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Historically, pass rates in undergraduate precalculus courses have been dismally
low and the teaching practices and knowledge of university instructors have been
understudied. To help improve teaching effectiveness and student outcomes in
undergraduate precalculus courses, I have studied the cognitive demand of enacted
examples. The purpose of this dissertation is to examine the pedagogical work and
mathematical knowledge entailed in the enactment of high cognitive demand examples in
a three-part study. To answer my research questions, I conducted classroom observations
as well as pre- and post-observation interviews with seven graduate student instructors at
a large public R1 university in the Midwest and used grounded theory to analyze my data.
In the first component of the dissertation, I examine what high cognitive demand
examples look like and identify three roles that instructors take on when enacting high
cognitive demand examples: modeling, facilitating, and monitoring. In the second
component, I decomposed the work of enacting high cognitive demand examples into
five teaching tasks: attending to the mathematical point, making connections, providing
clear verbal explanations, articulating cognitive processes, and supporting student
understanding. Finally, in the third component, I examined the mathematical knowledge
for teaching entailed in enacting examples and found that there are five domains of

knowledge that support the maintenance of cognitive demand: knowledge of connections,
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representations, unpacking, students, and sequencing. These findings suggest ways in
which we can help novice instructors enact high cognitive demand examples by focusing

on the work and knowledge entailed in maintaining the cognitive demand.
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CHAPTER 1: INTRODUCTION

I was teaching college algebra for the first time as the primary instructor.
Thankfully, my department offered lots of teaching support for graduate students.
College algebra was a coordinated course, which meant that I was provided with lesson
guides, online homework assignments that were self-graded, and exams written by the
course convener. In addition, I was given a course release during my first semester
(which means I taught only one section instead of two) in return for taking a class titled
Teaching and Learning Mathematics at the Post-Secondary Level (which I will refer to as
the pedagogy course). Each week we met to discuss educational research, the ways in
which students learn, and the experiences we were having in our individual classrooms.
Most of the graduate instructors teaching college algebra were in this course, so it also
provided me with a community to discuss and share my teaching experiences with. Yet,
with all of these supports, there was much I had to learn about teaching.

The college algebra students had just finished taking their second exam, which
covered quadratic functions. In the pedagogy course that night, we discussed the exam.

One problem in particular was stuck on my mind. The problem started off by giving a
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quadratic equation in standard form that modeled the height, as a function of time, of a
bottle rocket that was being launched into the air. Part (a) asked students, “For how long
is the rocket in the air?” Part (b) asked, “What is the maximum height the rocket reaches
during its flight?” Finally, Part (c) asked, “How long has the rocket been in the air when
it reaches its maximum height?” For each part, students were instructed to “show your
work using algebraic methods; just typing the function into a calculator is not sufficient
work.”

Thinking critically about this problem made me realize how complex it was. First,
students have to recognize that to find how long the rocket is in the air, they need to
figure out when the height is equal to zero. To do this algebraically, they next need to
recognize that they should set the equation equal to zero and solve for 7 by factoring.
Finally, they need to interpret which zero tells them how long they are in the air for. In
addition, to find the maximum height and the time it takes to reach the maximum height,
they need to realize those numbers are associated with the vertex. Next, they need to
identify an algebraic method that will help them find the vertex. Students could use
several methods, such as finding the midpoint between the zeros, using the completing
the square algorithm, or equating coefficients in standard and vertex form. In class, I had
focused on asking my students to just memorize the completing the square algorithm, but
I had also mentioned that they could use the zeros and some students were familiar with
the idea of equating coefficients. While all of these methods are valid, and completing the
square was the method we preferred students know how to use, an astute student might
realize that since they had already found the zeros in Part (a), the midpoint method was

actually the most efficient.
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Recognizing all of the complexity involved in this problem made me question the
way in which I had taught the material. Yes, I had taught my students the completing the
square algorithm, but had I focused too much on memorizing the steps and not enough on
comprehending when it should be used? Since many of the problems that I used during
class explicitly asked students to find the vertex of a quadratic, I had not given them the
opportunity to learn how to interpret a problem as implicitly asking this same question.
While I mentioned the midpoint method in passing, did I spend time helping them
recognize when one method might be better than another? And how exactly do I teach
my students to understand a procedure, recognize when it’s appropriate to use, and select
the procedure that best fits the task? I even wondered, “How did / learn to do those
things?”” and realized that I had no idea.

While this may be a personal anecdote, talking to other instructors had made me
realize that it is not unique to my experience. Often, as instructors, what we teach is more
complex than it first appears and is something that we mastered so long ago that we are
divorced from the experience of learning it for the first time. In addition, learning a topic
for oneself does not qualify one to teach it. Even advanced mathematics courses, which I
had taken plenty of, did not prepare me for teaching what I previously considered a
“simple” topic. So what else did I need to know and do to teach my students more

effectively?

Defining the Problem

Traditionally, mathematics departments have operated under the assumption that

earning a Ph.D. in mathematics and with experience teaching is what qualifies one to
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become a university professor (Committee on the Undergraduate Program in
Mathematics, 1967). Yet many mathematics departments have struggled with low pass
rates in first-year courses and failed to both attract and retain students in their degree
programs (Bressoud, Mesa, & Rasmussen, 2015). While university mathematics
professors are often considered content experts and may be provided with professional
development opportunities concentrated on teaching, these efforts alone seem to not be
enough. To help improve student success rates and teaching quality in first-year
undergraduate mathematics courses, my dissertation focuses on identifying the
knowledge and practices that help support high quality teaching in precalculus.
Mathematician and educator Hyman Bass pointed out that “knowing something
for oneself or for communication to an expert colleague is not the same as knowing it for
explanation to a student” (p. 19). Seemingly in contrast to this view, studies in the late
twentieth-century found that content knowledge is not a predictor of teaching quality and
student outcomes (Begle, 1972; Greenwald, Hedges, & Laine, 1996; Hanushek, 1981,
1996). In response to this finding, one could assume that perhaps the missing piece is
pedagogical training. However, Lee Shulman proposed in 1986 that teachers should
know more than just the content they are expected to teach and general pedagogical
knowledge. Rather, Shulman identified the importance of pedagogical content
knowledge, “which goes beyond knowledge of subject matter per se to the dimension of
subject matter knowledge for teaching” (p. 9). The following year, Shulman called for
researchers and practitioners to pay more attention to professional knowledge of

teaching, including pedagogical content knowledge. Since then, researchers have found
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supporting evidence for Shulman’s claim that there is content knowledge that matters for
teaching (Baumert et al., 2010; Hill, Rowan, & Ball, 2005).

However, to date, the majority of the work on content knowledge for teaching
mathematics has been conducted at the K-12 level. While universities have begun
providing professional development on teaching (Ellis, 2015), there is still much that we
need to learn about how to best prepare university professors for their responsibilities as
teachers. Currently, professors have a strong grasp of general content knowledge, which
is “the knowledge, understanding, skill, and disposition that are to be learned by [the
students in their courses]” (Shulman, 1987, p. 9). However, there is still a need to better
understand and identify content knowledge for feaching mathematics at the

undergraduate level.

Current Status of the Field

Following the recommendation of Shulman (1987), educational researchers began
looking into professional knowledge for teaching mathematics (e.g., Ball, Thames, &
Phelps, 2008; Baumert & Kunter, 2013; McCrory, Floden, Ferrini-Mundy, Reckase, &
Senk, 2012; Rowland, Huckstep, & Thwaites, 2005). Ball and Bass (2003) introduced the
term mathematical knowledge for teaching (MKT), which Ball and her colleagues
defined as the “mathematical knowledge ‘entailed by teaching’—in other words,
mathematical knowledge needed to perform the recurrent tasks of teaching mathematics
to students” (Ball et al., 2008, p. 395) (p. 395).

Although previous researchers had found that content knowledge was not a

predictor of teaching effectiveness (Begle, 1972; Greenwald et al., 1996; Hanushek,



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 23

1981, 1996), MKT researchers found that there was content knowledge that mattered for
teaching and that a focus on this content benefited teaching and learning (Baumert et al.,
2010; Hill et al., 2005). A natural question that arises given their findings is “How can
content knowledge both matter and not matter in teaching?”” The difference lies in the
content knowledge being focused upon. Begle (1979) had shown that there was little
relationship between student outcomes and the number of mathematics courses the
teacher had taken past calculus. However, Hill, Rowan and Ball (2005) showed that
elementary “teacher's content knowledge for teaching mathematics was a significant
predictor of student gains” (emphasis added, p. 396).

To illustrate what I mean by mathematical knowledge for teaching, we can
examine items that were developed by researchers to assess MKT. In their study of
content knowledge for teaching at the elementary level, Hill et al. (2005) found that the
task of appraising non-standard solution strategies to see if they are generalizable as
mathematical knowledge that is specific to the work of teaching.

To respond to this situation, teachers must draw on mathematical knowledge:

inspecting the steps shown in each example to determine what was done, gauging

whether or not this constitutes a "method," and, if so, determining whether it
makes sense and whether it works in general. Appraising nonstandard solution
methods is not a common task for adults who do not teach. Yet, this task is
entirely mathematical, not pedagogical; to make sound pedagogical decisions,
teachers must be able to size up and evaluate the mathematics of these

alternatives--often swiftly and on the spot. (p. 388)
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In another study of content knowledge for teaching at the secondary level,
Baumert et al. (2010) found that the task of identifying parallelograms for which students
might fail to apply the standard area formula as mathematical knowledge that is specific
to the work of teaching. While this task requires general content knowledge (i.e.,
knowing the area of a parallelogram), it also requires mathematical knowledge that is
specific to the work of teaching (i.e., knowing common student misconceptions or
potential pitfalls). In both of these examples, the mathematical knowledge that is specific
to the work of teaching is not usually taught in general undergraduate mathematics
courses. Therefore, using the number of mathematics courses taken beyond calculus as a
measure for content knowledge is not the same as measuring content knowledge for

teaching.

Identifying the Gap

While research on MKT has been conducted at the K-12 level (Krauss, Baumert,
& Blum, 2008; McCrory et al., 2012), there still are relatively few studies that focus on
MKT at the undergraduate level. Speer, Smith, and Horvath (2010) conducted a literature
review to search for empirical research on the practices of postsecondary teachers of
mathematics. While some may argue that we can just use research conducted at the K-12
level to study postsecondary teaching, the authors pointed out that “there are important
differences between college and pre-college teachers and teaching” (p. 100), such as level
and depth of content and pedagogy knowledge. In another article, Speer, King, and
Howell (2015) focused on the danger of assuming that research on MKT at the K-12

level can be extended to MKT at the postsecondary level. The authors claimed that
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relatively little attention has been paid to the ways in which existing frameworks and
theories for MKT may or may not apply to teachers at the secondary and postsecondary
level. (p. 106). Therefore, the purpose of my dissertation is to study MKT at the
undergraduate level from the perspective of practice, instead of relying on exiting
frameworks or theories.

However, studying MKT at the undergraduate level holistically would be beyond
the scope of a dissertation project, so I chose to focus on the knowledge and work
entailed in enacting high cognitive demand examples. While some research has been
done on the knowledge and work entailed in enacting high cognitive demand tasks
(Charalambous, 2010; Henningsen & Stein, 1997), these studies focus primarily on the
mathematical tasks that students engage in during class, which I consider to be different
from the examples that instructors choose to use during class. In particular, I
conceptualize examples as a subset of tasks that are done in a whole-class setting for
illustrative purposes. However, since research has identified that giving students
opportunities to engage with high cognitive demand tasks is related to teaching quality
(Stein, Remillard, & Smith, 2007), then it is reasonable to assume that there might be a

similar relationship between teaching quality and the cognitive demand of examples.

Study Overview

The purpose of this dissertation is to investigate the pedagogical work and
mathematical knowledge entailed in enacting high cognitive demand examples, which I
will define later. While there are various ways one could go about researching

pedagogical work and mathematical knowledge for teaching at the undergraduate level, I
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chose to study both aspects from the perspective of practice. Speer et al. (2015) called for
researchers of undergraduate mathematics teaching to approach their work “through the
same kinds of careful study of mathematical demands of teaching that sparked the early
work on mathematical knowledge for teaching (Ball & Bass 2000b)” (p. 119). Ball and
Bass (2000a) chose to study mathematical knowledge for teaching from the perspective
of practice instead of looking at the content, curriculum, or standards. To this end, Ball et
al. (2008) advocated for asking the following two questions: “What are the recurrent
tasks and problems of teaching mathematics?”” and “What mathematical knowledge,
skills, and sensibilities are required to manage these tasks?” (p. 395). Instead of studying
recurrent tasks at large, my study focuses on the work and knowledge entailed in enacting
examples in the classroom.

To do this, I observed undergraduate precalculus courses, conducted video
stimulated-recall interviews with instructors, and analyzed my data using the lens of
cognitive demand. The participants I recruited for my study were experienced graduate
student precalculus instructors at a large Midwestern university. I also conducted a pre-
observation interview with the instructor to talk about the examples in their intended
lesson plan. During the observation, I recorded the enacted examples and took detailed
field notes. From the observation video recordings, I selected clips to use in the video
stimulated-recall post-observation interviews with the teachers in order to better
understand the pedagogical work and mathematical knowledge that was entailed in
enacting high cognitive demand examples. Finally, I analyzed both the observations and
the interview data in order to decompose the work and identify the mathematical

knowledge entailed in enactment.
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Importance

Traditionally, university mathematics professors have been trained as research
mathematicians, but many of them spend their professional lives teaching (Bass, 1997).
Yet, they “receive virtually no professional preparation or development as educators,
apart from the role models of their mentors” (p. 19). While mentoring is better than no
training, there is much that cannot be learned from mentoring alone. As Bass put it,
“imagine learning to sing arias simply by attending operas, learning to cook by eating,
learning to write by reading. Much of the art of teaching—the thinking, the dynamic
observations and judgments of an accomplished teacher—is invisible to the outside
observer” (p. 19).

Many universities are responding to the need to better train professors as teachers
by providing graduate students (who make up the future work force) and current
instructors with professional development focused on teaching. In order to provide
effective teaching professional development, it is imperative to have a good
understanding of what contributes to teaching quality. As [ mentioned previously, part of
effective teaching is knowing the content you are teaching, effective pedagogical
techniques, and content that is specific to the work of teaching (i.e., MKT). My
dissertation focuses on gaining a better understanding of this last piece, with particular
emphasis on undergraduate precalculus courses.

So why is it important to study precalculus courses? With the emergence of
technology, the demand for mathematically skilled workers has increased and placed a
higher burden on mathematics departments to train a larger and more diverse pool of

students (Bass, 1997). Approximately 2,000,000 college students take introductory level
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mathematics courses each year and drop, fail, withdraw (DFW) rates are typically around
50% (Gordon, 2006, p. 108). There are many factors that contribute to success rates, such
as the effectiveness of placement exams, students’ prior experiences with mathematics,
and teaching quality, which is why I feel it is important to study MKT first-year
undergraduate courses.

Focusing on examples will help improve undergraduate mathematics instruction
for many reasons. First, explanations are a foundational aspect of teaching. Also, studies
have shown that explanations can support student learning (Borko et al., 1992; Weiss &
Pasley, 2004), improve metacognition (Leinhardt, 2001, 2010), and cultivate productive
habits of mind (Schoenfeld, 2010). Furthermore, all mathematically literate people should
be able to “use representations to model situations and communicate about mathematical
ideas” (Thames & Ball, 2013, p. 2). Thus, using examples to explain and model content,

practices, and strategies is important to undergraduate mathematics teaching at large.

Intended Audience

My intended audience is twofold: university mathematics department and
mathematics education researchers. By learning the work and knowledge entailed in
enacting high cognitive demand examples, mathematics departments can help their
graduate students and current instructors improve their teaching quality and student
success. Second, by carefully decomposing pedagogical work and examining MKT at the
undergraduate level, mathematics education researchers can join me in thinking critically

about how undergraduate teaching differs from elementary and secondary teaching.
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Research Questions

The purpose of the multiple case study is to examine high cognitive demand
examples that are enacted in precalculus classrooms. Here I define cognitive demand as
the level and kind of thinking required in order to successfully engage with a
mathematical task (Stein, Henningsen, Smith, & Silver, 2009, p. 11). The central research
question that guides my dissertation study is: What do instructors know and do that
supports their ability to enact high cognitive demand examples? To focus this question, I
came up with the following subquestions that I will use to guide my study:

RQ1. What do high cognitive demand examples look like in precalculus courses?

RQ2. What are the different roles that instructors can take on when enacting high
cognitive demand examples?

RQ3. What pedagogical work is entailed in enacting high cognitive demand examples
and how does it relate to the role of the teacher?

RQ4. What mathematical knowledge is entailed in enacting high cognitive demand

examples and how does it relate to the role of the teacher?

The first three chapters of my dissertation are designed to give a broad
introduction to my study, an overview of the related literature, and a detailed description
of the methods that I used. In Chapter 4: Examining the Role of the Instructor, I answer
RQI1 and RQ2. In this chapter, I examine what high cognitive demand examples and the
ways in which they are presented, which helps identify what high quality teaching might
look like in undergraduate precalculus classrooms. Chapter 5: Decomposing the

Pedagogical Work Entailed in Enacting High Cognitive Demand Examples answers RQ3
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and identifying what instructors do in order to maintain high quality teaching. Next, in
Chapter 6: Identifying the Mathematical Knowledge Entailed in Enacting High Cognitive
Demand Examples”, I answer RQ4 and look at the knowledge that instructors draw upon
in order to maintain high quality teaching'. Finally, in Chapter 7 I tie the dissertation
together into a single narrative and illustrate how my research might be used to help

improve student outcomes and teaching quality in first-year undergraduate courses.

Assumptions

Since this project is qualitative and depends primarily on observational and
interview data, there are two major assumptions that my research hinges on. First, in
collecting observational data, I am assuming that the work and knowledge entailed in
teaching is observable. This is a reasonable assumption to make, since other educational
researchers have depended heavily on observational data in conducting their research
(e.g., Ball et al., 2008; Heid, Wilson, & Blume, 2015; K. Jackson, Garrison, Wilson,
Gibbons, & Shahan, 2013; McCrory et al., 2012; Sleep, 2012). Second, in conducting
interviews with instructors, I am assuming that their responses are honest, truthful, and
accurate. To encourage my participants to be honest and truthful, I had them chose
pseudonyms to protect their identity and keep my data confidential. Since my post-
observation interviews focus primarily on digging into the instructors’ thinking, I need to
be concerned with the accuracy of their recall. To aid in this, I used video-stimulated

recall (Bloom, 1953), which is used to help reposition the interviewee back in the

' As a note are, Chapters 4-6 are designed to stand alone as publishable research
articles, so each of them also includes a brief overview of the literature and methods.
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moment as a way to tap into their in-the-moment thinking. Another large assumption that
I am making is that MKT exists at the undergraduate level. While it has been pointed out
that MKT may look very different at the undergraduate level in comparison to the K-12
level (N. M. Speer et al., 2015), it is reasonable to assume that MKT exists at the

undergraduate level because the nature of teaching is still the same.

Limitations

Like all case studies, one limitation of my research is that it is not generalizable.
While it may be suggestive of general findings, [ would need to conduct additional
research utilizing a broader sample of instructors and universities to verify this. However,
case study is still an appropriate methodology to use because undergraduate teaching is
not well understood. Therefore, any insight into what it may look like is beneficial. Also,
as with most qualitative research studies, my results may not be replicable. While I used
pseudonyms in order to protect the identity of my participants, it is possible that
participants were not able to accurately share or describe their experiences. In a perfect
circumstance, it would have been desirable to have participants from different
universities with a variety of experiences and collect observational data from multiple
perspectives, however time, money, accessibility, and human resources limited me.
Finally, it is important to mention the possible limitations that may have resulted from
researcher bias. While I am aiming to study undergraduate teaching from the perspective
of practice, I am familiar with existing decomposition and MKT frameworks that were
formed at the K-12 level, which may have colored my view. Also, as an instructor

myself, I am much more familiar with the college algebra curriculum than the
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trigonometry curriculum (which together make up the precalculus courses), which may

have influenced my data analysis.

Delimitations

As I stated previously, the purpose of this dissertation is to investigate the
pedagogical work and mathematical knowledge entailed in enacting high cognitive
demand examples in undergraduate precalculus classrooms. While there are many other
problems I could have studied for this dissertation, I chose to study MKT at the
undergraduate level because it has been understudied and can contribute towards
improving instruction in undergraduate mathematics courses. I chose to focus on
undergraduate precalculus courses because they impact a large number of students. In
particular, they are often taken primarily by students who are non-STEM intending,
which I believe is a population that we also need to focus on. While I could have studied
undergraduate teaching in many different ways, I chose to examine it from the
perspective of practice. For that reason, my data collection is rooted in observing and
digging into examples that are enacted in the classroom. To narrow my scope further, I
am also focusing on just examples that are enacted in the classroom, as opposed to
studying undergraduate teaching at large.

Since undergraduate teaching is not well understood, my research questions are
well suited to qualitative research. Since little research has focused on the cognitive
demand of examples and the work and knowledge entailed in maintaining high levels of
cognitive demand, the methodological perspective of collective case study is also well

suited to my purpose. Also, I am utilizing the analytic frameworks of task unfolding and
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cognitive demand in order to analyze my data. I decided to use these frameworks

primarily because they have been used in MKT research at the K-12 level. Finally, the
inclusion criteria that I used when selecting participants is that they were instructors of
precalculus courses and had taught precalculus courses for at least two semesters at the

university prior to the beginning of the study.

Defining Key Terms

Cognitive demand
The level and kind of thinking required in order to successfully engage with a
mathematical task (Stein et al., 2009, p. 11)

Enacted example
The actual implementation of an example in the classroom (Stein et al., 2007, p.
321)

Entailed
“A necessary accompaniment” (Thames, 2009, p. 173)

Example (mathematical)
A whole-class activity, the purpose of which is to solve a mathematical problem
“for illustrative purposes” (Good, 1959, p. 211)

Example unfolding
The temporal phases an example goes through as it is transformed from the
written example to the intended example to the enacted example (Stein et al.,

2007, p. 321)
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High cognitive demand tasks
“Involve making connections, analyzing information, and drawing conclusions”
(Van de Walle, Karp, & Bay-Williams, 2013, p. 36)

Intended example
The teachers’ plans for using the example during classroom instruction (Stein et
al., 2007, p. 321)

Knowledge
“(1) The accumulated facts, truths, principles, and information to which the
human mind has access; (2) the outcome of specified, rigorous inquiry which
originated within the framework of human experience and functions in human
experience” (Good, 1959, p. 308)

Lesson
“A short period of instruction devoted to a specific limited topic, skill, or idea”
(Good, 1959, p. 316)

Lesson guide
In this study, the written lesson guides were developed internally by members of
the mathematics department and provided instructors with suggested sequencing,
examples, and timing for each class period.

Lesson plan
The instructors intended plan for instruction; “a detailed plan, usually drawn up
by the teacher, encapsulating the content and sequence of the lesson” (Wallace,

2008, p. 162)
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Low cognitive demand task
“Involve stating facts, following known procedures (computation), and solving
routine problems” (Van de Walle et al., 2013, p. 36)

Mathematical knowledge for teaching (MKT)
The “mathematical knowledge ‘entailed by teaching’—in other words,
mathematical knowledge needed to perform the recurrent tasks of teaching
mathematics to students” (Ball et al., 2008, p. 395)

Task (mathematical)
“A classroom activity, the purpose of which is to focus students’ attention on a
particular mathematical idea” (Stein, Grover, & Henningsen, 1996, p. 460)

Teaching
“The act of providing activities, materials, and guidance that facilitate learning, in
either formal or informal situations” (Good, 1959, p. 552)

Work of teaching
“The core tasks that teachers must execute to help pupils learn” (Ball & Forzani,
2009, p. 497)

Written example
The example as “represented in curriculum materials or other teaching resources”

(Stein et al., 2007, p. 340)
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CHAPTER 2: LITERATURE REVIEW

This chapter provides a broad overview of the literature related to my dissertation
study In particular, | reviewed the literature on cognitive demand, instructional examples,

decompositions of teaching, and mathematical knowledge for teaching.

Cognitive Demand of Mathematical Tasks

Since the purpose of my study is to examine what teachers do and know that helps
maintain the cognitive demand of the examples that they enact in the classroom, I chose
to first provide a review of the literature on cognitive demand. Although it is based on the
work of Walter Doyle in the 1980s, it was Mary K. Stein and Margaret Smith that
together developed a strong framework for analyzing the cognitive demand of tasks. In
this subsection, I will review the origins of cognitive demand and examine how the study

of cognitive demand has developed over the years.
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Academic Tasks

Doyle’s (1983) work focused on examining academic tasks, their intellectual
demands, and the ways in which they are enacted in the classroom. Doyle’s conception of
academic tasks comprised three parts: the products, the process, and the resources. In
other words, “academic tasks...are defined by the answers students are required to
produce and the routes that can be used to obtain these answers” (p. 161). In particular,
Doyle emphasized that academic tasks are important because they are the medium
through which students engage with the content and they have a large impact on the
students’ opportunities to learn.

Acknowledging that not all academic tasks provide students with equal
opportunities to engage and learn, Doyle (1983) presented four categories of tasks,
organized by the cognitive operations required to accomplish the task: memory,
procedural or routine, comprehension or understanding, and opinion. Memory tasks were
defined as “tasks in which students are expected to recognize or reproduce information
previously encountered” (p. 162). Procedural or routine task were defined as “tasks in
which students are expected to apply a standardized and predictable formula or algorithm
to generate an answer” (p. 163). While Doyle presented a domain-generic definition of
comprehension or understanding tasks, he identified that these are “tasks in which
students are expected to...apply procedures to new problems or decide from among
several procedures those which are applicable to a particular problem” or “draw
inferences from previously encountered information or procedures” (p. 163). Finally,
opinion tasks were defined as “tasks in which students are expected to state a preference

for something” (p. 163).
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Table 1. Doyle’s (1983) Task Categories

Task Definition Examples

Memory “Tasks in which students are expected to Memorize a list of
recognize or reproduce information spelling words or lines
previously encountered.” (p. 162) from a poem

Procedural “Tasks in which students are expected to Solve a set of subtraction

/Routine apply a standardized and predictable problems

formula or algorithm to generate an
answer.” (p. 163)

Comprehension/ “Tasks in which students are expected to (a) Solve “word problems”

Understanding  recognize transformed or paraphrased in mathematics; make
versions of information previously predictions about
encountered (b) apply procedures to new chemical reactions;
problems or decide from among several devise an alternate

procedures those which are applicable to a  formula for squaring a
particular problem...or (c) draw inferences number

from previously encountered information or

procedures.” (p. 163)

Opinion “Tasks in which students are expected to Select a favorite story
state a preference for something.” (p. 163)

Doyle (1988) examined the impact that mathematics tasks have on the ways
students think about the content. In particular, Doyle emphasized that “the work students
do, which is defined in large measure by the tasks teachers assign, determines how they
think about a curriculum domain and come to understand its meaning” (p. 167). Doyle
identified cognitive demand as one way to characterize the academic work that occurs in
a mathematics classroom. Here, Doyle defined cognitive demand as the “the cognitive
processes students are required to use in accomplishing [a task]” (p. 170). Referring to his
four task categories, Doyle emphasized that if the majority of the mathematical tasks that
students engage with are based primarily on memorization and procedures, then this is
how they will perceive the domain of mathematics. Therefore, it is important for teachers

to provide students with opportunities to engage with higher-level cognitive tasks that
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focus on “comprehension, interpretation, flexible application of knowledge and skills,

and assembly of information from several different sources to accomplish work” (p. 171).

Cognitive Demand
Building upon Doyle’s (1983, 1986, 1988) work, Stein, Grover, and Henningsen
(1996) examined the task features and cognitive demand of 144 different mathematical
tasks used in reformed classrooms. The task features that they attended to were the
number of solutions strategies, the number and kinds of representations, and
communication requirements. Although Stein et al. do build upon the work of Doyle, the
four types of tasks that they identified do differ from Doyle’s (1983) categories. In
particular, Stein et al. (1996) categorized tasks as:
Memorization, the use of formulas, algorithms, or procedures without connection
to concepts, understanding, or meaning, the use of formulas, algorithms, or
procedures with connection to concepts, understanding, or meaning, and
cognitive activity that can be characterized as “doing mathematics,” including
complex mathematical thinking and reasoning activities such as making and
testing conjectures, framing problems, looking for patterns, and so on. (Emphasis
in original, p. 466)
Tasks categorized as memorization or procedures without connections were considered to
require low levels of cognitive demand, while tasks categorized as procedures with
connections and doing mathematics were considered to require high levels of cognitive

demand?.

* It is important to note that while Stein et al. first introduced their task categories
in the 1996 publication, formal definitions or descriptions were provided in a later
publication (Smith & Stein, 1998), which I will review shortly.
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While Stein et al. (1996) were interested in the cognitive demand of the tasks that
were implemented in reformed classrooms, they also wanted to examine how
mathematical tasks might change during the implementation stage. To do this, the authors
built a framework to describe the temporal phases that tasks go through as they are
transformed from their representation in curricular/instructional materials, to the task as
set up in the classroom, to the task as implemented by students in the classroom.
Ultimately, the goal of this task unfolding is to impact student learning, but at each stage
of the unfolding, there are various factors that can influence the task features and
cognitive demand (see Figure 1).

Figure 1. Stein et al.’s (1996) Framework for Task Unfolding

MATHEMATICAL TASK MATHEMATICAL TASK MATHEMATICAL TASK
as represented in as set up by the teacher as implemented by
curricular/instructional in the classroom. students in the
materials. classroom.
Task Features Enactment of Task STUDENT
Features LEARNING
Cognitive Demand Cognitive Processing

FACTORS
INFLUENCING
SET UP

FACTORS
INFLUENCING
IMPLEMENTATION

Teacher Goals Classroom Norms

Teacher Subject Matter
Knowledge

Task Conditions

Teacher Instructional Habits
& Dispositions

Teacher Knowledge
of Students

Student Learning Habits
& Dispositions

In their study, Stein et al. (1996) focused on the final phase of task unfolding
(represented by the shaded shapes in Figure 1) and examined the factors that influence
the implementation. While they analyze both task features and cognitive demand, I will

focus primarily on the results they found related to cognitive demand, since they are
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relevant to my work. Through their analysis, they found that nearly 74% of the 144
mathematical tasks were sef up at a high level of cognitive demand. However, the
cognitive demand of tasks tended to decline during the implementation stage and only
33% of the tasks were implemented at a high level of cognitive demand.

Curious to examine why these high level tasks declined during implementation,
Stein et al. (1996) identified six factors that were judged to contribute to the decline:
challenges become nonproblems, inappropriateness of the task for students, focus shifts
to correct answer, too much or too little time, lack of accountability, and classroom
management problems. On the other hand, the authors also identified seven factors that
were judged to contribute to the maintenance of high levels of cognitive demand: task
builds on students’ prior knowledge, appropriate amount of time, high-level performance
modeled, sustained pressure for explanation and meaning, scaffolding, students self-
monitoring, and teacher draws conceptual connections.

One surprising result of Stein et al.’s (1996) work is that tasks could be set up as
doing mathematics, but decline to procedures without connections, unsystematic
exploration, or even no mathematical activity. To explore these types of decline,
Henningsen and Stein (1997) focused on identifying classroom-based factors that support
and inhibit students’ engagement with doing mathematics tasks. First, they examined
tasks that were set up and implemented at the level of doing mathematics and found that
these tasks were successful because they built on students’ prior knowledge, provided
appropriate scaffolding, were allotted an appropriate amount of time, included modeling

of high-level performance, and sustained pressure for explanation and meaning.
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For the tasks that were set up as doing mathematics but declined to lower levels of
cognitive demand or no mathematical activity, Stein et al. (1996) found that there were
different factor profiles for each type of decline. Tasks that declined to procedures
without connections tended to allot too much or too little time, make challenges into
nonproblems, and shift in focus to the correct answer. Similarly, tasks that declined to
unsystematic exploration tended to allot too much or too little time, shift in focus to the
correct answer, and be inappropriate. Finally, tasks that declined to no mathematical
activity tended to be inappropriate, run into classroom management problems, and allot
too much or too little time.

In order to clarify what the authors meant by memorization, procedures without
connections, procedures with connections, and doing mathematics tasks, Smith and Stein
(1998) published a paper that listed the characteristics of the four different types of tasks
(see Table 2). These descriptions not only provided researchers with a clear
conceptualization with each category, but also provided teachers with a framework for
thinking about the cognitive demand of tasks. In particular, Smith and Stein illustrated
how the Task Analysis Guide can be used in professional development activity where
participants sort tasks into each category and talk about the reasoning behind their
categorizations. Additional, Stein and Smith (1998) talked about how the framework
could be used as tool for reflection when teachers observe teachers or even when teachers

reflect on their own teaching.
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Researchers have continued to build upon and refine the task unfolding (Figure 1)
and cognitive demand (Table 2) frameworks developed by Smith, Stein, and their
colleagues. In particular, researchers have focused on how to plan, set up, implement, and
conclude tasks so that they maintain a high level of cognitive demand. To facilitate the
design of lesson plans that would support high cognitive demand tasks, Smith, Bill, and
Hughes (2008) developed the “Thinking Through a Lesson Protocol” (TTLP). Teachers
using the protocol are provided with a set of questions to consider when planning their
lesson. In the first part, they focus on selecting and setting up a mathematical task, then
ask questions related to supporting students exploration of the task, and finally consider
how the teacher plans to share and discuss the task. While the authors don’t suggest that
teachers answer all of the questions included in the protocol every time they plan a
lesson, they do suggest that teachers use the TTLP periodically and in collaboration with
other teachers.

Moving from the planning to the set up stage, Jackson, Shahan, Gibbons, and
Cobb (2012) examined four crucial elements of launching complex tasks: discussing the
key contextual features, discussing the key mathematical ideas, developing a common
language to describe the key features, and maintaining the cognitive demand. Similar to
the TTLP, the authors provide teachers with a set of planning questions that teachers can
use to reflect on what they need to do to launch a complex task effectively. In another
paper, Jackson, Garrison, Wilson, Gibbons, and Shahan (2013) examined how the launch
of tasks related to the opportunities to learn mathematics in the concluding whole-class
discussion. As a result, they found that attending to the crucial elements of developing a

common language to describe the key features and maintaining the cognitive demand of
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the task during the launch resulted in higher quality opportunities for students to learn in

the concluding mathematics discussion.

Instructional Examples

Much of the research on cognitive demand has focused on mathematical tasks that
students complete during class. However, I am interested in studying the cognitive
demand of the examples that instructors enact. While examples are one type of
mathematical task, they are different from a task that a teacher might give for students to
work on. In particular, I define an example as a whole-class activity, the purpose of
which is to solve a mathematical problem for illustrative purposes. For example, to help
students understand why trigonometric equations can have infinite families of solutions,
an instructor might use the example of sin & = —1/2. Or if an instructor is teaching the
completing the square algorithm, they might introduce it by working through several
examples before asking students to work through related problems. In this subsection, I
review some of the literature on examples and examine how they are different from other
types of mathematical tasks.

Bills, Dreyfus, Mason, Tsamir, Watson, and Zaslavsky (2006) gave a general
overview of how exemplification has been treated in mathematics education. First, the
authors claimed that it is important to study examples and exemplification in mathematics
for several reasons. First, examples play a central role in the development of mathematics
as a discipline and the teaching and learning of mathematics. Second, “examples offer
insight into the nature of mathematics through their use in complex tasks to demonstrate

methods, in concept development to indicate relationships, and in explanations and
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proofs” (pp. 126-127). The authors identified different ways in which examples might be
presented, which can range from worked-out examples, where “the procedure being
applied is performed by the teacher, textbook author or programmer, often with some sort
of explanation or commentary,” to exercises, “where tasks are set for the learner to
complete” (p. 127).

For the purposes of their review, Bills et al. (2006) defined examples as “anything
used as raw material for generalising, including intuiting relationships and inductive
reasoning; illustrating concepts and principles; indicating a larger class; motivating;
exposing possible variation and change, etc. and practising technique” (p. 127)°.
Exemplification, on the other hand, is a term they use “to describe any situation in which
something specific is being offered to represent a general class to which learners’
attention is being drawn” (p. 127). They also classified examples as a foundational device
that mathematics instructors use to explain mathematics concepts (p. 133). However, just
because examples are fundamental to mathematics teaching does not mean that they are a
trivial part of instruction. On the contrary, Bills et al. highlighted several studies that have
found that the art of constructing examples is a highly demanding task of teaching.

While examples can be presented in a variety of ways, Bills et al. (2006)
emphasized that “providing worked-out examples with no further explanations or other
conceptual support is usually insufficient”, as “learners often regard such examples as
specific (restricted) patterns which do not seem applicable to them when solving

problems that require a slight deviation from the solution presented in the worked-out

? It is important to note that the authors’ definition of example is different from
the definition of example that I chose to use. In particular, my definition could be viewed
as a restriction of their definition, in that it only includes examples that are done in a
whole-class setting and not exercises that are just given to students to work through.
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example (Reed et al. 1985; Chi et al. 1989)” (p. 140). Therefore, the authors emphasize
that it is important for worked-out examples to include explanations and reasoning.

