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Historically, pass rates in undergraduate precalculus courses have been dismally 

low and the teaching practices and knowledge of university instructors have been 

understudied. To help improve teaching effectiveness and student outcomes in 

undergraduate precalculus courses, I have studied the cognitive demand of enacted 

examples. The purpose of this dissertation is to examine the pedagogical work and 

mathematical knowledge entailed in the enactment of high cognitive demand examples in 

a three-part study. To answer my research questions, I conducted classroom observations 

as well as pre- and post-observation interviews with seven graduate student instructors at 

a large public R1 university in the Midwest and used grounded theory to analyze my data. 

In the first component of the dissertation, I examine what high cognitive demand 

examples look like and identify three roles that instructors take on when enacting high 

cognitive demand examples: modeling, facilitating, and monitoring. In the second 

component, I decomposed the work of enacting high cognitive demand examples into 

five teaching tasks: attending to the mathematical point, making connections, providing 

clear verbal explanations, articulating cognitive processes, and supporting student 

understanding. Finally, in the third component, I examined the mathematical knowledge 

for teaching entailed in enacting examples and found that there are five domains of 

knowledge that support the maintenance of cognitive demand: knowledge of connections, 
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representations, unpacking, students, and sequencing. These findings suggest ways in 

which we can help novice instructors enact high cognitive demand examples by focusing 

on the work and knowledge entailed in maintaining the cognitive demand. 
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CHAPTER 1: INTRODUCTION 

I was teaching college algebra for the first time as the primary instructor. 

Thankfully, my department offered lots of teaching support for graduate students. 

College algebra was a coordinated course, which meant that I was provided with lesson 

guides, online homework assignments that were self-graded, and exams written by the 

course convener. In addition, I was given a course release during my first semester 

(which means I taught only one section instead of two) in return for taking a class titled 

Teaching and Learning Mathematics at the Post-Secondary Level (which I will refer to as 

the pedagogy course). Each week we met to discuss educational research, the ways in 

which students learn, and the experiences we were having in our individual classrooms. 

Most of the graduate instructors teaching college algebra were in this course, so it also 

provided me with a community to discuss and share my teaching experiences with. Yet, 

with all of these supports, there was much I had to learn about teaching. 

The college algebra students had just finished taking their second exam, which 

covered quadratic functions. In the pedagogy course that night, we discussed the exam. 

One problem in particular was stuck on my mind. The problem started off by giving a 
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quadratic equation in standard form that modeled the height, as a function of time, of a 

bottle rocket that was being launched into the air. Part (a) asked students, “For how long 

is the rocket in the air?” Part (b) asked, “What is the maximum height the rocket reaches 

during its flight?” Finally, Part (c) asked, “How long has the rocket been in the air when 

it reaches its maximum height?” For each part, students were instructed to “show your 

work using algebraic methods; just typing the function into a calculator is not sufficient 

work.” 

Thinking critically about this problem made me realize how complex it was. First, 

students have to recognize that to find how long the rocket is in the air, they need to 

figure out when the height is equal to zero. To do this algebraically, they next need to 

recognize that they should set the equation equal to zero and solve for t by factoring. 

Finally, they need to interpret which zero tells them how long they are in the air for. In 

addition, to find the maximum height and the time it takes to reach the maximum height, 

they need to realize those numbers are associated with the vertex. Next, they need to 

identify an algebraic method that will help them find the vertex. Students could use 

several methods, such as finding the midpoint between the zeros, using the completing 

the square algorithm, or equating coefficients in standard and vertex form. In class, I had 

focused on asking my students to just memorize the completing the square algorithm, but 

I had also mentioned that they could use the zeros and some students were familiar with 

the idea of equating coefficients. While all of these methods are valid, and completing the 

square was the method we preferred students know how to use, an astute student might 

realize that since they had already found the zeros in Part (a), the midpoint method was 

actually the most efficient. 
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Recognizing all of the complexity involved in this problem made me question the 

way in which I had taught the material. Yes, I had taught my students the completing the 

square algorithm, but had I focused too much on memorizing the steps and not enough on 

comprehending when it should be used? Since many of the problems that I used during 

class explicitly asked students to find the vertex of a quadratic, I had not given them the 

opportunity to learn how to interpret a problem as implicitly asking this same question. 

