to the southern-

central portion of the study site during the 20-month

surveillance time (Fig. 4). This decline in the study

area could be due to a range-wide decline or to

movement south and out of the study area. Either

option is beneficial for our study area, however, if feral

swine are simply moving out of the study area into

other areas this may suggest that immigration back to

our study area is possible. Extending the surveillance

to areas surrounding the study area particularly in the

south and implementing an EDRR program in that

area could help maintain elimination status in the rest

of the target area (Adams et al. 2014; Westbrooks

2004). Additionally, it will be important to continually

update the model selection process to identify current

factors that influence the dynamic occupancy process

as new information becomes available and not assume

our results (e.g., a southerly movement of occupied

sites) will continue, as this system is dynamic and

subject to change as outside influences change.

Evaluation of changes in feral swine populations in

this study was possible due to surveillance by camera

traps. Camera traps are commonly used by wildlife

managers and land owners to monitor wildlife on their

properties for guiding controls (O’Connell et al. 2010).

It would be valuable to use this regularly collected

data to answer questions about population distribution

changes, even when the placement of cameras is not
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set up following a statistical study design. Our results

demonstrated the ability of management-based cam-

era-trap data to monitor and quantify changes in site

usage across time and test the impacts of management

actions. The ability to make inference to sites not

sampled is dependent on the representativeness of the

sites that were sampled to those that were not. In this

situation, sites that were sampled are more likely to be

have feral swine presence than sites that were not

sampled as they are targeted by managers for that

purpose. Therefore, the site-usage estimates may be

biased high in the non-sampled sites compared to

those that were sampled. For management applica-

tions this direction of bias may be preferable as

minimizing the false negative error (claiming feral

swine are absent when they are not) is a larger problem

than false positive error rates (claiming presence when

they are absent). Claiming feral swine are absent when

they are not is a larger issue because it could lead to a

decline in removal and management efforts in the area

which could allow the population to rebound and

expand, causing more damage than the expense of

continued surveillance if the error were the other way.

If the bias were the other way and camera placement

was less likely to detect wild pigs than we would be

underestimating the occupancy of wild pigs which

would be a considerable problem. Previous work on

wild pigs has shown that baiting usually attracts pigs

within a* 1.7 km radius (Davis et al. 2017) and up to

10 km (N. Snow unpublished data). Therefore, it is

likely that pigs within the 2 km 9 2 km sites would

be detected if present. If concerns about this bias exist

it would be worthwhile to place cameras randomly in

some areas in order to test this assumption. However,

we do not believe that is a problem in our area for

reasons we have stated.

It would also be beneficial to use study design and

occupancy theory to provide guidance on future

surveillance and provide interpretations for surveil-

lance results. The camera placements in our study

allowed us to monitor* 29% of the sites (grid cells).

We used probability theory to determine the condi-

tional probability of not-detecting feral swine given

they were present (Fig. 5) to demonstrate areas that

have poor coverage (MacKenzie et al. 2006, 2009).

However, optimal camera allocation is dependent not

only on sampling effort but also on the probability of

site usage (MacKenzie et al. 2006). Here we examined

site usage as it relates to spatial factors (latitude,

longitude, and neighbor effects). Our study area was

fairly homogeneous and we had relatively few areas

with detections and thus we did not examine habitat

effects directly. However, a potential avenue for

similar studies to increase the precision around

estimates is to include habitat covariates that relate

to site usage. Currently, we are able to use the

probability of site-level absence at the last time step to

provide recommendations as to where future surveil-

lance and removal efforts should be concentrated.

Such guidance allows for more efficient use of limited

surveillance resources (Lavoie et al. 2007).

Conclusions

Passive camera trapping can be used to assess

population distribution changes of mammals, like

feral swine. Analyzing camera data using site-usage

analysis which accounts for sampling design, allows

for: (1) determining changes in species distribution

over space and time, (2) assessing effects of manage-

ment in low-density populations, and (3) prioritizing

areas for increased surveillance or targeted removal

efforts. If the primary objective is to assess changes

across time than increasing the detection probability of

the species of interest will have the greatest impact,

and we found that can be achieved by increasing the

number of cameras per grid cell. If managers are

interested in certainty of site-level absence, increased

effort should be concentrated in areas with higher

probability of site-usage. By analyzing detection data

in an occupancy modeling framework, gaps in the

surveillance coverage can be highlighted and adaptive

surveillance designs that improve surveillance effec-

tiveness over space and time can be achieved. Our

approach can be especially useful for deciding when

elimination has been achieved, such that resources

may be focused on prevention, surveillance, and

response to reinvasions.
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Fig S1. Site usage probability of feral swine in San Diego County, CA from June 2014 to Jan 

2016 shown by month with active cameras shown both with detections (red) and without 

detections  (blue). 



 

Fig S2. Variance of site usage probability of feral swine in San Diego County, CA from June 

2014 to Jan 2016. 