In the past ten years, several researchers have focused on studying how teachers
use examples in their classrooms. While each researcher conceptualizes “examples” in
different ways, they all do consider examples as tasks used for illustrative purposes,
which fits with my definition of example. In studying the purpose, design, and use of
mathematical examples in elementary classrooms, Rowland (2008) found that teachers
need to attend to variables, sequencing, representations, and learning objectives when
choosing what examples to use in the classroom. Similarly, Muir (2007) found that
teachers need to attend carefully to the examples that they choose to use when teaching
numeracy in order to “avoid the likelihood of students developing common
misconceptions about important mathematical concepts” (p. 513). Finally, Zodik and
Zaslavsky (2008) examined different characteristics of how teachers choose mathematics
examples and developed a framework that captures the teachers’ choice and generation of
examples (Figure 2).

The final piece of literature on mathematical examples that I have included in my
review is by Mesa, Suh, Blake, and Whittemore (2012). This article is particularly
relevant to my dissertation, because they looked at the opportunities to learn that were
provided by examples included in college algebra textbooks. Mesa et al. claimed that it is
important to consider the examples included in textbooks because instructors often draw
upon these activities when planning the examples they want to include in their lesson (p.
78). In particular, the authors examined the cognitive demand of the examples included in

textbooks because research has shown that “engaging students in activities that are high
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in cognitive demand...can indeed foster students’ development of mathematical

proficiency” (p. 79).
Figure 2. Zodik and Zaslavsky’s (2008) Example Cycle
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Mesa et al. (2012) chose to examine ten college algebra textbooks that were

commonly used in community colleges and universities in the state of Michigan around
the time of the study. Of the 488 examples that were included in the textbooks, 445
(91%) of them were coded as procedures without connections, with individual textbooks
ranging from 75%-100% in this category. Of the remaining examples, 41 (8%) were
coded as procedures with connections, two (<1%) were coded as doing mathematics, and

none were coded as memorization. While the authors recognized that procedures without
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connections examples help develop procedural fluency, they also warned that
“concentrating only on these less cognitively demanding examples can restrict students’
perceptions about the nature of mathematics” (pp. 96-97) and that an over-emphasis on

procedural fluency is detrimental for students’ learning.

Teacher Content Knowledge

Proxies for Measuring Teacher Content Knowledge

As mentioned in the introduction, numerous studies have investigated the effects
of content knowledge on teaching. However, many of these studies used proxies, such as
general content knowledge tests, teacher education, and number of years of teacher
experience, for measuring teacher content knowledge. Using these proxies, there have
been mixed reports concerning whether or not teacher content knowledge is positively
correlated with student achievement.

In 1972, Edward Begle published a report that investigated the relationship
between teachers' content knowledge and student achievement in algebra. In order to
“search for characteristics which distinguish effective teachers,” Begle focused on
examining “the degree to which the teacher understands the material being taught” (p. 4).
While this seemed to be a natural variable which would distinguish effective teachers
from non-effective teachers, Begle found that reviewing recent studies produced “little
empirical evidence to substantiate any claims that, for example, training in mathematics
for mathematics teachers will have a payoff in increased mathematics achievement for
their students” (p. 4). Thus, Begle set out to investigate further whether or not this curious

problem existed at the high school level.
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In his study, Begle (1972) used two sets of tests, one for teachers and one for their
students. The teacher test was designed to measure two levels of algebra understanding:
“that of the algebra of the real number system, to which the ninth grade high school
algebra course is largely devoted” and that “of the abstract algebra of groups, rings, and
fields” (p. 6). Given the assumption that a deeper understanding of the content should
lead to better student achievement, Begle hypothesized that the second level would be
more closely correlated with student achievement than the first. The student tests were
administered at the end of the ninth grade: “One was devoted to algebraic computation
and the other to understanding of algebraic concepts” (p. 7). In order to distinguish
between differences in students, a mathematics achievement test and basic mental ability
test were administered at the beginning of the ninth grade.

To analyze the effects of teacher content knowledge on student achievement,
Begle (1972) conducted a regression analysis. Consistent with the studies Begle had
reviewed, the analysis showed that teacher content knowledge had relatively few effects
on student achievement. In particular, teacher understanding of modern algebra had no
significant correlation with student achievement in either algebraic computation or
understanding of ninth grade algebra. Teacher understanding of the algebra of the real
number system was significantly correlated with student understanding of ninth grade
algebra, but not with student understanding of algebraic computation. However, Begle
reported that the significant correlation between teacher understanding of algebra of the
real number system and student understanding of ninth grade algebra was “so small as to

be educationally insignificant” (p. 13). Based upon his review of previous findings, Begle
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reported that, “these results were not completely unexpected but were nevertheless
surprising” (p. 13).

Nine years later, Eric Hanushek (1981), an economist, reviewed studies of teacher
effectiveness and found similar results. Recognizing that educational outcomes are often
viewed as significant and long lasting, Hanushek approached his analysis from an
industry perspective. In order to assess “the current state of knowledge in policy-related
research”, Hanushek focused on “research in areas where governmental actions might
directly affect education goals our outcomes” (p. 194). In particular, Hanushek focused
on articles that published results on the relationship between inputs (e.g., school factors,
family background, and student body characteristics) and outputs (e.g., standardized test
scores). The proxy that Hanushek used for teacher knowledge was the amount of
graduate education the teacher had finished. Hanushek identified 101 studies that tested
the statistical significance (@ = 0.05) of the relationship between teacher education and
student achievement and found that six reported a statistically significant positive
relationship, four reported a statistically significant negative relationship, and 90 did not
report a statistically significant relationship. Other input factors, such as teacher
experience, were also shown to have similar counterintuitive results. In response to these
findings, Hanushek argued that most likely they are due to the narrow way in which
studies have measured teacher effectiveness.

The research indicates that it is not possible to identify and measure a set of

homogeneous input factors that enter into the production process, even though

differences in teacher inputs are very important. The reason seems to be that

teaching is a very complicated process.... Because of the complexity of the task
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and an incomplete understanding of the separate elements of effective teaching, it

is not possible to single out a small set of factors that uniformly contribute to

good performance. (p. 205)

While Begle (1972) and Hanushek (1981) reported a growing mound of evidence
that teacher content knowledge (as measured by general content tests and graduate
education) did not have an effect on student achievement, other literature reviews
indicated the opposite. In particular, Greenwald, Hedges, and Laine (1996) and Wayne
and Youngs (2003) found that there was a larger body of literature that found statistically
significant correlations. Although Greenwald et al. (1996) did not look at teacher content
knowledge directly, they followed a similar approach to Hanushek (1981) and considered
studies which measured teacher education. Greenwald et al. (1996) identified 38 studies
that measured teacher education and its effect on student achievement and analyzed them
using combined significance testing and effect magnitude estimation. To analyze
combined significance, the authors conducted two one-tailed hypothesis tests, one in
which the null hypothesis stated “that no positive relation exists between the resource
input and student outcomes for the population coefficients” and another in which the null
hypothesis stated “that no negative [emphasis added] relation exists between the resource
input and student outcome for the population coefficient” (p. 365). The authors found that
using teacher education as the resource input resulted in rejecting the null hypothesis in
both cases (p. 369), which implied “that there is evidence of both some positive and some
negative relations” (p. 366). In relation to effect sizes, the authors found that “the pattern
of effect sizes for the newer (post-1970) studies...appear to be somewhat more positive...”

(p. 375).
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In their review, Greenwald et al. (1996) addressed the question of "Why have
previous reviews failed to detect positive effects?" (p. 381). In particular, the authors
single out the vote counting methods employed by Hanushek as erroneous and
misleading. The authors claimed that "when individual studies have relatively low
statistical power, only a small proportion of studies would be expected to obtain
statistical significance, even if each study were estimating the same (nonzero) effect....
Hence, a large proportion of significant results would not be expected...and not counting
would be expected to miss effects" (p. 381). However, within the same issue, Hanushek
(1996) published his own rebuttal to Greenwald et al.'s (1996) findings. In particular,
Hanushek (1996) criticized Greenwald et al. (1996) for presenting "a distorted and
misleading view of the potential implications of school resource policies” (p. 397).

Ultimately, the fundamental problem with their analysis derives from a flawed

statistical approach for investigating issues of how and when resources affect

student performance. Their specialized meta-analytic approach to combining data
is applicable to circumstances very different from the present ones. They assume
that all of the schooling situations are identical, when in fact most people believe
for good reason that they are very heterogeneous. They further assume that all of
the studies should receive equal weight, when in fact the studies are also
heterogeneous.... By forcing homogeneity onto the data about effectiveness, they
both introduce powerful biases into their analysis of the results and distract

decision makers from the important issues. (Hanushek, 1996, p. 398)

Whether the methods used by Hanushek (1981), Greenwald et al. (1996), or

others present the most accurate evidence of effects of content knowledge on teaching is
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yet to be decided. However, given the disparity of results and disagreement of
interpretations, it is clear that measuring teacher content knowledge using proxies yields

inconclusive findings.

Mathematical Knowledge for Teaching

One explanation for why studies found mixed results concerning whether or not
teacher content knowledge has a positive effect on student outcomes is because the
proxies used to measure content knowledge were misaligned. Instead of measuring
content that was specific to the work of teaching, proxies either used general measures of
teacher content knowledge or were based upon the assumption that advanced-level
content knowledge was adequate for teaching lower levels.

In his 1985 presidential address to the American Educational Research
Association, Lee Shulman identified "the missing paradigm" in educational research.
Shulman (1986) claimed that in recent history, there existed a "sharp distinction between
content and [pedagogy]" (p. 6) as evidenced by teacher examinations in the 1970s (which
largely focused on content and ignored pedagogy) and 1980s (which largely focused on
pedagogy and ignored content). However, Shulman claimed that this distinction was not
always made. In medieval universities, "the purpose of the [ceremony of doctoral
examination was] to demonstrate that the candidate possess[ed] the highest levels of
subject matter competence in the domain for which the degree is awarded. How did one
demonstrate such understanding in medieval times? By demonstrating the ability to teach
the subject (Ong, 1985)...." (p. 7). In contrast to the famous quote by George Bernard

Shaw (1999)—"He who can, does. He who cannot, teaches."— Shulman (1986) claimed
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that "what distinguishes the man who knows from the ignorant man is an ability to teach"
(p- 7).

The missing paradigm Shulman (1986) identified concerned research on the
content knowledge used in teaching. Shulman called for researchers to begin asking
questions such as "What are the sources of teacher knowledge? What does a teacher
know and when did he or she come to know it? How is new knowledge acquired, old
knowledge retrieved, and both combined to form a new knowledge base?" (p. 8).
Shulman proposed that content knowledge for teaching could be broken down into three
categories: subject matter content knowledge, pedagogical content knowledge, and
curricular knowledge. He defined content knowledge as "the amount and organization of
knowledge per se in the mind of the teacher" (p. 9). In particular, subject matter
knowledge comprised knowledge of the substantive and syntactic structure of the
discipline (Schwab, 1978) . Finally, Shulman (1986) defined pedagogical content
knowledge as content knowledge "which goes beyond knowledge of subject matter per se
to the dimension of subject matter for teaching" (p. 9). For example, pedagogical content
knowledge (as defined by Shulman) included familiarity with different representations
and understanding of what makes learning topics easy or difficult.

Building upon his AERA presidential address, Shulman (1987) wrote about
changes that must occur in teacher education in order to address the specialized
knowledge that teachers must possess and use. He identified some categories of the
knowledge base that teachers must possess, including content knowledge, general
pedagogical knowledge, curriculum knowledge, pedagogical content knowledge,

knowledge of learners and their characteristics, knowledge of educational contexts, and
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knowledge of educational ends. Again, Shulman emphasized the importance of blending
content and pedagogy and, in particular, focuses on pedagogical content knowledge.

Pedagogical content knowledge is of special interest because it identifies the

distinctive bodies of knowledge for teaching. It represents the blending of content

and pedagogy into an understanding of how particular topics, problems, or issues
are organized, represented, and adapted to the diverse interests and abilities of
learners, and presented for instruction. Pedagogical content knowledge is the
category most likely to distinguish the understanding of the content specialist

from that of the pedagogue. (p. 8)

Deborah Ball: Mathematical Knowledge for Teaching. Many researchers
answered Shulman's (1986, 1987) call and began investigating content knowledge as it is
used in teaching. Starting with her dissertation (Ball, 1988), Deborah Ball began studying
the mathematical knowledge that is needed for elementary teachers to teach mathematics
effectively. Specifically, she was interested in studying what was entailed in subject
matter knowledge for teaching (Ball, 1990). While it seemed common sense to "claim
that teachers need substantive knowledge of mathematics—of particular concepts and
procedures (rectangles, functions, and the multiplication of decimals, for example)" (p.
458), Ball argued that teachers needed to know more. In particular, Ball claimed that it
was important for teachers to also know about mathematics: "This includes understanding
about the nature of mathematical knowledge and of mathematics as a field" (p. 458).

The main reason why Ball (1990) claimed that there was "more" mathematics that

teachers needed to know was due to the nature of teaching.
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In order to help someone else understand and do mathematics, however, being

able to ‘do it' oneself is not sufficient. Teachers must not only be able to describe

the steps for following an algorithm but also discuss the judgments made and the

meanings of and reasons for certain relationships or procedures. (pp. 458-459)
Echoing Shulman's concerns regarding teacher examinations, Ball critiqued the current
trend in teacher preparation programs. She claimed that "despite the fact that subject
matter knowledge is logically central to teaching (Bachmann, 1984), it rarely figures
prominently in teacher preparation" (p. 462). Moreover, Ball felt that "the fact that the
subject matter preparation of [elementary] teachers is left to precollege and "liberal arts'
college mathematics" was problematic (p. 462). In particular, Ball felt that three common
assumptions concerning subject matter knowledge for teaching were erroneous. First,
people assume that traditional school mathematics content is simple. Contrary to this
belief, Ball cited various studies which show that even elementary mathematics is
complex and difficult to teach (Duckworth, 1987; Lampert, 1985, 1986, 1989). Second,
people assume that elementary and secondary school mathematics classes can prepare
teachers to teach mathematics (Ball, 1990, p. 463). While it is true that most teachers
have taken and passed the classes that they are teaching, Ball claimed that is not enough
preparation for teaching that content. And third, people assume that majoring in
mathematics ensures subject matter knowledge. While it may seem logical to assume that
deeper understanding equates to better teaching, I will later review several studies that
have shown that this is not the case.

In 2008, Ball, Thames, and Phelps published the formal theoretical framework for

mathematical knowledge for teaching (MKT) that Ball and her colleagues had been
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working to develop over the past two decades. Even though several researchers had
responded to Shulman's original call to study content knowledge for teaching, the authors
recognized that "this bridge between knowledge and practice was still inadequately
understood and the coherent theoretical framework Shulman (1986, p. 9) called for
remained underdeveloped" (p. 389). In order to develop this framework, the authors used
the work that had been produced by Ball and her colleagues at the University of
Michigan under the Mathematics and Learning to Teach Project and Learning
Mathematics for Teaching Project. In order to study content and its role in teaching, Ball
and her colleagues chose to focus on the work of teaching. Instead of examining
curriculum and standards, or asking experts mathematicians and educators to identify
core ideas and skills, or reviewing research on students' learning, the authors began with
practice. The aim of their analysis was to "develop a practice-based theory of
mathematical knowledge as it is entailed by and used in teaching (Ball, 1999; Thames,
2008)" (p. 396).

Ball et al. (2008) defined MKT as "the mathematical knowledge needed to carry
out the work of teaching mathematics" (p. 395). In the framework developed by Ball et
al., MKT is broken down into the subdomains of subject matter knowledge (SMK) and
pedagogical content knowledge (PCK), which purposefully reflect the domains of content
knowledge that were initially identified by Shulman (1986). Subject matter knowledge is
further broken down into common content knowledge (CCK), horizon content knowledge
(HCK), and specialized content knowledge (SCK). Pedagogical content knowledge is
further broken down into knowledge of content and students (KCS), knowledge of

content and teaching (KCT), and knowledge of content and curriculum (KCC). This
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decomposition of MKT is often referred to as "the egg", due to the diagram that it was
originally illustrated with (see Figure 3).

Figure 3. Ball et al.’s (2008) Decomposition of Domains of MKT

SUBJECT MATTER KNOWLEDGE PEDAGOGICAL CONTENT KNOWLEDGE

— | T

Knowledge of
Common Content and
Content Students
Knowledge
Specialized Knowledge of
Content Content and
Knowledge Curriculum
Horizon
Content Knowledge of
Knowledge Content and
Teaching

\/

Ball et al. (2008) defined common content knowledge as "the mathematical
knowledge and skill used in settings other than teaching" (p. 399). For example, this
would include the ability to correctly solve mathematical problems. As a point of
clarification, the authors did no intend "common" to indicate that everyone has this
knowledge: "Rather, we mean to indicate that this is knowledge of a kind used in a wide
variety of settings--in other words, not unique to teaching" (p. 399). In contrast,
specialized content knowledge was defined as "the mathematical knowledge and skill
unique to teaching" (p. 400). For example, knowledge of how to decompress/unpack
mathematical ideas to make them accessible to students (e.g., explaining why dividing by
a fraction is equivalent to multiplying by its reciprocal) is an example of SCK. An
example of knowledge of content and students is knowing common student conceptions
and misconceptions. An example of knowledge of content and teaching is knowing how

to sequence content for instruction.
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Although it is not a focus of the paper, the authors do give a definition of horizon
content knowledge: "an awareness of how mathematical topics are related over the span
of mathematics included in the curriculum" (Ball et al., 2008, p. 403). Knowledge of
content and curriculum is not defined, but rather they identified it as being synonymous
with Shulman's (1986) conceptualization of curricular knowledge. Here, the authors
noted that "we have placed Shulman's third category, curricular knowledge, within
pedagogical content knowledge. This is consistent with later publications from members
of Shulman's research team (Grossman, 1990)" (Ball et al., 2008, pp. 402—403). The
authors also noted that there are several limitations of their framework. First, because it
was developed by examining practice, the framework "brings in some of the natural
messiness and variability of teaching and learning. As we ask about the situations that
arise in teaching that require teachers to use mathematics, we find that some situations
can be managed using different kinds of knowledge" (p. 403). Also, splitting up the
domain into categories makes it appear static.

A third problem related to the categorization of the domain is that "it is not always
easy to discern where one of our categories dives from the next, and this affects the
precision (or lack thereof) of our definitions" (p. 403). However, Ball et al. felt that the
categories provide a useful structure for "studying the relationship between teachers'
content knowledge and their students' achievement", studying "whether and how different
approaches to teacher development have different effects on particular aspects of
teachers' pedagogical content knowledge", and "inform[ing] the design of support
materials for teachers as well as teacher education and professional development" (p.

405).
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The Knowledge Quartet. In addition to the framework for mathematical
knowledge for teaching developed by Ball et al. (2008), other frameworks have also been
developed. Rowland, Huckstep, and Thwaites (2005) published a framework for
elementary teachers' mathematical subject knowledge called the Knowledge Quartet
(KQ). Like Ball, they sought to develop an empirically based conceptual framework of
content knowledge for teaching by analyzing videotapes of teaching. Specifically, they
used grounded theory to analyze the practice of a group of preservice teachers who were
at the end of their initial training in order to identify the mathematics-related knowledge
the teachers used during their practice (p. 255). While analyzing the videos, they focused
on “aspects of trainees' actions in the classroom that seemed to be significant in the
limited sense that it could be construed to be informed by a trainee's mathematics content
knowledge or their mathematical pedagogical knowledge" (p. 258). Following an
inductive process, they generated a set of 18 codes, which they later categorized into four
broad dimensions: foundation, transformation, connection, and contingency.

Rowland et al. (2005) defined foundation as "the foundation of the trainees'
theoretical background and beliefs. It concerns trainees' knowledge, understanding and
ready recourse to their learning in the academy, in preparation (intentionally or
otherwise) for their role in the classroom" (p. 260). The authors claimed that foundation
is closely related to Shulman's idea of propositional form (Shulman, 1986, p. 10) and

Shulman's first aspect of pedagogical reasoning, comprehension (Shulman, 1987, p. 14).
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The final three dimensions follow from foundational knowledge, but are also
markedly different in that they "focus on knowledge-in-action" (Rowland et al., 2005, p.
261). The second dimension, transformation, is defined using the words of Shulman
(1987): "The capacity of a teacher to transform [emphasis added] the content knowledge
he or she possess into forms that are pedagogically powerful" (p. 15). This includes the
ability to use teacher resources to choose examples "to assist concept formation, to
demonstrate procedures, and [to select] exercise examples for student activity" (Rowland
et al., 2005, p. 262).

The third dimension, connection, "concerns the coherence of the planning or
teaching displayed across an episode, lesson or series of lessons" (Rowland et al., 2005,
p. 262). This includes sequencing mathematical content based upon not only the
mathematical structure, but also the "relative cognitive demands of different topics and
tasks" (p. 263). The authors described the final dimension, contingency, as "concern[ing]
classroom events that are almost impossible to plan for. In commonplace language it is
the ability to "think on one's feet': it is about contingent action" (p. 263). For example,
teachers must be able to respond to student ideas and, when appropriate, deviate from the
planned agenda.

Knowledge of Algebra for Teaching. While the previous two frameworks of
mathematical knowledge for teaching were developed by observing elementary teachers,
the next framework was specifically developed to apply to teaching algebra at the
secondary level. McCrory, Floden, Ferrini-Mundy, Reckase, and Senk (2012) developed

their framework, Knowledge of Algebra for Teaching (KAT), in order to better
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understand "both what knowledge matters and how it matters" (p. 585). The authors
began their framework development by analyzing domains of mathematical knowledge
from research and policy documents. This stage of analysis was used to inform the first
dimension of their framework, which encapsulated what knowledge mattered. The second
dimension of their framework, which encapsulated how that knowledge mattered, was
formed by analyzing textbooks, teaching videos, and interviews with teachers.

In developing the first dimension of KAT that describes what knowledge matters,
McCrory et al. (2012) primarily drew upon three documents: The Mathematical
Education of Teachers (Conference Board of the Mathematical Sciences, 2001),
"Mathematical Proficiency for All Students: Toward a Strategic Research and
Development Program in Mathematics Education" (RAND Mathematics Study Panel,
2002), and "Teachers' Mathematics: A Collection of Content Deserving to be a Field"
(Usiskin, 2001). The first category in this dimension is knowledge of school algebra,
which is defined to include "the content that typically would be taught and tested in U.S.
high school courses conventionally called Algebra I and Algebra II" (McCrory et al.,
2012, p. 596) and came from analysis of the CBMS book (2001) and RAND report
(2002). The second category is knowledge of advanced mathematics, which "includes
other mathematical knowledge, in particular college-level mathematics, that gives a
teacher some perspective on the trajectory and growth of mathematical ideas beyond
school algebra" (McCrory et al., 2012, p. 597) and came from the CBMS book (2001).
The third category is mathematics-for-teaching knowledge, which the authors defined as
"mathematics that is useful in teaching, but is not typically taught in conventional

mathematics classes either at the high school or postsecondary levels" (McCrory et al.,
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2012, p. 598) and came from Usiskin's presentation (2001). Note that the authors also
identified this final category as similar to what Ball and colleagues identified as
specialized content knowledge.

The second dimension of the KAT framework describes how the knowledge
described in the first dimension of mathematical knowledge is used in teaching. The first
category, decompressing, "describes the need for teachers to decompress their knowledge
in the practice of teaching" (McCrory et al., 2012, p. 1) and is related to the idea of
unpacking that is talked about by Ball and Bass (2000b) and Cohen (2011). The second
category, trimming, refers to the idea that "teachers may find it useful to “trim' the
mathematical content in a way that matches students' current level of sophistication while
treating the mathematics with integrity" (McCrory et al., 2012, p. 604) and is related to
Bruner's (1960) idea of intellectually honest teaching and Ball and Bass's (2000a) idea of
maintaining mathematical integrity. The last category, bridging, is defined as "efforts to
connect and link mathematics across topics, courses, concepts, and goals, including
connecting the ideas of school algebra to those of abstract algebra and real analysis, and
linking one area of school mathematics to another" (McCrory et al., 2012, p. 607). When
taken together, the two dimensions of mathematical knowledge form an array that can be

used to analyze the teaching algebra at the secondary level.



67

HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS

uonIppe UOIOUNJ [RUOLEI
0} UONIPpE UOIN}ORIY Fune[a ‘ULl papuedxd Ul sJoqUNU
01 9seq jo uorssardxe y3noiy) suorssaidxe jerwoukjod
Sunyury ¢s1doouos pue s[is oreiqade Jurdojaaap

JOJ [BIJUSSSO SI SUONORI) FuIpue)SIopun jey) JUIZIUS009Y

swo[qoad pue sojdurexa Suneaid {Seapl [eoljBWAYIRW
Jenonted noqe Sunyury yuepnis 03 urpuodsar
‘syjuouwIuiod Jo suonsonb uroroaar (swapqoid j0oqixel
FurAjrpow ‘eopI Uk JO JuaUneaL) S, 00qI%9) oy} Sundepy

'019 ‘suolssaidxo FuiAyijdus ‘suonenba Juiajos
‘uonoely e £q SUIPIAIP pue ‘SIOJRUIIOUIP UOWWOD
Furpuly ‘uoISIAIp Suo[ ul pasn swyiog[e Suryoedun

O[]0} 0 SoTjeWwaYew J0J 9p1Aoid suonIuop
9SO} JeY} SOOUBPIOLJE AU} pue 309[qo [eoneWAYIEW
Je[nonJied e Jo SUONIULIOP JUAILJIP JO 9Fpojmouy]

sonewayiew [00Yds jo suoneordde
{SWOI00Y) JBI[IUIR] JO SUOIBZI[RIOUAS PUL SUOISUS)X

(L09 "d ‘Z10T “T® 19 A101DO) , Joyioue 03
SONRWAYIEW [O0YDS JO BOIR QUO SUUI[ PUB ‘SISA[RUE [BaI

pue BI1qa3[e 108I)SqR JO 9SO} 0} BIGaJ[B [00YIS JO Seapl
o) Sunoouuod Jurpnpoul ‘sjeod pue ‘s1doouod ‘sasinod
‘so1d0) SS0I0E SOTJRWAYIEW JUI] PUL JO3UUO0D 0} SHOHH,,

(£09 "d ‘7107 “Te 10 A101DON) , A1113o)ur

UM sonewdyiew 2y} Junean a[iym uonesnsiydos

JO [9AQ[ JUSLIND SIUSPNIS SAYDIBW JeY) Aem B UI JUIUOD
[eonBWAYIBW U} WL 0} [NJasn II pulj Aew SISYOB ],

(1-d‘zr0T
“Ie 19 K101D91N) ,, Suryoeay Jo aonoed oy ur 93pajmouy]
1oty ssexduwiooap 03 $19YoBa} 10J PIAU oY) SOqLIISA(],

(865 "d ‘T10T “1# 19 AI01D0N)

. S[9A9] Arepuodasysod 10 [ooyos y3iy oy 1e JoyjIo
SOSSB[O SOIBWAY)RUW [BUONIUIAUOD UI Jy3ne) A[[eordA)
j0U SIINnq ‘FUIYOLS) UT [1JOSN ST JBY} SONBWYIRIA],,

(L6S
d ‘2107 18 10 £101D91N) ,,"BIqa3[R [00YDS puokaq seap!

Suspug

Furwwi g,

Surssardwooo(g

a8paomouyy
Suryoeo .
-10J-SOT)RWAYIBIA

‘SuOnIULap 2eUId)[e Furmouy| ‘JUI[opowW [BIJBWAYIBW [BINBWAYIBW JO YJMO0I3 pue A1030a(e1) ay) uo aanoadsiad SONRWAYIBIA

pue ‘sisA[eue xo[dwoo pue [eal ‘1qaZ[e jornsqe QWOS JAYOLa] B SOAIS JBY) ‘SOIjeWayjel [9A][-939[[00 poouBApY

‘A1091]) JoquINU ‘eIqaJ[e Jeaul] ‘Sn[nojed Jo a3pojmouy]  Jemnonted ul ‘93po[mou [edljeWAYIRW JOYI0 SIpN[OU],, Jo a3pojmouy
uonouny jo uorou oY) Jo Jurpueisiopun 3snqoi e (96¢ *d ‘Z10z I8 10 AI0IDOIN) ., ‘11 B1qe3[V pue [ ©Iqa3[V

‘suonerado orseq Jo Jurpueisiopun [BINJONI)S B (SB[NWIO]  PA[[BO A[[BUOIIUSAUOD SISINOI [00YIS YSIY "S° () Ul PaIso)} ©IQA3[V [00Y9S

yum A[[njSuruesw pue A[qIxayy yiom A[Iqe oy pue jysnel aq p[nom AesrdAy jeyy Juejuod oYy, Sopnjouf Jo a3pojmouy

sordurexy uonuyaq wId

3u1yova ] 40f v.1qa3]y fO 23Pa]MOUY] AOf YLOMIUD.AL S, LLOLD)IPN Ul SUOIULID(T G 2]qD]



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 68

COACTIV. In Germany, another framework for mathematical knowledge for
teaching was developed under the COACTIV study (Baumert & Kunter, 2013; Krauss et
al., 2008). Like the other frameworks described previously, the COACTIV framework
was also developed as a response to the call by Shulman (1986, 1987). However, the
COACTIV model does encompass a broader range of teacher professional competence,
such as general pedagogical, organizational, and counseling knowledge (Baumert &
Kunter, 2013). Since the focus of my study is primarily on content knowledge and
pedagogical content knowledge, I will only describe those aspects of their model. Like
KAT, the COACTIV model was developed to apply to the secondary level. The
COACTIV model distinguished four levels of understanding of content being taught: (1)
academic research, (2) a profound understanding of the mathematical content taught in
school, (3) a command of the mathematical content covered at the level being taught, and
(4) everyday mathematical knowledge that all adults who graduated from high school
should have (p. 33).

In the COACTIV model, the content knowledge needed for teaching mathematics
as synonymous with the second level: a profound understanding of the mathematics
content taught in school. Baumert et al. (2010) cited this conceptualization of content
knowledge for teaching as aligning with the National Council of Teachers of
Mathematics (2000) and the National Mathematics Advisory Panel (2008). In regards to
pedagogical content knowledge, the COACTIV model identified three dimensions:
knowledge of mathematical tasks, knowledge of students' mathematical thinking, and
explanatory knowledge (Baumert & Kunter, 2013). The first dimension, knowledge of

mathematical tasks, is defined as "knowledge of the didactic and diagnostic potential of
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tasks, their cognitive demands and the prior knowledge they simplicity require, their
effective orchestration in the classroom, and the long-term sequencing of learning content
in the curriculum" (p. 33). The next two dimensions are based directly upon Shulman's
(1986) general categorization of pedagogical content knowledge. Knowledge of students'
mathematical thinking is defined as "knowledge of student cognitions (misconceptions,
typical errors, strategies) and ways of assessing student knowledge and comprehension
processes (Baumert & Kunter, 2013, p. 33). The last dimension, explanatory knowledge,

is defined as "knowledge of explanations and multiple representations" (p. 33).



70

HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS

prozaden e Jo eo1e 90BJINS
oy} Surpury Joj seynuiioy opdinuw JULIDPISUOD JO SAN[BA
onoepIp SUIAJNIUAPI (T = T— * T— Aym Surureidxyg

Supyury juepms a[qissod Furkjrzuapr {Jo vale oY)
puiy 03 3yS1ay sowr) aseq Juisn awiy) piey e oAey JYIIw
sjuapms jey) sweidoa[eied SuIANUSPI SIOLID JUIPNIS
Surzio3oieo A[renydeouos pue ‘FuizA[eue ‘Fuiziugoooy

suoryejuasardor JUSISIJIP UO paseq

suonnjos o[dnnu 10§ renuajod  syse) e Furzrugooal
3Se) B SUIA[OS JO sAem JUAIAHJIp A[oAneirjenb Sutredwos
$[Se) [BOIIBWAYIBW B 9A[OS 0} sAem o[dnjnw Surmouy]

9J1] AepAIoAS WO} JeI[Ie]
10 J00Y9S AIBJUSUISNd Ul PAIdA0D ST JeY) A1}ow0ad
pue suonerodo [eonjeWAYIBW JISEq JO 93pa[mouy

[9A9] JUAIIND O} J& UIBI[
10 MoUuy 0} Sjuapms JnoA 300dxa nok jeym Furmouy|

(g€ "d ¢10T “Tyunyy 29 yowneq)

. suonejuasaxdar ofdnnw pue suoneue[dxd Jo a3paymouyy,,

(¢cd

‘€107 “Iouny 2 powney) . s9ssa201d uorsusyardurod pue
o3paymouy Juopnys Jurssasse Jo sAem pue (so139)ens ‘SIOLId
[eo1dAy ‘suondasuoosiur) suonIugod JuIpNISs Jo 9FPI[Mouy,,

(g€ "d ¢10T “Tyunyy 29 yowneq)

Judu0o Furured| yo Jurouonbas wrd-3uo[ oY} pue ‘WOOISSB[D
9Y) Ul UONIBIISAYIIO 9AIORJJO 11y} “aarnbar Aprorjdur

Koy 93pajmouy| Jotid o) pue spuBWIOP SANIIUSOD I19Y)

‘sy[se} Jo Tenuajod onsouSeIp pue J19BPIP Y} JO 9FPIA[MOUY],,

(cedgrot
‘I9juny 29 Pouwneg) . JOOYS SUIABI[ Jo)JB dARY P[NOYS

SINpe [[& 18y} 93pa[mous] ABpAISAQ [BOnjBWAYJRW Y ],

(g€ "d ‘¢10T “TO3UNyy %9 1owney) . Hysne)
[9AS] 93 1B PAIDA0D SONRWAYIRW [00YIS JO putUIWO) V/,,

suonejuasarday
pue suoneue(dxg
Jo a3pojmouy

uonIugo)) Juapms
Jo a3pojmouy

SY[SB, [eOlBWAYIRIA
Jo a3pojmouy]

a8paomouyy
Areyuowo[g

a8pomouyy oiseq

Anowoagd Ayureqrwurs ur sdojs 3s11j pue suonenbo (ced€10T
onerpenb 03 dn—uoreonpa A1Bpu0IIS JOMO[ Ul PAISAOD ‘I91uny 29 Pouwneg) . JOOYSS Ik Jy3ne} sonewayIew a8paomouyy
sainpasoid pue syjdaouod pasueape Jo a3pojmouty oy} Jo Surpueisiopun [eonewayjew punojoid v, poouBApY
a8paomouyy
SIsA[eue [euonouny pue K109y} SI0[eL) JO 93pa[mouy| o3pamouy] yoIeasal JIuapeIy [oIeasoy|
sordwexyg uonduosaq wId |,

y1omauA,] S, ALLDVOD Ul suontuyoq ‘9 2jqv ]



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 71

CHAPTER 3: RESEARCH METHODS

Rationale

Studying Mathematical Knowledge for Teaching

In their 2008 article on mathematical knowledge for teaching, Ball and her
colleagues acknowledged that there are several ways researchers could approach the
question, "What mathematics do teachers need to know in order to teach effectively?"
First, one could examine curriculum and standards—the material that usually dictates the
content that teachers are expected to convey to their students—and make a list of what
teachers need to know. Second, one could ask content specialists—such as
mathematicians—to identify the core ideas and skills that are required to teach the
curriculum. However, the disadvantage of both of these approaches is that they rely on
knowledge that is unattached from the very act of teaching itself. While the curriculum
delineates what content they need to teach, it doesn't uncover how that content must be

understood or what else the teacher needs to know in addition. Mathematicians may have
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an advanced understanding of the content, but their understanding is for their personal
use, not situated in the context of teaching others to build understanding.

Instead of choosing either of these routes, Ball et al. (2008) approached their
question from the perspective of practice. Instead of speculating about what teachers
needed to know, they chose to investigate what mathematical knowledge teachers used in
and for teaching. It is commonly accepted that teachers need to know the content for
which they are responsible to teach to students, however, Ball et al. were interested in
examining what else teachers needed to know beyond that. By examining teaching, they
conducted a sort of "job analysis" in order to better ascertain "the mathematical
knowledge needed to carry out the work of teaching mathematics" (p. 395).