While I mentioned the midpoint method in passing, did I spend time helping them 

recognize when one method might be better than another? And how exactly do I teach 

my students to understand a procedure, recognize when it’s appropriate to use, and select 

the procedure that best fits the task? I even wondered, “How did I learn to do those 

things?” and realized that I had no idea. 

While this may be a personal anecdote, talking to other instructors had made me 

realize that it is not unique to my experience. Often, as instructors, what we teach is more 

complex than it first appears and is something that we mastered so long ago that we are 

divorced from the experience of learning it for the first time. In addition, learning a topic 

for oneself does not qualify one to teach it. Even advanced mathematics courses, which I 

had taken plenty of, did not prepare me for teaching what I previously considered a 

“simple” topic. So what else did I need to know and do to teach my students more 

effectively? 

Defining the Problem 

Traditionally, mathematics departments have operated under the assumption that 

earning a Ph.D. in mathematics and with experience teaching is what qualifies one to 



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 21 

become a university professor (Committee on the Undergraduate Program in 

Mathematics, 1967). Yet many mathematics departments have struggled with low pass 

rates in first-year courses and failed to both attract and retain students in their degree 

programs (Bressoud, Mesa, & Rasmussen, 2015). While university mathematics 

professors are often considered content experts and may be provided with professional 

development opportunities concentrated on teaching, these efforts alone seem to not be 

enough. To help improve student success rates and teaching quality in first-year 

undergraduate mathematics courses, my dissertation focuses on identifying the 

knowledge and practices that help support high quality teaching in precalculus. 

Mathematician and educator Hyman Bass pointed out that “knowing something 

for oneself or for communication to an expert colleague is not the same as knowing it for 

explanation to a student” (p. 19). Seemingly in contrast to this view, studies in the late 

twentieth-century found that content knowledge is not a predictor of teaching quality and 

student outcomes (Begle, 1972; Greenwald, Hedges, & Laine, 1996; Hanushek, 1981, 

1996). In response to this finding, one could assume that perhaps the missing piece is 

pedagogical training. However, Lee Shulman proposed in 1986 that teachers should 

know more than just the content they are expected to teach and general pedagogical 

knowledge. Rather, Shulman identified the importance of pedagogical content 

knowledge, “which goes beyond knowledge of subject matter per se to the dimension of 

subject matter knowledge for teaching” (p. 9). The following year, Shulman called for 

researchers and practitioners to pay more attention to professional knowledge of 

teaching, including pedagogical content knowledge. Since then, researchers have found 
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supporting evidence for Shulman’s claim that there is content knowledge that matters for 

teaching (Baumert et al., 2010; Hill, Rowan, & Ball, 2005). 

However, to date, the majority of the work on content knowledge for teaching 

mathematics has been conducted at the K-12 level. While universities have begun 

providing professional development on teaching (Ellis, 2015), there is still much that we 

need to learn about how to best prepare university professors for their responsibilities as 

teachers. Currently, professors have a strong grasp of general content knowledge, which 

is “the knowledge, understanding, skill, and disposition that are to be learned by [the 

students in their courses]” (Shulman, 1987, p. 9). However, there is still a need to better 

understand and identify content knowledge for teaching mathematics at the 

undergraduate level. 

Current Status of the Field 

Following the recommendation of Shulman (1987), educational researchers began 

looking into professional knowledge for teaching mathematics (e.g., Ball, Thames, & 

Phelps, 2008; Baumert & Kunter, 2013; McCrory, Floden, Ferrini-Mundy, Reckase, & 

Senk, 2012; Rowland, Huckstep, & Thwaites, 2005). Ball and Bass (2003) introduced the 

term mathematical knowledge for teaching (MKT), which Ball and her colleagues 

defined as the “mathematical knowledge ‘entailed by teaching’—in other words, 

mathematical knowledge needed to perform the recurrent tasks of teaching mathematics 

to students”  (Ball et al., 2008, p. 395) (p. 395).  