  



 

Table S1. Model results for dynamic occupancy of feral swine in San Diego County, California 

from July 2014 to January 2016. Initial colonization (Ψ1), local extinction (ε), and colonization 

(γ) are modeled with respect to directional elements and linear time trend (T).  Models are 

ranked using Akaike information criterion corrected for small sample size (AICc). The 

difference (Δ) from the model with the lowest AICc value are shown (lowest AICc = 1448.02). 

The number of parameters (k) and deviance are shown.  

 

Model ΔAICc AICc w k Deviance 

Ψ1(East+North)ε(East+T)γ(Neib+East+North)p(effort) 0.00 0.28 12 1423.80 

Ψ1(East+North)γ(Neib+East+North)ε(East*T)p(effort) 1.17 0.16 13 1422.94 

Ψ1(East+North)ε(East+North+T)γ(Neib+East+North)p(effort) 1.43 0.14 13 1423.19 

Ψ1(East+North)ε(East+T+Removal)γ(Neib+East+North)p(effort) 1.61 0.12 13 1423.37 

Ψ1(East+North)γ(Neib+East+North)ε(East*T+North)p(effort) 2.30 0.09 14 1422.03 

Ψ1(East+North)ε(East*T+North*T)γ(Neib+East+North)p(effort) 3.80 0.04 15 1421.49 

Ψ1(East+North)ε(East*T+North*T)γ(Neib+East)p(effort) 4.10 0.04 14 1423.82 

Ψ1(East+North)ε(East*T+North*T)γ(Neib)p(effort) 4.26 0.03 13 1426.02 

Ψ1(East+North)ε(East*T+North*T)γ(Neib+East+T+North)p(effort) 5.58 0.02 16 1421.22 

Ψ1(East+North)ε(East*T+North*T)γ(Neib+T)p(effort) 5.92 0.01 14 1425.65 

Ψ1(East+North)ε(East*T+North*T)γ(East+T+Neib)p(effort) 5.94 0.01 15 1423.62 

Ψ1(East+North)ε(East*T+North*T)γ(Neib+North)p(effort) 6.19 0.01 14 1425.92 

Ψ1(East+North)ε(North+T)γ(Neib+East+North)p(effort) 6.27 0.01 12 1430.07 

Ψ1(East+North)ε(East*T+North*T)γ(Neib+North*T+East)p(effort) 7.57 0.01 17 1421.16 

Ψ1(East+North)ε(East*T+North*T)γ(Neib+East*T+North)p(effort) 7.58 0.01 17 1421.18 



Ψ1(East+North)ε(East*T+North*T)γ(Neib+North+T)p(effort) 7.82 0.01 15 1425.50 

Ψ1(East+North)ε(East*T+North*T)γ(Neib+East*T)p(effort) 7.94 0.01 16 1423.58 

Ψ1(East+North)ε(East*T+North*T)γ(Neib+East*T+North*T)p(effort) 9.61 0.00 18 1421.16 

Ψ1(East+North)ε(East*T+North*T)γ(Neib+North*T)p(effort) 9.86 0.00 16 1425.50 

Ψ1(North)ε(East+North)γ(Neib+East+North)p(effort) 9.98 0.00 11 1435.82 

Ψ1(.)ε(East+North)γ(Neib+East+North)p(effort) 10.96 0.00 10 1438.83 

Ψ1(East)ε(East+North)γ(Neib+East+North)p(effort) 11.52 0.00 11 1437.35 

Ψ1(East+North)ε(East*T+North*T)γ(East+North)p(effort) 11.53 0.00 14 1431.25 

Ψ1(East+North)ε(T)γ(Neib+East+North)p(effort) 12.21 0.00 11 1438.05 

Ψ1(East+North)ε(East*T+North*T)γ(East+North+T)p(effort) 13.57 0.00 15 1431.25 

Ψ1(East+North)ε(East*T+North*T)γ(East+North*T)p(effort) 15.31 0.00 16 1430.95 

Ψ1(East+North)ε(East*T+North*T)γ(East*T+North)p(effort) 15.56 0.00 16 1431.20 

Ψ1(East+North)ε(East*T+North*T)γ(North)p(effort) 16.59 0.00 13 1438.36 

Ψ1(East+North)ε(East*T+North*T)γ(East)p(effort) 18.33 0.00 13 1440.09 

Ψ1(East+North)ε(East*T+North*T)γ(North+T)p(effort) 18.57 0.00 14 1438.29 

Ψ1(East+North)ε(East*T+North*T)γ(.)p(effort) 19.57 0.00 12 1443.38 

Ψ1(East+North)ε(East*T+North*T)γ(North*T)p(effort) 20.16 0.00 15 1437.85 

Ψ1(East+North)ε(East*T+North*T)γ(East+T)p(effort) 20.31 0.00 14 1440.04 

Ψ1(East+North)ε(.)γ(Neib+East+North)p(effort) 20.42 0.00 10 1448.28 

Ψ1(East+North)ε(East*T+North*T)γ(T)p(effort) 21.61 0.00 13 1443.37 

Ψ1(East+North)ε(East*T+North*T)γ(East*T)p(effort) 24.84 0.00 15 1442.53 
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