It is my intention to follow this approach in conducting my dissertation research.
The framework by Ball et al. (2008) is the product of over twenty years of practice-based
research that Ball and her colleagues have been conducting on teacher knowledge.
Several other researchers have also attempted to answer the question of "What
mathematical knowledge do teachers need to know in order to teach effectively?”
however, not everyone has continued to follow the approach heralded by Ball. Some
researchers have attempted to take the practice-based theory developed by Ball et al.,
which was developed using a collection of records of elementary teaching, and extend it
to higher grade levels. However, Speer, King, and Howell (2015) claimed that such an
extension is not necessarily appropriate. Instead, the authors challenged researchers to
explore "the types of knowledge entailed in the work of teaching...through the same kinds
of careful study of the mathematical demands of teaching that sparked the early work on

mathematical knowledge for teaching (Ball and Bass 2000)" (p. 119).
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Grounded Theory

In reading the works of Ball, I found it difficult to ascertain exactly what
methodological approach she was using. However, there was a recurrent theme that
sprung up in her descriptions:

* "In order to ground our inquiry, we analyze data from elementary classroom
teaching of mathematics" (Ball & Bass, 2000a, p. 198),

* "We seek to identify patterns, themes, mathematical issues and lacunae, and to
support the identification of those with evidence in the records" (Ball & Bass,
2000a, p. 201),

* "..when theoretical ideas emerge from observations of patterns across the data,
we can use them as a sense for viewing other records, of other teachers' practices,
and either reinforce or modify or reject our theoretical ideas in line with their
adaptability to the new data.... This would permit the discussion of theoretical
ideas to be grounded in a publicly shared body of data, inherently connected to
actual practice" (Ball & Bass, 2003, pp. 5-6).

In these quotes, we can see that Ball and her colleagues aimed to develop theory that is
grounded in data through the identification of patterns.

It is for this reason that I believe that Ball's approach to studying the practice of
teaching agrees with the purpose and tenants of grounded theory. Strauss and Corbin
(1994) defined grounded theory as "...a general methodology for developing theory that is
grounded in data systematically gathered and analyzed" (emphasis added, p. 273). Herein
we see the connection to Ball's method of studying the practice of teaching. Both

approached theory development from the perspective that it should be intrinsically
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connected to data. In addition, not only do both agree on the approach to developing
theory, but they also agree that the purpose of theory is to identify plausible relationships
through systematic analysis of data, not to uncover "preexisting reality" (p. 279). Instead,
Strauss and Corbin proposed that "...grounded theories...are systematic statements of
plausible relationships" (p. 279). Similarly, Ball (1999) cited that her aim is to "...produce
plausible analyses of teaching and learning that interplay mathematical perspective with
pedagogy, with an eye to expand the range of mathematical possibility that might be
seen, heard, located, and, in turn, nurtured, in teaching and learning" (p. 31).

Even if I temporarily put aside the methods used by Ball, I believe that grounded
theory is still the best tool to use in answering my research questions. If I want to focus
my analysis on the work of teaching, then staying grounded in data when developing my
theory is of upmost importance. Also, the coding process for grounded theory is iterative
and focused upon the development of theory. First, the researcher begins with open
coding, which "...is the interpretive process by which data are broken down analytically"
(Corbin & Strauss, 1990, p. 423). The purpose of using open coding is to help the analyst
situate themselves in the data and to break "...through standard ways of thinking about
(interpreting) phenomena reflected in the data" (p. 423). As the researcher begins to
identify categories that emerge during open coding, they next engage in axial coding,
wherein "...categories are related to their subcategories and those relationships are tested
against data" (p. 423). Finally, in order to reach the point of saturation, which is "...when
no new information seems to emerge during coding..." (Strauss & Corbin, 1998, p. 136)
the grounded theory researcher must conduct theoretical sampling and coding.

Theoretical sampling is defined as “data gathering driven by concepts derived from the
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evolving theory and based on the concept of ‘making comparisons’," (p. 191). By
conducting theoretical sampling, the analyst will be able to conduct the final round of
selective coding, which “...is the process by which all categories are unified around a
central “core' category and categories that need further explanation are filled in with
descriptive detail" (Corbin & Strauss, 1990, p. 424).

It is evident that Anselm Strauss and Juliet Corbin heavily influence my
conceptualization of the grounded theory methodology. However, I feel that it is
important for me to acknowledge that there are several approaches to grounded theory.
Grounded theory was first introduced by Barney Glaser and Anselm Strauss in The
Discovery of Grounded Theory (1999\1967). Since then, Glaser and Strauss have
developed separate approaches to grounded theory and more recently Kathy Charmaz
(2006) has developed an approach called constructivist grounded theory. Glaser's (1992)
approach to grounded theory is a purely inductive process focused on theory development
and is less structured. Strauss and Corbin (1998) use both inductive and deductive
processes, stress the importance of verification, and use a more structured analytic
process. Finally, Charmaz (2006) focus on the influence of the perspective of the
researcher as they are involved in constructing the theory. The reason I chose to use
Strauss and Corbin's (1998) approach is because I want to use the power of both
induction and deduction (which as I mentioned previously, is similar to abduction) and
because I like the structure that is provided using their method.

One question that naturally arises as a result of my choosing grounded theory as
my methodological framework is why am I qualified to do grounded theory research?

Strauss and Corbin (1998) cited six characteristics that a grounded theorist must possess.
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First, a grounded theorist must have "the ability to step back and critically analyze
situations" and "the ability to recognize the tendency toward bias" (p. 7). As I have taken
courses in qualitative research methodology and been involved in several projects that
have used grounded theory, I have begun to develop the ability to critically analyze
situations. However, Strauss and Corbin emphasize that the ability to analyze must be
coupled with the ability to step back and recognize the tendency toward bias. Since [ am
familiar with the literature surrounding mathematical knowledge for teaching, I realize
that this might be one area I struggle with. However, Erickson (1986) argued that there is
a way to combat bias and preconceived notions in order to make sure that the data is
speaking for itself.

One can argue that there are no pure inductions. We always bring to experience

frames of interpretation, or schemata. From this point of view, the task of

fieldwork is to become more and more reflectively aware of the frames of

interpretation of those we observe, and of our own culturally learned frames of

interpretation we brought with us to the setting. (p. 140)
Acknowledging that it is natural to bring hypotheses to any research, Erickson claimed,
"...’observing without any preconceptions'...is a misleading characterization.
Preconceptions and guiding questions are present from the outset, but the researcher does
not presume at the outset to know where, specifically, the initial questions might lead
next" (p. 143).

Next, Strauss and Corbin (1998) stated that a grounded theorist must have "the
ability to think abstractly" (p. 7). In the coursework I have completed for my

undergraduate and graduate degree, I have been trained to think abstractly in the field of
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mathematics®. While this field does differ from social science in many ways, I believe
that I can draw upon my experience with reasoning abstractly in mathematics in order to
reason abstractly in conducting grounded theory research.

Strauss and Corbin (1998) also claimed that grounded theorists must have "the
ability to be flexible and open to helpful criticism" (p. 7). Unlike the previous traits, this
is a characteristic I have more recently begun to develop. I often excelled in school and
sought to please my parents at home, so criticism is something [ was rarely exposed to.
However, I am finding that in learning to become an educational researcher, I must learn
to be open to "helpful criticism." While I'm not opposed to "helpful criticism" at face
value, I often find that I want to work privately until I can present what I view to be as
my finished or perfected work. Yet, I realize that by limiting what I share and, therefore,
what feedback I receive, I am limiting my personal growth. Thus, this is a characteristic I
feel I am still developing, but conscious of my need for.

Next, Strauss and Corbin claimed that grounded theorists need "sensitivity to the
words and actions of respondents" (p. 7). While on one hand I am naturally a "listener,"
I'm also developing my sense of "sensitivity" to what people say. While reading in
preparation for writing my literature review, I realized from conversations with others
that often the way I would summarize a paper was heavily influenced by the main point
that I took away from it. Once I recognized that I was confounding what I took away

from the paper with the main argument the paper made, I felt like I was able to begin

* It is important to note that although I am completing my dissertation research in
the field of mathematics education, I am still earning a doctoral degree in mathematics. In
particular, I have taken all of coursework required for doctoral students in the
mathematics department who study pure and applied mathematics and have passed both
qualifying and comprehensive exams in mathematics. Therefore, I view myself as a
mathematician who is trained to conduct research in mathematics education.



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 78

parsing the two apart. The final characteristic that Strauss and Corbin identified as
something that grounded theorist must have is "a sense of absorption and devotion to the
work process" (p. 7). While perhaps I am making too broad of a generalization, I believe
that it is safe to say that most people who pursue a Ph.D. must possess such devotion.
Therefore, I believe that although I may not be a grounded theorist specialist and I
recognize that I still have much to learn, I am able to complete grounded theory research

in an appropriate manner.

Stimulated-Recall Interviews

The ideal study of the pedagogical work and knowledge entailed in teaching
would collect data on the exact work done and knowledge used while teaching. However,
since such data mostly occurs in the mind of the teacher and often is not observable, such
instantaneous data collection is impossible. Thus, the practice of teaching must be studied
through other means. This could be done by asking teachers, "What knowledge do you
use when...?" However, hypothetical questions are not situated in practice, which is a
scenario [ want to avoid. Alternatively, we could a priori ask, "What knowledge did you
use when...?" However, retrospective questions depend upon the interviewer being able
to correctly recall the situation and reconstruct the knowledge they used. A third
alternative would be to use the method of think-aloud protocol (Lewis, 1982), which asks
the interviewee to verbalize their thoughts as they work through an activity. However,
using a think-aloud protocol with observations would necessitate that the teacher think-
aloud while teaching, which would be unnatural and disruptive for the students.

An alternative to the previous methods is to use stimulated-recall interviews.

Bloom (1953) is often cited as the founder of the technique, although he drew inspiration
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for his interview methodology from other researchers. In his study, Bloom audio recorded
lectures on tape and them played them back to students during interviews in order to
revive "memories after the class in order to determine the thoughts which occurred during
the class" (p. 161). According to Bloom, "the basic idea underlying the method of
stimulated recall is that a subject may be enabled to relive an original situation with
vividness and accuracy if he is presented with a large number of cues or stimuli which
occurred during the original situation" (p. 161). Bloom admitted that even stimulated-
recall is bound to include some elements of retrospective thought. However, he "found
that as high as 95 per cent [sic] accurate recall of such overt, checkable events within two
days" (p. 162). Thus, Bloom suggested that researchers using stimulated-recall could
anticipate "that the accuracy of the recall of conscious thoughts is high enough for most
studies of learning situations--if the interviews are made within a short time after the
event" (p. 162).

Like Bloom (1953), other researchers have discussed the limitations and problems
associated with using stimulated-recall. Yinger (1986) pointed out "that the participant is
not likely to know if a thought is recalled or constructed. A researcher is even less likely
to be able to untangle these two very different types of reports" (p. 270). Also, when the
interviewer is asked to view a video or audio recording of themselves and then report
what they were thinking in that moment, they are tasked with the cognitive demand of
understanding and interpreting their past behavior, which is not easily done. Additionally,
Calderhead (1981) pointed out that "some areas of a person's knowledge have never been
verbalized and may not be communicable in verbal form" (p. 213). In particular, he

points out that this may be especially true for experienced teachers, since they most likely
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have reached a level of cognitive atomization. Since my plan is to observe and interview
experienced teachers, this is a limitation of my study that I will have to keep in

consideration.

Data Collection

Participants

The graduate student instructors involved in my study had experience teaching
precalculus courses. Here, I defined experienced as any graduate student instructor who
has taught precalculus for at least two semesters previously. The reason why I chose to
study experienced instructor is twofold. First, the mathematics department that my
participants taught in required that precalculus instructors use specific instructional
methods. Instruction is centered on group work and very little time is allocated each
lesson for lecturing. Given the fact that this is atypical, although increasing in prevalence,
for undergraduate courses, my assumption is that novice first-year instructors will not
have taught using primarily group work before.

Second, precalculus instructors are given and asked to follow specific lesson
guides for each day. While the standardization of lesson guides is beneficial in the sense
that it provides the teacher with suggested sequencing, examples, and timing, novice
instructors will still be teaching the content for the first time. Therefore they may struggle
with not knowing the content as well as they need to in order to teach it or the expansive
amount of variation associated with the content, such as student conceptions and

misconceptions or different approaches to teaching procedures and concepts. So taking



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 81

these two factors into consideration, I chose to observe experienced rather than novice

graduate student instructors.

Sampling

During the first semester that I observed instructors, I asked them to provide me
with three different dates, spread out through the semester, where I could come into their
classroom to observe. Since the instructor was picking these dates, I observed lessons at
random. Also, there were several lessons that I only observed part of because even if they
were spread out over multiple days, I only asked to observe one day at a time. During the
second semester that I observed instructors, I chose specific lessons that I wanted to
observe and verified that these dates would work with the instructors. The lessons that I
chose were more procedural in nature, because I thought that these would give me an
opportunity to observe examples that could be enacted as either high or low cognitive
demand, since procedural tasks can be enacted with or without an emphasis on
connections. Several of these lessons were spread out over two days, so I would come to

the classroom both days to observe.

Pre-Observation Interview

Before each classroom observation, I meet with the instructor to discuss their
lesson plan. In particular, I focused on the examples that they chose to include and
unpacked why they chose to include them. Typically, we met the morning before they
taught the lesson, although occasionally this did not work with the instructors’ schedule,
so we would meet the day before. The full semi-structured pre-observation interview

protocol can be found in Appendix B.
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Observation

During the classroom observations, I videotaped the examples that the instructor
enacted. Since my dissertation primarily focuses on the instructor, I only used one video
camera on a tripod to capture what the instructor was doing. I also took detailed field
notes in my observation protocol, which can be found in Appendix B. During each
example, I would capture both what was said and what was written on the board. Then, if
there was time between the end of one example and the beginning of another, I would
capture my thoughts related to the cognitive demand of the example. After each
observation, I would fill in more details about each example and reflect on the lesson as a

whole. The full observation protocol that I used can be found in Appendix B.

Post-Observation Interview

Usually within 24 hours after each classroom observation I conducted a
stimulated-recall interview with the instructor, lasting between 30 minutes to an hour.
Occasionally this timeframe did not work out with the instructor, but we were always
able to meet within 48 hours of the class. Before the interview, I will complete a pre-
analysis of the video observation and tag moments to unpack with the instructor. In
particular, I chose moments that related to decompressing, bridging, trimming, eliciting

and interpreting student thinking, and using multiple representations’.

> I chose to focus on decompressing, bridging, and trimming because these three
teaching practices were identified by McCrory, Floden, Ferrini-Mundy, Reckase, and
Senk (2012). Since instructors presented examples in different ways, I wanted to know
how they were gaging whether or not students were following or understanding the
example, which is why I asked about eliciting and interpreting student thinking. Finally,
many high cognitive demand examples involve multiple representations, which is why I
wanted to unpack this aspect.
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During the interview, I showed the instructor 30 seconds to one minute of the
moments that I tagged to help them recall what was happening. I then asked the instructor
about the pedagogical work and the mathematical knowledge they used during the
example enactment. As I brought up earlier, the use of interviews is standard in grounded
theory but not always recommended by researchers who are studying knowledge used in
teaching. My initial belief was that using stimulated-recall interviews would aid me in
understanding the mathematical knowledge the instructor used in teaching. However, it is

possible that the teachers’ reflections were inaccurate or contrived.

Data Analysis

Since my dissertation follows a three-paper structure, I have reserved discussion
of the analytical frameworks I used in my analysis for each individual paper (Chapters 4-
6). However, in the following sections I will discuss the general procedures that I

followed during my data analysis.

Primary Coding Stages

There were four stages of coded that I conducted for my data analysis.

Cognitive demand. First, I used my modified framework for cognitive demand
(see Table 7) to code the cognitive demand of the example. The purpose of conducting
this stage of coding was to identify examples that were enacted at a high level of
cognitive demand for me to analyze in my subsequence stages of coding.

Roles of instructors. Next, I went through each high cognitive demand example

and segmented it into times where the instructor was modeling content, practices, and
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strategies for students; facilitating whole class discussions; and monitoring students as
they worked through parts of the example individually or in small groups. The purpose of
doing this stage of analysis was to help answer RQ2 and the second parts of RQ3 and
RQA4.

Pedagogical work. In my third stage, I conducted open, axial, and selective
coding (which are described in the next section) of the pedagogical work entailed in
enacting high cognitive demand examples. The purpose of doing this stage of analysis
was to help answer RQ3.

Mathematical knowledge. In my final primary stage of coding, I conducted
open, axial, and selective coding of the mathematical knowledge entailed in enacting high
cognitive demand examples. The purpose of doing this stage of analysis was to help

answer RQ4.

Secondary Coding Stages

Strauss and Corbin (1998) described grounded theory coding as consisting of
three stages: open coding, axial coding, and selective coding.

Open coding. Open coding requires the analyst to break down the data and
examine it for the purpose of comparing for similarities and differences and identifying
emergent categories. By comparing data to bring to light similarities and differences, the
analyst should begin to identify patterns that emerge from the data. Given these patterns,
conceptually similar ideas are grouped together to form categories. In identifying
emergent categories, it is also important to define their properties and how they vary
dimensionally. Strauss and Corbin (1998) suggested three different ways of doing open

coding: line-by-line analysis, sentence or paragraph analysis, and entire document
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analysis. In order to uncover both specific and general categories, open coding should be
done at each level.

Axial coding. Following the identification of emergent categories, axial coding is
used to uncover how the categories are related to their subcategories. In open coding, the
data is broken down into discrete pieces of information to ensure that it can be closely
examined. The purpose of axial coding is to "begin the process of reassembling data that
were fractured during open coding" (Strauss & Corbin, 1998, p. 124). To identify the
relationships between categories and subcategories, the analyst must both consider the
structure and the process by which they are connected. The structure is manifested in the
conditions that answer the questions of why, where, how come, and when. The process is
manifested in the actions and interactions "made by individual or groups to issues,
problems, happenings, or events that arise under those conditions" (p. 128) and results in
consequences. Each of these aspects (conditions, actions/interactions, and consequences)
must be identified through axial coding in order to establish the relationships between the
categories and subcategories. Once saturation has been reached, which occurs "when no
new information seems to emerges during coding" (p. 136), then we are ready to move on
to the final stage of coding.

Selective coding. The final stage of coding for grounded theory is necessary for
theory development to have conceptual density, which "...refers to richness of concept
development and relationships—which rests on great familiarity with associated data and
are checked out systematically with these data" (Strauss & Corbin, 1994, p. 274). In the
process of selective coding, categories are refined and integrated. In particular,

identification of a central "core" category is important. The "core" must appear frequently
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in the data, be logically and consistently related to the categories, sufficiently abstract,
possess explanatory power, and yet account for variation. The analyst must also refine the
theory by evaluating for internal consistency and logic, filling in underdeveloped
categories, trimming overdeveloped categories, and validating. Instead of functioning as
a separate stage of coding, selective coding rather is used to strength both the categories
identified through open coding and the relationships established during axial coding.

For an overview of my study and to see how my research questions, data
collection, and data analysis align, I have included a study diagram in Figure 16 in

Appendix C.
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CHAPTER 4: EXAMINING THE ROLE OF THE INSTRUCTOR

The cognitive demand of mathematical tasks is something that has been widely
studied in the literature (Boston & Smith, 2009; K. J. Jackson et al., 2012; Kisa & Stein,
2015; Smith & Stein, 1998; Stein et al., 1996) . Studies have found that high cognitive
demand tasks provide students with more opportunities to learn (Floden, 2002; K.
Jackson et al., 2013; Smith & Stein, 1998; Stein et al., 2007). Researchers have also
found that high cognitive demand tasks are difficult for instructors to enact (Henningsen
& Stein, 1997; Rogers & Steele, 2016) and are related to mathematical knowledge for
teaching (Charalambous, 2010). But what would it mean to have a high cognitive demand
mathematical example? Examples are different from mathematical tasks that are
primarily worked on by students. Examples may involve input from students or
opportunities for students to work independently or in groups on parts of the example, but
usually the teacher plays a leading role in working out or explaining the mathematics.

While studies have shown that students do not learn as much from observing a
worked out example as they do from actively engaging in the problem solving process

(Richey & Nokes-Malach, 2013), the examples that teachers use still play an important



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 88

role in the learning process (Chick, 2007; Muir, 2007; Rowland, 2008; Zaslavsky &
Zodik, 2007). In particular, Ball and her colleagues (TeachingWorks, 2017) identified
“explaining and modeling content, practices, and strategies” as a high-leverage practice
that is part of the core fundamentals of teaching. In addition, we create a dissonance in
our classrooms if we expect our students to successfully engage with high cognitive
demand tasks, but only ever present low cognitive demand examples. The purpose of this
paper is to modify the Task Analysis Guide developed by Smith and Stein (1998) so that
it can be used to analyze examples. In addition, I illustrate how high cognitive demand

examples can differ in terms of the role and participation of the teacher and the students.

Conceptual Frameworks

Task Unfolding

Stein et al. (1996) defined a mathematical task as “a classroom activity, the
purpose of which is to focus students’ attention on a particular mathematical idea” (p.
460). They also described the phases involved in the unfolding of a mathematical task
and the factors that influence this unfolding. In 2007, Stein, Remillard, and Smith
generalized task unfolding to apply to curriculum unfolding more generally, but the
underlying process remained the same. In Figure 4, the rectangle boxes represent the
three phases of task unfolding. The written task describes how the mathematical task is
represented in the written curriculum or instructional materials. The intended task
describes the teacher’s plan for implementing the task during instruction. Finally, the
enacted task captures how the mathematical task is actually implemented during

instruction. While each phase has an impact on student learning (represented by the
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triangle in Figure 4), studies have shown that the enacted task has the greatest impact
(Carpenter & Fennema, 1991). The bottom oval identifies some factors that influence
how teachers plan out a task for implementation in the classroom and how the task is
actually implemented in the classroom. Finally, it is important to note that the return

arrows from the enacted task and student learning represent the impact that these will
have on future teaching actions.

Figure 4. The Phases and Factors Influencing Task Unfolding
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Present Teaching
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Cognitive Demand of Tasks

In order to differentiate between tasks of different types, Smith and Stein (1998)
analyzed the cognitive demand of a task. They defined lower-level demand tasks as
“tasks that ask students to perform a memorized procedure in a routine manner” and
higher-level demand tasks as “tasks that require students to think conceptually and that

stimulate students to make connections” (p. 269). Each of these categories was then
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broken down into two subcategories: memorization, procedures without connections,
procedures with connections, and doing mathematics. Smith and Stein differentiated
procedures with and without connections as representing differing levels of cognitive
demand. They separated these two types of tasks in order to categorize mathematical
tasks that “use procedures, but in a way that builds connections to the mathematical
meaning” of the underlying concept as a higher-level demand task. Doing mathematics
tasks are categorized as higher-level demand tasks that require “students to explore and
understand the nature of relationships” (p. 347).

To aid in differentiating between the different types of tasks, Smith and Stein
(1998) developed the Task Analysis Guide, which lists characteristics of the four types of
mathematical tasks. Later, when utilizing the Task Analysis Guide to code the third phase
of task unfolding, Stein et al. (1996) added a third type of lower-level demand task called
unsystematic exploration. This type of task, which applies to only the third phase of task
unfolding, describes declines in cognitive demand that are characterized by “motivated
student engagement, well-intentioned teacher goals for complex work, and well-managed
work” but “the cognitive activity...was not at a high enough level to be characterized as

engagement in complex mathematical thinking and reasoning” (p. 478).

Categorizing Task Unfolding Using Cognitive Demand

In their 1996 study, Stein et al. used the Task Analysis Guide to analyze a sample
of 144 tasks that were implemented in reform-oriented classrooms. They focused on the
transition from the second to the third phase of task unfolding and found that the majority
of the tasks were coded as maintaining or declining in cognitive demand. They also found

that “the higher the cognitive demands of tasks at the set-up phase, the lower the
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percentage of tasks that actually remained that way during implementation” (p. 476). This
finding provides confirming evidence for the claim that tasks with high cognitive demand
are difficult to enact (National Council of Teachers of Mathematics, 2014, p. 17). In
2010, Charalambous conducted a similar case study, but explicitly categorized task
unfolding by the type of path they follow (Figure 5). In his categorization, Charalambous
used the Task Analysis Guide to code cognitive demand as high or low at each phase in
task unfolding, which resulted in eight possible types that a task unfolding could follow.
It is worth noting that Charalambous only observed five of the eight possible types of
task unfolding (Types 1, 5, 6, 7, and 8 in Figure 5) in the cases he studied and I added in
the type numberings for ease of reference.

Figure 5. Categorization of Possible Types of Task Unfolding

Written Intended Enacted

L——————————— 3

H High-Level Tasks: Doing mathematics and Procedures with connections
L Low-Level Tasks: Procedures without connections, Memorization, and
Unsystematic exploration (the latter code applies only to task enactment)
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Purpose

The purpose of this study is to propose a revised framework for assessing the
cognitive demand of examples and examine the roles that instructor take when enacting
high cognitive demand examples. First, I will spend some time explaining how I have
view examples as different from mathematical tasks that students are responsible to work
on during class. Then I propose that we modify the language used in the Task Analysis
Guide in order to allow for different ways of enacting high cognitive demand examples.
Finally, I describe three different roles (modeling, facilitating, and monitoring) that
instructors might take on when enacting high cognitive demand examples and provide
narrative descriptions of what these role profiles look like in undergraduate precalculus

classrooms.

Assessing the Cognitive Demand of Examples

Before introducing my modified framework for analyzing the cognitive demand
of examples, I first spend some time differentiating between examples and exercises,
which are two types of mathematical tasks. I distinguish between the two types of tasks
because while Stein et al.’s (1996) definition of mathematical tasks is broad enough to
encompass both examples and exercises, the Task Analysis Framework (Stein & Smith,
1998) seems to apply more to exercises than examples. The main difficulty that I found in
using the Task Analysis Framework to analyze examples is that the language that Smith
and Stein use often specifies that students are doing the mathematical work. However,

examples can be presented in a variety of formats, which might include the teacher
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modeling how to work through the mathematics in the example as students take notes.
Therefore, I propose a modified framework for analyzing the cognitive demand of
examples that focuses on what mathematics is included in the examples instead of who is
doing the mathematics.

While it is still important to provide students with opportunities to work on
exercises, I argue that examples also provide students with opportunities to learn.
Opportunities to learn are defined as “whether or not...students have had the opportunity
to study a particular topic or learn how to solve a particular type of problem presented on
a test” (Husén, 1967, pp. 162—163). While studying actual student learning is important,
studies have found that differences in actual learning are related to differences in
opportunities to learn (Husén, 1967; National Research Council, 2002). Therefore, it is
important to understand what high cognitive demand examples look like, since they
provide students with an opportunity to learn how to solve high cognitive demand tasks
on their own. Also, I argue it is important to differentiate between opportunities to learn
and opportunities for students to struggle, since examples that presented by just the
instructor can still bring explicit attention to concepts. Finally, I illustrate how an
example related to the Law of Sines might be transformed to different levels of cognitive

demand to illustrate each category in my modified framework.

Differentiating Exercises from Examples

Stein et al.’s (1996) definition of mathematical tasks is broad and has been
interpreted in many ways. In my work, I differentiate between mathematical tasks that are
given to students to work on (e.g., exercises) and mathematical tasks that are completed

as a whole class activity (e.g., examples). In particular, I define examples as
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mathematical problems that are completed as whole-class activities and solved for
illustrative purposes. For example, to help students understand why trigonometric
equations can have infinite families of solutions, an instructor might use the example of
sin@ = —1/2. Or if an instructor is teaching the completing the square algorithm, they
might introduce it by working through several examples before asking students to work
through related problems. While some authors have found that it is not necessary to
differentiate between tasks in this way when analyzing the cognitive demand (Mesa et al.,
2012), I found it difficult to use the Task Analysis Guide (Smith & Stein, 1998) to
analyze the cognitive demand of examples. In particular, Smith and Stein’s framework
for the cognitive demand of mathematical tasks makes it clear that they assume that
students are the ones responsible for doing the mathematics in a mathematical task. While
it may be true that some instructors ask students to do the mathematics involved in an
example, there are also times when instructors work out the mathematics for the students
as part of the example.

I found that it was important to conceptualize examples independent of who is
doing the mathematical work due to the fact that some instructors choose to model
examples for students, while others involve students more in working out the
mathematics. While these different approaches to presenting examples may provide
students with different opportunities to learn, both approaches can be used to illustrate
concepts, practices, and strategies. In either approach, one important feature of examples
is that they include explanations. Bills, Dreyfus, Mason, Tsamir, Watson, and Zaslavsky
(2006) emphasized that “providing worked-out examples with no further explanations or

other conceptual support is usually insufficient”, as “learners often regard such examples
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as specific (restricted) patterns which do not seem applicable to them when solving
problems that require a slight deviation from the solution presented in the worked-out

example (Reed et al. 1985; Chi et al. 1989)” (p. 140).

Analyzing the Cognitive Demand of Examples

While I originally planned to use the Task Analysis Guide (1998) to analyze the
cognitive demand of examples, I ended up needing to create a modified framework .The
biggest difference between my modified framework and the Task Analysis Guide is the
language that is used concerning who is expected to be doing the mathematics. For
example, in the original framework, students are situated as the doers of mathematics.
This makes sense, as the framework was developed to analyze mathematical tasks that
students engage with during instruction. However, examples may involve some work
done by students and other work done by the instructor. Still, many of the same metrics
can be used to measure the cognitive demand. Below, I go into more detail concerning
how I modified each of the cognitive demand categories to fit with the context of
examples.

Table 7. Modified Framework for Analyzing the Cognitive Demand of Examples

Lower Level

Memorization

* Involve either reproducing previously learned facts, rules, formulae, or definitions OR committing
facts, rules, formulae, or definitions to memory.

*  Cannot be solved by using procedures because a procedure does not exist or because the time frame
in which the example is being completed is too short to use a procedure.

*  Are not ambiguous—such examples involve exact reproductions of previously seen material and
what is to be reproduced is clearly and directly stated.

*  Does not make connections to the meaning that underlies the facts, formula, or definitions being
learned or reproduced.

Procedures Without Connections

*  Are algorithmic. Use of the procedure is either specifically called for or its use is evident based on
prior instruction, or placement of the example.

* They can be solved by applying well-established procedures.
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*  Require limited cognitive demand for students to follow. There is little ambiguity about what needs
to be done and how to do it.

* Have no connection to the concepts or meaning that underlie the procedure being used.

*  Are focused on producing correct answers rather than developing mathematical understanding.

*  Require no explanations or explanations that focus solely on describing the procedure that was used
(e.g., the instructor or students simply describe the steps they followed in solving a problem).

Higher Level

Procedures With Connections

*  Focus students’ attention on the use of procedures for the purpose of developing deeper levels of
understanding of mathematical concepts and ideas (i.e., the example can be solved using a
procedure but the procedure is connected to the underlying mathematical concept).

*  Suggest pathways to follow (explicitly or implicitly) that are broad general procedures that have
close connections to underlying conceptual ideas as opposed to narrow algorithms that are opaque
with respect to underlying concepts.

¢ Usually are represented in multiple ways (e.g., visual diagrams, manipulatives, symbols, problem
situations). Making connections among multiple representations helps to develop meaning.

*  Require some degree of cognitive effort for students to follow. Although general procedures may be
followed, they cannot be followed mindlessly. Students’ attention needs to be focused on the
conceptual ideas that underlie the procedures in order to develop understanding.

Doing Mathematics

*  Require complex and nonalgorithmic thinking (i.e., there is not a predictable, well-rehearsed
approach or pathway explicitly suggested by the example, example instructions, or previously
worked-out examples).

*  Require the instructor or the students to explore the nature of mathematical concepts, processes, or
relationships.

* Involve explicit self-monitoring or self-regulations of cognitive processes.

*  Require the instructor or students to access relevant knowledge and experiences and make
appropriate use of them in working through the example.

¢ Require the instructor or students to analyze the example and actively examine example constraints
that may limit possible solution strategies and solutions.

* Require considerable cognitive effort for students to follow and may involve some level of anxiety
for the students due to the unpredictable nature of the solution process required.

* May include, but are not limited to, making and testing conjectures, framing problems, looking for
patterns, examining constraints, knowing when the problem is solved, justifying, and explaining.

In each of the category descriptions, I first replaced the word “tasks” with
“examples.” The first category, memorization examples, exactly mirrors the original
description of memorization tasks. The second one, procedures without connections
examples, is similar, but required slight modifications. Here, I will address the
modifications I made to the language. However, later I address a general modification
that I made concerning how cognitive demand is interpreted, but this modification applies
across categories. The primary modification I made to the language of the second lower-

level demand category was in the final descriptor concerning explanations. Since it is
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possible that either the instructor or students may be giving explanations during an
example, I modified the descriptor to reflect that it is not important who is explaining, but
rather what they are explaining.

In the third category, procedures with connections examples, I left the first
descriptor as is because even if the instructor is working out the example, they should still
be focusing students’ attention on the use of procedures for developing deeper
understanding. I also modified the final descriptor to match this language and reflect the
fact that while students may not be responsible for successfully completing the example,
their attention should be focused on developing understanding.

The final category, doing mathematics examples, was modified the most. I
modified the second descriptor so that it includes the instructor or the students working
through the example. I also removed “understand” from this descriptor, since examples
are primarily used for explaining concepts and not as opportunities for students to
demonstrate understanding. That is not to say that examples can never be used in this
way, but rather a way to highlight that they are usually employed as tools for building,
not testing, understanding. Since the purpose of an example is to explain or model
content, practices, and strategies, I changed the language used in the third descriptor to
reflect the fact that cognitive processes should be made explicit as the example is being
worked out. I modified the fourth and fifth descriptors so that they included the phrase
“instructor or students”. The sixth descriptor talks about cognitive demand, which I will
talk about more below, but I did add the phrase “for students to follow”, which can apply
to examples where both the instructor and students are responsible for working through

the mathematics. Finally, the last descriptor essentially remained the same.
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In the procedures without connections, procedures with connections, and doing
mathematics example descriptions, the phrases “cognitive demand” and “cognitive
effort” are used. In the original framework, it is obvious that cognitive demand is
dependent upon the students, since they are the ones completing the mathematical tasks.
However, what would it mean for an example to require cognitive effort if the instructor
is the one who is working through the mathematics? While it may be the case that the
instructor would find the example cognitively demanding themselves, this is not as likely.
However, students may still find the example to be cognitively demanding, even if they
were not responsible for doing the mathematics. To capture this difference, I modified the
language concerning cognitive demand to make it clear that this is a student, not

instructor, dependent variable.

Differentiating Students’ Opportunities to Struggle

In my framework, I have attempted to define cognitive demand in a way that is
independent of who is working through the mathematics. However, since much of the
work on cognitive demand has been situated in the context of mathematical tasks that are
given to students, a natural question that arises is, “How can an example be cognitive
demanding if students are not the ones working through the mathematics?” To answer
this question, I will explain how my modified framework for cognitive demand
differentiates between the mathematical cognitive demand of an example and student
struggle.

In my work, I conceptualize high cognitive demand examples as examples that
bring explicit attention to concepts and provide students with opportunities to struggle

with important mathematics. This conceptualization builds upon Hiebert and what
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(2007) key features of teaching that promotes conceptual development: explicit attention
to concepts and student struggle with important mathematics. The authors identify
explicit attention to concepts as “treating mathematical connections in an explicit and
public way” (p. 383) and student struggle with important mathematics as “the
engagement of students in struggling or wrestling with important mathematical ideas” (p.
387). In their work, the authors are careful to define struggle as meaning that “students
expend effort to make sense of mathematics, to figure something out that is not
immediately apparent” and not “needless frustration or extreme levels of challenge
created by nonsensical or overly difficult problems” (p. 387).

While it is important to consider whether or not students actually engage in this
struggle, my modified framework for cognitive demand focuses on providing students
with opportunities to struggle. If one instructor chooses to work through all of the
mathematics at the board, while another instructor lets students work through parts of the
example, then the opportunities to struggle may be different. In the first case, the
students’ opportunities to struggle are mostly internal and may only be observable if they
ask questions. In the second case, the students’ opportunities to struggle are more
observable as they work through the mathematics.

This conceptualization of opportunities to struggle is based upon the work of
Stein, Correnti, Moore, Russel, and Kelly (2017). Starting with Hiebert and Grouws’
(2007) two key features, Stein et al. (2017) built a matrix that reflected how explicit
attention to concepts (EAC) and students’ opportunities to struggle (SOS) can interact
and be enacted at different levels (Figure 6). According to Stein et al., teaching that falls

in Quadrant 2 “can take a variety of forms, [but] often involves teacher demonstration of
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a general procedure for solving a problem with time taken to explain concepts as they
relate to procedures and to encourage and entertain student questions” (p. 4). However,
this quadrant still captures high cognitive demand tasks, since it still involves multiple
representations, explaining concepts, and drawing connections. Even though students’
opportunities to struggle are limited, “that does not mean, however, that students can
mindlessly follow the pathway, but rather, they have to think about what they are doing
and why” (p. 4).