Although previous researchers had found that content knowledge was not a 

predictor of teaching effectiveness (Begle, 1972; Greenwald et al., 1996; Hanushek, 
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1981, 1996), MKT researchers found that there was content knowledge that mattered for 

teaching and that a focus on this content benefited teaching and learning (Baumert et al., 

2010; Hill et al., 2005). A natural question that arises given their findings is “How can 

content knowledge both matter and not matter in teaching?” The difference lies in the 

content knowledge being focused upon. Begle (1979) had shown that there was little 

relationship between student outcomes and the number of mathematics courses the 

teacher had taken past calculus. However, Hill, Rowan and Ball (2005) showed that 

elementary “teacher's content knowledge for teaching mathematics was a significant 

predictor of student gains” (emphasis added, p. 396). 

To illustrate what I mean by mathematical knowledge for teaching, we can 

examine items that were developed by researchers to assess MKT. In their study of 

content knowledge for teaching at the elementary level, Hill et al. (2005) found that the 

task of appraising non-standard solution strategies to see if they are generalizable as 

mathematical knowledge that is specific to the work of teaching. 

To respond to this situation, teachers must draw on mathematical knowledge: 

inspecting the steps shown in each example to determine what was done, gauging 

whether or not this constitutes a "method," and, if so, determining whether it 

makes sense and whether it works in general. Appraising nonstandard solution 

methods is not a common task for adults who do not teach. Yet, this task is 

entirely mathematical, not pedagogical; to make sound pedagogical decisions, 

teachers must be able to size up and evaluate the mathematics of these 

alternatives--often swiftly and on the spot. (p. 388) 
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In another study of content knowledge for teaching at the secondary level, 

Baumert et al. (2010) found that the task of identifying parallelograms for which students 

might fail to apply the standard area formula as mathematical knowledge that is specific 

to the work of teaching. While this task requires general content knowledge (i.e., 

knowing the area of a parallelogram), it also requires mathematical knowledge that is 

specific to the work of teaching (i.e., knowing common student misconceptions or 

potential pitfalls). In both of these examples, the mathematical knowledge that is specific 

to the work of teaching is not usually taught in general undergraduate mathematics 

courses. Therefore, using the number of mathematics courses taken beyond calculus as a 

measure for content knowledge is not the same as measuring content knowledge for 

teaching. 

Identifying the Gap 

While research on MKT has been conducted at the K-12 level (Krauss, Baumert, 

& Blum, 2008; McCrory et al., 2012), there still are relatively few studies that focus on 

MKT at the undergraduate level. Speer, Smith, and Horvath (2010) conducted a literature 

review to search for empirical research on the practices of postsecondary teachers of 

mathematics. While some may argue that we can just use research conducted at the K-12 

level to study postsecondary teaching, the authors pointed out that “there are important 

differences between college and pre-college teachers and teaching” (p. 100), such as level 

and depth of content and pedagogy knowledge. In another article, Speer, King, and 

Howell (2015) focused on the danger of assuming that research on MKT at the K-12 

level can be extended to MKT at the postsecondary level. The authors claimed that 
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relatively little attention has been paid to the ways in which existing frameworks and 

theories for MKT may or may not apply to teachers at the secondary and postsecondary 

level. (p. 106). Therefore, the purpose of my dissertation is to study MKT at the 

undergraduate level from the perspective of practice, instead of relying on exiting 

frameworks or theories. 

However, studying MKT at the undergraduate level holistically would be beyond 

the scope of a dissertation project, so I chose to focus on the knowledge and work 

entailed in enacting high cognitive demand examples. While some research has been 

done on the knowledge and work entailed in enacting high cognitive demand tasks 

(Charalambous, 2010; Henningsen & Stein, 1997), these studies focus primarily on the 

mathematical tasks that students engage in during class, which I consider to be different 

from the examples that instructors choose to use during class. In particular, I 

conceptualize examples as a subset of tasks that are done in a whole-class setting for 

illustrative purposes. However, since research has identified that giving students 

opportunities to engage with high cognitive demand tasks is related to teaching quality 

(Stein, Remillard, & Smith, 2007), then it is reasonable to assume that there might be a 

similar relationship between teaching quality and the cognitive demand of examples. 