Figure 6. Stein et al.’s (2017) Matrix Comparing High and Low SOS and EAC

Students’ Opportunity to Struggle
High Low
a
o | = Quadrant 1 Quadrant 2
g é” High EAC High EAC
P High SOS Low SOS
=
S
=
8
< 5 Quadrant 3 Quadrant 4
5 . Low EAC Low EAC
T;} High SOS Low SOS
m

In my conceptualization of cognitive demand, I argue that cognitive demand is
more dependent upon high levels of explicit attention to concepts than high levels of
students’ opportunities to struggle. In particular, the first three characteristics of
procedures with connections examples all focus on concepts (“developing deeper
understanding of mathematical concepts and ideas”, “broad general procedures that have
close connections to underlying conceptual ideas”, and “making connections among

multiple representations...to develop meaning”). It is the final characteristic, “requiring
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some degree of cognitive effort for students to follow” that captures opportunities for
students to struggle. Similarly, the first two characteristics of doing mathematics
examples focus on concepts, while the next three focus on explicit attention to the
cognitive processes involved in solving the problem, and only the sixth characteristic
focuses on opportunities for students to struggle. Therefore, high cognitive demand
examples might fall in either Quadrant 1 or Quadrant 2. While these two quadrants do
provide students with different opportunities to struggle, they both “involve making
connections, analyzing information, and drawing conclusions” (Van de Walle et al.,
2013, p. 36), which are some of the essential features of high cognitive demand tasks.

It is important to note that although I claim that high cognitive demand examples
can be enacted with either high or low levels of opportunities for students to struggle, 1
am not claiming that it is not important to provide opportunities for students to struggle.
In particular, my dissertation focuses only on the examples used during class, and not
other activities such as group work, where students might be provided with higher levels
of opportunities to struggle. Also, my work is focused on identifying what high cognitive
demand examples might look like and does not examine the impact of these examples on
actual student learning. However, it is interesting to note that Stein et al. (2017) found
that students in Quadrant 2 classrooms performed well, but not quite as well as students
in Quadrant 1 classrooms, which may suggest that “there could be affordances for
learning associated with struggle but that some forms of bounded struggle might be worth

exploring” (p. 16).
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Transforming the Cognitive Demand of an Example

The purpose of this section is to demonstrate how an example can be presented at
different levels of cognitive demand. The example that I present here comes from one of
the examples that I observed an instructor enact in his classroom. The example was
couched in a lesson that introduced the Law of Sines and Cosines and was situated as the
first example to be completed after going through the proofs of each law. In Table 8, I
include the four examples at the different levels of cognitive demand, and then I will
explain how each one exemplifies the descriptors associated with that category.

The first version of the example is a memorization example because it involves
reproducing the Law of Sines, which would have already been presented earlier in the
lesson. Also, it cannot be solved using a procedure, is not ambiguous because it clearly
and directly states what is to be reproduced, and does not make connections to the
underlying meaning. The second version of the example is what was provided to the
instructor in the written lesson guides. This version is a procedures without connections
example because it is algorithmic, the procedure is specifically called for, it can be solved
by applying a well-established procedure, requires limited cognitive demand for students
to follow, is not ambiguous about what needs to be done or how to do it, has no
connections to the concepts or meaning that underlie the procedure being used, is focused
on producing the correct answer rather than developing mathematical understanding, and

requires no explanation.
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Table 8. Transforming the Cognitive Demand of an Example

Lower Level

Memorization

Use the Law of Sines and the given triangle to
fill in the missing information below.

X ?
sin (45)  sin (30)

Use the Law of Sines to solve for the unknown
side length, x, in the given triangle.

Higher Level

Procedures With Connections

Identify and use a procedure that can help us
solve for the unknown side length, x, in the
given triangle.

Explain how the unknown side lengths, x and y,
in the given triangle are related.

The third version of the example is close to how the instructor modified the
written example to be included in his intended lesson plan. This version differs from the
previous one in that it does not suggest a solution pathway. Rather, figuring out a solution
strategy is part of the example itself. Also, the example focuses specifically on helping
students to identify a procedure that can be used. In order to do this, the instructor should

focus on why the Law of Sines is appropriate to use here and perhaps even why the Law
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of Cosines is not appropriate. Since students often struggle with identifying what
procedure is appropriate to use in order to solve a problem, this would require some
cognitive effort on the part of students. However, as illustrated in the lesson that I
observed, the instructor would need to carefully attend to these features in order to
maintain the higher level of cognitive demand.

In the final version of the example, the focus is no longer on following a
procedure or producing a correct answer. Rather, the purpose of this example is illustrates
how we can make connections between variables, even if they are unknown. This is a
doing mathematics example because it requires nonalgorithmic thinking, exploration of
mathematical relationships, accessing relevant knowledge and making appropriate use of
it, analyzing the figure and examining constraints that may limit possible solution
strategies (i.e., non-right triangle), and considerable cognitive effort on the part of the
students. As the instructor is working through this example, it is important that they make

cognitive processes explicit and also attend to students’ level of anxiety.

Methods

In order to examine the roles that instructors take when enacting high cognitive
demand examples, I conducted semi-structured interviews and observations of examples
enacted in undergraduate precalculus classrooms. For the purposes of this study,
precalculus courses included college algebra, trigonometry, and the combined college

algebra + trigonometry, which were all taught in one semester.
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Participants

The instructors that I observed were all experienced graduate students who were
teaching a precalculus course. These graduate student instructors were experienced in two
ways. First, they were in at least their third year in their graduate studies, which means
that they had earned their M.S. in Mathematics and were working towards their Ph.D.
Second, they were all teaching their respective course for at least the third time. The
population of precalculus instructors that I had access to were mostly first-time graduate
student instructors, so these instructors were experienced in comparison to many of their
peers. Table 9 below provides a descriptive profile for each of the graduate student
instructors that I observed. Instructors were asked to pick a pseudonym in order to

conceal and protect their identity.

Table 9. Descriptive Profiles of Participants

Instructor Course Year in Graduate Program
Alex College Algebra + Trigonometry 4
Dan College Algebra + Trigonometry 4
Emma College Algebra + Trigonometry 3
Greg Trigonometry 5
Juno College Algebra + Trigonometry 3
Kelly College Algebra + Trigonometry 3
Selrach College Algebra + Trigonometry 5

Data Sources
There are three primary sources of data that were collected for the purposes of this

study. First, I conducted semi-structured pre-observation interviews with instructors
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before observing them. These typically occurred within 24 hours of the class that I was
observing, but occasionally had to occur earlier due to scheduling issues. During these
interviews, I asked questions regarding what topics they had covered in the previous class
and what topic they were covering in the next class as well as what examples they
planned to use and why. The full interview protocol for these interviews can be found in
Appendix B. I also collected the lesson guides provided to the instructors, the lesson
plans they created and planned to use, and the student workbook pages that they planned
to use during class.

Second, I collected video observation data of the examples that the instructor
enacted during class. During the observation I took field notes to record how the
examples were enacted and how they fit into the larger lesson. I also recorded ways in
which the enacted example differed from the intended example and whether or not any
examples were added to the lesson that were not present in the lesson plan. The full field
note guide that I used to record notes during and after the observation can be found in
Appendix B.

Finally, I conducted semi-structured post-observation interviews with the
instructors. These typically occurred within 24 hours of the observation. Between each
observation and post-observation interview, | watched the video and selected one or two
examples to discuss with the instructor. I tagged interesting moments during these
examples and used these clips as video-stimulated recall during the post-observation
interview. The full post-observation interview protocol that I used can be found in

Appendix B.
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Coding Procedures

Each enacted example was first coded using my modified framework for the
cognitive demand of examples (Table 7). Next, I open coded the high cognitive demand
examples to examine the roles the instructors took in enacting high cognitive demand
examples. Three roles emerged out of this open coding (modeling, facilitating, and
monitoring), which I will unpack more in the following section. I then went back and

recoded each example using the final coding scheme for instructor roles.

Analysis Procedures

In order to better understand the different ways in which instructors modeled,
facilitated, and monitored while enacting high cognitive demand examples, I analyzed the
role profiles for each instructor. This involved calculating the aggregated amount of time
that each instructor spent modeling, facilitating, and monitoring during the high cognitive
demand examples that I observed. Next, I examined each example individually to see

how instructors switched back and forth between these roles.

Sampling

For this study, I observed 24 different lessons over the course of a year. Every
instructor, except for Greg, only taught their respective course during one semester, so |
observed three lessons for each of them. Greg taught trigonometry both semesters, so |
was able to observe six of his lessons. In the first semester I asked participants to choose
three dates (spread out over September-December) that worked best for them, so my
lesson sampling this semester was random. During the second semester I chose specific
lessons that I wanted to observe and confirmed that the corresponding dates worked for

the instructors. So my sampling here was more purposeful. The lessons that I chose were
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more procedural, because I thought they would provide me with an opportunity to see
whether instructors chose to present examples as Procedures With or Without
Connections. Also, I only observed one day of instruction in the first semester, regardless
of whether or not the lesson was spread out over two days. However, if a lesson was

spread out over two days in the second semester, I observed both days of instruction.

Role Profiles of HCD Examples

A full description of the examples used in the 24 lessons that I observed can be
found in Table 34 in Appendix C. The 24 lessons spanned 33 days and included 93
different examples. Of those, 25 were high cognitive demand (HCD) examples.

Table 10. Overview of Examples by Instructor

Instructor Number of Number of Number of Number of
Lessons Days Examples HCD Examples

Alex 3 3 5 3
Dan 3 6 18 3

Emma 3 3 9 1

Greg 6 8 25 10

Juno 3 5 14 4

Kelly 3 3 7

Selrach 3 5 15 0

Totals 24 33 93 25

When enacting HCD examples, instructors used a variety of approaches. Some
instructors modeled content, practices, and strategies for their students, which required
minimal contributions from students. In these cases, the instructor primarily worked

through the example independently and expected students to follow along and copy the
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example into the their notes. Other instructors facilitated whole class discussions® as they
worked through examples. The types of student contributions in these situations varied
from providing simple computational answers to providing ideas of what to do next or
justification for why a step or answer was reasonable. Other instructors placed even more
responsibility on students and required students to work through parts of the example in
small groups or independently while the instructor monitored their progress.

Table 11. Definitions of Modeling, Facilitating, and Monitoring

Term Definition

Modeling An instructor is modeling content, practices, and strategies if they are
working through a problem independently and expecting students to follow
take notes.

Facilitating  An instructor is facilitating a whole class discussion if they work through a
problem together with their students.

Monitoring  An instructor is monitoring if they are requiring students to work through a
problem independently or in small groups.

It is important to note that while some instructors primarily used one format of
enacting high cognitive demand examples, others transitioned back and forth between
different formats. For the high cognitive demand examples that I observed, Dan and
Emma chose to just model the content, practices, and strategies for students. Juno
incorporated both facilitating and modeling in the HCD examples that I observed and
Kelly incorporated both monitoring and facilitating. Finally, Alex and Greg used all three
formats for enacting HCD examples. Table 12 illustrates the different HCD example role
profiles of each instructor that I observed. Table 12-Table 18 illustrate the different role

profiles of each example that I observed, broken down by instructors.

% Here, a whole class discussion is interpreted broadly as any time when both the
instructor and the students are working through part of the example.



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 110

Table 12. Role Profiles of Instructors’ Observed HCD Examples

UModel OFacilitate EMonitor

] | | | | | | |
Alex 14:24 07:19
Dan 24:02
§ Emma 12:22
S ]
E
£ Greg 20:12 | 49:15 [ 12:51 |
Juno 17:55 | 08:12
Kelly I R— |H
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Table 13. Role Profiles of Alex’s Observed HCD Examples

UModel OFacilitate B Monitor

1 1 | |
Alex 1-1 | 02:14 05:51

Alex 1-2 03:48 01:28

Example ID

Alex 2-1 08:22
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HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 111

Table 14. Role Profiles of Dan’s Observed HCD Examples
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Dan 2-4 04:51
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Table 15. Role Profiles of Emma’s Observed HCD Examples
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Table 16. Role Profiles of Greg’s Observed HCD Examples
UModel OFacilitate BEMonitor
I N I A I I N A
Greg 2-1 00:44 02:16
Greg 4-1 106 08:04 [ o553 ]
Greg 4-4 09:28 | o338 |
Greg 5-1 03:40 00:53
% Greg 5-2 04:01
= i
g
4 Greg 5-3 04:41 04:43
Greg 5-5 02:49 01:39
Greg 5-6 04:57 08:21
Greg 6-3 07:20
Greg 6-9 02:16 02:31 m
[ [ [ ]
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Table 17. Role Profiles of Juno’s Observed HCD Examples

UModel OFacilitate

I R A F O O S
Juno 1-5 01:56 02:24
a Juno 2-1 05:41
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Table 18. Role Profiles of Kelly’s Observed HCD Examples

OFacilitate @ Monitor

Kelly 1-1 06:09
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Modeling

Many instructors chose to use different formats of presenting examples, but some
chose to just model examples for their students. While students do not have an
opportunity to struggle with the mathematics in this type of setting, they do have an
opportunity to have high cognitive demand processes modeled for them. For the high
cognitive demand examples that I observed, Dan and Emma only modeled and Alex and
Juno used this presentation format for some of their examples In order to maintain the
cognitive demand while modeling, instructors focused on making their cognitive
processes explicit and attending to student understanding. In the following narrative, I
illustrate how Emma modeled an example for students while still maintaining a high level
of cognitive demand.

Emma. The example that I observed Emma enact at a high level of cognitive
demand was situated at the end of a chapter on function transformations. Emma chose the
example because it was a question on the chapter quiz that many of the students had
struggled with7. In particular, she wanted to reemphasize the connection between order
of operations and order of transformations and explain how to check their work using an

alternative method. The example gave the graph of a piecewise linear function, shown in

Figure 7, and asked students to sketch a graph of 3P(t + 1) — 2 for0 <t <9 on

a provided grid.

7 Throughout my study, I talk about the reasons why instructors chose to do
things, which I determined based upon the pre- and post-observation interviews I
conducted with them. Since these types of references come up so often, I chose to not
include citations linking them to the data sources. However, it is important to note that
these claims are backed up by the data.
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Figure 7. Original Function Given in Emma’s Function Transformation Example

Emma worked through the example by first identifying the order of
transformations based upon the transformed equation, 3P(t + 1) — 2. First, she identified
that there was only one horizontal transformation (a shift left by 1 unit), but two vertical
transformations (a vertical stretch by a factor of 3 and a shift down by 2 units). Since
many of her students had struggled with doing the vertical transformations in the wrong
order, she next focused on explaining the order of vertical transformations. To help her
students understand why the stretch had to occur before the shift, she explained how the
process of transforming a graph is connected to order of operations, which students are
familiar with. Next, she discussed how horizontal and vertical transformations are
independent of each other, so order did not matter.

Next, Emma explained what points they could pick to transform (endpoints and
corners) and how the graph in-between these points will just be a straight line. From
there, she worked out a step-by-step transforming each of the endpoints and corners.
Since the transformed graph was supposed to be drawn on the domain 0 < t < 9, Emma

then talked about what to do with the transformed point that was outside of this domain
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and how to find the new endpoint within this domain. Finally, she graphed her
transformed endpoints and corners and connected them to draw the final transform graph.
At this point, Emma paused and asked students for questions. One student asked about
how she had found the new endpoint in the domain and Emma explained how she had
used the original graph, as well as alternate strategies that students could use.

Next, Emma talked about a different method that students could use to solve the
problem if they were not sure about the order of transformations. For this second method,
Emma constructed an input-output table where the input values were t = 0,1, ... 9 and the
output values were found using the transformed equation 3P(t + 1) — 2. She then
explained how they could just solve the problem by inputting a value for ¢, using the
graph to find the corresponding output value of t + 1, multiplying that output by 3, and
then subtracting 2. Emma concluded the example by asking if any students had questions,
and a new student asked a similar question as the one asked before concerning how she
had found P(2) = 4/3 . Several students piped up in agreement that they did not
understand this step, so Emma explained how to use the slope of the first line segment to
find the output value. In her explanation, she focused on not only calculating the slope,
but also interpreting how it relates to finding the output values between integers.

I coded this as a procedures with connections example because of the following
reasons. First, Emma focused students’ attention on the use of procedures for the purpose
of developing deeper understanding of mathematical concepts and ideas. To help her
students remember the order of vertical transformations, she focused on the underlying
mathematical concept of order of operations. Also, to help her students find exact output

values, she focused on the underlying concept of slope and how to interpret it in a way
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that is helpful for calculating non-integer values. In her example, Emma presented two
different pathways that students could follow to solve the problem (using order of
transformations to move points or using an input-output table). In explaining each
pathway, Emma focused on the underlying conceptual ideas (order of operations and
evaluating function compositions), instead of the narrow algorithms. The example
involved graphical, algebraic, and tabular representations and Emma often made
connections between each of them. Finally, the number of student questions and the
prevalence of student struggle on the problem when it was presented on the quiz are

evidence that the example required some degree of cognitive effort for students to follow.

Facilitating

Of the six instructors that I observed enacting high cognitive demand examples,
only Greg and Kelly chose to present an entire example as a whole class discussion.
Interactions were coded as whole class discussions if instructors engaged students in the
problem solving process in some significant way. For some instructors, this just involved
asking students questions about computations. Other instructors had students engage in
making more meaningful contributions, such as discovering patterns and making
connections. Below I illustrate two narrative case descriptions, one in which the students
were asked to make more superficial contributions and one in which the students were
asked to make more significant contributions. The purpose of including both of these
narratives is to compare and contrast how instructors maintain the cognitive demand of
the example in each case.

Greg. There were two examples that I observed Greg enact at a high level of

cognitive demand where he chose to facilitate the presentation of the example as a whole
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class discussion. In the example that I will focus on, Greg is explaining how to find all
solutions to a trigonometric equation that has standard unit circle angle values. This topic
was presented after students had learned about using inverse trigonometric functions to
find solutions within the interval 0 < 8 < 2. Now, Greg was turning their focus to
finding all solutions to a trigonometric equation. To introduce this topic, Greg used
Demos to project the graph of y = cos 8 and y = d, where d was a slider set equal to
0.3. His purpose for starting with this visual representation was to spend more time
thinking about the relationship between solutions to equations and the intersections of
graphs and to illustrate why trigonometric equations might have infinitely many
solutions. In particular, Greg talked about how even though there are infinitely many
solutions, the periodicity of trigonometric equations means that these solutions repeat in a
predictable way.

The first example that Greg chose to use involved finding all solutions to
cos 8 = v/3/2. Greg chose this example to start with because it was simple enough that
students didn’t have to deal with the more technical aspects associated with sinusoidal
equations and non-standard unit circle angles. Greg started the discussion by asking
students what the initial solutions are in the first period (0 < 8 < 2m) using the unit
circle. One student responded immediately with 8 = /6, but the class seemed to be
struggling with finding the second initial solution, as no one volunteered another answer.
Greg responded by explaining that because the value of cosine is positive (v/3/2), the
corresponding angles on the unit circle will be in the first and fourth quadrant. Following

his explanation, a student volunteered the answer 8 = 11m/6.
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Drawing upon the earlier discussion, Greg reminded his class that the infinite

families of solutions to trigonometric equations can be written as

(initial) + (period)k k = any integer.
He then explained that there would be two families of solutions corresponding to each of
the initial solutions they had found. Next he asked his students, “What is the period of
cos 8?7 Students responded with 2 and Greg emphasized that we knew this was true
because there was not a horizontal stretch or compression factor in the original equation.
Next Greg used Demos to project the graphs of y = cos # and y = v/3/2. He then made
connections between the intersection points of the graphs and the solution families that
they had found.

I coded this as a procedures with connections example because of the following
reasons. First, Greg focused students’ attention on the use of procedures for the purpose
of developing deeper levels of understanding of mathematical concepts and ideas. Instead
of presenting the example algorithmically, Greg focused on how we can use solutions in
the first period and the periodicity of trigonometric functions to help find all solutions to
a trigonometric equation. Second, the solution strategy that Greg used (finding initial
solutions and then adding on multiples of the period) is a broad general procedure that is
closely connected to the underlying conceptual ideas. Greg used both algebraic and
graphical representations and made connections between them to help students develop
understanding of what it means to have an infinite family of solutions. While students
were able to easily answer most of the questions that he asked, the general procedure that

he was describing could not be followed mindlessly. In particular, students had to attend
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to the conceptual ideas of determining the number of initial solutions and the period of
the function.

Kelly. Of the four high cognitive demand examples that I observed Kelly enact,
she chose to present two by facilitating a whole class discussion. This example was
situated in a unit on polynomial functions. The day before she introduced long-run
behavior and earlier in class on this day she introduced short-run behavior (i.e., whether
or not the graph of a function bounces or crosses the x-axis at zeros of the function). In
previous examples, Kelly had worked with students to determine how short-run behavior
is connected to multiplicities and how to graph a polynomial given its equation. For this
example, Kelly challenged students to think backwards and find a formula for a
polynomial with the lease degree possible based upon a given graph. The graph she
provided at the beginning of the example is shown below in Figure 8.

Figure 8. Polynomial Graph from Kelly’s Example

-4 -3 2 1 P 1
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To start off the example, Kelly asked her students how they could find a formula
for the graph. One student responded and said, “We will need (x — 0) times (x + 3),
right?” Kelly then simplified this equation to x(x + 3) and asked, “What else do we
know?” The same student responded by saying that we need (x + 3) to be raised to the
second power. Kelly responded by asking if everyone saw why that was true. To make
sure her students understood, she asked explicitly, “So where does the 2 come from? Or
why do we need the 2 there?” Several students responded simultaneously, “Because it
bounces at —3.” Kelly then directed her students’ attention to the other factor, x, and
asked if we needed to change the exponent there. Her students responded by saying no,
and Kelly went on to reiterate that we are looking for a polynomial of lease degree, so we
want to use the smallest exponents possible.

At this point, Kelly asked, “What else do we have to do here? Is this our
equation?” A student responded by saying, “No. If you plug in —1, you don’t get —8.” So
Kelly asked, “So what else do we need here?” and a student responded by saying, “A
coefficient out front.” Kelly then wrote y = ax(x + 3)? on the board and asked, “How
can we find a?” A student suggested that we could plug in x = —1 and y = —8, and
Kelly worked through the algebra to find that a = 2. Finally, Kelly asked if their
equation made sense in terms of the long-run behavior that the graph is exhibiting and her
students agreed that the equation and the graph both acted like y = 2x3 in the long-run.

I coded this example as a doing mathematics example because of the following
reasons. First, while the example could have been solved using an algorithm, this
algorithm was never presented formally. So Kelly and her students worked together to

construct an algorithm, as opposed to following a predictable, well-rehearsed approach or
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pathway. Also, in order to construct the equation, students had to explore the nature of
graphical properties of polynomials and think about how they are connected to the
algebraic properties of their equations. To do this, Kelly asked her students to access
relevant knowledge (e.g., the connection between zeros and the factored form, the
connection between short-run behavior and multiplicities, the implication of what it
means for a point to lie on a graph) and make appropriate use of it while working through
the example. She also asked students to analyze the example (e.g., points on the graph,
the long-run behavior) and actively examine example constraints (e.g., the degree) in
order to limit possible solution strategies and solutions. While her students were able to
work through the example successfully, it did require cognitive effort and was
unpredictable in that it was student, not teacher, lead. Finally, Kelly asked her students to
examine constraints, justify, explain, and determine when the problem was solved.

Comparison. Comparing and contrasting the two different ways in which Greg
and Kelly worked through a high cognitive demand examples shows that instructors can
facilitate whole class discussions in very different ways. In Greg’s example, students
were primarily responsible for doing the less cognitively demanding work. On the other
hand, Kelly relied on students to guide the entire problem solving process. However, it is
important to note that in both cases, there was an emphasis on explaining content,
processes, and strategies and making connections between representations, which is why
they both illustrate what it might look like to facilitate a high cognitive demand

examples.
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Modeling and Facilitating

None of the instructors that I observed enacting high cognitive demand examples
chose to only monitor students while they worked through the problem. However, there
were several instructors that chose to present an example by both modeling and
facilitating. Alex, Greg and Juno all integrated these two roles when presenting some of
their examples. Table 19 illustrates the different ways in which these instructors
presented examples by modeling and facilitating.

Table 19. Role Profiles of Examples that were Modeled and Facilitated

UModel OFacilitate

Alex 1-2 01:28 03:48
Greg 2-1 00:44 02:16
Greg 5-1 | 02:48 | o053 | oo

= . : . :

=~ Greg 5-3 02:49 02:23 01:51 02:20

[P] T T T T T T T T

=

£

=

Z Greg5-5 L] | | 02:35 | | | o127 IS
Greg 5-6 | 01:32 | 1:02| 01:54 05:56 :45 [:40]:45 | :44
Juno 1-5 02:24 01:56
Juno 2-2 05:48 02:22

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
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Half of the examples (4/8) were split into two different chunks of time, one in
which the instructor modeled content, practices, and strategies for students, and another
in which the instructor facilitated a whole-class discussion of the example. However, the
other four examples involved a back and forth between these two forms of presentation,
with Greg’s Example #5-6 having the highest number of switching points. Also, half of
the examples (4/8) began with a whole-class discussion, however in Greg’s Example #5-
5, this quickly morphed into him modeling for his students. In the large majority of the
examples (5/8), more time was spent on the whole-class discussion than on the modeling.
However, on average 52% of the example enactment time was dedicated to facilitating
and 48% was dedicated to modeling. Below I present two narrative accounts of Juno’s
example that was segmented into almost equal segments of facilitating and modeling and
Greg’s example that had a high number of switching points.

Juno. This example that Juno enacted at a high level of cognitive demand was
situated in a lesson on the tangent and reciprocal trigonometric functions. Now that
students were exposed to all of the main trigonometric functions, including sine, cosine,
tangent, cotangent, secant, and cosecant, Juno introduced the idea of cofunctions. Two
functions are called cofunctions if they are equal on complementary angles. Juno started
off by doing two examples to show that sin(m/6) = cos(rr/3) and sin(15°) = cos(75°).
As a final example, Juno chose to prove that sine and cosine are cofunctions. While
proving is not a main component of this course, it does come up in some of the
trigonometry lessons. So Juno wanted to go beyond just demonstrating that sine and
cosine are equal for some complementary angles and prove that it was true for any

complementary angles.
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Juno begins by drawing and labeling the right triangle shown in Figure 9. She
then asks her students to use the SOH-CAH-TOA definition to find what cos 8 is equal
to. A student responds with “Adjacent over hypotenuse,” which Juno then interprets as
b/c. Juno then asks, “What is sin ¢ equal to?” and a student responds with b/c. Finally,
Juno asks what we know about the two angles, 8 and ¢, and a student responds with
“They have to add up to 90. Juno explains why, using the fact that the sum of all of the
interior angles of a triangle must equal 180°, and since we know that one of the angles is
equal to 90°, the sum of the other two must equal 90°. Therefore 8 and ¢ must be
complementary angles.

Figure 9. Right Triangle from Juno’s Example #1-5

a

-

b

Juno then transitions from facilitating a whole-class discussion about the example
to modeling content, practices, and strategies for students. First, she explains that the
work they have done tells them that no matter what angle 6 is, cos @ = sin(r/2 — 6),
where /2 — 8 = ¢. Finally, Juno explains that while they had previously checked that

cos@ = sin(r/2 — @) for 6 = /6 and 6 = 15°, the work they have now done proves
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that this is true for all angle 6°. She pauses here to ask if there are any questions, but none
of her students pipe up. Before she moves on, Juno goes back to the list of trigonometric
functions and points out that if sine and cosine are cofunctions, then it would make sense
for tangent and cotangent, secant and cosecant to also be cofunctions, assuming that they
were named properly. Finally, she directs her students to start working on one of the
problems in the workbook, which asks them to explore cofunctions graphically.

Even though doing proofs is a form of doing mathematics, I coded this as a
procedures with connections example for the following reasons. First, Juno wanted to
give a proof because it shows that cos 8 = sin(rr/2 — 8) for any angle 8, not just
6 = /6 and 8 = 15°. So her focus was on using the procedure (i.e., the proof) for the
purpose of developing deeper levels of understanding of the mathematical concepts and
ideas. The proof technique that she chose was closely connected to the underlying
concept of the right triangle definition of sine and cosine. Also, Juno used multiple
representations (pictorial and algebraic) and made connections between the
representations to help develop meaning. Finally, students could not follow the proof
mindlessly, but rather needed to make connections between the different representations
in order to develop understanding.

Greg. The high cognitive demand example where Greg switched back and forth
between modeling and facilitating was situated in the second lesson on finding all
solutions to trigonometric equations. After spending a day exploring the structure of the

infinite families of solutions and working through simpler problems that did not involve

% ¥ It is important to note that Juno’s proof assumes that 0 < 6 < g, which is not

implicit in the definition of complementary angles that she was using. While this would
have been a fruitful topic to dig into during the post-observation interview, it
unfortunately was not something that I recognized at the time.
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shifts and stretches, Greg introduced more complicated sinusoidal functions. First, Greg
did two examples that only involved vertical transformations. For his final example, Greg
chose to find all solutions to sin(36 — 1) = 1/4. Greg chose this function for several
reasons. First, he wanted his students to learn how to find all solutions when the period is
not equal to 2r. Second, he wanted to give an example with both a horizontal shift and a
period change because he knew that problems of this type would come up on the online
homework as well as the exam. Finally, he didn’t want to use a standard unit circle angle
and instead force students to use arcsine.

Greg started by first modeling content, practices, and strategies for students. After
writing the problem on the bard he describing how this problem was different from the
previous two examples they had worked through in class that day, which were, “Find all
solutions to 1 + 2cos@ = 4/3 and 3tan @ — 1 = 4.” In particular, he emphasized that
they no longer had a linear equation in terms of sine, but rather a linear equation inside of
sine. To make the equation more clear and appear less complicated, Greg decided to set
X = 360 — 1. In the first example, Greg had set X = cos 6 and talked about how they
could set X = tan @ if they wanted to. His idea for doing this was to remove the part of
the equation that looks unfamiliar and highlight that first they needed to isolate the input
of sine. Greg also explained to his students that this step was not necessary, so they could
skip it if they knew what they needed to do.

Next, Greg switched to facilitating a whole class discussion. First, he asked how
they could proceed from sin(X) = 1/4 to solve for X. A student suggested that they
could use arcsine, so Greg wrote X = sin"1(1/4) and explained that this gives us the

first solution. When Greg asked where the second solution is, no students responded
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immediately, so Greg explained that currently they were generating initial solutions for
the problem and that they had found one solution for this sine equation, but still needed to
find the second solution. A student piped up and said “mr minus...”, which Greg
interpreted to mean X =  — sin~1(1/4).

From here, Greg switched to modeling. First he explained that they had started
with 8s, so they needed to end with 8s and swap out the Xs. Doing this resulted in the
following two equations: 30 — 1 = sin"1(1/4) and 30 — 1 = = — sin"1(1/4). Before
solving for 6, Greg paused to explain that this problem “was a little bit more involved
than the other [examples] because we generate our initial solutions and then we have to
keep working to...find the initial solutions just in terms of 8.” From here, Greg works
through the algebra to solve for 8 and ends with the following two equations:

0 =1/3(sin"1(1/4)+ 1) and 6 = 1/3(m — sin"1(1/4) + 1).

At this point, Greg switches back to facilitating by saying, “I’'m going to pause
here and ask who is lost? Who has a question? It’s totally reasonable to be lost. There’s a
lot that goes into these. So just let me know where you are lost.” Greg phrased his
question this way because he had noticed that asking, “Are there any questions?” was not
eliciting responses from students. But explicitly saying “it’s totally reasonable to be lost”
made students more comfortable asking questions. A student did pipe up and asked,
“Why divide by 3? Where did the 1/3 come from?” Greg first asked if the student was
ok with everything that had come before, then went on to explain the algebraic step the
student was stuck on. Next a student asked, “Will we still involve adding the period times
k at the end?” Greg explained that was the next step and reiterated that the work they had

done so far was all to get the initial solutions.
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At this point, there was a hushed conversation going on between two students, so
Greg asked if they had any questions. At first no one said anything, and then Greg
encouraged the students whispering to share their questions with the whole class, because
most likely other students had similar questions. One of the students piped up and said, “I
was just gone yesterday, so I had no clue what’s going on...so I was just kind of catching
up.” Greg then moved on to talk about all possible solutions and reminded the class that
they should be of the form (initial) + (period)k. So he asked, “What is the period of
[sin(36 — 1)]?” None of his students responded, so he reminded them that they could
identify the period of a function by considering the B-value associated with
sin(B(8 — h)). Still, no students offered an answer, so Greg asked specifically if they
could identify what is B by mapping sin(36 — 1) to sin(B(6 — h)) to see what the
coefficient is on the variable.

At this point, one student responded by saying B is the period. Greg responded by
saying, “B is related to the period. It’s not directly the period.” Another student spoke up
and said, “Isn’t the period 2 /3?” Greg then asked, “Why is it 2m/3?” and she
responded with, “Because that’s the way you find the period when you have B.” Greg
agrees that the period is given by 2w /|B| and then goes on to say that the student must be
using the fact that B = 3 in order to say that the period is 27t /3. The student who had
volunteered the answer 2m/3 then asked, “Is that right? Even though there’s not any
parentheses around the 6 and the 1?... So if you put the parentheses around the 6-1, does
it still make the B = 3?” Greg then explains that B would still be 3 in that case, but just

adding parentheses would result in a different function with a different horizontal shift.
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He then shows how to rewrite the equation as sin(3(6 — 1/3)), but emphasizes that they
don’t have to factor the 3 out to know what B is equal to.

At the end, Greg switched frequently back and forth between modeling and
facilitating. He first modeled how to use the two initial solutions they had found, as well
as the period, in order to write out the two families of solutions. Then several students
piped up to ask questions about whether or not this was a problem that could show up on
a test, clarification of the general process was for solving the problem, and whether or not
the parentheses around the period are required. Greg then took the time to summarize the

whole process and highlighted the following steps.

1. Get sine all by itself.

2. Set X equal to inside of sine.

3. Use inverse sine to get two initial solutions.
4. Replace X with original 8 expression.

5. Solve for 6.

6. Find the period.

7.

Find all solutions.

Finally, Greg wrapped up the example by allowing students to ask questions.

I coded this example as procedures with connections for the following reasons.
While parts of this example strayed into lower cognitive demand tasks, the majority of
the problem was focused on the broad general procedure of using the initial solutions and
the periodicity of sinusoidal functions to find all solutions. First, Greg consistently
focused students’ attention on the underlying structure of solutions to trigonometric
equations: (initial) + (period)k. While there was a lot of algebra involved in getting the
initial solutions and students struggled to find the period, Greg always brought the focus
back to this underlying concept. While the example was algebraic, Greg emphasized the

connections between the general form of solutions and the specific families of solutions
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that they had found. For example, Greg emphasized that 1/3(sin"1(1/4) + 1) represents
one initial solution and 2m /3 represents the period. Also, the number of questions asked
by students is one form of evidence to support the claim that this example required some
degree of cognitive effort for students to follow.

Comparison. The two narrative accounts I have given where Juno and Greg both
modeled and facilitated illustrate how these role profiles may look very different. Juno
started off by asking students questions and having them contribute to the problem
solving process. However, once she got to the main point of her example, she switched to
modeling. Greg, on the other hand, switched back and forth between modeling and
facilitating throughout his example. In particular, he allowed students to ask questions
throughout the example and used these opportunities to make sure that students
understood. However, in both cases, it was primarily the instructor who modeled the

more challenging aspects of the problem and guided its unfolding.

Facilitating and Monitoring

None of the observed high cognitive demand examples were enacted by modeling
and monitoring, which is perhaps not surprising because monitoring student work time
was always followed up by facilitating a whole class discussion. However, Greg and
Kelly both enacted high cognitive demand examples where they only relied upon
facilitating and monitoring. Greg did this once, where he gave his students time to work
through a problem in the middle of a whole-class discussion of the example. Kelly did
this two different times in two different ways. In one instance, she started off by having
students work on the problem, then switched back and forth between facilitating and

monitoring. In the other example, she started off by first facilitating a whole-class
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discussion of the example and then gave students time to work through parts of the
example. Below I will present and compare two different example narratives, one where
Greg started by facilitating a whole-class discussion before modeling and another where
Kelly did the opposite.

Table 20. Role Profiles of Examples that were Facilitated and Monitored

OFacilitate EMonitor

Greg 4-4 07:34 01:54

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Example ID

Greg. The one example where Greg both facilitated and monitored was situated
in a lesson tangent and reciprocal trigonometric functions. The example that Greg chose
to do involved using a given angle and side length to find another side length of a
triangle. However, this problem was couched within the context of finding the amount of
cable needed to help stabilize a cell or radio tower. Greg chose this example because he
wanted students to see a real life application of how trigonometric functions can be used
outside of mathematics class. The example explained that a 150 foot tower is stabilized

by cables that make an angle of 60° with the ground. Greg then drew the following
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illustration shown in Figure 10 and asked, “How long are the cables? (Give an exact

answer.)”