Study Overview 

The purpose of this dissertation is to investigate the pedagogical work and 

mathematical knowledge entailed in enacting high cognitive demand examples, which I 

will define later. While there are various ways one could go about researching 

pedagogical work and mathematical knowledge for teaching at the undergraduate level, I 
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chose to study both aspects from the perspective of practice. Speer et al. (2015) called for 

researchers of undergraduate mathematics teaching to approach their work “through the 

same kinds of careful study of mathematical demands of teaching that sparked the early 

work on mathematical knowledge for teaching (Ball & Bass 2000b)” (p. 119). Ball and 

Bass (2000a) chose to study mathematical knowledge for teaching from the perspective 

of practice instead of looking at the content, curriculum, or standards. To this end, Ball et 

al. (2008) advocated for asking the following two questions: “What are the recurrent 

tasks and problems of teaching mathematics?” and “What mathematical knowledge, 

skills, and sensibilities are required to manage these tasks?” (p. 395). Instead of studying 

recurrent tasks at large, my study focuses on the work and knowledge entailed in enacting 

examples in the classroom. 

To do this, I observed undergraduate precalculus courses, conducted video 

stimulated-recall interviews with instructors, and analyzed my data using the lens of 

cognitive demand. The participants I recruited for my study were experienced graduate 

student precalculus instructors at a large Midwestern university. I also conducted a pre-

observation interview with the instructor to talk about the examples in their intended 

lesson plan. During the observation, I recorded the enacted examples and took detailed 

field notes. From the observation video recordings, I selected clips to use in the video 

stimulated-recall post-observation interviews with the teachers in order to better 

understand the pedagogical work and mathematical knowledge that was entailed in 

enacting high cognitive demand examples. Finally, I analyzed both the observations and 

the interview data in order to decompose the work and identify the mathematical 

knowledge entailed in enactment. 



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 27 

Importance 

Traditionally, university mathematics professors have been trained as research 

mathematicians, but many of them spend their professional lives teaching (Bass, 1997). 

Yet, they “receive virtually no professional preparation or development as educators, 

apart from the role models of their mentors” (p. 19). While mentoring is better than no 

training, there is much that cannot be learned from mentoring alone. As Bass put it, 

“imagine learning to sing arias simply by attending operas, learning to cook by eating, 

learning to write by reading. Much of the art of teaching—the thinking, the dynamic 

observations and judgments of an accomplished teacher—is invisible to the outside 

observer” (p. 19). 

Many universities are responding to the need to better train professors as teachers 

by providing graduate students (who make up the future work force) and current 

instructors with professional development focused on teaching. In order to provide 

effective teaching professional development, it is imperative to have a good 

understanding of what contributes to teaching quality. As I mentioned previously, part of 

effective teaching is knowing the content you are teaching, effective pedagogical 

techniques, and content that is specific to the work of teaching (i.e., MKT). My 

dissertation focuses on gaining a better understanding of this last piece, with particular 

emphasis on undergraduate precalculus courses. 

So why is it important to study precalculus courses? With the emergence of 

technology, the demand for mathematically skilled workers has increased and placed a 

higher burden on mathematics departments to train a larger and more diverse pool of 

students (Bass, 1997). Approximately 2,000,000 college students take introductory level 
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mathematics courses each year and drop, fail, withdraw (DFW) rates are typically around 

50% (Gordon, 2006, p. 108). There are many factors that contribute to success rates, such 

as the effectiveness of placement exams, students’ prior experiences with mathematics, 

and teaching quality, which is why I feel it is important to study MKT first-year 

undergraduate courses. 

Focusing on examples will help improve undergraduate mathematics instruction 

for many reasons. First, explanations are a foundational aspect of teaching. Also, studies 

have shown that explanations can support student learning (Borko et al., 1992; Weiss & 

Pasley, 2004), improve metacognition (Leinhardt, 2001, 2010), and cultivate productive 

habits of mind (Schoenfeld, 2010). Furthermore, all mathematically literate people should 

be able to “use representations to model situations and communicate about mathematical 

ideas” (Thames & Ball, 2013, p. 2). Thus, using examples to explain and model content, 

practices, and strategies is important to undergraduate mathematics teaching at large. 

Intended Audience 

My intended audience is twofold: university mathematics department and 

mathematics education researchers. By learning the work and knowledge entailed in 

enacting high cognitive demand examples, mathematics departments can help their 

graduate students and current instructors improve their teaching quality and student 

success. Second, by carefully decomposing pedagogical work and examining MKT at the 

undergraduate level, mathematics education researchers can join me in thinking critically 

about how undergraduate teaching differs from elementary and secondary teaching. 
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Research Questions 

The purpose of the multiple case study is to examine high cognitive demand 

examples that are enacted in precalculus classrooms. Here I define cognitive demand as 

the level and kind of thinking required in order to successfully engage with a 

mathematical task (Stein, Henningsen, Smith, & Silver, 2009, p. 11). The central research 

question that guides my dissertation study is: What do instructors know and do that 

supports their ability to enact high cognitive demand examples? To focus this question, I 

came up with the following subquestions that I will use to guide my study: 

RQ1. What do high cognitive demand examples look like in precalculus courses? 

RQ2. What are the different roles that instructors can take on when enacting high 

cognitive demand examples? 

RQ3. What pedagogical work is entailed in enacting high cognitive demand examples 

and how does it relate to the role of the teacher? 

RQ4. What mathematical knowledge is entailed in enacting high cognitive demand 

examples and how does it relate to the role of the teacher? 

The first three chapters of my dissertation are designed to give a broad 

introduction to my study, an overview of the related literature, and a detailed description 

of the methods that I used. In Chapter 4: Examining the Role of the Instructor, I answer 

RQ1 and RQ2. In this chapter, I examine what high cognitive demand examples and the 

ways in which they are presented, which helps identify what high quality teaching might 

look like in undergraduate precalculus classrooms. Chapter 5: Decomposing the 

Pedagogical Work Entailed in Enacting High Cognitive Demand Examples answers RQ3 



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 30 

and identifying what instructors do in order to maintain high quality teaching. Next, in 

Chapter 6: Identifying the Mathematical Knowledge Entailed in Enacting High Cognitive 

Demand Examples”, I answer RQ4 and look at the knowledge that instructors draw upon 

in order to maintain high quality teaching1. Finally, in Chapter 7 I tie the dissertation 

together into a single narrative and illustrate how my research might be used to help 

improve student outcomes and teaching quality in first-year undergraduate courses. 

Assumptions 

Since this project is qualitative and depends primarily on observational and 

interview data, there are two major assumptions that my research hinges on. First, in 

collecting observational data, I am assuming that the work and knowledge entailed in 

teaching is observable. This is a reasonable assumption to make, since other educational 

researchers have depended heavily on observational data in conducting their research 

(e.g., Ball et al., 2008; Heid, Wilson, & Blume, 2015; K. Jackson, Garrison, Wilson, 

Gibbons, & Shahan, 2013; McCrory et al., 2012; Sleep, 2012). Second, in conducting 

interviews with instructors, I am assuming that their responses are honest, truthful, and 

accurate. To encourage my participants to be honest and truthful, I had them chose 

pseudonyms to protect their identity and keep my data confidential. Since my post-

observation interviews focus primarily on digging into the instructors’ thinking, I need to 

be concerned with the accuracy of their recall. To aid in this, I used video-stimulated 

recall (Bloom, 1953), which is used to help reposition the interviewee back in the 

                                                
1 As a note are, Chapters 4-6 are designed to stand alone as publishable research 

articles, so each of them also includes a brief overview of the literature and methods. 
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moment as a way to tap into their in-the-moment thinking. Another large assumption that 

I am making is that MKT exists at the undergraduate level. While it has been pointed out 

that MKT may look very different at the undergraduate level in comparison to the K-12 

level (N. M. Speer et al., 2015), it is reasonable to assume that MKT exists at the 

undergraduate level because the nature of teaching is still the same. 

Limitations 

Like all case studies, one limitation of my research is that it is not generalizable. 