Figure 10. Greg’s Illustration of a Tower Stabilized by Cables

¢ 150 ft

At this point, Greg asked if anyone could think of a way to relate ¢ to the other
pieces of information they had in the problem so far. One student suggested, “Couldn’t
you like cross-multiply the angles? If you like know the angles, can’t we set up an
equation to compare the length of sides with the angles?” Greg interpreted her response
as referring to finding side lengths of similar triangles and explained how they could use
information about a larger tower to find the height of a smaller tower that had a similar
setup. Greg then solicited students to think of other ways to combine the information they
had. A new student piped up and said, “sin8 = 150/c.” Greg agreed and explained that
if they felt stuck in this class, then looking for a triangle or a circle, since that is what this

class is about. He then focused students’ attention on the triangle formed by the ground,
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the tower, and the left cable. Using this triangle, he showed how we get
sin(60°) = 150/c and then continued to solve for ¢ with the help of his students.

Next, Greg told his students to figure out how far the cables must be from the
base of the tower. He also announced that once they figured out how to do that, they
should begin working on a problem from the workbook. Greg gave students 3 minutes 38
seconds (henceforth notated as 3:38) to work through this second part of the example
individually or in small groups. During this time Greg walked around the room and
monitored students’ who were working through the problem.” As class was about to end,
Greg mentioned that he saw a couple of different approaches and asked his students to
share their different approaches. One student piped up and suggested that they could use
the Pythagorean theorem, which Greg then worked through quickly. Another student
suggested that we could also use tangent and Greg quickly worked through that method
as well.

I coded this example as procedures with connections for the following reasons.
First, Greg did not set up or encourage that students use only one method for solving this
problem. Rather, he focused on making connections between the information they were
given and the trigonometric equations that they had been studying. In particular, he
focused students’ attention on using the triangle definition of trigonometric equations in
order to solve for unknown variables. He represented the problem in words, algebraically,
and pictorially and focused on making connections between the algebra and the picture.
Finally, deciding what procedure to use required some degree of cognitive effort on the

part of students.

’ My IRB did not include taking video of students, so I was not able to capture
what instructors did as they moved around and interacted with students.
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Kelly. The example where Kelly began by monitoring students was situated at the
beginning of the lesson introducing exponential functions. Kelly gave her students 3:23
to work through the following questions.

Suppose you have 100 dollars to deposit into a savings account. If you put your

money into Bank A, they will deposit an additional 10 dollars per year into your

account. If you put your money into Bank B, they will increase your balance by

10% per year. How much money would you have after one year if you put your

money into Bank A? How about Bank B? How much money would you have after

two years if you put your money into Bank A? How about Bank B? After three
vears? Which bank should you use?
During this time, she asked a group to write the balances in Banks A and B after one year
on the board.

Kelly then brought the class back together to see if everyone agreed with what the
students had written on the board for the balances after one year. She then asked a student
to volunteer the balances after two years and wrote those on the board. Kelly then asked
her students what the balances would be after three years, which students were able to
calculate on the spot. Kelly then asked, “Which one would you chose?” A choral of
students said “Bank B,” and Kelly explained why that was correct. At this point, Kelly
gave her students a similar problem to work on: Suppose you are investing $500 at an
annual rate of 4.5%. Before moving on, she paused to make sure that everyone
understood what “annual” meant and explained that they were just putting $500 in a bank
account and leaving it alone to see how it grows. Then she asked her students to fill in a

table that shows what the balance is after t = 0,1,2,3 years. In addition, she asked her
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students to come up with a formula that would model how much money is in the bank
account after t years.

Kelly gave her students 5:40 to work through this problem. During this time, she
walked around the room and interacted with students as they worked. After 40 seconds,
Kelly made an announcement to the whole class to clarify that ¢ = 0 is the very
beginning, when $500 is deposited into the account. She also encouraged students to
check with each other to make sure they are getting the same numbers. About half way
through their work time, Kelly reminded the class that once they figured out the balances
at the end of the first three years, they needed to find a general formula that would give
the balance after t years.

Next, Kelly brought the whole class back together for a discussion of the general
formula. Some students said they didn’t have a formula yet, but Kelly assured them that
they would figure it out together. First, Kelly asked students to volunteer the answers
they got to fill in the table and verified that everyone had gotten the same answers. Then
Kelly asked, “So how are we getting these numbers?” One student explained that they
were using the formula a(1 + r)* and Kelly acknowledged that this was what they were
going towards, but she wanted them to figure out how we could come up with that
formula using the numbers in the table.

To help start the discussion, Kelly asked, “How did we get from $500 to
$522.50?” Another student responded with, “Times 500 by 0.045.” Kelly responded by
explaining how we could times 500 by 0.045 and then add 500, but asked if anyone
knew an easier way of doing that. A new student piped up and said, “Times 500 by

1.045.” Kelly responded by explaining how we could factor out a 500 from both terms in
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500 * 0.045 + 500 and get 500(0.045 + 1). Next Kelly asked how they had found that
$546.01 was the balance after two years. A student responded with, “522.5 times
1.045,” which Kelly agreed with. Kelly asked, “What’s another way of writing 522.57”
After waiting a few seconds and receiving no response, Kelly wrote added = 522.5 to the
end of the equation 500(1.045) written on the board and said, “Maybe I will
suggestively write that.” After repeating her question a second time, she still received no
response until a question asked, “Can you repeat your question?”’

Kelly then explained how 522.5(1.045) = 546.01 and checked to see if
everyone understood why that was true. Then she asked, “So how can we rewrite this
522.5?7” Finally, a student responded immediately to her question by saying, “Couldn’t
we write 500(1.045)?” Kelly agreed and explained that this was where 522.5 had come
from. So then to get 546.01, we needed to multiply that again by 1.045 to end up with
500(1.045)(1.045) = 546.01. After writing this all on the board, Kelly asked her
students if they saw a pattern and if they could guess what the formula for t years would
be. A student responded with 500(1.045)". Kelly then encouraged her class to plug in
t = 3 and verify that the value agreed with what they found in their table. Kelly asked for
any final questions, with no response, and then asked, “So what kind of formula is that?”
A student responded with exponential and Kelly explained that this is what the new
chapter was all about.

I coded this as a procedures with connections example for the following
reasoning. First, Kelly expected her students to be familiar with exponentials and know
how to work with them computationally, but she really focused the example on the

underlying concept of multiplicative growth. Students were not provided with any
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specific pathways to follow and Kelly encouraged them to solve the problem in different
ways in order to check their work. Kelly also used tabular and algebraic representations
of the problem. Finally, not every student was able to come up with a formula during
their small group time, so we know that it required some degree of cognitive effort for
students to complete.

Comparison. While Kelly and Greg both enacted high cognitive demand
examples by monitoring and facilitating, they did so in different ways. Greg first worked
through one part of his example with the whole class, and then gave them time to work
through another part individually or in small groups. While some students chose to do
these two parts in different ways, Greg expected that they would have used the same
method. So he set up his example in a way where they could first see a problem worked
out, and then try a similar problem on their own. Kelly, on the other hand, asked her
students to dive in and work on the mathematics from the start. Instead of working
through a similar problem for them, Kelly relied on her students to provide answers and

ideas of what to do next.

Modeling, Facilitating, and Monitoring

The final type of role profile associated with the high cognitive demand examples
that [ observed is when instructors incorporated modeling, facilitating, and monitoring
into parts of their example. Alex and Greg were the only two instructors who enacted
high cognitive demand examples in this way. There were no clear patterns that emerged

from these examples, so I just selected one to describe in more detail below.
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Table 21. Role Profiles of Examples that were Modeled, Facilitated, and Monitored

UModel OFacilitate EMonitor

Greg 6-9

Greg 4-1

Example ID

Alex 1-1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Greg. One of the high cognitive demand examples that Greg enacted by
monitoring, facilitating, and modeling was done during a class where they were
reviewing for the final exam. Greg had done a series of examples that were all related.
The overarching problem context was situated in real-life Ferris wheel problem. The
students were told that the Ferris wheel was 65 feet above the ground at its highest point
and that people boarded the Ferris wheel on a 10-foot platform at the 6 o’clock position.
Also, one revolution of the Ferris wheel took 6 minutes. In the first few examples, Greg
constructed a formula that modeled the distance off the ground of someone riding the
Ferris wheel as a function of time; found all times between t = 0 and t = 18 when the
person is 15 feet off the ground; and found how far the person traveled after 1 minute, 30

seconds, and 13 seconds. In the final example related to this problem, Greg asked them to
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modify their formula to represent the trip starting at the 4 o’clock position instead of at
the 6 o’clock position.

Greg started by asking students talk amongst themselves about the problem for
three minutes. After 1:18, Greg announced to the whole class that he heard several groups
say that starting at a different position is the same as applying a horizontal shift, so they
just needed to figure out what the horizontal shift is. He also said that it is easiest to keep
the B-value the same and write the equation as g(t) = —27.5 cos(2m/3(t — h)) + 37.5,
where |h| is the amount they should shift left or right by. Greg then suggested that if
students were not sure if they wanted to shift right or left, they should graph both of them
and see what the difference is in shifting right versus left on this problem. Greg then
gave students another 2:02 to work on the problem and monitored their progress.
Towards the end of this time, he drew the following figure on the board.

Figure 11. lllustration Used by Greg to Talk About Position on Ferris Wheel

Greg brought the class back together by asking, “How much do we want to shift

by? Let’s start by deciding that.” No one responded immediately, so Greg drew line
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segments from the center of the circle in Figure 11 to the 6 o’clock, 5 o’clock, and 4
o’clock positions. He explained that t is measured in minutes and so the shift should also
be measured in minutes. Then he asked, “If we are starting at 4 o’clock instead of 6
o’clock, how many minutes have we shifted by?”” Greg looked around the room and said,
“Some people said 2, others are giving me 1.” He then turned back to his drawing and
asked, “How much time does it take me to get from 6 o’clock to 5 o’clock?” One student
responded with 60 minutes, to which Greg responded with, “Sixty minutes to get from 6
o’clock to 5 o’clock?... Well, so if I get the whole way around in 6 minutes, each of these
is 1/12 of...” At this point, a chorus of students started speaking and the student who
gave the response of 60 minutes said, “Oh, I meant that to get from 6 o’clock to 5 o’clock
it takes 60 minutes.” At this point, Greg realized that his students had been thinking of a
literal clock, as opposed to using the times as positions. So he recognized that it was
slightly confusing, but since it takes 6 minutes to get all the way around and going from
one position to the next is the same as going 1/12 of the way around, moving one
position (like from 6 o’clock to 5 o’clock) takes 30 seconds. So we want to shift by 1 to
change from the 6 o’clock position to the 4 o’clock position.

Now that they had the shift amount figured out, Greg asked if anyone had graphed
both a shift left and a shift right to see what the difference between them is. When no one
responded, Greg started sketching each graph on the board. At this point, a student spoke
up and said they wanted to shift to the left and Greg asked why. The student responded
by saying, “Because if you board at the 8 o’clock position, you shift to the right.” Next,
Greg pointed out that we actually don’t know which direction the Ferris wheel is turning.

The student piped up and said, “Sorry, I messed up. Just flip around whatever I just said.”
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Greg responded by returning back to his point that we actually don’t know which
direction the Ferris wheel is turning (clockwise or counterclockwise). So, in short, both
answers were actually right because we didn’t know which direction the wheel is turning.
In conclusion, Greg explained that shifting to the left corresponds with turning
counterclockwise and shifting to the right corresponds with turning clockwise.

I coded this as a procedures with connections example for the following reasons.
First, Greg chose this example because it was more difficult and he wanted his students to
learn how everything they had learned throughout the semester worked together. In
particular, this example focused students’ attention on how to identify the amount and
direction a graph is shifted by when they are only given a verbal description of the shift.
The problem itself did not explicitly tell students that they needed to use a horizontal
shift, but rather this was something they had to figure out as part of the problem. Greg
also relied heavily upon the clock diagram that he drew to talk about moving the start
position and how long that would take given what they know about how long it takes to
travel around the whole Ferris wheel. Finally, it was clear from the students’ questions
and responses that the example required some degree of cognitive effort for students to

follow.

Discussion

In this part of my study, I examined what high cognitive demand examples look
like in precalculus courses and identified three different roles that instructors took on
when enacting high cognitive demand examples. Originally, I sought to use the Task

Analysis Guide developed by Smith and Stein (1998) to code the cognitive demand of
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enacted examples. However, the Task Analysis Guide includes language that specifies
that students are the ones doing the mathematical work (e.g., “require students to
explore...students need to engage...”). However, while some instructors did involve
students explicitly in working out examples, others chose to do most of the mathematical
work themselves. Therefore, I created a modified framework for analyzing the cognitive
demand of examples (Table 7) that removed any language concerning who is doing the
mathematical work.

Using this modified framework, I analyzed 93 examples that were enacted in
precalculus classrooms and found that 25 of them were enacted at a high level of
cognitive demand. In these examples, I found that there were three roles that instructors
took on during the enactment: modeling, facilitating, and monitoring (Table 11). Using
these three different ways of working through an example, I was able to construct role
profiles of the instructors involved in my study as well as of the high cognitive demand
examples that they enacted. As a result, I found that while some instructors chose to just
model examples for their students (e.g., Dan and Emma), others chose to switch between
different roles. Juno also modeled examples for her students, but often asked for student
involvement and switched to facilitating. On the other hand, Alex and Greg switched
back and forth between all three roles, while Kelly chose to never model and instead just
facilitated a whole class discussion or monitored her students as they worked on parts of
the example independently or in small groups.

In each of these examples, the instructors presented the material in a variety of
ways. While the students in Dan and Emma’s class did not have the opportunity to

struggle with the mathematics involved in the example, they still had the opportunity to
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learn from the high cognitive demand examples that Dan and Emma did enact. On the
other hand, the students in Alex, Greg, Juno, and Kelly’s class all had the opportunity to
contribute to the mathematical work entailed in solving these high cognitive demand
examples.

A natural question that arises is, “Why is it reasonable to assume that modeling,
facilitating, and monitoring capture every type of role that an instructor might take on
when enacting an example during class?” One way of thinking about these three roles is
in terms of the continuum of student-centered and teacher-centered instruction.
According to Felder and Brent (1996), “student-centered instruction is a broad teaching
approach that includes substituting active learning for lectures, holding students
responsible for their learning, and using self-paced and/or cooperative (team based)
learning” (p. 43). In my framework, monitoring is a form of student-centered instruction
while modeling is a form of teacher-centered instruction. On the other hand, facilitating
whole class discussions exists somewhere in the continuum between the two. So
altogether, the three roles are intended to cover the entire spectrum of student- and

teacher-centered instruction.

Limitations

One limitation of this study is that the data I collected focused on the instructor
and did not incorporate the student perspective. Therefore, I had to assess the cognitive
demand of each example based upon the questions that students asked and the
mathematical content of each example. While I tried to define the four different levels of

cognitive demand so that a classroom observer could categorize examples, it was still
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difficult at times to determine whether or not an example required cognitive efforts for
students to follow or understand.

Another limitation is that even though I did conduct a multiple case study, all of
the instructors that I observed were teaching precalculus in the same mathematics
department. In particular, all of the instructors were provided with lesson guides from the
department, so they all had access to and drew from the same curriculum. While
instructors could modify these lesson guides, many of them stuck to them and used the
examples that were provided. So the cognitive demand of the enacted examples was
probably influenced by the cognitive demand of the examples included in the lesson
guides.

Another limitation of this study was that is difficult to determine when an
instructor is switching between modeling and facilitating. In particular, facilitating still
requires contributions from the teacher, so it can be difficult to determine exactly when
an instructor stopped modeling and started facilitating a whole-class discussion.
Therefore, the role profiles should be interpreted as having a margin of error any time an

instructor switched between modeling and facilitating.

Implications

The modified framework that I developed for analyzing the cognitive demand of
examples is useful for both researchers and practioners. First, this framework gives
researchers a way to analyze the cognitive demand of tasks independent of who is doing
the mathematical work. This is especially important for examples, since instructors can
present them in a variety of ways. While it is similar in many ways to the Task Analysis

Guide (Smith & Stein, 1998), I modified their original framework by removing any
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references to who is doing the mathematical work. The framework is also useful for
practioners as a planning and reflection tool. As teachers plan and reflect on their
teaching, they can use this framework to assess the cognitive demand of the examples
they use.

The three roles that I identified (modeling, facilitating, and monitoring) are also
useful for both researchers and practioners. First, these roles provide researchers with a
way to identify what teachers do when they present examples and what they expect their
students to do. In particular, researchers can construct role profiles for teachers and the
examples that they enact and see how these profiles might correspond with student
engagement and opportunities to learn. On the other hand, practioners may find it helpful
to think about what role they plan to take on when enacting examples and why it might
be useful to model, facilitate, or monitor in different circumstances. Also, being aware of
these different roles can help instructors reflect in-the-moment on whether or not they
should switch from modeling to facilitating or pause and monitor students as they work

through part of an example.

Conclusion

The purpose of this paper was to identify what high cognitive demand examples
look like in undergraduate precalculus classrooms and to examine the roles that
instructors take on when presenting examples. While I originally intended to use the Task
Analysis Guide (Smith & Stein, 1998) to analyze examples, I found that it was difficult to
use because some of the language seemed to specify that students must be the ones doing
the mathematical work. Since examples are different than tasks in that sometimes the

instructor models them for students, I developed a modified framework for analyzing the



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 147

cognitive demand of examples (Table 7) that focuses more on the cognitive demand of
the mathematics involved in the example and less on who is doing the example. While
this modified framework was useful for my study, other researchers who want to study
cognitive demand independent of who is doing the mathematical work can also use it.
Also, practioners can use this framework as a way to examine the cognitive demand of
the examples that they use in their classrooms. In my study, I also found that instructors
took on three different roles when presenting examples: modeling, facilitating, and
monitoring. To help illustrate what these roles look like, I provided narrative descriptions
of different examples that were presented by instructors in different ways. Using these
three roles, other researchers can construct role profiles for teachers and the examples
that they use and study how these role profiles might afford different opportunities for
students to learn and struggle. Also, being aware of these roles can help instructors think
about who is doing the mathematical work in their classrooms and what opportunities

they are giving their students to learn and struggle with the content.
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CHAPTER 5: DECOMPOSING THE PEDAGOGICAL WORK

ENTAILED IN ENACTING HIGH COGNITIVE DEMAND

EXAMPLES

This paper decomposes the pedagogical work of enacting high cognitive demand
examples by identifying the teaching tasks entailed in enactment. In this chapter, I argue
that instructors must attend to the mathematical point, make connections, provide clear
verbal explanations, articulate cognitive processes, and support student understanding
when enacting high cognitive demand examples. This case study was conducted using a
thematic analysis of 25 high cognitive demand examples that were enacted by instructors
in undergraduate precalculus classrooms. This paper contributes to the corpus of
literature that decomposes the practice of teaching so that novice teachers can more easily

see and replicate the work that teachers do.
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Introduction

Examples are often used in mathematics classrooms as a way to explain and
model content, practices, and strategies, which is a basic fundamental of teaching
(TeachingWorks, 2017). Explaining and modeling goes beyond just working out an
example at the board and should include the teacher thinking aloud and demonstrating
complex academic practices and strategies. One way of classifying the complexity of an
example is by examining the cognitive demand (Stein et al., 1996). Stein, Grover, and
Henningsen defined cognitive demand as “the kind of thinking processes entailed in
solving [a] task” (p. 461) and identified four categories to describe the cognitive demand
of a task: memorization, procedure without connections, procedure with connections, and
doing mathematics.

Despite the importance of explaining and modeling complex academic practices
and strategies, I have found that the examples teachers often use do not involve high
cognitive demand tasks (Chapter 4). Of the 93 examples that I observed in my study, only
25 (27%) of them were enacted at a high level of cognitive demand. While it may be true
that students in these classrooms had the opportunity to engage with high cognitive
demand tasks in other contexts (such as small group work and homework exercises), it is
troubling that the problems that the teachers chose primarily focused on explaining and
modeling memorization and procedures without connections tasks. In particular, while
the teachers may have expected students to engage with high cognitive demand tasks in
other settings, they often did not demonstrate the type of thinking entailed in solving

these complex problems.
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The paucity of high cognitive demand examples may be attributed to several
factors. Teachers may have viewed small group work or homework as a more appropriate
opportunity for students to engage with high cognitive demand tasks. Stein, Grover, and
Henningsen (1996) also pointed out that high cognitive demand tasks are “often less
structured, more complex, and longer than tasks to which students are typically exposed”
(p. 462), which makes them more difficult to enact. In their study, the authors found that
even tasks that were set up at a high level of cognitive demand could decline into low
level due to the inappropriateness of the task for students, the focus shifting to the correct
answer, too much or too little time, and several other factors (p. 479).

Another factor that may contribute to the cognitive demand of examples is the
teachers’ mathematical knowledge for teaching (MKT). Charalambous (2010) found
evidence of this connection in a study of elementary school teachers, which used the
Learning Mathematics for Teaching test (Hill, Sleep, Lewis, & Ball, 2007) to measure
teachers’ MKT. Since no similar measure exists at the secondary or undergraduate level,
I built upon Charalambous’ (2010) finding and examined the MKT entailed in enacting
high cognitive demand examples (Chapter 6).

Finally, another reason why instructors may struggle to enact high cognitive
demand examples is because they are not aware of the work that goes into setting up and
enacting them. While most people have experienced years of sitting in a classroom and
observing their teachers, much of the work of teaching is not observable or difficult to
recognize. In fact, Clark and Lampert (1986) pointed out that teachers have to do many

complex things at once, and yet need to make it all look effortless in order to maintain
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credibility with their students. While this hidden work of teaching is vital, it is often
difficult for novices to recognize and reproduce.

The purpose of this paper is to examine the work of teaching entailed in enacting
high cognitive demand examples. Through my analysis of the examples that instructors
were able to enact at a high level of cognitive demand, I decomposed the work of
teaching entailed in explaining and modeling content, practices, and strategies. The
purpose of this decomposition is to create a framework that breaks down teaching with
examples so that novice instructors can both see the work involved and model their own
teaching practices after it. In my work, I define an example as a mathematical task that an
instructor facilitates with the entire class for illustrative purposes. While students may be
asked to work individually or in small groups on parts of the example, the majority of the
example is done together as a whole class.

In the next subsection, I provide a narrative of an example that declined in
cognitive demand during enactment, even though the instructor intended for the example
to be of higher cognitive demand. The purpose of this narrative is to illustrate how
examples can quickly decline in cognitive demand if the instructor does not attend to the

work of maintaining the cognitive demand.

Greg’s Law of Sines Example

Greg is teaching trigonometry, which meets on Tuesdays and Thursdays for 50
minutes each day. It is the beginning of the semester and Greg is finishing the first
chapter that introduces trigonometric functions. In this lesson, Greg is introducing the
Laws of Sines and Cosines as a way to talk about finding the side lengths and angle

measures of non-right triangles. At the beginning of the lesson, Greg planned to first
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derive the Laws of Sines and Cosines. Next, Greg wanted to give students an opportunity
to practice applying these Laws. However, instead of just giving them a problem and
telling them what procedure to use, Greg wanted to provide students with an opportunity
to think critically about what procedure would be appropriate.

Greg’s students had worksheets with problems that they worked through during
every class period. The first problem on their worksheet for this lesson is given below in
Figure 12. In the written example, the students were told that the goal of the problem was
to study how to use the Law of Sines to solve for x. However, Greg knew that identifying
the correct procedure to use to solve a problem is what students struggle with. So he
decided to use this worksheet problem as an example, but without the goal statement.
Instead, Greg planned to just draw the triangle on the board and ask students to figure out
how we can use the information given to solve for x. Greg wanted to help get his students
used to looking at a problem, identifying the given information, and then identifying what
tools they have that can take that given information and produce what we want.

Figure 12. Greg’s Law of Sines Written Example

Goal: To study how to use the Law of Sines to find the length of an
unknown side.
Exercise: Solve for x in the triangle below.

Greg thought that this problem, in particular, was appropriate for helping students
learn how to “choose the right tool” because it’s a simpler case. In the example, the
students are given a lot of information and a specific outcome. In later problems on the

worksheet, there were problems where students are only given side lengths and asked to
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fill in every piece of information that they can. But with this example, students just have
to figure out one piece of information. Greg anticipated that students might try to solve
the problem using the Law of Cosines, since they will have talked about both Laws
before working through this example.

During class, Greg set up the example as he had intended by just drawing the
triangle and not giving the goal statement. However, he told students that it was the first
problem on their worksheet so many students began flipping through their workbook to
find the right page. Greg then asks, “Based on what we have done today...we are going
to use our new tools.... What information allows us to combine side lengths and opposite
angles?” A student immediately responded with sines, which Greg interpreted as meaning
Law of Sines. Greg then asked, “What does the Law of Sines tell us in this case?” One
student responded with, “Break this into two triangles,” which Greg interpreted as
referring the method that they had used previously to derive the Law of Sines.

Greg went on to explain that they could re-deduce the Law of Sines, but it would
be easier if they just used the final equation that they had come up with in the first place:
sin(4) /a = sin(B) /b, where A is the angle opposite the side of length a and B is the
angle opposite the side of length b. A student then suggested that they could write
sin(30) /5 = sin(45) /x. Greg then worked through the algebra of solving for x. He
then paused and asked if there were any questions of what they did in the example or why
they did it. Two students asked questions about some of the algebraic steps involved in
solving for x, which Greg explained by writing out some of the steps he had skipped.

I coded the intended example as procedures with connections, because Greg said

that his main focus for doing this example was on understanding why a procedure is
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appropriate to use based upon the given information and problem solving goals. So
Greg’s plan was to focus students’ attention on the use of the procedure for the purpose
of developing deeper understanding of why it is appropriate to use in this case. Greg also
planned to remove the goal statement, so the use of the procedure was no longer
specifically called for. However, the cognitive demand of the example changed during
the enactment of the example. First, Greg specifically told students that the example was
in their workbook, so if students flipped to the right page, they could easily read off the
goal statement and therefore know right away what procedure they were supposed to use.
Second, Greg’s cued that they should be using one of the Laws when he told students that
the example was “based on what we have done today” and that “we are going to use our
new tools.” Finally, instead of taking time to pause and unpack why it’s appropriate to
use the Law of Sines, Greg quickly moved on to finding the right answer. Therefore I
coded the enacted example as procedures without connections.

In later sections, I will provide a decomposition of the work entailed in enacting
high cognitive demand examples. The purpose of providing this narrative is to illustrate
that even if an instructor intends to enact an example at a high level of cognitive demand,
what they do during class has a large impact on whether or not the cognitive demand is
maintained. Later, when I provide examples of the work that instructors did to enact high
cognitive demand examples, I will highlight how Greg did not attend to these things in

this first narrative.
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Goals of the Study

The first research question that guides this study is, “What do instructors do when
enacting examples to help maintain the cognitive demand?”” In answering my first
research question, I aim to decompose the work entailed in enacting high cognitive
demand examples. The second research question that guides this study is, “How does this
work relate to the roles that instructors and students take on when enacting high cognitive
demand examples?” In answering my second research question, I aim to draw
connections between the results of this study and the results I found in my previous study

(Chapter 3), which examines how instructors model, facilitate, and monitor.

Theoretical Foundations

Decompositions of practice were first identified as a critical aspect of professional
education by Grossman, Compton, Igra, Ronfeldt, Shahan, and Williamson (2009). In
order to develop a framework to describe and analyze the teaching of practice, Grossman
et al. examined the professional preparation of clergy, teachers, and clinical
psychologists. Through their cross-professional analysis, they found that there are three
key concepts that influence the construction of understanding of pedagogies of practice:
representations, decomposition, and approximations of practice. In their work,
representations of practice involved “the different ways that practice is represented in
professional education and what these various representations make visible to novices”
(p. 2058). A decomposition of practice “involves breaking down practice into its

constituent parts for the purposes of teaching and learning” and an approximation of
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practice “refer[s] to the opportunities for novices to engage in practices that are more or
less proximal to the practices of a profession” (p. 2058).

Since Grossman et al.’s (2009) study, there have been several researchers who
have focused on developing decompositions of the practice of teaching mathematics.
Sleep (2012) decomposed the work entailed in steering instruction toward the
mathematical point. Through her analysis of preservice teachers, Sleep identified seven
central subtasks, along with strategies and problematic issues associated with each
subtask. The main contribution of Sleep’s work is that she provided “an articulation of a
key aspect of the work of teaching at a grain size that is directly usable in the design of
practice-based teacher education” (p. 965). Other examples of decompositions of
mathematics teaching include Smith, Bill, and Hughes’ protocol for thinking through a
lesson (2008); Jacobs, Lamb, and Philipp’s framework for professional noticing of
children’s mathematical thinking (2010); Smith and Stein’s 5 Practices for Orchestrating
Productive Mathematics Discussions (2011); Herbst’s decompositions of promoting and
managing students’ discourse (2011a), explaining concepts and propositions (2011b),
setting norms for mathematical work (2011c), explaining procedures (2013), and
assigning and reviewing students’ work (2014); and the LESRA mathematics instruction
framework (Wisconsin Department of Public Instruction, 2013).

In developing my decomposition of practice, I drew upon the curriculum
framework developed by Stein, Remillard, and Smith (2007). Instructors are often given
or seek out curriculum resources, which the authors refer to as the written curriculum.
Drawing upon these resources, the instructors create their lesson plans, which make up

the intended curriculum. Finally, what actually occurs during class is described as the
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enacted curriculum. Between the phases of written curriculum and intended curriculum
and within the phase of enacted curriculum, there are several factors that contribute to the
transformation of the curriculum. For example, teachers may change the written
curriculum based upon their beliefs or knowledge or classroom structures and norms may
influence how the curriculum is enacted.

Smith, Bill, and Hughes (2008) published a lesson planning protocol that
decompose the work of planning high cognitive demand tasks. Although very similar to
the work that I aim to do, Smith et al. focused on the first stage of transformation that a
task goes through as it is taken from the written curriculum and transformed in the
teacher’s lesson plan. In their protocol, Smith et al. identified three parts of the lesson
planning process: selecting and setting up a mathematical task, supporting students’
exploration of the task, and sharing and discussing the task. Within each part, the authors
provided several guiding questions for teachers to consider as they are planning their
lesson. While they admitted that thinking through all of the questions in the protocol
might be overwhelming for teachers to do with every task in their lesson plan, the authors
argued that it could be used as a tool for collaborative planning. They also highlighted
how teachers have used the protocol in pieces until it becomes a more natural part of their

thinking process when lesson planning.

Data and Methods of Analysis

To decompose the work of enacting high cognitive demand examples, I analyzed

25 examples that graduate student instructors were able to enact at a high level of
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cognitive demand. These examples came from a larger set of 92 examples that I observed

seven different instructors enact over the period of a year (Chapter 3).

Participants

The six graduate student instructors that participated in my study came from a
larger sample of seven graduate student instructors (hereafter called instructors) that I
observed. The one instructor, Selrach, that was not included in the analysis for this study
was removed from the data set because I did not observe any examples that he enacted at
a high level of cognitive demand. The six instructors were doctoral mathematics graduate
students in at least their third year of study at a large public university in the Midwestern
United States. Graduate instructors were selected based on their level of experience
teaching their course (they had to be teaching their respective course for at least the third
time) and willingness to participate in the study. All of the instructors were provided with
essentially the same written curriculum, which was developed by the mathematics
department they were teaching in. However, they were using slightly different versions,

as the curriculum was still in development and undergoing revisions.

Data

Each instructor was observed teaching three mathematics lessons, which spanned
either one or two days each, and was interviewed both before and after teaching.
Recordings were made of all of the interviews (audio) as well as the classroom
observations (video and field notes). Any curriculum materials used and lesson plans
created by the instructors were captured.

Pre-observation interviews. The semi-structured pre-observation interviews

focused on providing context for the observation and motivation for the examples. The
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instructor was first asked about the topic of the previous lesson(s), whether or not the
instructor had taught this topic before using the same or different s, and what curriculum
materials the instructor used to develop their lesson plan. Next, the instructor was asked
to talk about each example included in their intended lesson plan and identify the
mathematics they intended for students to learn through the example and why they chose

to use this particular example.

Lesson observations. Table 22 shows the instructors pseudonyms as well as a

short description of the topics of each lesson where I observed them enact a high

cognitive demand example. All of the instructors, except for Greg, were teaching college

algebra and trigonometry, which met five days a week. Greg, on the other hand, was

teaching trigonometry, which met two days a week. The examples enacted during each

lesson were video recorded and I took observational field notes. As I observed each

example, I attended to whether or not the instructor made any changes to their intended

lesson plan and what the instructor did while enacting the examples.

Table 22. Descriptions of Observed High Cognitive Demand Examples

. Cognitive
Example ID Lesson Example Description Demand
Alex 1-1 Introducthn to Exploring the notions of exponential High
Exponentials vs. linear growth
Alex 12 Introducthn to  Building an exponential function from High
Exponentials a word problem
. Exploring the notion of function
Function o . .
Alex 2-1 o compositions through unit High
Compositions .
conversions
Dan 2-4% Functl'o.n Decomposmg function cqrnposfuons High
Compositions into any two functions
Trig Equations & Graphing solutions to trig equations as .
Dan 3-17 Inverse . . . High
Lk points of intersection
Functions
Dan 3-87 Trig Equations & Finding all solutions in a given High
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. Cognitive
Example ID Lesson Example Description Demand
Inverse interval to sinusoidal equations
Functions™
Function . . )
Emma 2-1 Transformations Transforming the graph of a function High
. . Ilustrate why sine and cosine may
Greg 2-1 Trig Equatlogs & have 2 solutions/period, but tangent High
Inverse Functions has 1
Tangent & Exploring the behavior of tangent
Greg 4-1 Reciprocal using High
Trig Functions* standard unit circle angles
Tangent & . . )
Greg 4-4 Reciprocal* Solving real;zrfle g;?blems using High
Trig Functions* g
Trig Equations & . . :
Greg 5-17 Inverse Usmlg graphs to 1dent‘1fy1how mzny High
Functions® solutions are in a single perio
Trig Equations & Finding all solutions to trig equations .
Greg 5-2F Inverse . ¢ cirel 1 High
Functions™ with standard unit circle angles
Trig Equations & Finding all solutions to trig equations .
Greg 5-3F Inverse . ¢ cirel ) High
Functions™ with non-standard unit circle angles
Trig Equations & Finding all solutions to tangent
Greg 5-5F Inverse equation with non-standard unit circle High
Functions* angles
Trig Equations & Finding all solutions to sinusoidal
Greg 5-6F Inverse equations with non-standard unit High
Functions* circle angles
. Finding a sinusoidal equation given a )
- %
Greg 6-31 Review description of a real-life context High
. Finding the horizontal shift of a .
- %
Greg 6-91 Review sinusoidal function High
Tangent & . . .
: Proving that sine and cosine are )
Juno 1-5 Reciprocal . High
. - cofunctions
Trig Functions
Trig Equations & Graphing solutions to trig equations as .
Juno 2-17 Inverse . . . High
. points of intersection
Functions*
Trig Equations & Finding all solutions to trig equations .
Juno 2-2F Inverse . . High
. with standard unit circle angles
Functions*
Juno 2-37 Trig Equations &  Finding all solutions to trig equations High
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_ Cognitive
Example ID Lesson Example Description Demand
Inverse with non-standard unit circle angles
Functions™
Kelly 1-1 Introducthn to Exploring the notions of exponential High
Exponentials vs. linear growth
Polynomials & . .
Kelly 2-1 Rational Explorlng the behavior of High
. polynomials near the roots
Functions
Polynomials & . : .
Kelly 2-2 Rational Graphlng polhynomlals given the High
. equation in factored form
Functions
Polynomials & . . .
Kelly 2-3 Rational Constructmg polynomial equations High
. given the graph
Functions

Note: The example ID represents the instructor, the observation number, and the enacted
example number.

*These lessons were purposefully sampled because of their focus on procedures.

tThese examples were spread out over two days of instruction.

Post-observation interviews. After each observation, I met with the instructor
(typically the next day) to conduct a post-observation interview. Between the observation
and the interview, I analyzed the video recordings of the examples that the instructor
enacted during class and selected one to talk about with the instructor. When possible, I
selected an example that was enacted at a high level of cognitive demand. If all of the
examples were enacted at a low level of cognitive demand, then I either chose one that
declined in cognitive demand (i.e., was intended, but not enacted, at a high level of
cognitive demand) or selected a random example to unpack.

I began the post-observation interview by first asking the instructor if the class
had went as planned and why they chose to either add or skip examples. Next, we
watched pre-selected video clips (30-60 seconds in length) together and I probed their

thinking regarding what they were doing at specific moments and their reasoning behind

their actions. Given that some time had elapsed between the observation and the
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interview (usually somewhere between 12 and 24 hours), I used the video clips to help
with video-stimulated recall (reference). The interviews usually included specific

conversations centered around 5-10 video clips and lasted 45-60 minutes.

Analysis

I began my analysis of the work of enacting high cognitive demand examples by
first identifying general themes based on literature, my own experiences teaching, and my
observations during data collection. The full list of these codes can be found in Appendix
D. I organized these themes into general categories, which were used in the initial coding
stage. As I analyzed the set of high cognitive demand examples I observed, the categories
and subcategories were reorganized and added based upon what I observed in my data.
This refined coding scheme can be found in Table 35 in Appendix D. I then conducted an
axial coding in order to organize my decomposition codes into broad tasks and tasks.
Finally, I used this semi-final set of codes and recoded all 25 examples. The final tasks
and subtasks that resulted from this analysis will be discussed in the following section

and can be found in Appendix D.

Results: Pedagogical Work of Enacting High Cognitive Demand Examples

Based upon my analysis, I found that the work of enacting high cognitive demand
examples can be broken town into five broad tasks:

Attending to the mathematical point,
Making connections,

Providing clear verbal explanations,
Articulating cognitive processes, and
Supporting student understanding.

M
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Each of these tasks will be discussed in turn, with narrative descriptions of how the
instructors that I observed did these things. I will also talk about the first narrative that I
presented in the introduction of Greg and his Law of Sines example in order to illustrate

how he did not attend to these things during the example enactment.

Attending to the Mathematical Point

The importance of attending to the mathematical point has been highlighted by
the work of Sleep (2012). Sleep identified seven central tasks entailed in steering
instruction toward the mathematical point: attending to and managing multiple purposes,
spending instructional time on mathematical work, spending instructional time on the
intended mathematics, making sure students are doing the mathematical work,
developing and maintaining a mathematical storyline, opening up and emphasizing key
mathematical ideas, and keeping a focus on meaning. While Sleep’s work focused on
attending to the mathematical point throughout a lesson as a whole, I found that it was
also an important aspect of enacting high cognitive demand examples. While Sleep broke
down attending to the mathematical point into seven subtasks, I examined this task of
teaching at a larger grain size. In particular, I found that instructors introduced the
mathematical point as a way to set the focus of the example, maintained the focus of the
example on the mathematical point, and summarized the example to reiterate the
mathematical point. In the following subsections, I address each of these subtasks
separately and provide narrative descriptions of how the instructors in my study did these
things.

Introducing. Out of the six instructors that I observed enacting a high cognitive

demand example, five of them made sure to introduce the mathematical point as a way to
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set the focus of the example. However, these instructors chose to introduce the
mathematical point at different times during the example. In two of the three high
cognitive demand examples that I observed Alex enact, she introduced the mathematical
point at the very beginning of the example. Before asking students to explore the notions
of exponential versus linear growth, Alex drew a web diagram on the board that mapped
out the different families of functions they had studied so far. In particular, she explained
that today they were going to begin exploring the family of exponential functions.

Dan, on the other hand, sometimes chose to wait until the end of an example to
introduce the mathematical point. After explaining how we can visualize solutions to
equations by finding points of intersection on graphs, Dan brought attention to the fact
that trigonometric equations can have infinitely many solutions. Dan is also very specific
in the language that he uses and answers the question, “What is the point?” for two of the
three high cognitive demand examples that he enacted. Juno and Greg also introduced the
mathematical point as a way of interpreting the mathematics that they had been working
through.

In the example narrative that I presented at the beginning of this chapter, Greg
had a clear mathematical point in mind for the example he did on using the Law of Sines
to solve for an unknown side. In particular, Greg wanted to give students an opportunity
to think about the information they were given and decide what tools they could use to
get the desired result. However, this point was never explicitly introduced during
instruction. In fact, the mathematical point that Greg seemed to be making during class
was that this was a problem we can use our new “tools” to solve. Since this change in

direction reduced the cognitive demand of figuring out what tools are appropriate, not
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introducing the original mathematical point contributed to the decline of the cognitive
demand.

Maintaining. Since many of the instructors chose to enact examples by either
facilitating whole-class discussions or monitoring students as they worked individually or
in small groups on parts of the example, it was important for instructors to make sure that
the example stayed focused on the mathematical point. Even for instructors who chose to
model the example for students, they still were explicit about making sure that students
were focusing on the mathematical point and not getting lost in the arithmetic.

The work of maintaining the mathematical point was particularly important in
examples of longer duration. For example, after taking the first five minutes to determine
the order of transformations and move individual points on the graph, Emma reminded
her students that the point of the example was to graph the transformed graph between
t = 0 and t = 9, which meant that not all of the transformed points would be on the final
graph. In another example, Greg first calculated sin 8 / cos 6 for all 8 in the first
quadrant and asked students to calculate these values for the rest of the quadrants, but
reminded his class that the real purpose of doing this was to see if y = sin 8 / cos 0 is
periodic.

When monitoring students as they worked through parts of the example
individually or in small groups, Greg and Kelly maintained the mathematical point by
asking students to make sure they were discussing a particular question. In Greg’s
example, he anticipated that students might be struggling with identifying whether or not
they should shift a function to the right or the left, so he reminded them that they could

graph both transformations and see which one fit the phenomenon they were trying to
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model. In Kelly’s example, she asked students to fill in a table of input-output values and
find a general formula that would give the output values for any input. After monitoring
students as they worked on this problem for three minutes, she made an announcement to
the whole class to remind them to try to find a general formula.

In the Law of Sines example that Greg enacted, the mathematical point turned
quickly from focusing on identifying a procedure to computing the answer. If Greg had
paused after the student quickly responded with the correct procedure and asked, “Why
would hat be that an appropriate procedure to use?”’ or “Why do our problem conditions
make that an ideal procedure to use?” or “Is that the only procedure we could use? Can
we generate other strategies that would also work?”, then he could have maintained the
focus of the example on the original mathematical point.

Summarizing. The final subtask associated with attending to the mathematical
point was summarizing the example. For the six instructors that I observed, every one of
them did this during at least one of their high cognitive demand examples. Alex was the
most consistent, as she summarized the mathematical point at the end of every high
cognitive demand example that I observed her enact. Most of her high cognitive demand
examples were also longer in length (5:17, 8:22, and 15:02), which may contribute to her
tendency to always summarize at the end.

Dan also used summarizing the mathematical point as a way to conclude his
examples. In particular, Dan highlighted the strategies that he used to solve problems. In
his example where he explained how to decompose function compositions into two
functions, Dan wrapped up by highlighting that students could use a similar strategy of

identifying an “inside” and “outside” function when working on similar problems in the
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future. Emma summarized her high cognitive demand example in a similar way by
highlighting the two different approaches that she had demonstrated and explaining that
students could use whatever one made more sense to them. When finding all solutions to
a sinusoidal equation, Greg also ended his example by summarizing what all the steps
were that they had gone through to find their families of solutions.

In the Law of Sines example that Greg did, the majority of the example ended up
being focused on the computations needed to solve for x. In our post-observation
interview, Greg mentioned that he had not expected students to struggle with the
computational aspect of the problem. However, he was responsive to their questions and
made sure that everyone understood the algebra involved in the problem. One way that he
could have wrapped up the example and brought his students attention back to the
original mathematical point that he had intended would have been by summarizing. Even
though his students seemed to struggle with the algebra more than the selection of the
procedure, providing a summary of why that procedure was appropriate would have

helped refocus his students attention on what he originally intended.

Making Connections

The importance of making connections is well studied in the mathematics
education literature (Baki, Catlioglu, Costu, & Birgin, 2009; Elia, Gagatsis, & Heuvel-
Panhuizen, 2014; Gainsburg, 2008; Sidney & Alibali, 2015). In order for students to
build a deeper, more conceptual understanding of mathematics, it is important for them to
see how mathematics is connected as a domain and to other domains. However,
connections are not just important in building conceptual understanding, but also in

building understanding of procedures. The Task Analysis Guide (Smith & Stein, 1998)
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highlights this importance by categorizing procedures without connections tasks as lower
cognitive demand and procedures with connections tasks as higher cognitive demand.
Therefore, it is not surprising that making connections was something that emerged from
my data set.

While there are many ways one can make connections and many things one can
make connections between, there were three primary subtasks that emerged from my
analysis. First, instructors made connections to previously learned content, practices, and
strategies. This finding is similar to what Stein, Grover, and Henningsen (1996) found in
that one factor that influences the maintenance of the cognitive demand of a task is
building upon prior student knowledge. Teachers also made connections between
algebraic, graphical, tabular, pictorial, and verbal representations. Finally, instructors
made connections between concepts, such as exponential and linear growth.

Prior knowledge. Making connections to previously learned content, practices,
and strategies came up in almost every high cognitive demand example that I observed.
Many instructors used connections to prior knowledge as a way to transition into a new
topic. For example, Alex used a problem from a previous exam as a way to reintroduce
the concept of function compositions. Her class had briefly explored function
compositions at the beginning of the semester and was tested over it on their first exam.
Later on in the semester, they took a deeper dive into topic, but Alex purposely used an
example they had seen before as a way to help students make connections to their prior
knowledge.

Instructors also made connections to prior knowledge as a way to help students

recognize that they could use similar problem solving strategies. When explaining how to
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find all solutions to sinusoidal equations, Dan focused on the ways in which the problem
solving process was the same as the one they had used for solving less-complex
trigonometric equation. Again, the language that Dan used was very purposeful and
explicit in expressing how these two problems were similar.

Now just like last time, this equation means something on the unit circle. That still

doesn’t change. Sine of whatever corresponds to y-coordinates on the unit circle.

Which y-coordinate? Well, —1/2. So just like last time, we are going to draw in

our picture of the unit circle. Just like last time, ['m interested in y-coordinates—

that’s sine—being equal to —1/2. Just like last time, this gives me two points on

the unit circle.

In the example where Juno proved that sine and cosine are cofunctions, Juno used
prior knowledge to build up intuition before attacking a proof. Before attempting the
proof, Juno did two examples to show that sine and cosine are equivalent on certain pairs
of complementary angles. Her purpose of using these examples was to motivate her proof
that sine and cosine are equal on all complementary angles. After proving that this was
true, Juno pointed out that if sine and cosine are properly named, then we could also
expect that tangent and cotangent and secant and cosecant are also cofunctions, which is
what she asked her students to prove next.

In Greg’s Law of Sine example, there is really only one time when connections
are made to prior knowledge. When Greg asks, “What does the Law of Sines tell us in
this case?”, a student responds by saying, “Break this into two triangles.” This student
was referring to the method that Greg had used at the beginning of class to derive the

Law of Sines. While this is a valid method, Greg explained that instead of going through
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all the work again, we could instead just use the final result. So while Greg did
acknowledge that the student was making connections to prior knowledge, he also
implicitly labeled that knowledge as unnecessary or unhelpful in solving this problem.
Representations. Since many of the high cognitive demand examples that I
observed were coded procedures with connections, it is not surprising that making
connections among multiple representations was a common theme. Again, the majority of
the high cognitive demand examples that I coded involved making connections between
representations. However, the types of representations that the instructors were making
connections between (e.g. verbal and pictorial or algebraic and graphical) differed.
Although Emma only had one example that I observed her enact at a high level of
cognitive demand, this one example was coded six different times with the
representations code. In the example, Emma was explaining two different methods that
could be used to sketch a graph transformation. The problem provided the graph of f(x),
which was piecewise linear, and then asked for the graph of 3f (x + 1) — 2 on the
interval [0,9]. Throughout the example Emma consistently made connections between
the algebraic and graphical representations. After deciding what the order of
transformations was, Emma went back to the graph and explained that if we move the
corner points, we can then connect them with a line in our transformed graph. She also
made connections between verbal and algebraic representations of function
transformations as she transformed individual points. Finally, when her students
struggled to understand the algebra behind finding outputs that did not land on integer
values in the original graph, Emma consistently turned the conversation back to making

connections between using the slope of the graph to calculate non-integer output values.
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In the Law of Sines example that Greg enacted, few connections were made
between representations. Once they were able to use the Law of Sines to set up
inequalities, the original triangle was never referenced again. In particular, there were no
connections drawn between the triangle given in the problem and the triangles that they
had used previously to derive the Laws of Sines and Cosines. If Greg had wanted to focus
on developing an understanding of why the Law of Sines was an appropriate procedure to
use, then it seems like it would have made sense to draw connections between the values
given in the two triangle diagrams. In particular, drawing these connections may have
helped students develop a deeper understanding of when it might be appropriate to use
the Law of Sines versus the Law of Cosines.

Concepts. Making connections between concepts was not as prominent of a
theme as making connections between representations, but was common enough that I
added it to my final coding scheme. One reason for this is because connections between
representations and connections between concepts are not easily teased apart. For
example, when introducing the concept of multiplicities of the zeros of polynomials,
Kelly focused on explaining how multiplicity and degree are related concepts. However,
in order to do this, she relied upon students’ understanding of what polynomials look like
graphically. In particular, Kelly used the example of parabolas and explained that
depending on where they lie on the xy-plane, they will have zero, one, or two x-
intercepts.

In her example where she focused on building an exponential function from a
word problem, Alex asked her students to make connections between the equation they

had derived and the standard form of an exponential. In particular, Alex focused her
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students’ attention on making connections between the particular numbers involved in
their equation and the different components (e.g., initial value, growth factor, and growth
rate) of the standard form.

In the example that Greg did involving the Law of Sines, Greg focused more on
the algebra than he did on making connections between concepts. In particular, Greg
talked about making connections between the given information and the problem solving
goals, but these connections were never explicitly focused on or verbalized during class.
Given that a student identified right away that the Law of Sines was an appropriate tool to
use to solve the problem, it is perhaps true that his students were already making these
connections on their own. However, given that Greg told them the example came from
the first problem on their worksheet and that many students flipped to this page as he was
drawing the picture on the board, it’s impossible to tell if they figured out this connection

on their own or just read the goal statement printed on the worksheet.

Providing Clear Verbal Explanations

According to TeachingWorks (2017), “explaining and modeling are practices for
making a wide variety of content, academic practices, and strategies explicit to students”
(emphasis added). In order to provide equal access to education for all, there has been a
recent focus on the importance of using explicit instruction (Archer & Hughes, 2010).
Doabler and Fien (2013) identified teacher modeling as an essential element of explicit
mathematics instruction. They identified that two key components of teacher modeling
are using clear and consistent wording and providing unambiguous explanations and
demonstrations. Similarly, I found that providing clear verbal explanations was a

prominent task that teacher engaged in when enacting high cognitive demand examples.
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The instructors that I observed provided explanations of a variety of aspects of each
example, which I will explain in more detail in the following subsections.

Instructions. Since the examples that instructors used were often not included in
the students’ workbooks, instructors were careful to provide clear explanations of the
example set up, constraints, and goal. This included providing clear instructions for what
they expected students to do if they chose to monitor students as they worked through
parts of the example individually or in small groups. While instructors often wrote the
example instructions on the board, they also provided additional verbal explanations to
explain the problem set up, constraints, and goal. For example, after writing up a long
description of a word problem that asked students to compose a function that gives the
temperature (in °F) of a kiln after ¢ minutes with a function that transforms °F to °C, Alex
went back and explained that what they were trying to do was come up with a function
that would give the temperature (in °C) of a kiln after ¢t minutes.

This practice often went hand-in-hand with attending to the mathematical point,
but other times was focused more on making sure that students understood the example
set up and constraints. Greg, for example, made sure that his students understood how to
interpret a graph before engaging with trying to find the equation of the graph. In the
example, a weight is suspended from the ceiling by a spring. The students were provided
with a graph that showed the distance (in centimeters) from the ceiling to the weight as a
function of time (in seconds). Greg anticipated that his students might have a hard time
interpreting the graph, since whenever the graph is bigger the weight is further away from

the ceiling. To make sure that his students understood the example set up, Greg explained
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that the graph is increasing when the weight moves downward, which is opposite of what
his students might expect if they are thinking about the visual motion of the weight.

In the Law of Sines example that Greg enacted, the problem was clear enough
that perhaps no explanation of the set up was needed. However, one way that Greg could
have been more explicit in his explanation is by making it clear what the problem
constraints were and relating that to a discussion of knowing which procedure is
appropriate. For example, Greg could have emphasized that it made sense to use Law of
Sines because it relates two pairs of side lengths and opposite angle measures (which is
exactly what was provided in the diagram). He could have also discussed why using the
Law of Cosines would be less ideal, because we would need to know the third side length
of the triangle, which was not given in the initial example.

Content, practices, and strategies. Providing clear verbal explanations of
content, practices, and strategies was the most common subtask used in this category and
was something that every instructor attended to when enacting high cognitive demand
examples. In many of his examples, Dan focused on explaining the problem solving
strategy that he was using. When explaining how to decompose a function composition
into two functions, Dan explained that he uses the strategy of thinking “outside” and
“inside”. Dan had used similar language when demonstrating how to compose two
functions, so he drew connections between the work they had done before and the work
that they were doing now. In particular, he focused on explaining we can look at the
function composition and try to identify an outside and inside function. Once they had
done this, he then explained how to check their work by composing the two functions

they had found and verifying that they ended up back at the given function composition.
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In several of Juno’s examples she elicited student thinking as she worked through
parts of the example and made sure that it was clear to everyone what they were doing.
When proving that sine and cosine are cofunctions, Juno asked students to identify the
values for sine and cosine using the right triangle definitions. After each student
response, Juno made sure that it was clear where the student had gotten their answer from
by referring back to the right triangle that she had drawn. Other instructors asked students
to provide verbal explanations, which I will discuss in the later section on articulating
cognitive processes.

In Greg’s example of using the Law of Sines, he did provide verbal explanations,
but they were mostly of the algebraic steps involved in solving for x. However, since
several of his students seemed confused by these steps, Greg was responding to his class
and providing clear verbal explanations as a way to support student understanding.
However, the explanations mostly focused on the computational aspects of the problem
and not on the strategy that they had used to solve the problem or other higher-cognitive
demand aspects.

Similarities and differences. Providing clear verbal explanations of similarities
and differences between content, practices, and strategies was one way that instructors
made connections. So these two tasks are also inherently linked. In explaining why the
degree of a polynomial is always greater than or equal the number of zeros, Kelly talked
about how moving around a parabola could give us zero, one, or two zeros. Similarly, she
talked about how they could shift the graph of a quartic function and get more or less
zeros depending upon its position. Other instructors focused on explaining differences

between content, practices, and strategies. When explaining how to find all solutions to a
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trigonometric equation, Juno explained that they could use either - cos™1 6 or

21 — cos™ 1 @ as the second initial solutions. She emphasized that graphically these
represent two different intersection points but they also produce the same solution family
once multiples of the period are added on.

Several of the high cognitive demand examples that I observed were focused on
finding all solutions to sinusoidal equations. In these examples, Dan and Greg focused on
identifying both similarities and differences between finding all solutions to
trigonometric equations versus finding all solutions to sinusoidal equations. Earlier I
highlighted how Dan used specific language to make connections to their prior
knowledge of how to solve trigonometric equations. Greg used a similar strategy by
identifying that periodic equations will always have solutions of the form (initial) +
(period)k, where k = any integer. However, Dan and Greg emphasized that even
though these two types of problems are similar, the process involved in finding the initial
solutions of sinusoidal functions is more involved.

In Greg’s example with the Law of Sines, he asked, “What information allows us
to combine side lengths and opposite angles?”” The root of this question is asking students
to find similarities between the given problem and the tools that they had learned about
that day. However, Greg did not spend time explaining these similarities after a student
suggested the correct solution strategy. On the other hand, Greg did spend time
explaining differences between a derivation and a procedure. When Greg asked, “What
does the Law of Sines tell us in this case?”, a student responded with, “Break this into
two triangles.” Greg recognized that the student thought using the Law of Sines meant

going through the all the derivation steps, instead of just using the final end product. So
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Greg took time to explain that they only had to do the derivation once, and from then on
they could just use the final result.

Representations. Since most of the high cognitive demand examples that I
observed were coded as procedures with connections, many of them involved multiple
representations. Instructors often took the time to explain representations at the beginning
of an example in order to make sure everyone understood the example setup. In order to
illustrate why sine and cosine might have two solutions per period, but tangent will
always have exactly one, Greg first took time to explain what the graphs of sine, cosine,
and tangent look like. Greg first took time to make sure that students were comfortable
with the graphs of these functions because he felt it would be easier for his student to
understand initial solutions if he drew connections to visual representations of the
functions.

Other times, instructors introduced representations later on in the example and
then took the time to explain how they were to be used. In the example where Alex asked
her students to explore the notions of exponential versus linear growth, Alex asked her
students to come up with an equation that would model compound interest. Alex wanted
to see if her students could use their intuition of how interest accumulates as a way to
derive the exponential formula. However, most of her students approached the problem
by building a recursive formula. To help her students see how exponential functions
grow, Alex introduced an input-output table and focused on how the output values were
changing. However, before using the table to solve the problem, Alex first took time to
explain the setup of the table as a way to make sure that everyone understood the new

representation that she was introducing.
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In the Law of Sines example that Greg enacted, little time was spent explaining
the pictorial representation that was given in the problem. In particular, Greg quickly
brushed over the fact that the given triangle had two pairs of side lengths and opposite
angle measures. However, it is possible that the simplicity of the pictorial representation
made these additional explanations unnecessary.

Notation and vocabulary. Another subtask that teachers attended to when
enacting high cognitive demand examples was providing clear verbal explanations of
mathematical notation and vocabulary. Instructors attended to this subtask at various
points during their instruction. In some examples, the instructor made sure to explain the
notation and vocabulary they were using at the very beginning. Other times, instructors
paused during the middle of instruction to make sure that students understood the
notation and/or vocabulary that they had been using.

When Alex used an input output table in the exponential versus linear growth
example, she introduced the notation A(t) and B(t) as functions modeling the balance in
Bank A and Bank B after t years. Previously, students had been working through this
problem individually or in small groups as Alex monitored their progress. Now that she
was bringing everyone together to facilitate a whole-class discussion, she wanted to make
sure that everyone understood the notation, even if it was different from the notation they
had been using. Doing this was important because Alex was helping transition the class
from individual/small group work to a whole-class discussion, so it was important that
people could used a shared notation when talking about similar ideas.

Instructors were also careful to explain both formal and informal vocabulary that

they were using. When explaining how to find all solutions to trig equations, Juno
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introduced the vocabulary of “initial” or “base” solutions. She then explained that these
are the solutions in one period and that with sine or cosine, there are usually two of them.
Juno was also careful with her wording and made sure to not make any claims regarding

the uniqueness of initial solutions. Later, this became important in another example when

Juno talked about the equivalence of using - cos™ 6 and 2 — cos™! 0 as initial
solutions. Dan also introduced the informal vocabulary of identifying “inside” and
“outside” functions as a way to provide students with a way to talk about decomposing
function compositions.

In the Law of Sines example that Greg enacted, I had a hard time identifying any
ways in which Greg could have attended more to explaining notation and/or vocabulary. |
think that this example, in particular, did not have any new or confusing notation or
vocabulary for the students, which is why I don’t think Greg needed to attend to
explaining these things.

Checking your work. The final subtask associated with providing clear verbal
explanations has to do with checking your work. Instructors talked about checking your
work in different ways. First, they discussed how to check your work at the end of an
example to make sure you had not made any computational errors along the way. Second,
they also explained how you could check your work if you were unsure of your answer.
In both context, the instructors focused on helping students determine what a reasonable
answer might be and interpret their results in terms of the problem context. However,
checking your work at the end was used as more of a method to find mistakes, whereas
checking your work while problem solving was used more of a method of determine

whether or not a solution strategy is correct.
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In an example where Kelly asked her students to find an equation of a polynomial
of least degree given the graph, Kelly asked her students to check their work at one point
to see whether or not they were done. So far, they had used the zeros and multiplicities to
set up the factors and the exponents. They had not yet attended to the leading coefficient,
but instead of pointing this out, Kelly asked her students to check and see if they had
found the final equation. One student responded with no, because the graph went through
the point (—1, —8), but plugging —1 into the equation they had did not result in —8. So
Kelly asked her students how they could adjust their equation to meet this final
constraint.

After asking her students to compare exponential and linear growth using
compound and simple interest, Alex asked students to write an equation to model an
exponential word problem. Both of these examples were done before presenting the
standard form of an exponential, but Alex had used the first example (with interest) as a
way to build up students’ understanding of exponential growth. In this example, Alex
asked her students to consider why the base of the exponent should be 1.25 instead of
0.25. One student piped up and said, “Because the 1 is kind of like the initial value and
we want to show a 25% increase. So that’s why you tack on the 1. Because if it were
0.25 then that would be saying it’s a 75% reduction.” Alex then took this opportunity to
build upon what the student had said and explain that the word problem was clearly
describing exponential growth, so we would want our function to also model growth.
However, if we used 0.25 as the base of the exponent, then this would give us a

decreasing function.
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In the Law of Sines example that Greg enacted, Greg spent most of the time
working through and explaining the algebraic manipulations that were required to solve
for x, but never explained how they could check their work. Since students struggled to
understand the algebra involved in the problem, it is reasonable to assume that they
would have struggled with successfully completing the algebraic manipulations on their
own. So one way that Greg could have responded to his students would have been by
taking time to explain how they could check their work on problems when they are

unsure about the algebra involved.

Articulating Cognitive Processes

According to TeachingWorks (TeachingWorks, 2017), explaining and modeling
content, practices, and strategies might involve just simple verbal explanations, examples,
and representations. However, more complex academic practices and strategies may
require “thinking aloud and demonstrating”. It is this process of thinking aloud that I
have coded as articulating cognitive processes. I differentiated between the two because I
wanted to identify thinking aloud as something that the teacher might do when modeling
or facilitating from asking students to provide justification or reasoning during a whole-
class discussion. Yet, these two categories both relate to making cognitive processes
more clear.

Thinking aloud. The process of thinking aloud involves the instructor doing
more than just verbalizing what they are doing mathematically, but also making their
metacognitive activities more explicit. When teaching his class how to find all solutions
to sinusoidal functions, Dan talked through the logic involved in each step of the problem

solving process. First, he explained that the first thing to do with these types of problems
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is isolate the trigonometric function. Then, Dan explained how the next few steps were
exactly the same as the first few steps involved in solving a simpler trigonometric
function (for a full description of this, see the subsection on Prior Knowledge). Next, Dan
explained how the process differed with sinusoidal equations because they needed to
isolate 6 in order to find the initial solutions. In each step, Dan focused on articulating his
thinking and explaining the process that he was going through to approach solving the
problem.

Juno did one thing that was unique in terms of how she articulated her cognitive
processes. While many instructors did this primarily verbally, Juno often took the time to
capture her thinking in writing on the board. In the example where Juno graphed
solutions to trigonometric equations as points of intersection, Juno took the time to write
out on the board (in full sentences) what she was doing at each step in the process and
why. In doing this, Juno not only made each step in the problem solving process clear,
but also provide students with explicit, written explanations could help them decipher
what they were doing and why they were doing it later while reviewing their notes.

In the Law of Sines example that Greg enacted, Greg mainly used the think-aloud
strategy when working through the algebra. While this was still important for him to do,
as his students struggled to understand what he was doing algebraically at each step, he
did not spend time articulating the cognitive processes that had went into deciding what
“tool” to use to find the value of x. In the next subsection, I will discuss how some
instructors asked their students to provide justification and reasoning, which is another
approach that Greg might have taken to help articulate the cognitive processes involved

in solving the problem.
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Student thinking. Instead of being the sole articulators of cognitive processes,
some instructors asked their students to provide justification and reasoning to support the
mathematics. However, it is interesting to note, but perhaps not surprising, that none of
the instructors who presented examples by just modeling them for their students chose to
use teacher think-alouds instead of asking students to provide justification or reasoning.
Even the instructors who did chose to engage students in the example enactment by
facilitating whole-class discussions or monitoring students as they worked on parts of the
example individually or in groups sometimes chose to do all of the articulating
themselves. However, there were still several examples of times when the instructor
asked students to provide justification and reasoning.

During an example where Greg was explaining how to find all solutions to trig
equations with non-standard unit circle angles, Greg would ask his students what they
should do next at different points in the example. In one of these instances, a student
responded that they should use arcsine in order to isolate 6. Another student spoke up
immediately and asked, “How did we know to use arcsine right there?”” Instead of
answering the question himself, Greg asked the student who had offered the idea
originally to explain why he had chosen to do this. Doing this not only helped make it
clear to the second student why this step was appropriate, but also gave the first student
the opportunity to verbally articulate his reasoning for choosing to do that as the next
logical step.

Out of all of the instructors, Kelly was the most consistent in asking her students
to provide justification and reasoning for their answers. During every example, Kelly

facilitated whole-class discussions and monitored students as they worked through parts
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of the example. In fact, I never observed Kelly enacting a high cognitive demand
example by just modeling for her students: she always included them actively in the
example enactment. During whole-class discussions, Kelly consistently asked students to
explain how they had gotten their answers. Even when doing computations, Kelly asked
her students to articulate what they were doing. Also, Kelly would press her students to
make connections to definitions as a way to provide justification for why statements were
true. Finally, if Kelly was not sure that everyone understood a concept, she would pause
her instruction and ask someone to articulate his or her reasoning for why it was true.

When Greg enacted the example that used the Law of Sines, his original intent
was to focus students’ attention on determine what an appropriate “tool” would be for
solving this problem. However, when he enacted this example, he did not press his
students to articulate their reasoning. If Greg had asked, “Why is Law of Sines an
appropriate tool to use in this case,” it would have been interesting to see if he students
could articulate a justification beyond, “Because it says we should in the workbook.”
While it may be true that he students understood why this was an appropriate procedure,
Greg did not take advantage of this moment as an opportunity to dig into their

understanding and bring attention to their cognitive processes.

Supporting Student Understanding.

The final task that instructors attended to when enacting high cognitive demand
examples was supporting student understanding. Since examples can be enacted in
different ways that include different levels of student participation and opportunities to
struggle, it is important for instructors to be attention to whether or not their students are

following and understanding the example the instructor is enacting. Instructors did this in
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a variety of ways by providing students with opportunities to ask questions, recognizing
when students were struggling to follow or understand, and providing scaffolding for
students who were struggling.

Student questions. All of the instructors provided opportunities for students to
ask questions, although they each did this in different ways. Dan ended every example by
asking if there were any questions, however he was often met by silence and then quickly
moved on. Occasionally a student would ask a question during the example, but Dan
rarely paused for longer than five seconds and pressed them to ask questions during
whole-class presentations. Dan did provide his students with opportunities to work on
workbook problems individually or in small groups, so it is possible that students used
this opportunity to ask questions. But for the most part, his students were silent during
examples.

Alex, on the other hand, provided her students with opportunities to ask questions
and used other informal ways of measuring their understanding. In several cases, Alex
would ask her students to give thumbs up, down, or sidewise to express how well they
understood. She would also stop frequently during examples in order to make sure that
her students were following what they had done so far. Emma used a similar technique in
her function transformation example and paused after working through critical pieces of
the example to see how well students understood. However, instead of just asking for a
thumb indicator of understanding, Emma asked explicitly for questions and several of her
students piped up, asking for clarification.

Out of all of the instructors, Greg was the only one who communicated to his

students that having questions was a good thing. Greg had found that in his experience
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asking, “Are there any questions?” often did not elicit responses from his students. So
instead, Greg would ask, “What questions do you have?” in an attempt to communicate
that it was completely fine to have questions. In one instance, Greg paused in the middle
of a long example and said, “I’m going to pause here and ask who is lost? Who has a
question? It’s totally reasonable to be lost. There’s a lot that goes into these. So just let
me know where you are lost.” While this technique did not work every time, Greg’s
students often were willing to speak up and ask questions or verbalize where they had
gotten lost or identify what they were struggling to understand.

In the Law of Sines example that Greg enacted, Greg’s students did pipe up and
ask questions, but mostly they were focused on the algebraic manipulations. One way
that Greg could have attended to whether or not students understood the justification
behind why they chose to use Law of Sines is by explicitly asking students if they had
any questions regarding why this might be a good method to use.

Student struggle. Instructors used a variety of techniques to recognize when
students were struggling to follow or understand. For many of them, they provided
students with an opportunity to ask questions as a way to verbal their struggle. In other
cases, it was students’ silence and not their questions or answers that cued instructors that
they were struggling with a concept or idea. Some instructors actually used student
struggle as a guide for choosing and designing examples. Finally, the instructors who
monitored students as they worked through parts of the example also used this time to
interact with students individually and in small groups and identify when they were

struggling.
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The one high cognitive demand example that I observed Emma enact originally
was presented as a problem on a quiz. However, when grading Emma realized that most
of her students had struggled with the problem in ways that she had not anticipated. So
Emma decided to work through the problem the next day as an example at the beginning
of class. In this case, Emma actually recognized that students were struggling with a
concept and then purposefully incorporated an example into her lesson plan to help
students overcome their struggles and misconceptions.

When students were working on trying to find an equation to model the balance in
a bank account that earned simple and compound interest after t years, Alex took a quick
survey of the class to see whether or not they needed more time. Based upon their
responses, Alex decided to give them more time to work individually and in small groups
on this part of the example. She also reminded them that the point of the example was to
try to come up with equations to model the two different bank balances.

In the example that Greg enacted that used the Law of Sines, he had not
anticipated that students would struggle as much with the computational aspect. Also, the
one part that he had anticipated they might struggle with (identifying the right “tool” to
use) seemed to be an easy task for them. Also, the way that Greg set up the example
reduced the students’ opportunities to struggle with identifying the right “tool” to use. In
particular, the language that Greg used to set up the example cued his students that it was
in their workbooks, which contained the goal statement that told them which procedure to
use, and that it was directly related to what they had learned that day. So while Greg did
think about ways in which his students might struggle with this example, he actually

reduced their opportunity to struggle when he set it up.
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Scaffolding. Providing scaffolding has been identified as one important feature of
explicit instruction (Archer & Hughes, 2010; Doabler et al., 2012; Rosenshine, 2012). In
the high cognitive demand examples that I observed, instructors provided scaffolding in
two different ways. Some instructors purposefully designed their example(s) so that they
were scaffolded to support student understanding. Other times, instructors incorporated
in-the-moment scaffolding in response to recognizing that students were struggling to
follow or understand.

Instructors incorporated scaffolding into their lesson plans in a variety of ways. In
the lessons where I observed Dan, Greg, and Juno teach students how to find all solutions
to trig equations, each of the instructors scaffolded their examples by ordering them in a
certain way. Most of them started off by first doing an example of how to find all
solutions to simple trigonometric equations with standard unit circle angles. Next, they
would do a similar example, but with a non-standard unit circle angle in order to
introduce students to the strategy of using inverse trigonometric functions to find initial
solutions. After giving students some practice solving these simpler types of
trigonometric equations, they would then move on and do some examples of sinusoidal
functions with both standard and non-standard unit circle angles. While not all of these
examples were enacted at a high level of cognitive demand, many of them were, which
means that the instructors were able to scaffold in a way that did not decrease the
cognitive demand.

In the example where Kelly asked her students to come up with an equation to
model the balance in a bank account that earned 4.5% annual interest, her students had

no problem using a recursive formula to find the balance after one, two, and three years.
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However, her students struggled to see how to generate a formula that did not depend
upon knowing the balance in the bank account the year before. To help scaffold her
students understanding of exponential growth, Kelly focused in students attention on how
they could rewrite the balance at the end of year two in terms of the balance at the
beginning of year one. Then, she asked her students how they could use a similar idea to
rewrite the balance at the end of year three in terms of balance at the beginning of year
one. Finally, her students were able to come up with the final exponential equation that
gave the balance at the end of year t in terms of the balance at the beginning of year one.
By providing this scaffolding of looking at beginning cases and seeing how they related
to subsequent cases, her students were able to transform their way of thinking about the
example from viewing it as a recursive relationship to an exponential relationship.

Given that the Law of Sines example that Greg chose to use was simpler, it’s hard

to imagine what scaffolding might look like in this case.

Results: Relationships Between Tasks and Roles

In a previous paper (Chapter 3), I examine three different roles that instructors can
take on when enacting high cognitive demand tasks. First, instructors can model content,
practices, and strategies for students. Second, instructors can facilitate whole-class
discussions of the example. And finally, instructors can monitor students as they work
through parts of the example individually or in small groups. While some instructors
enacted examples by just modeling, many of them switched back and forth between

different roles.
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In order to address my second research question, I examined how the five tasks
entailed in enacting high cognitive demand examples overlapped with the three roles that
instructors could take on. Table 23 illustrates the overlap of these two sets of codes.
Table 24-Table 28 then break down each of the five main tasks and provide the role
profiles of each individual subtask. One thing to note is that my IRB did not cover
capturing video of the students, so I was not able to really capture what the instructors did
while they monitored student work time. Therefore, the overlap between the Monitor role
code and the decomposition codes is only representative of the how the instructor
interacted with the class as a whole during these times.