While it may be suggestive of general findings, I would need to conduct additional 

research utilizing a broader sample of instructors and universities to verify this. However, 

case study is still an appropriate methodology to use because undergraduate teaching is 

not well understood. Therefore, any insight into what it may look like is beneficial. Also, 

as with most qualitative research studies, my results may not be replicable. While I used 

pseudonyms in order to protect the identity of my participants, it is possible that 

participants were not able to accurately share or describe their experiences. In a perfect 

circumstance, it would have been desirable to have participants from different 

universities with a variety of experiences and collect observational data from multiple 

perspectives, however time, money, accessibility, and human resources limited me. 

Finally, it is important to mention the possible limitations that may have resulted from 

researcher bias. While I am aiming to study undergraduate teaching from the perspective 

of practice, I am familiar with existing decomposition and MKT frameworks that were 

formed at the K-12 level, which may have colored my view. Also, as an instructor 

myself, I am much more familiar with the college algebra curriculum than the 
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trigonometry curriculum (which together make up the precalculus courses), which may 

have influenced my data analysis. 

Delimitations 

As I stated previously, the purpose of this dissertation is to investigate the 

pedagogical work and mathematical knowledge entailed in enacting high cognitive 

demand examples in undergraduate precalculus classrooms. While there are many other 

problems I could have studied for this dissertation, I chose to study MKT at the 

undergraduate level because it has been understudied and can contribute towards 

improving instruction in undergraduate mathematics courses. I chose to focus on 

undergraduate precalculus courses because they impact a large number of students. In 

particular, they are often taken primarily by students who are non-STEM intending, 

which I believe is a population that we also need to focus on. While I could have studied 

undergraduate teaching in many different ways, I chose to examine it from the 

perspective of practice. For that reason, my data collection is rooted in observing and 

digging into examples that are enacted in the classroom. To narrow my scope further, I 

am also focusing on just examples that are enacted in the classroom, as opposed to 

studying undergraduate teaching at large. 

 Since undergraduate teaching is not well understood, my research questions are 

well suited to qualitative research. Since little research has focused on the cognitive 

demand of examples and the work and knowledge entailed in maintaining high levels of 

cognitive demand, the methodological perspective of collective case study is also well 

suited to my purpose. Also, I am utilizing the analytic frameworks of task unfolding and 
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cognitive demand in order to analyze my data. I decided to use these frameworks 

primarily because they have been used in MKT research at the K-12 level. Finally, the 

inclusion criteria that I used when selecting participants is that they were instructors of 

precalculus courses and had taught precalculus courses for at least two semesters at the 

university prior to the beginning of the study. 

Defining Key Terms 

Cognitive demand 

The level and kind of thinking required in order to successfully engage with a 

mathematical task (Stein et al., 2009, p. 11) 

Enacted example  

The actual implementation of an example in the classroom (Stein et al., 2007, p. 

321) 

Entailed 

“A necessary accompaniment” (Thames, 2009, p. 173) 

Example (mathematical) 

A whole-class activity, the purpose of which is to solve a mathematical problem 

“for illustrative purposes” (Good, 1959, p. 211) 

Example unfolding 

The temporal phases an example goes through as it is transformed from the 

written example to the intended example to the enacted example (Stein et al., 

2007, p. 321) 
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High cognitive demand tasks 

“Involve making connections, analyzing information, and drawing conclusions” 

(Van de Walle, Karp, & Bay-Williams, 2013, p. 36) 

Intended example  

The teachers’ plans for using the example during classroom instruction (Stein et 

al., 2007, p. 321) 

Knowledge 

“(1) The accumulated facts, truths, principles, and information to which the 

human mind has access; (2) the outcome of specified, rigorous inquiry which 

originated within the framework of human experience and functions in human 

experience” (Good, 1959, p. 308) 

Lesson 

“A short period of instruction devoted to a specific limited topic, skill, or idea” 

(Good, 1959, p. 316) 

Lesson guide 

In this study, the written lesson guides were developed internally by members of 

the mathematics department and provided instructors with suggested sequencing, 

examples, and timing for each class period. 