Table 23. Role Profiles of Tasks Entailed in Enacting HCD Examples

BMonitor OFacilitate UModel

Mathematical Point 4 3 23
'ql; Connections 65 76
o T T T T T T T
=
=
= Explanations [l 121 150
g.‘ T T T T T T T T
=
S
2 Cognitive Processes 80 76
Understanding |6 67 38
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Table 24. Role Profiles of Mathematical Point Subtasks

191

Introduce

Summarize

Mathematical Point Subcodes

BMonitor OFacilitate UModel
2 10
Maintain __ 6
| 1 7
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Table 25. Role Profiles of Connections Subtasks

Prior Knowledge

Representations

Connections Subcodes

Concepts

BMonitor OFacilitate UModel
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32
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Table 26. Role Profiles of Explanations Subtasks

B Monitor DOFacilitate UModel

I
Instructions H 4 5
., Content, Practices, & Strategies 74 70
< 1
2
Z Similarities & Differences 0 10 42
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% Representations l 11 15
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Notation & Vocabulary l 15 13
Checking Your Work 0 7 5
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Table 27. Role Profiles of Cognitive Processes Subtasks

BModel OFacilitate Y Monitor

56

Think Aloud

Student Thinking 0 24 (
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Table 28. Role Profiles of Understanding Subtasks

B Monitor OFacilitate

U Model

Student Questions |1 23

19

Student Struggle |2

29

11

Undersatnding Subcodes

Scaffolding 3
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Discussion

In this paper, I argue that the work of enacting examples at a high level of

cognitive demand can be decomposed into five main tasks: attending to the mathematical

point, making connections, providing clear verbal explanations, articulating cognitive

processes, and supporting student understanding. An instructor may attend to the

mathematical point by introducing it as a way to set the focus of the example,

maintaining the focus of the example on the mathematical point, and summarizing the
example in order to reiterate the mathematical point. When making connections, they
might connect to previously learned content or focus on making connections between

representations and/or concepts. To help students understand the example, instructors
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provide clear verbal explanations of the example set up, constraints, and goal; of content,
practices, and strategies; of similarities and differences; of representations; of notation
and vocabulary; and of how to check your work. Depending on whether an instructor
models or facilitates the presentation of the example, the instructor might make cognitive
processes explicit by thinking aloud as they work through the example or asking students
to provide justification and reasoning. Finally, instructors need to support student
understanding by providing opportunities for students to ask questions, recognizing when
students are struggling, and providing scaffolding to support struggling students.

Table 29. Decomposition of the Work Entailed in Enacting HCD Examples

1. Attend to the mathematical point
* Introduce the mathematical point as a way to set the focus of the example
* Maintain the focus of the example on the mathematical point
* Summarize the example in order to reiterate the mathematical point
2. Make connections
* To previously learned content, practices, and strategies
* Between representations
* Between concepts
3. Provide clear verbal explanations
* Ofthe example set up, constraints, and goal
* Of content, practices, and strategies
* Of similarities and differences
* Ofrepresentations
* Of notation and vocabulary
*  Of how to check your work
4. Articulate cognitive processes
* By thinking aloud as you work through the example
* By asking students to provide justification and reasoning
5. Support student understanding
* By providing opportunities for students to ask questions
* By recognizing when students are struggling to follow or understand
* By providing scaffolding for struggling students without decreasing the
cognitive demand
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One thing that is important to note is that instructors did not have to attend to all
five tasks and their associated subtasks in order for the example to be classified as high
cognitive demand. In fact, some of the instructors only attended to three of the five main
tasks during enactment. However, on average an instructor attended to at least four of the
tasks, so these tasks do reflect a reasonable portrait of the pedagogical work that was

entailed in maintaining the cognitive demand of an example.

Limitations

One limitation of this decomposition of the work entailed in maintaining the
cognitive demand of examples is that the tasks are not necessarily independent. For
example, in practice it may be hard to distinguish between making connections and
explaining similarities and differences. Also, unless an observer speaks with the
instructor beforehand, they may not know what the mathematical point of the example is,
so it would be difficult for them to know if the instructor is introducing, maintaining, or
summarizing.

Another limitation of this decomposition is that some of the tasks could be
enacted at a superficial level, which may not end up contributing to the decline instead of
maintenance of cognitive demand. For example, if an instructor says that an example is
connected to a previously learned concept, but does not explain that connection, then they
would not be building understanding of the underlying concepts. Similarly, an instructor
might introduce the mathematical point as a way to set the focus of the example, but
never return to this point or summarize. Therefore, it is important that instructors attend

to multiple tasks instead of just one or two in isolation.
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Implications

One reason why it is important to decompose the work of teaching is because it
makes the hidden work of teaching more visible for novices. When novices observe
teaching, it can be difficult for them to identify what the instructor does that creates the
classroom experience. In addition, it is often difficult for experienced instructors to
reflect on their teaching and unpacking everything that they do to support instruction.
Therefore, it is important for researchers to decompose the work of teaching to make it
more visible.

Doing this not only provides novice teachers with a way to see the work of
teaching, but also provides teachers with a tool for reflection. Oftentimes, things do not
go as planned in the classroom. In particular, if an instructor chose a high cognitive
demand example to include in their intended lesson plan, but found that the cognitive
demand declined during enactment, then it would be helpful for them to reflect on
whether or not they engaged in pedagogical work associated with maintaining the
cognitive demand. For example, upon reflection, a teacher might realize that an example
became more algorithmic because they forgot to make connections or explain the

cognitive processes involved in working through the problem.

Conclusion

In this paper I examined the pedagogical work entailed in enacting high cognitive
demand examples. After conducting open and thematic coding of 25 HCD examples, I
found that there are five main teaching tasks that instructors attend to when enacting
HCD examples: attending to the mathematical point, making connections, providing clear

verbal explanations, articulating cognitive processes, and supporting student
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understanding. While instructors may not attend to all of these tasks during a single
example, I found that they do attend to many of them, which supports my claim that they
are the main teaching tasks that contribute to the maintenance of cognitive demand. This
decomposition of the work of enacting HCD examples is useful for both researchers who
might be interested in studying factors that contribute to the maintenance or decline of

cognitive demand and for practioners who want to reflect on their own teaching.
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CHAPTER 6: IDENTIFYING THE MATHEMATICAL

KNOWLEDGE ENTAILED IN ENACTING HIGH COGNITIVE

DEMAND EXAMPLES

The purpose of this collective case study is to examine mathematical knowledge
for teaching examples in precalculus. The instructors involved in the study were
experienced graduate student instructors who were teaching their course for the third
time. Utilizing a social constructivist and cognitive theory approach, I analyzed video
recordings of enacted examples. The central question that guided this analysis was: What
is the mathematical knowledge for teaching entailed in enacting high cognitive demand
examples? The goal of this study is to examine undergraduate mathematical knowledge
for teaching from the perspective of practice, instead of relying on existing frameworks.
As aresult of this study, I identified five domains of mathematical knowledge for
teaching that support the maintenance of cognitive demand: knowledge of connections,

representations, unpacking, students, and sequencing.
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Introduction

Mathematical knowledge for teaching (MKT) has been defined as the
“mathematical knowledge needed to perform the recurrent tasks of teaching mathematics
to students” (Ball et al., 2008, p. 395). While MKT has been studied extensively at the
elementary level (Ball et al., 2008; Carpenter & Fennema, 1991; Hill et al., 2007; Ma,
2010) and at the secondary level (Krauss et al., 2008; McCrory et al., 2012; Rowland et
al., 2005), research on MKT at the undergraduate level is still a growing field (N. Speer
et al., 2010). The goal of this study is to contribute to that field by building upon the link
between MKT and high cognitive demand tasks (Charalambous, 2010) in order to study
mathematical knowledge for teaching examples in precalculus from the perspective of

practice.

Problem

Often, it is assumed that earning a degree in mathematics is what initially
qualifies ones to teach at the undergraduate level. Historically, university instructors
learned to teach by following the role model of mentors. However, Bass (1997) pointed
out that there is much that cannot be learned through observations alone. To address lack
of teaching preparation, many doctoral programs today offer teaching professional
development for graduate student instructors (GSIs), who will make up the future
workforce of university instructors (Bressoud et al., 2015; Ellis, 2014). While offering
some teaching PD is better than none, the content of what is being taught is an important

aspect to consider.
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Of course, pedagogical knowledge is a component of teaching and should be
included in GSI PD. However, studies have shown that despite their formal mathematical
education, GSIs still lack mathematical knowledge that is needed for effective teaching
(Kung & Speer, 2009; N. Speer & Hald, 2008). In these studies, the authors relied on
existing frameworks for MKT that where developed at the K-12 level. While it is
reasonable to assume that K-12 and undergraduate MKT are similar, Speer et al. pointed
out that there are important differences between K-12 and university instructors that need
to be attended to (N. M. Speer et al., 2015). Therefore, the goal of this study is to
examine MKT at the undergraduate level from the perspective of practice, instead of

relying on existing frameworks.

Significance

As previously stated, there is little research on MKT at the undergraduate level.
But why is it important to study MKT to start with? First, studies have found that pure
content knowledge is not a predictor of teaching quality and student achievement (Begle,
1972; Greenwald et al., 1996, Hanushek, 1981, 1996). However, studies at the K-12 level
have shown that MKT is a predictor of teaching quality and student achievement (Hill et
al., 2008, 2007; Krauss et al., 2008). This knowledge is not usually taught in content
courses, hence why many GSIs seem to be lacking MKT. While no measures of MKT at
the undergraduate level exist, it is reasonable to assume that this positive relationship still
exists at the undergraduate level. Therefore, if we can identify what MKT at the
undergraduate level looks like and integrate it into GSI professional development

programs, we can have a positive impact on undergraduate education.



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 201

The other question that is reasonable to ask is why focus on precalculus? As the
number of students needing to take introductory mathematics courses for their degree
increases, the teaching burden of mathematics departments increases (Ellis, 2014).
Approximately 1,000,000 college students take introductory level mathematics courses
each year (Gordon, 2008). Of these, approximately 85-90% are non-STEM intending
(Rasmussen & Ellis, 2013) and success rates are typically around 50% (Gordon, 2008).
Even for STEM-intending students, studies have found that difficulty passing
introductory-level courses is contributing to the “leaking pipeline” of students leaving
STEM (Thompson et al., 2007). Therefore the instructional quality of precalculus has a

large impact on undergraduate students.

Background

While research on MKT at the undergraduate level is sparse, there is a large body
of research on K-12 MKT. While my goal is to examine MKT at the undergraduate level
from the perspective of practice instead of using existing frameworks of MKT that were
developed at the K-12 level, the two are bound to be closely related. In an effort to situate
my study within the existing field of research on MKT and avoid the assumption that I
am attempting to study MKT at the undergraduate level in an epistemological vacuum, I
will first present a broad overview of existing research on MKT. Also, I chose to study
MKT by building upon its relationship with the cognitive demand of tasks. This decision
was motivated by Charalambous’ (2010) exploratory study, which found that MKT and

the cognitive demand of enacted tasks are positively related.
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Mathematical Knowledge for Teaching

Following the studies that showed that subject matter knowledge was not a
predictor of teaching quality and student outcomes, Lee Shulman (1986, 1987) proposed
that researchers begin studying pedagogical content knowledge. Shulman defined
pedagogical content as going “beyond knowledge of subject matter per se to the
dimension of subject matter knowledge for teaching” (1986, p. 9). Shulman situated
pedagogical content knowledge in contrast to subject matter knowledge, which is “the
knowledge, understanding, skill, and disposition” of a subject matter (1987, p. 8). Since
then, mathematics education researchers have begun looking into professional knowledge
for teaching mathematics. Hill, Rowan, and Ball (2005) found that elementary teacher’s
MKT was a significant predictor of student gains. Similarly, Baumert et al. (2010)
showed that secondary teachers’ MKT was a predictor of student outcomes. In both of
these examples, the mathematical knowledge that is specific to the work of teaching is
not usually taught in general undergraduate mathematics courses. Therefore, using the
number of mathematics courses taken beyond calculus is not the same as measuring
content knowledge for teaching.

Speer, Smith, and Horvath (2010) conducted a literature review to search for
empirical research on the practices of undergraduate teachers of mathematics. As a result,
the authors identified only five articles, indicating that “collegiate teaching practice
remains a largely unexamined topic in mathematics education” (p. 100). Since then, more
studies have been published specifically on MKT at the postsecondary level (Bargiband,
Bell, & Berezovski, 2016; Callingham et al., 2012; Castro Superfine & Li, 2014;

Firouzian & Speer, 2015; Hauk, Toney, Jackson, Nair, & Tsay, 2013; Jaworski, Mali, &
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Petropoulou, 2017; Musgrave & Carlson, 2017; Rogers & Steele, 2016; Rogers, 2012; N.
Speer & Wagner, 2009; Vincent & Sealy, 2015). However, some of these studies used
existing frameworks for MKT that were developed at the K-12 level, which can be
problematic (N. M. Speer et al., 2015). Therefore, the purpose of this study is to
contribute to this growing body of research by examining MKT at the undergraduate

level from the perspective of practice.

Cognitive Demand and Task Unfolding

Smith and Stein (1998) defined lower-level demand tasks as “tasks that ask
students to perform a memorized procedure in a routine manner” and higher-level
demand tasks as “tasks that require students to think conceptually and that stimulate
students to make connections” (p. 269). Stein, Remillard, and Smith (2007) also created a
framework to describe the temporal process of task unfolding and factors that contribute
to this transformation. In this process, teachers use a written task to formulate their
intended task, which in turn influences the enacted task. Each phase in this process is
motivated by the goal of producing student learning and is influenced by factors, such as
teacher’s beliefs and knowledge. In 2010, Charalambous found that there was a
connection between elementary teachers’ MKT and their ability to enact tasks at a high
level of cognitive demand. It is this relationship between MKT and cognitive demand that

I plan to build upon in this study.
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Purpose and Research Question

The purpose of this collective case study is to examine mathematical knowledge
for teaching examples in precalculus. I will do this by first examining cognitive demand
in order to identify examples that were enacted at a high level of cognitive demand.
Building upon Charalambous’ (2010) results, I believe that these examples will provide
me with fertile ground for examining MKT. While I believe that MKT influences every
stage in the process of example unfolding, this report will focus on the final stage of
example unfolding. The central question that guides this study is: What is the
mathematical knowledge for teaching entailed in enacting high cognitive demand
examples? To narrow the focus of this study, I will primarily attend to answering the
following subquestions:

1. What mathematical knowledge enables instructors to enact examples at a high
level of cognitive demand?

2. How can we characterize this knowledge?

3. How does this knowledge related to specialized content knowledge and
pedagogical content knowledge?

4. How does this knowledge relate to the roles that instructors take on when enacting

high cognitive demand examples?



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 205

Methods

Setting and Participants

For the purposes of this study, precalculus courses are defined to include the
college algebra, trigonometry, and combined college algebra + trigonometry courses. The
participants from this study were all instructors at the same large public university in the
Midwest. At the university involved in the study, second-year graduate students make up
the majority of the instructors for precalculus. Since second-year graduate students are
teaching their own class for the first time, I chose to exclude them from my data set and
instead only recruited participants who were teaching a precalculus course for at least the
third time. The participants in this study included one trigonometry instructor (Greg) and
six college algebra + trigonometry instructors (Alex, Dan, Emma, Juno, Kelly, and
Selrach). All of them were graduate students in their third, fourth, or fifth year, had
already earned their M.S., and were working towards their Ph.D. in mathematics. Also,

all of the instructors were teaching their respective course for at least the third time.

Design and Procedures

In order to answer my research questions, I am utilizing a collective case study
design (Stake, 1995). In order to examine MKT more generally, I included multiple
instructors and collected data on multiple examples. Since I have included a limited
number of participants, there is little is known about mathematical knowledge for
teaching precalculus, and I seek to propose new theoretical insight into MKT, I chose to
use an exploratory case study (Yin, 2014). The unit of analysis I am focusing on is the

examples enacted by precalculus instructors. Studying teaching from the perspective of
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practice can be difficult, so I used the frameworks of cognitive demand and task
unfolding to help make the knowledge the teachers were using more visible. Building
upon Charalambous’ (2010) finding that MKT and cognitive demand are positively
related, I used cognitive demand as a way to identify examples that would provide me
with rich opportunities to examine MKT. Second, studying teaching through the task
unfolding framework (Stein et al., 2007) allowed me to see the instructors’ decision-
making and examine how their mathematical knowledge enabled them to enacting
examples.

Coding proceeded in two stages that concentrated on cognitive demand and then
knowledge. In the first stage, I use my modified framework for analyzing the cognitive
demand of examples (Table 7) to code the cognitive demand of enacted example.
Examples that were coded as enacted at a high level of cognitive demand were then
analyzed in the second stage, which has two cycles. In the first cycle, I used inductive
descriptive coding (Miles, Huberman, & Saldafia, 2014) to identify mathematical
knowledge that enabled the instructors to enact the example at a high level of cognitive
demand. This round of coding would help me to answer my first research question. To
answer my second research question, I conducted a second cycle of pattern coding in
order to identify emergent themes and relationships between the codes that resulted from
the first cycle. I then looked at the relationships between the knowledge domains I

identified and SCK/PCK and the roles that instructors take on when enacting examples.
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Results

In total, there were 93 examples that I observed the seven instructors enact. Of
those, 25 were enacted at a high level of cognitive demand. It is also important to note
that almost all of these high cognitive demand examples were coded as procedures with
connections tasks (Smith & Stein, 1998). In the second stage of coding, five main
domains of knowledge emerged: knowledge of connections, representations, unpacking,
students, and sequencing. In the following subsections, I describe each of these domains
and provide narratives of instances where instructors used this knowledge to maintain the
cognitive demand of the example. In my analysis, I focus primarily on content knowledge
that goes beyond what the instructors expected their students to learn and know. This

includes both specialized content knowledge'® and pedagogical content knowledge.

Knowledge of Connections

Given that procedures with connections examples focus on “developing deeper
levels of understanding of mathematical concepts and ideas”, “have close connections to
underlying conceptual ideas”, make “connections among multiple representations”, it is
not surprising the knowledge of connections was one of the main domains that emerged
from my analysis. Here, I define knowledge of connections as knowledge of
mathematical relationships between content, practices, and strategies. While this was a
type of knowledge that instructors wanted their students to build, instructors also used

knowledge of connections that went beyond what they expected their students to

"1 recognize that this term is used by Ball, Thames, and Phelps (2008) in their
framework for MKT, but I am using it somewhat differently in that I define specialized
content knowledge as knowledge that is essential (but not necessarily unique) to the work
of teaching.
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necessarily know or learn. However, the connections that we want our students to learn
are still different than the connections we should know, as their teachers. In particular,
Ambrose, Bridges, DiPietro, Lovett, and Norman (2010) identified that one of the biggest
differentiators between novices (e.g., students) and experts (e.g., instructors) is that
experts have a much richer “density of connections among the concepts, facts, and skills
they know” (p. 49).

Dan, Greg, and Juno. Of all of the knowledge domains that emerged from my
analysis, knowledge of connections was the most prominent. Almost every instructor
relied on their knowledge of connections when enacting high cognitive demand
examples. Several of the high cognitive demand examples that I observed came from
instructors who were teaching the same lesson on trig equations and inverse functions.
This lesson was spread out over two days and focused on finding all solutions to
trigonometric and sinusoidal equations using the unit circle and inverse trigonometric
functions. In particular, I observed Dan, Greg, and Juno all enact high cognitive demand
examples during this lesson. Since these three instructors drew upon their knowledge of
connections in a similar way, I will talk about them collectively.

Previous to teaching this lesson, the instructors had taught their students how to
find a solution to a trigonometric equation using either the unit circle or inverse
trigonometric functions. However, up to this point they had not discussed how to find all
solutions to these types of equations. To help their students transition from the routine
problem of finding one or two solutions to finding infinite families of solutions, the

instructors first drew upon their knowledge of a similar, but less complicated, problem:
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finding solutions to quadratic equations. The particular quadratic that they used to begin
their example was x2 — 2 = 1.

In choosing to use this quadratic, the instructors drew upon their knowledge of
connections in the following ways. First, they knew that this quadratic would provide
them with two solutions. This is significant because the whole purpose of the example
was to illustrate to the students that trigonometric equations had multiple solutions.
Second, the instructors talked about how the students could use the graphical
representation to help them recognize how many solutions they should anticipate to find
algebraically. In particular, Juno talked about how looking at the graph might help
students remember that they need to include both the positive and negative solution when
taking a square root. Finally, the instructors used this quadratic to emphasize that the
number of solutions they found algebraically should always match the number of
intersection points between the graphs of y = x2 — 2 andy = 1.

Building upon these connections, the instructors then introduced the idea that
solutions to trigonometric equations could also be represented as intersection points of
graphs. First, the instructors drew the graphs of a trigonometric function and the line
y = ¢ (where —1 < ¢ < 1) and emphasized that since these two graphs intersected an
infinite number of times, the corresponding trigonometric equation must have an infinite
number of solutions. They then made the connection that if they tried solving these
equations in the way that they had done before, which involved finding just the solutions
between 0 and 27, then that would only get them some initial solutions. Finally, the
instructors drew upon their knowledge of how the periodicity of trigonometric functions

relates to the infinite families of solutions that they needed to find. In particular, Greg
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used the graph to show his students why these infinite families of solutions would all take
the form
(initial) + (period)k k = any integer.

In each of these high cognitive demand examples that I observed Dan, Greg, and
Juno enact, the instructors used their knowledge of connections in planning which
equations they were going to use. By choosing equations that illustrated similar concepts,
but also highlighted differences, the instructors were able to maintain the cognitive
demand of the examples so that they focused on developing deeper understanding of the

underlying mathematics.

Knowledge of Representations

Since procedures with connections examples are “usually represented in multiple
ways” (Smith & Stein, 1998, p. 348), it is also not surprising that representations emerged
as a main domain of knowledge that supported the maintenance of cognitive demand.
Here, I define knowledge of representations as knowledge of graphical, pictorial, tabular,
algebraic, verbal, and written forms of mathematical content, practices, and strategies. In
many cases, knowledge of connections and knowledge of representations went hand-in-
hand, since instructors were utilizing multiple representations of the same ideas.
Knowledge of representations has been studied in depth by Mitchell, Charalambous, and
Hill (2014). Instead of providing a deep dive into this domain of knowledge, the purpose
of this study is to highlight how this knowledge is used in maintaining the cognitive
demand of examples.

Knowledge of representations was used in a variety of ways. In the narrative

presented in the previous subsection, we can see how the instructors drew upon their
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knowledge of representations in order to illustrate why trigonometric equations have
infinitely many solutions. When students seemed stuck, instructors often drew upon their
knowledge of graphical and pictorial representations as a way to help students visualize
the mathematics that they were working through algebraically. Another common theme
that emerged from my data analysis was that instructors drew upon their knowledge of
representations when they attended to the mathematical point of the example. In the
narratives presented below, I give two examples of how instructors used their knowledge
of representations to attend to the mathematical point in two different ways.

Greg. In the lesson where the concept of tangent was first introduced, Greg
thought it was important to provide students with a real-life application problem in order
to illustrate how tangent is useful in solving problems. In the example, Greg used a tower
that was 150 feet tall and stabilized by cables that formed an angle of 60° with the
ground. He then asked his students to calculate how long the cables needed to be and how
far they needed to be anchored from the tower. As Greg verbalized the problem, he wrote
it on the board as well. Immediately afterwards, Greg chose to draw a picture of the
situation (Figure 13).

As they were figuring out how to solve for ¢, Greg reminded his students that
many of the problems they worked with in trigonometry involved triangles and circles, so
it would be helpful to identify a triangle in the picture they had drawn. After successfully
doing this and using sine to solve for ¢, Greg then asked the students to work individually
or in small groups on calculating how far the cables needed to be anchored from the
tower. As the students worked, Greg drew a simpler version of the picture, with some

information removed and other information filled in, on another board (Figure 14).
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Figure 13. Greg’s Illustration of a Tower Stabilized by Cables

150 ft

Figure 14. Greg’s Simpler Version of the Tower Triangle
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S
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During the post-observation interview, I asked Greg why he had decided to
represent the problem using two different diagrams. Greg explained that he wanted to
draw the first picture because it would help his students recognize that they could use

sine to solve for c. However, once they had engaged with a more accurate pictorial
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representation of the problem, he thought it was important to strip away the unnecessary
aspects and just draw the simple triangle that they were working with. Greg also
explained that he thought it was important to start with the more detailed picture because
it provided students with a way to make connections between the written problem and the
mathematical operations they were using to solve the problem. In particular, Greg
thought it was important that students had the opportunity to see how to go from a written
to a detailed picture to a basic picture when solving the problem.

Throughout this example, Greg used his knowledge of representations to help
maintain the mathematical point. At first, he wanted students to recognize that the
situation described in words gave us a right triangle, so we could use trigonometric
functions to solve for the unknown length. Then, Greg wanted his students to just focus
on using the given information about the triangle to solve for the final unknown side. By
including written and two different pictorial representations of this problem, Greg was
able to maintain the cognitive demand and keep the discussion focused on the
mathematical point.

Alex. During her first lesson on exponential functions, Alex asked students to
come up with equations that modeled simple and compound interest. Even though they
had not talked about exponential equations explicitly, Alex expected that her students
were familiar with these types of equations and could use their intuition of how to
calculate interest in order to come up with an exponential equation. After introducing the
example setup, Alex asked her students to work individually or in small groups to come
up with an equation to model the balance in a bank account that starts with a $100

deposit and earns $10 in interest per year versus a bank account that starts with a $100
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deposit and earns 10% in interest per year. In particular, Alex asked students to first
compute how much money would be in each bank after one and two years, and then
come up with a formula that would calculate the balance in each bank after t years.

As students worked through the problem, Alex walked around the room and
monitored their progress. After allowing students seven minutes to work through the
problem, she brought them together for a whole-class discussion. Alex had noticed that
many of the students were thinking about the compound interest recursively, so Alex
decided to capitalize on this and start by building a table of input and output values. As
students helped her fill in the corresponding output values for each bank, Alex asked
them to explain how they had calculated their answers. Even though different students
responded, they all used the technique of calculating outputs recursively. When Alex
asked what a general formula was for the simple interest bank, the students were able to
quickly recognize that it was linear. However, the students struggled to move away from
a recursive formula for the compound interest bank.

To help her students move to the mathematical point that Alex wanted to make,
Alex went back to the table values that they had calculated for t = 1 and t = 2. In
particular, she focused on rewriting the recursive calculations so that they only depended
upon the starting value. After using the fact that B(1) = B(0)(1.1) to rewrite
B(2) = B(1)(1.1) as B(2) = B(0)(1.1)%, Alex showed how they could rewrite
B(t) = B(t — 1)(1.1) as B(t) = B(t — 2)(1.1)2. A student then piped up and
conjectured that they would eventually be able to rewrite B(t) = B(0)(1.1)¢, which is

what Alex was hoping they would eventually get to.
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In this example, Alex had to find a way to help her students move from thinking
about compound interest recursively to thinking about compound interest exponentially.
In order to do this, Alex used her knowledge of representations and chose to introduce the
table as a way to make a connection between the students’ current way of thinking about
the problem and her intended mathematical point. However, it is really the integration of
representations that made this connection so powerful. Alex not only identified a
representation (the table) that reflected her students’ thinking (recursive relations), but
also integrated other representations (algebraic) in order to help move their thinking

towards the intended point (an explicit exponential formula).

Knowledge of Unpacking

In the literature, the idea of unpacking has been conceptualized several different
ways. Ball, Thames, and Phelps (2008) claimed that teacher must hold unpacked
mathematical knowledge because teaching involves making features of particular content
visible to and learnable by students” (p. 400). McCrory, Floden, Ferrini-Mundy, Reckase,
and Senk (2012) referred to unpacking as decompressing, but shift the emphasis from
knowledge to work. Here, I define knowledge of unpacking as knowledge of the essential
features of mathematical content, practices, and strategies. Not surprisingly, knowledge
of unpacking was the most frequent knowledge domain that was coded with the teaching
tasks of providing clear verbal explanations, making cognitive processes explicit, and
supporting student understanding. In the narrative below, I talk about how Emma relied
upon her knowledge of unpacking in the one example that I observed her enact at a high

level of cognitive demand.
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Emma. After giving students an end-of-the-chapter quiz on function
transformations, Emma decided to review one of the quiz problems as an example at the
beginning of the next class. Most of the students had struggled with the problem, so
Emma wanted to address some of the misconceptions she had recognized during class
and show them another way they could do the problem if they were struggling to
remember the correct order for transformations. In the problem set, the students were
given a piecewise linear graph (Figure 15) and asked to sketch a graph of 3P(t + 1) — 2
for 0 < t <9 on a provided grid.

Figure 15. Original Function Given in Emma’s Function Transformation Example

) 1 2 3 4 5 6 7 8 9

In grading the quizzes, Emma had realized that students were struggling to
identify the correct order of transformations and to use the order of transformations to
sketch the graph. In some cases, the students had done the vertical transformations in the
wrong order, but correctly sketched their graph based upon the order that they had used.
But in other cases, the students were not able to correctly use the order of transformations
they had determined in order to sketch the graph. In order to set up the example in a way
that would help clear up these misconceptions, Emma relied upon her knowledge of

unpacking graph transformations to demonstrate two different methods.
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In the first method, Emma broke down the essential features involved in
determining and using the order of transformations. The first essential feature that she
identified was determining the order of transformations from the provided function
(3P(t + 1) — 2). In presenting this step, Emma focused on explaining why the order of
horizontal versus vertical transformations does not matter, but the order of horizontal
versus horizontal and vertical versus vertical does. She also focused on making
connections to order of operations in order to help her students remember whether or
stretch or shift first. The second essential feature that Emma identified was transforming
individual points. In presenting this step, she focused on explaining how to use the order
of transformations that they had identified in step one to move the endpoints and corners.
The final essential feature that Emma identified was graphing the transformed points.
While many of the transformed points fell within the desired interval (0 < t < 9), one
endpoint did not, so Emma explained how to find the new endpoint for the transformed
graph.

After working through this first method, Emma unpacked a second, alternative
method for the problem. In this method, Emma identified that there were really only two
essential features that the students had to understand, and both of these were things that
the students should feel comfortable with. The first feature was input values. Since the
example asked students to graph the transformed function on the interval 0 < t < 9,
Emma emphasized that students could start by focusing on the inputs t = 0,1, ...,9. The
second essential feature, then, for this method was the function 3P(t + 1) — 2. Since
they were given a graph of y = P(t), Emma explained that they could just plug in values

for t and begin solving this equation using the graph of y = P(t). Finally, Emma
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emphasized that this was a method that would have worked well for students who were
unsure about what the correct order of transformations was.

In this example, Emma used her knowledge of unpacking to maintain the
cognitive demand of the example in the following ways. First, she focused students
attention on the mathematical point by breaking down each method into the essential
feature required to solve in. In doing this, Emma drew the attention away from the
algebra involved in the example and instead focused on building understanding of the
underlying concepts. Second, Emma supported students understanding by using her
knowledge of unpacking to provide scaffolding for struggling students. In particular,
Emma set up the example on the board so that each essential feature of the first method
was highlighted in a separate space. By providing students with this visual scaffolding,

Emma was able to focus their attention on one essential feature at a time.

Knowledge of Students

Since I am interested in studying mathematical knowledge for teaching,
knowledge of students involves an intersection of content and pedagogical knowledge.
Lee Shulman first introduced the idea of pedagogical content knowledge (1986) and Ball
and her colleagues (2008) identified knowledge of content and students as a component
of pedagogical content knowledge. Here, I define knowledge of students as knowledge
about how students interact with and think about mathematical content, practices, and
strategies. This involves both knowledge that is used in the moment of teaching and
during the planning stage when instructors anticipate how students will interact with and
comprehend the lesson. Of all of the instructors that I observed, Alex drew upon her

knowledge of students the most during her lesson planning and enactment. In the
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following narrative, I describe the different ways in which she drew upon this knowledge
to maintain the cognitive demand of examples.

Alex. Alex relied upon her knowledge of students in primarily two ways. First,
Alex considered how students might interact with and think about mathematical content,
practices, and strategies as she planned out the examples. The lesson guides that Alex
was using introduced function compositions briefly at the beginning of the semester, and
then came back to them again towards the end for a deeper dive. At the beginning of the
“deeper dive” lesson, Alex decided to use a problem from the first exam to reintroduce
the idea of function compositions. Her reason for doing this was because she used an
example that was familiar in order to focus students’ attention on the underlying
concepts. In particular, Alex wanted to use a function diagram and have students think
critically about interpreting what each set and arrow represented in relation to the given
story problem.

In choosing this example, Alex drew on her knowledge of students in multiple
ways. First, Alex recognized that in order to focus her students’ attention on the
underlying concepts, she needed to build upon their prior knowledge. In this case, the
students had worked with the example algebraically on a test, so Alex used that
foundation to build a more conceptual understanding. Second, Alex knew that students
struggled to interpret and understand both function diagrams and function compositions
as a whole. Alex recognized that notation can be hard for students, but it is important and
can be a roadblock for students if they go on to take calculus.

Second, Alex considered how students might interact with and think about

mathematical content, practices, and strategies during the enactment of the examples. In
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one example, Alex asked her students to come up with the equation for an exponential
function given a word problem. Previous to this example, students had worked through
the simple and compound interest problem, but Alex still had not introduced the standard
form of an exponential. So students were using their intuition of exponential growth to
come up with an equation. The example that Alex chose to use involved both an initial
value of 25 and a growth rate of 25%. Alex knew that some students might be struggling
to identify the relationship between the two 25s in the equation and the two 25s in the
story problem, so she asked her students to explain this correspondence.

Once the students had come up with the equation, Alex introduced the standard
form of an exponential as well as the terms initial value, growth factor, and growth rate.
Alex knew that students often struggle to differentiate between the growth rate and the
growth factor of an exponential. So she focused the rest of the example on differentiating
between these two terms as well as helping her students see how they were related. In the
interviews, Alex talked about how she knew that students often struggled with this

concept, so she made this the main mathematical focus of the example.

Knowledge of Sequencing

The final domain of knowledge that I identified as helping maintain the cognitive
demand of an example is knowledge of sequencing. While sequencing the presentation of
content and activities is a form of pedagogical work, I am more concerned with the
knowledge that instructors rely upon when deciding how to sequence. While this
knowledge is often activated in the lesson planning stage, it can also be used during class
time. Here, I define knowledge of sequencing as knowledge of the difficulty and

appropriateness of mathematical content, practices, and strategies in relationship to each
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other. While some of this sequencing was suggested by the lesson guides that the
instructors used, instructors often chose to alter the way they presented the content and
added or subtracted from the lesson guides. So I am interested in identifying the
mathematical knowledge that instructors relied upon when making these decisions.

Kelly. In the lesson on the short-term behavior of polynomials, Kelly relied on
her knowledge of sequencing when deciding how to present the content. Within the
lesson, Kelly needed to introduce the ideas of multiplicities of zeros and short-term
behavior (i.e., whether or not the graph bounces off of or crosses the x-axis at zeros) and
draw connections between the degree, multiplicities, and number of zeros. While Kelly
could have presented these ideas all separately, she chose to build upon their
connectedness and introduce the all using one example.

The example that Kelly chose was p(x) = x2(x + 3)(x — 5)3. In choosing the
polynomial to use for the example, Kelly had to consider whether or not it was robust
enough to model everything that she wanted to address. In particular, Kelly often relied
upon her students to recognize patterns and make connections, so the polynomial that she
chose had to support their ability to do that. Kelly chose to start by introducing the idea of
multiplicity and then asked students, “What could happen at the zeros?” After providing
her students with some additional scaffolding in the form of questions, her students
recognized that the graph of a polynomial would either bounce off the x-axis or cross it at
each zero. Kelly then asked students to consider the graph of y = p(x) and use that to see
if they could figure out a pattern for when the graph bounces and when it crosses.
Because Kelly had chosen a polynomial that had multiple zeros with even and odd

multiplicities, her students were able to make this connection.
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Next, Kelly asked her students to consider how degree and multiplicities are
related. One student conjectured that the degree was equal to the product of the
multiplicities, which was true in this case, but Kelly then explained how expanding out
the factored form would lead us to add, not multiply, the multiplicities. Finally, Kelly
asked her students to identify the relationship between the degree and the number of
zeros, which again was a connection that her students were able to make.

In this example, Kelly drew upon her knowledge of sequencing in several ways.
First, Kelly chose to present the four main ideas in the example in a way so that they
naturally built upon each other. Also, Kelly could have presented the ideas first and then
asked students to apply them to the specific example. However, Kelly wanted her
students to make the connections and generate the relationships, so she chose to situate
the ideas within and not before or after the example. Finally, Kelly integrated several
representations, both algebraic and graphical, throughout the example as a way to help

the students recognize patterns and make connections.
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Relationships

The five knowledge domains that I identified reflect what other researchers have
found, but highlights the knowledge that supports the maintenance of high cognitive
demand examples. I also wanted to see how these domains are connected to specialized
and pedagogical content knowledge, as well as the instructor roles and decomposition of
pedagogical work that I have identified in previous chapters (Chapters 4 and 5). So in the
following subsections, I examine the relationships between each of the knowledge
domains and SCK/PCK, instructors’ roles, and the decomposition categories.

SCK and PCK. Each time I used one of the knowledge domain codes, I also
decided whether or not that instance was representative of specialized content knowledge
(SCK) and/or pedagogical content knowledge (PCK). While every knowledge domain
was coded at least once in both categories, knowledge of connections, representations,
and unpacking were primarily categorized as subdomains of SCK. Knowledge of
students, on the other hand, was primarily categorized as a subdomain of PCK. However,
knowledge of sequencing was almost an even split between the two categories.