Lesson plan 

The instructors intended plan for instruction; “a detailed plan, usually drawn up 

by the teacher, encapsulating the content and sequence of the lesson” (Wallace, 

2008, p. 162)  
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Low cognitive demand task 

“Involve stating facts, following known procedures (computation), and solving 

routine problems” (Van de Walle et al., 2013, p. 36) 

Mathematical knowledge for teaching (MKT) 

The “mathematical knowledge ‘entailed by teaching’—in other words, 

mathematical knowledge needed to perform the recurrent tasks of teaching 

mathematics to students” (Ball et al., 2008, p. 395)  

Task (mathematical) 

“A classroom activity, the purpose of which is to focus students’ attention on a 

particular mathematical idea” (Stein, Grover, & Henningsen, 1996, p. 460) 

Teaching 

“The act of providing activities, materials, and guidance that facilitate learning, in 

either formal or informal situations” (Good, 1959, p. 552) 

Work of teaching 

“The core tasks that teachers must execute to help pupils learn” (Ball & Forzani, 

2009, p. 497) 

Written example 

The example as “represented in curriculum materials or other teaching resources” 

(Stein et al., 2007, p. 340)
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CHAPTER 2: LITERATURE REVIEW 

This chapter provides a broad overview of the literature related to my dissertation 

study In particular, I reviewed the literature on cognitive demand, instructional examples, 

decompositions of teaching, and mathematical knowledge for teaching.  

Cognitive Demand of Mathematical Tasks 

Since the purpose of my study is to examine what teachers do and know that helps 

maintain the cognitive demand of the examples that they enact in the classroom, I chose 

to first provide a review of the literature on cognitive demand. Although it is based on the 

work of Walter Doyle in the 1980s, it was Mary K. Stein and Margaret Smith that 

together developed a strong framework for analyzing the cognitive demand of tasks. In 

this subsection, I will review the origins of cognitive demand and examine how the study 

of cognitive demand has developed over the years. 
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Academic Tasks 

Doyle’s (1983) work focused on examining academic tasks, their intellectual 

demands, and the ways in which they are enacted in the classroom. Doyle’s conception of 

academic tasks comprised three parts: the products, the process, and the resources. In 

other words, “academic tasks…are defined by the answers students are required to 

produce and the routes that can be used to obtain these answers” (p. 161). In particular, 

Doyle emphasized that academic tasks are important because they are the medium 

through which students engage with the content and they have a large impact on the 

students’ opportunities to learn. 

Acknowledging that not all academic tasks provide students with equal 

opportunities to engage and learn, Doyle (1983) presented four categories of tasks, 

organized by the cognitive operations required to accomplish the task: memory, 

procedural or routine, comprehension or understanding, and opinion. Memory tasks were 

defined as “tasks in which students are expected to recognize or reproduce information 

previously encountered” (p. 162).  Procedural or routine task were defined as “tasks in 

which students are expected to apply a standardized and predictable formula or algorithm 

to generate an answer” (p. 163). While Doyle presented a domain-generic definition of 

comprehension or understanding tasks, he identified that these are “tasks in which 

students are expected to…apply procedures to new problems or decide from among 

several procedures those which are applicable to a particular problem” or “draw 

inferences from previously encountered information or procedures” (p. 163). Finally, 

opinion tasks were defined as “tasks in which students are expected to state a preference 

for something” (p. 163). 
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Table 1. Doyle’s (1983) Task Categories 

Task Definition Examples 

Memory “Tasks in which students are expected to 
recognize or reproduce information 
previously encountered.” (p. 162) 

Memorize a list of 
spelling words or lines 
from a poem 

Procedural 
/Routine 

“Tasks in which students are expected to 
apply a standardized and predictable 
formula or algorithm to generate an 
answer.” (p. 163) 

Solve a set of subtraction 
problems 

Comprehension/ 
Understanding 

“Tasks in which students are expected to (a) 
recognize transformed or paraphrased 
versions of information previously 
encountered (b) apply procedures to new 
problems or decide from among several 
procedures those which are applicable to a 
particular problem...or (c) draw inferences 
from previously encountered information or 
procedures.” (p. 163) 

Solve “word problems” 
in mathematics; make 
predictions about 
chemical reactions; 
devise an alternate 
formula for squaring a 
number 

Opinion “Tasks in which students are expected to 
state a preference for something.” (p. 163) 