Table 31. Overlap of Knowledge Domains and SCK/PCK

Connections  Representations  Unpacking Students Sequencing
SCK 28 22 19 0 4
Both 2 0 1 3 0
PCK 4 5 0 16 6
Total 34 27 20 19 10

Instructor roles. In an earlier chapter (Chapter 3), I identified three different
roles that the instructors took on when enacting high cognitive demand examples. First,

some instructors modeled content, practices, and strategies for their students as they took
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notes. Others facilitated whole-class discussions where they worked through the example
together with the students. Finally, some instructors chose to monitor students while they
worked independently or in groups on parts of the example. Most of the instructors
switched back and froth between different roles, although some chose to just use one way
of presenting the example. In Table 32 I have constructed role profiles that show the
relationship between the knowledge domains and the instructors’ roles. It is important to
note that my IRB did not allow me to video the students, so I was often not able to
capture what the instructors did or said while they were monitoring. Therefore, the
overlap between the different knowledge domains and the monitoring code is probably
not representative of the actual occurrences.

Table 32. Role Profiles of Knowledge Domains

B Monitor OFacilitate Y Model

Connections ‘1| . 1.3 . | . . 23

'§ Representations ‘ll . . 16| . . | . . 15|

g

=

% Unpacking ‘ 8 . | | 15

E

g Students ‘ 2 | . . .12 . . . | 5
Sequencing ‘ 1 | . . 7 . . . | 3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Decomposition of pedagogical work. In addition to identifying the different

roles that instructors took on when enacting high cognitive demand examples, I also
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decomposed the work entailed in maintaining the cognitive demand of examples. Table
33 captures the overlap between these two coding schemes. It is not surprising that the
making connections decomposition code overlaps primarily with the knowledge of
connections domain. However, it was surprising to see that knowledge of unpacking was
the dominant overlapping knowledge domain with the other four decomposition codes.

Table 33. Overlap of Knowledge Domains and Decomposition Codes

Connections Representations Unpacking Students Sequencing

Mathematical

Point > 3 ? 2 1
Connections 45 35 30 18 9
Explanations 63 57 78 39 9

Cognitive 34 30 49 13 4
Processes
Understanding 14 14 31 18 1
Discussion

In analyzing the data, I found that knowledge of connections, representations,
unpacking, students, and sequencing help instructors enact examples at a high level of
cognitive demand. I also found that these knowledge domains overlap primarily with
specialized content knowledge and that knowledge of unpacking was used heavily in

almost all of the tasks of teaching that I identified in my decomposition.

Limitations

First, as noted previously, the five domains of knowledge are not assumed to be
independent. From a quantitative standpoint, this is a limitation of the model, but I
believe it accurately reflects the interconnected nature of teaching. Second, since almost

all of the high cognitive demand examples were coded as procedures with connections
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tasks, this model may overemphasize knowledge of connections and representations.
However, “doing mathematics” may not be well suited for examples and it may be
reasonable to assume that most high cognitive demand examples are procedures with
connections tasks. Also, since this study was a collective case study and all of the
instructors were graduate students, it may not be generalizable.

One limitation of this study is that I focused on identifying observable
knowledge. In particular, my analysis focused on identifying the knowledge that I could
observe during the enactment stage of example unfolding. While analyzing knowledge
from an observational perspective does require some assuming on the side of the
observer, I relied upon the pre- and post-observational interview data to verify claims that
I made concerning knowledge used during enactment. This is a limitation because there is
knowledge that the instructors may have been relying upon that was not observable.
Therefore, my results only highlight a portion and not the totality of knowledge entailed
in enacting high cognitive demand examples. Another related limitation is that I only
analyzed the knowledge entailed in enactment, so it is possible that instructors were
drawing upon other forms of knowledge during the planning stage.

Another limitation of this work is that the instructors involved in the study were
teaching a coordinated course. In this context, course coordination meant that the
syllabus, course schedule, lesson guides, student workbook, online homework, chapter
quizzes, and exams were the same for all sections. The department chose to provide this
much structure for the graduate students who taught these precalculus courses because
they wanted the instructors to focus on using active learning during class time and not

worry as much about the curricular and assessment aspects of teaching. Since much of
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the pedagogical structure is laid out for the teachers in the lesson guides, this might be
one reason why I mainly observed instructors using specialized content knowledge

instead of pedagogical content knowledge.

Future Research

There is still much work that needs to be done to understand MKT at the
undergraduate level, but this study provides a starting point for future investigations. In
particular, it would be interesting to extend this study in several different directions. First,
expanding the sample size and including instructors with a variety of backgrounds and
teaching experience would test whether or not the model could be generalizable. Second,
observing enacted examples that are doing mathematics examples (Smith & Stein, 1998)
would help further refine the model and test whether or not procedures with connections
examples had a large influence on the knowledge domains that emerged. Third, in order
to better understand MKT at the undergraduate level at large, it would be beneficial to
collect classroom data that focuses on more than just examples. Finally, my intention is to
dig into the entire process of example unfolding and see what knowledge instructors use
in the planning stage and use pre- and post-observation interview data to dig further into

the knowledge used by instructors when teaching precalculus.

Conclusions

Given that examples are an important part of teaching, it is important to identify
the mathematical knowledge that supports the maintenance of high cognitive demand
examples. These knowledge domains can be used in designing teaching professional
development opportunities for GSIs. In particular, professional development should be

designed to help GSIs develop knowledge of connections, representations, unpacking,



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 229

students, and sequencing. This chapter benefits the community of mathematics education
by identifying the mathematical knowledge used by instructors when teaching examples
in precalculus. While it is similar to other models of MKT, it is also different in several
important ways. First, the domains of knowledge are inherently connected. Second, while
knowledge of connections and representations are implicit in many of the other models,

they are not explicitly emphasized.
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CHAPTER 7: CONCLUSION

In summary, the purpose of my dissertation has been to examine the teaching
tasks and mathematical knowledge entailed in enacting high cognitive demand examples.
While high cognitive demand tasks have been studied extensively in the educational
literature, many of these studies have focused on the tasks that students engage with
either during class work time, in homework on assignments, or on assessments. However,
little research has focused on the cognitive demand of the examples that the instructors
choses to do during class.

Since examples differ from other mathematical tasks in that it is usually the
teacher, not the students, who takes on the responsibility for doing the mathematical
work, I first examined what it would mean for an example to be enacted at a high level of
cognitive demand. While the Task Analysis Guide developed by Smith and Stein (1998)
was general in many aspects, it also made explicit references to how the students were
engaging with the mathematics. Since I wanted to analyze the cognitive demand of an

example, regardless of whether or not the teacher or the students were engaging with the
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mathematics, I modified this framework to not include any language about who is doing
the mathematics.

For initial data analysis, I conducted classroom observations and pre- and post-
observation interviews with seven graduate student instructors who were teaching a
precalculus course for at least the third time. After observing these instructors enact 93
different examples in their classrooms, I used my modified framework to analyze the
cognitive demand of each example. As a result, I found that the instructors enacted 25 of
the examples at a high level of cognitive demand. I also identified three different roles
that instructors took on when enacting examples. First, some of them chose to model
content, practices, and strategies for students while they took notes. Others chose to work
through the example by facilitating a whole-class discussion. Finally, some chose to
monitor students while they worked individually or in small groups on part of the
example. In many cases, instructors chose to switch between these different roles as the
presented examples. However, some instructors chose to just model or facilitate. Then,
based on my analysis, I constructed role profiles to see how instructors distributed their
time in the three different roles. I also examined the role profiles of some of the high
cognitive demand examples in order to see how instructors switched back and forth
between different roles.

Next, I focused on identifying the teaching tasks entailed in enacting high
cognitive demand examples. Using open and axial coding, I found that there are five
main tasks that teachers engage in to maintain the cognitive demand of examples. First,
instructors attended to the mathematical point. To do this, instructors introduced the

mathematical point as a way to set the focus of the example, maintained the focus of the
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example on the mathematical point, and summarized the example in order to reiterate the
mathematical point. Second, instructors made connections to prior knowledge, between
representations, and between concepts. Third, instructors provided clear verbal
explanations. These explanations could focus on the example set up, constraints, and
goal; the content, practices, or strategies; similarities and differences; representations;
notations and vocabulary; or on how to check your work. Fourth, instructors articulated
cognitive processes. Some instructor chose to think aloud as they worked through the
example, while other asked students to provide justification and reasoning. Finally,
instructors supported student understanding by providing students with opportunities to
ask questions, recognizing when students were struggling to follow or understand, and
scaffolding the example.

Finally, I examined the mathematical knowledge entailed in enacting high
cognitive demand examples. Through open and axial coding, I identified five domains of
mathematical knowledge for teaching that support the maintenance of the cognitive
demand of examples. First, instructors used knowledge of connections, which I defined
as knowledge of mathematical relationships between content, practices, and strategies.
Second, instructors used knowledge of representations, which I defined as knowledge of
graphical, pictorial, tabular, algebraic, verbal, and written forms of mathematical content,
practices, and strategies. Third, instructors used knowledge of unpacking, which I defined
as knowledge of the essential features of mathematical content, practices, and strategies.
Fourth, instructors used knowledge of students, which I defined as knowledge about how
students interact with and think about mathematical content, practices, and strategies.

And finally, instructors used knowledge of sequencing, which I defined as knowledge of
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the difficulty and appropriateness of mathematical content, practices, and strategies in
relationship to each other.

While these knowledge domains emerged from my data analysis, they are
connected in many ways to the work that other researchers have done. In particular,
knowledge of connections, representations, and unpacking overlap primarily with
specialized content knowledge (Ball et al., 2008). Knowledge of students, on the other
hand, overlaps primarily with pedagogical content knowledge (Shulman, 1986).
However, knowledge of sequencing was split almost evenly between the two. I also
analyzed how these knowledge domains overlapped with both the roles that instructors
take on when enacting high cognitive demand examples and the teaching tasks entailed in
maintaining the cognitive demand. Not surprisingly, knowledge of connections
overlapped significantly with the teaching task of making connections. However, [ was
surprised to find that knowledge of unpacking was the knowledge domain that had the
most overlap with the other four tasks of teaching.

Through my dissertation study, I have sought to identify the knowledge and work
entailed in enacting high cognitive demand examples. In doing this, I aim to help our
field move one step closer to improving student outcomes and teaching quality in first-
year undergraduate mathematics courses. While there are many aspects of teaching, I
chose to focus on examples because they are one of the essential components of
instruction in mathematics classrooms. Also, while many studies have focused on the
cognitive demand of the tasks that we give students to work on, few have looked at the
cognitive demand of the examples that we use. Therefore, my dissertation contributes to

this field by identifying what high cognitive demand examples might look like,
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examining the different roles instructors and students take on during the enactment of
examples, decomposing the work entailed in maintaining the cognitive demand of
examples, and examining the mathematical knowledge for teaching entailed in enacting
high cognitive demand examples. While there is still a lot of work that needs to be done
to improve undergraduate precalculus courses, this work provides both researchers and

practioners with a way to think about the quality of the examples that we use.
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APPENDIX A: CHANGES MADE TO ORIGINAL STUDY

When I first started my dissertation, I was focused on deep procedural knowledge
(DPK) and the teaching tasks of decomposing, bridging, and trimming. While these
frameworks are still connected to what I am doing, I have moved away from talking
about DPK and instead used Smith and Stein’s framework for cognitive demand. In
addition, instead of using the teaching tasks of decomposing, bridging, and trimming, |
decided to study pedagogical work entailed in enacting high cognitive demand examples
from a grounded theory perspective and use the framework of decompositions of
practice. So while I have moved away from using this language in talking about my
research, you will still find it in my data collection protocols. However, I want to note
that this is mainly just a shift in language use.

Also, I collected data on two faculty members who were teaching precalculus.
However, I chose to only analyze the data from the seven graduate student instructors

that I observed, since together they made up a coherent population of instructors.



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 257

APPENDIX B: DATA COLLECTION PROTOCOLS

Pre-Observation Interview

General Information and Previous Experience

1. What is the topic of the lesson taught right before this lesson? (Add
description to field notes.)
2. Have you previously taught the content that you are teaching today?
Yes No
a. If'so, have you previously taught with this same exact lesson plan? Yes
No
1. Ifnot, is this the first time you have used this lesson plan or is
it a modified version of a lesson plan you have used
previously?

1. Ifit was modified, ask whether or not examples were
modified and probe into those examples specifically
later.

3. Is the lesson plan that you intend to use one that was given to you, one
that you found from another source, or one that you created yourself?

Identifying Examples that May Afford Opportunities to Learn DPK

4. First, what was the mathematics that you intended the students to learn
through the use of the given example?
a. Why did you want your students to learn this?
b. What about the example made you believe that it was an appropriate
way to learn that mathematics?
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I'm specifically interested in examples that involve procedures. The definition for

procedure that I'm utilizing is “a series of steps, or actions, done to accomplish a goal”

(Rittle-Johnson, Schneider, Star, 2015).

5. Do you think that this example involves a procedure? Yes No

If yes...
a. What is that procedure?
b. Are there any other procedures that could be used in this example? Yes

No
While procedural knowledge is often thought of as superficial, there is such a
thing as deep procedural knowledge (DPK). In particular, deep procedural
knowledge is defined as having three independent characteristics:
comprehension, flexibility, and critical judgment. Comprehension is knowing why
a procedure works, flexibility is characterized by knowledge of multiple
procedures and the ability to select the most appropriate one, and critical
Jjudgment is knowing when it is appropriate to use a procedure.

c. Do you think that this example affords an opportunity for students to
learn deep procedural knowledge? Yes No
If yes...
1. What characteristics of DPK do you think this example affords
an opportunity for students to learn and how does this example
afford an opportunity for students to learn these characteristics

of DPK?
Observation
General Information
Instructor ID: Date:
Course ID: Observer:

Start Time: End Time:
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Demographics
Number of Students

Total Enrolled: Males:

Females:
Total In Attendance: Males: Females:
Room Setup
O Tables Number of Seats/Table:
O Individual Desks Arranged in Groups Number of Desks/Group:
O Individual Desks

Room Diagram: (note location of camera & observer)



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 260

Researcher Positioning

Description of relationship between researcher & instructor:

Perceived attitudes concerning the researcher’s presence in the classroom:

Perceived effect of the video camera’s presence in the classroom:

Description of researcher’s thoughts, feelings, and experiences prior to observation:

Consideration of how these prior thoughts, feelings, and experiences may affect

researchers’ perception of the observation:

Important events/occurrences:
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Purpose of Sampling

What is the exact purpose of observing this particular instructor, course, and/or lesson?

Mathematical Context

Previous Lesson Topic:

Description of Previous Lesson (specifically include where left off):

Today’s Lesson Topic:

Description of Today’s Lesson:

Potential DPK Examples
List (and number) all examples in the lesson plan that were identified as affording
opportunities for explaining and modeling concepts, practices, or strategies that require

the use of DPK. Attach a copy of the lesson plan used during class.
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General Observation Notes !!! START AUDIO RECORDING !!!
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Anticipated Example #
Pre-Observation Notes

Short description (see attachment for full text):

263

Origin of Identification:
O Researcher

O Instructor

Anticipated Use of DPK:
O None Not Very Likelihood  Extremely
O Flexibility 1 2 3 4
O Critical Judgment 1 2 3 4
O Comprehension 1 2 3 4

Details concerning anticipated use of DPK:

Anticipated Use of Mathematical Teaching Practices:

O None Not Very Likelihood  Extremely
O Decompressing 1 2 3 4
O Trimming 1 2 3 4
O Bridging 1 2 3 4

Details concerning anticipated use of practices:
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Anticipated Example #

Start Time:

Detailed observation notes: (Attend to how the instructor elicits & interprets student

thinking.)

End Time:
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Anticipated Example #

Quick Post-Reflection During Observation

265

Use of DPK:
O None Not Very Likelihood  Extremely
O Flexibility 1 2 3 4
O Critical Judgment 1 2 3 4
O Comprehension 1 2 3 4
Eliciting & Interpreting Student Thinking:
O None
O Before Example
O During Example
O After Example
Mathematical Practices:
O None Not Very Likelihood  Extremely
O Decompressing 1 2 3 4
O Trimming 1 2 3 4
O Bridging 1 2 3 4

Preliminarily Nominate as Exemplary:
O Yes
O Maybe

O No
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Anticipated Example #
Full Post-Observation Reflection

Date: Time:

General comments:

DPK: Not Very Likelihood  Extremely
O Flexibility 1 2 3 4
O Critical Judgment 1 2 3 4
O Comprehension 1 2 3 4

Details concerning perceived use of DPK:
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Eliciting & Interpreting Student Thinking:
O Before Example
O During Example
O After Example

Details concerning eliciting & interpreting student thinking:

Mathematical Practices: Not Very Likelihood  Extremely
O Decompressing 1 2 3 4
O Trimming 1 2 3 4
O Bridging 1 2 3 4

Details concerning perceived use of mathematical practices:
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Perceived MKT Used:

Other Comments:

Officially Nominate as Exemplary:
O Yes
O Maybe

O No
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Unanticipated Example #
Observation Notes

Start Time:

Short Description:

Detailed observation notes: (Attend to how the instructor elicits & interprets student

thinking.)

End Time:
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Unanticipated Example #

Quick Post-Reflection During Observation

270

Use of DPK:
O None Not Very Likelihood  Extremely
O Flexibility 1 2 3 4
O Critical Judgment 1 2 3 4
O Comprehension 1 2 3 4
Eliciting & Interpreting Student Thinking:
O None
O Before Example
O During Example
O After Example
Mathematical Practices:
O None Not Very Likelihood  Extremely
O Decompressing 1 2 3 4
O Trimming 1 2 3 4
O Bridging 1 2 3 4

Preliminarily Nominate as Exemplary:
O Yes
O Maybe

O No
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Full Post-Observation Reflection

Date: Time:

Type:
O In original lesson plan, but not identified in lesson plan analysis.
O Not in original lesson plan, but add purposely by instructor before lesson began.
O Not in original lesson plan, but added spontaneously during the lesson.

General comments:

DPK: Not Very Likelihood  Extremely

O Flexibility 1 2 3 4
O Critical Judgment 1 2 3 4
O Comprehension 1 2 3 4

Details concerning perceived use of DPK:
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Eliciting & Interpreting Student Thinking:
O Before Example
O During Example
O After Example

Details concerning eliciting & interpreting student thinking:

Mathematical Practices: Not Very Likelihood  Extremely
O Decompressing 1 2 3 4
O Trimming 1 2 3 4
O Bridging 1 2 3 4

Details concerning perceived use of mathematical practices:
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Perceived MKT Used:

Other Comments:

Officially Nominate as Exemplary:
O Yes
O Maybe

O No
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Details concerning why example was not anticipated:
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General Post-Observation Reflection

Date: Time:
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Post-Observation Identification of Exemplary Example

For use in the post-observation interview, identify one example that I feel is exemplary:

Describe reasoning for choosing this example:
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Reflection on Researcher Positioning

Changes in relationship between researcher & instructor:

Changes in perceived attitudes concerning the researcher’s presence in the classroom:

Changes in perceived effect of the video camera’s presence in the classroom:

Consideration of how the prior thoughts, feelings, and experiences may have affected

researchers’ perception of the observation:

Description of researcher’s thoughts, feelings, and experiences after observation:

Consideration of how the thoughts, feelings, and experiences after observation may affect

researchers’ perception of the observation:

Important events/occurrences:
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Reflection on Purpose of Sampling

Did the observation serve the intended purpose?
O Yes
O No

Comments:

Reflections on Mathematical Context Observation #

Description of Lesson:
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Post-Observation Interview

Reviewing Planned Examples
You planned on using the following examples during class.

1. Did you use all of the examples you planned on covering? Yes No
a. Ifnot, why?

Examining Mathematical Knowledge for Teaching
[ identified one example that you used in your lesson that I would like to concentrate on
for the remainder of the interview.

2. Before we start talking about this example, I first want to know if there
was a specific example that stands out in your mind as affording the
best opportunity to learn DPK.

3. What about the example you identified made it stick out in your mind as
special?

Intended Learning Outcome

4. During our pre-observation interview, you said that you wanted to use
this example because you intended for students to learn.
a. Do you believe that your students learned the mathematics that you
intended? Yes No
i. If'so, how do you know?
ii. If not, why not?

Opportunity to Learn Deep Procedural Knowledge

5. During our pre-observation interview, you said that you thought that
this example provided an opportunity for your students to learn.
a. When you used this example in class, do you believe it provided an
opportunity to learn this? Yes No
i. Ifyes, how do you know?
ii. Ifno, why not?

Identifying the Intended Procedure

6. What are the steps of the specific procedure that you intended to use in
this example?
a. If the instructor lists steps...
Based on what you did during the observation, I wrote down these
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steps. Do you think they are the same as the steps you outlined? Yes
No
1. Ifno...
i. How do they differ?
ii. Are these differences important?
b. If the instructor is not able to list steps...
Based on what you did during the observation, I wrote down these
steps. Do you think this procedure matches what you did during the
observation? Yes No

2. Ifno...

i. How do they differ?

ii. Are these differences important?
7. Are there any other procedures you could have followed? Yes No
3. Ifyes..

a. What are the steps of that procedure?
b. Did you consider using this procedure instead of the one you chose?
Yes No
i. Why or why not?
c. Are there benefits to using one procedure over the other?
d. Are there disadvantages to using one procedure over the other?

Decision Making
There are a couple of clips from the video of this example that I want to watch together
and discuss. (For each clip...determine which of the following questions are appropriate
to ask.)
Decompressing. During this part of the example, it seemed like you were
unpacking the mathematics to make it comprehensible for your students.
1. What exactly were you trying to unpack?

What made you decide to unpack it?
3. How did you determine a way to unpack it?

Bridging. During this part of the example, it seemed like you were making
mathematical connections across topics, assignments, representation, or domain.
1. How did you make connections?

2. What made you decide to make these connections?
3. How did you determine a way to make these connections?
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Trimming down. During this part of the example, it seemed like you removed
some mathematical complexity to make it more comprehensible for your students?

1. How did you determine what you could remove?
2. What made you decide to remove it?
3. How did you maintain the integrity of the problem?

Trimming up. During this part of the example, it seemed like you added some
mathematical complexity to make it more challenging for your students?

1. How did you determine what you could add?
2. What made you decide to add it?
3. How did you maintain the integrity of the problem?

Eliciting and interpreting student thinking. During this part of the example,
you elicited and interpreted student thinking.
1. What made you elicit the students' thinking?
2. What response did you anticipate?
3. What did you interpret the student to mean mathematically when he/she gave their
response to your prompt?
Representations. During this part of the example, you used the following

representation(s).

1. What made you decide to use this representation?
2. Were there any other representations that you considered using?

Other. Use this [F AND ONLY IF none of the other categories _t. Write out
questions beforehand and associate them with a code and memo explaining why these

questions needed to be asked and did not fit into any of the other categories.



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 283
APPENDIX C: SUPPLEMENTARY FIGURES & TABLES
Table 34. Full List of Observed Examples
Example ID Lesson Example Description Cognitive
Demand
Alex 1-1 Introducthn to Exploring the notions of exponential High
Exponentials vs. linear growth
Alex 12 Introducthn to Building an exponential function High
Exponentials from a word problem
) Exploring the notion of function
Function o . .
Alex 2-1 o compositions through unit High
Compositions .
conversions
Alex 222 Funct1.0.n Finding the forrnul.a.for a function Low
Compositions composition
Inverse Trig Finding all solutions to trig equations
Alex 3-1 Functions with standard unit circle angles Low
The Vertex of a Identifying the vertex of a parabola
Dan 1-11 Parabola* given the vertex-form of the function Low
The Vertex of a Writing the equation of a parabola
Dan 1-2 Parabola* given its vertex and a point Low
Dan 1-37 The Vertex ofa  Factoring quadratics that are perfect Low
Parabola* squares
Dan 1-4+ The Vertex ofa  Using completmg the square to write Low
Parabola* equations in vertex form
The Vertex of a Completing the square when the
Dan 1-51 Parabola* coefficient on x is odd Low
The Vertex of a Completing the square when the
Dan 1-61 Parabola* coefficient on x? is not 1 Low
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L Cognitive
Example ID Lesson Example Description Demand
Function Exploring the notion of function
Dan2-11 Compositions compositions using a word problem Low
Dan 2-2} Colzrlll;(():zli?ircl)ns Evaluating function compositions Low
Function Decomposing function compositions
Dan 2-3t Compositions given the outside function Low
Function Decomposing function compositions .
Dan 2-41 Compositions into any two functions High
Trig Equations & . . . .
Dan 3-1+ Inverse Graphing sQIut10n§ to trig equations High
Functions* as points of intersection
Dan 3-2¢ Trig ]IEr?\tleitsl:nS & Finding all solutions to trig equations Low
Functions® with standard unit circle angles
Dan 3-3¢ Trig IIEr?uartlons & Finding all solutions to trig equations Low
an > Funzgosﬁs* with non-standard unit circle angles
Trig Equations & Finding all solutions to trig equations
Dan 3-4t Inverse . . . Low
Functions™ with only one initial solution
Trig Equations & Finding all solutions to trig equations
Dan 3-5t Inverse . o Low
Functions™ with standard unit circle angles
Trig Equations & Finding all solutions to sinusoidal
Dan 3-6F Inverse equations with vertical Low
Functions* transformations
Trig Equations & Finding all solutions to sinusoidal
Dan 3-77 Inverse equations with horizontal Low
Functions* transformations
Trig Equations & Finding all solutions in a given .
Dan 3-87 Inverse . . . . High
Functions™ interval to sinusoidal equations
Introduction to Expanding a factored quadratic to
Emma 1-1 Quadratics standard form Low
Introduction to Factoring a quadratic when the
Emma 1-2 Quadratics coefficient on x? is 1 Low
Emma 1-3 The Vertex of a Using vertex form of a quadratic to Low
Parabola graph a parabola
Emma 2-1 Trarlfsl’lfg(r:ﬁlllzftlions Transforming the graph of a function High
Function Evaluating and simplifying function
Emma 2-2 Compositions compositions Low
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Example ID Lesson Example Description Cognitive
p P p Demand
Emma 2-3 Funct1.0.n Evaluating function compositions Low
Compositions
Ermma 2-4 Funct1.0.n Decomposmg function co.mposmons Low
Compositions into any two functions
Emma 3-1 Arc Length Finding distance using arc length Low
Smusmdal Using function transformations to
Emma 3-2 Functions & raph sinusoidal functions Low
Their Graphs grap
Law of Sines &  Using the Law of Sines to solve for a
Greg 1-1 . . Low
Cosines side length
. . Explaining why sine and cosine may
Greg 2-1 Trig Equatloqs & have 2 solutions/period, but tangent High
Inverse Functions
can only have 1
Greg 2-2 Trig Equat10n§ & Finding all soluthns to sinusoidal Low
Inverse Functions equations
Greg 3-1 Review Sketching thefgraph of a sinusoidal Low
unction
. Evaluating trig functions given value
Greg 3-2 Review of sine and quadrant of 0 Low
. Evaluating trig functions using sum
Greg 3-3 Review and difference formulas Low
Tangent & Exploring the behavior of tangent
Greg 4-1 Reciprocal using High
Trig Functions* standard unit circle angles
Tangent & Using the unit circle definition to
Greg 4-2 Reciprocal Low
) - evaluate tangent
Trig Functions
Tangent & Using the triangle definition to
Greg 4-3 Reciprocal ) . Low
. . " evaluate sine, cosine, and tangent
Trig Functions
Tangent & . . .
Greg 4-4 Reciprocal* Solving real-t{al;fle grrl?blems using High
Trig Functions* &
Trig Equations & . . .
Greg 5-1+ Inverse Using graphs to'ldenthlfy how many High
Lk solutions are in a single period
Functions
Trig Equations & Finding all solutions to trig equations .
Greg 5-2 Inverse . . High
Uk with standard unit circle angles
Functions
Trig Equations & g . . :
Greg 5-3+ Inverse Finding all solutions to trig equations High

Functions*

with non-standard unit circle angles
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. Cognitive
Example ID Lesson Example Description Demand
Trig Equations & Finding all solutions to trig equations
Greg 5-471 Inverse . o Low
Functions™ with non-standard unit circle angles
Trig Equations & Finding all solutions to tangent
Greg 5-5t Inverse equation with non-standard unit High
Functions* circle angles
Trig Equations & Finding all solutions to sinusoidal
Greg 5-61 Inverse equations with non-standard unit High
Functions* circle angles
. Finding the sign of trig functions
- *
Greg 6-17 Review given the quadrant of 8 Low
Greg 6-2+ Review™ Connecting outputs Qf tangent, sine, Low
and cosine
. Finding a sinusoidal equation given a .
- *
Greg 6-37 Review description of a real-life context High
. Finding the distance traveled given
- *
Greg 6-47 Review the distance function Low
. Finding sinusoidal equation given a
- *
Greg 6-57 Review description of a real-life context Low
Greg 6-61 Review* Finding all solutlops to a sinusoidal Low
equation
Greg 6-71 Review* Finding the distance travelled using Low
arc length
Greg 6-81 Review* Finding the Fhstance tr'avelled using Low
unit conversions
. Finding the horizontal shift of a .
- *
Greg 6-97 Review sinusoidal function High
Tangent & . o "
. Using unit circle definition to
Juno 1-1 Reciprocal Low
Trig Functions* evaluate tangent
Tangent & . . . .
: Using the right triangle definition to
Juno 1-2 Reciprocal Low
Trig Functions* evaluate tangent
Tangent & Evaluating sine and cosine on
Juno 1-3 Reciprocal Low
Trig Functions* complementary angles
Tangent & Evaluating sine and cosine on
Juno 1-4 Reciprocal Low
Trig Functions* complementary angles
Tangent & . . .
Tuno 1-5 Reciprocal Proving that sine and cosine are High
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- Cognitive
Example ID Lesson Example Description Demand
Tangent & :
Tuno 1-6 Reciprocal Proving that tangent gnd cotangent Low
Trig Functions* are cofunctions
Trig Equations & . . . .
Juno 2-1+ Inverse Graphing sQIut10n§ to trig equations High
Functions* as points of intersection
Trig Equations & Finding all solutions to trig equations .
Juno 2-2F Inverse . . High
Functions™ with standard unit circle angles
Trig Equations & Finding all solutions to trig equations .
Juno 2-37 Inverse . o High
Functions™ with non-standard unit circle angles
Trig Equations & Finding all solutions to sinusoidal
Juno 2-47 Inverse i Low
Functions* equations
Trig Equations & Finding all solutions in a given
Juno 2-57 Inverse : . ) . Low
Functions™ interval to sinusoidal equations
Juno 3-1F Review* Graphing sinusoidal functions Low
Juno 3-2¢ Review* Usmg Law of Sines to find unknown Low
side lengths and angle measures
Juno 3-3+ Review* Finding points of intersection using Low
polar coordinates
Introduction to Exploring the notions of exponential .
Kelly 1-1 Exponentials vs. linear growth High
Introduction to Differentiating exponential growth
Kelly 1-2 Exponentials and decay given exponential function Low
Polynomials & . .
Kelly 2-1 Rational Explorlng the behavior of High
Functions polynomials near the roots
Polynomials & . . .
Kelly 2-2 Rational Graphmg po!ynomlals given the High
Functions equation in factored form
Polynomials & . . .
Kelly 2-3 Rational Constructmg polynomial equations High
Functions given the graph
Kelly 3-1 Arc Length Finding arc length on the unit circle Low
Kelly 3-2 Arc Length Finding arc lquth on a non-unit Low
circle
Logarithms & Finding the equation of an
Selrach 1-1 Their Properties* exponential function given two Low
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Example ID Lesson Example Description Cognitive
xamp P P Demand
points
Logarithms & Solving equations using exponentials
Selrach 1-2 Their Properties* and logarithms Low
Logarithms & Solving equations using exponentials
Selrach 1-3 Their Properties* and logarithms Low
Logarithms & Solving equations using exponentials
Selrach 1-4 Their Properties* and logarithms Low
Logarithms & Solving equations using properties of
Selrach 1-5 Their Properties* logarithms Low
Logarithms & Solving equations using properties of
Selrach 1-6 Their Properties™* logarithms Low
Inverse Examining what is an inverse &
Selrach 2-17 FunZtions* whether or not every function has an Low
inverse
Inverse Examining functions that are not
Selrach 2-2 Functions* invertible Low
Selrach 2-3 Inw;rse Finding an inverse function using Low
Functions* function diagrams
Inverse Finding an inverse function
Selrach 2-41 Functions* algebraically Low
Selrach 2-5+ Inw;rse . Evaluating inverse functions using a Low
Functions table
Trig Equations & o . . :
Selrach 3-1 Inverse Finding all soluthns to sinusoidal Low
Functions* equations
Trig Equations & Finding all solutions in a given
Selrach 3-2 Inverse : . ) . Low
. interval to sinusoidal equations
Functions*
Trig Equations & Finding all solutions to complex trig
Selrach 3-3 Inverse ) ) Low
Functions™ equations by factoring
Trig Equations & Finding all solutions in a given
Selrach 3-47 Inverse : . . . Low
. interval to sinusoidal equations
Functions*

Note: The example ID represents the instructor, the observation number, and the
enacted example number.
*These lessons were purposefully sampled because of their focus on procedures.
tThese examples were spread out over two days of instruction.
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APPENDIX D: CODING SCHEMES

Decomposition of Practice

Initial Coding Scheme
The initial coding scheme that I developed for capturing the work of enacting
high cognitive demand examples was generated before I began data analysis. I generated
this coding scheme based upon literature, my own experiences teaching, my observations
during data collection, and my conversations with instructors during the pre- and post-
observation interviews.
* Setup
o Transition from the previous activity or beginning of class.
o Explain the mathematical point of the example.

o Make connections between the example and other content, practices, and
strategies students are familiar with.

¢ Enactment

o Modeling
= Make connections to previously learned content, practices, and
strategies.

= Explain their thinking process.

= Make connections between representations.

= Monitor time spent on the example.

= Steer the example towards the mathematical point.
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o Facilitating
= Elicit, interpret, and respond to student thinking.
» Gauge student understanding and engagement.
o Monitoring
= Give instructions on what they expect students to do.
= Monitor and respond to student struggle.
= Steer students towards the mathematical point.
*  Wrap up.
o Reiterate the mathematical point of the example.
o Summarize the content, practices, and/or strategies that were used in the
example.
o Reiterate or make new connections to related content, practices, or
strategies.
o Transition to the next activity or the end of class.

Refined Coding Scheme

As T'used my initial coding scheme to code the high cognitive demand examples,
I began refining it to reflect what I was seeing in the data. One big difference I noticed
between my initial and my refined coding scheme was that the hierarchical structure of
the initial coding scheme did not fit the data as nicely as I had expected. So I decided to
remove the hierarchy as I was coding. Table 35 shows the resulting refined coding
scheme as well as the frequency with which I used each code.

Table 35. Refined (Non-Hierarchical) Codes with Frequency Counts

Code Frequency
Explaining 474
Solution Strategy or Procedure 342
Modeling 308
Connect 293
Facilitating 238
Think-Aloud 236
Student Thinking 230
Representations 221
Concepts 97
Notation or Vocabulary 66

Student Understanding 65
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Previous Knowledge or Examples 60
Scaffolding 59
Student Struggle 51
Differences 48
Maintain Mathematical Point 21
Transition 19
Introduce Mathematical Point 14
Monitoring 14
Student Work Time 14
Set Up the Example 13
Instructions 13
Mathematical Point 13
Similarities 11
Student Engagement 10
Connect 9
Multiple solution strategies 9
Abstract to Concrete 9
Transition 9
Summarize 7
Real Life 6
Checking final answer 5
Connect 4
Prioritize 3
Monitor Time 1
Ran Out of Time 0
Final Coding Scheme

After I finished my first round of coding, I realized that my original hierarchical
structure was not working quite as I planned because instructors would do similar things
when modeling as they did when facilitating or monitoring. So I decided to split off those
three codes (Modeling, Facilitating, and Monitoring) into a separate category, which I
now refer to as roles. Doing this allowed me to see how the remaining codes were related

and create a new hierarchical structure for my final coding scheme. After using axial
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coding to create this semi-final coding scheme, I went back and re-coded all 25 examples.

While coding, I made small tweaks until I had a stable final coding scheme that described

the work of enacting high cognitive demand examples. For descriptions of these codes

and video clips that were coded with these codes, read through my results section.

* Attend to the mathematical point
o Introduce the mathematical point as a way to set the focus of the example
o Maintain the focus of the example on the mathematical point

O

Summarize the example to reiterate the mathematical point

e Make connections

@)
@)
@)

To previously learned content, practices, and strategies
Between representations
Between concepts

* Provide clear verbal explanations

@)
@)
@)
@)
@)

O

Of the example set up, constraints, and goal
Of content, practices, and strategies

Of similarities and differences

Of representations

Of notation and vocabulary

Of how to check your work

* Articulate cognitive processes

@)
@)

By thinking aloud as you work through the example
By asking students to provide justification and reasoning

¢ Support student understanding

@)
@)
@)

By providing opportunities for students to ask questions

By recognizing when students are struggling to follow or understand
By providing scaffolding for struggling students without decreasing the
cognitive demand
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