Select a favorite story 

Doyle (1988) examined the impact that mathematics tasks have on the ways 

students think about the content. In particular, Doyle emphasized that “the work students 

do, which is defined in large measure by the tasks teachers assign, determines how they 

think about a curriculum domain and come to understand its meaning” (p. 167). Doyle 

identified cognitive demand as one way to characterize the academic work that occurs in 

a mathematics classroom. Here, Doyle defined cognitive demand as the “the cognitive 

processes students are required to use in accomplishing [a task]” (p. 170). Referring to his 

four task categories, Doyle emphasized that if the majority of the mathematical tasks that 

students engage with are based primarily on memorization and procedures, then this is 

how they will perceive the domain of mathematics. Therefore, it is important for teachers 

to provide students with opportunities to engage with higher-level cognitive tasks that 
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focus on “comprehension, interpretation, flexible application of knowledge and skills, 

and assembly of information from several different sources to accomplish work” (p. 171). 

Cognitive Demand 

Building upon Doyle’s (1983, 1986, 1988) work, Stein, Grover, and Henningsen 

(1996) examined the task features and cognitive demand of 144 different mathematical 

tasks used in reformed classrooms. The task features that they attended to were the 

number of solutions strategies, the number and kinds of representations, and 

communication requirements. Although Stein et al. do build upon the work of Doyle, the 

four types of tasks that they identified do differ from Doyle’s (1983) categories. In 

particular, Stein et al. (1996) categorized tasks as: 

Memorization, the use of formulas, algorithms, or procedures without connection 

to concepts, understanding, or meaning, the use of formulas, algorithms, or 

procedures with connection to concepts, understanding, or meaning, and 

cognitive activity that can be characterized as “doing mathematics,” including 

complex mathematical thinking and reasoning activities such as making and 

testing conjectures, framing problems, looking for patterns, and so on. (Emphasis 

in original, p. 466) 

Tasks categorized as memorization or procedures without connections were considered to 

require low levels of cognitive demand, while tasks categorized as procedures with 

connections and doing mathematics were considered to require high levels of cognitive 

demand2. 

                                                
2 It is important to note that while Stein et al. first introduced their task categories 

in the 1996 publication, formal definitions or descriptions were provided in a later 
publication (Smith & Stein, 1998), which I will review shortly. 
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While Stein et al. (1996) were interested in the cognitive demand of the tasks that 

were implemented in reformed classrooms, they also wanted to examine how 

mathematical tasks might change during the implementation stage. To do this, the authors 

built a framework to describe the temporal phases that tasks go through as they are 

transformed from their representation in curricular/instructional materials, to the task as 

set up in the classroom, to the task as implemented by students in the classroom. 

Ultimately, the goal of this task unfolding is to impact student learning, but at each stage 

of the unfolding, there are various factors that can influence the task features and 

cognitive demand (see Figure 1). 

Figure 1. Stein et al.’s (1996) Framework for Task Unfolding 

 

In their study, Stein et al. (1996) focused on the final phase of task unfolding 

(represented by the shaded shapes in Figure 1) and examined the factors that influence 

the implementation. While they analyze both task features and cognitive demand, I will 

focus primarily on the results they found related to cognitive demand, since they are 
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relevant to my work. Through their analysis, they found that nearly 74% of the 144 

mathematical tasks were set up at a high level of cognitive demand. However, the 

cognitive demand of tasks tended to decline during the implementation stage and only 

33% of the tasks were implemented at a high level of cognitive demand. 

Curious to examine why these high level tasks declined during implementation, 

Stein et al. (1996) identified six factors that were judged to contribute to the decline: 

challenges become nonproblems, inappropriateness of the task for students, focus shifts 

to correct answer, too much or too little time, lack of accountability, and classroom 

management problems. On the other hand, the authors also identified seven factors that 

were judged to contribute to the maintenance of high levels of cognitive demand: task 

builds on students’ prior knowledge, appropriate amount of time, high-level performance 

modeled, sustained pressure for explanation and meaning, scaffolding, students self-

monitoring, and teacher draws conceptual connections. 

One surprising result of Stein et al.’s (1996) work is that tasks could be set up as 

doing mathematics, but decline to procedures without connections, unsystematic 

exploration, or even no mathematical activity. To explore these types of decline, 

Henningsen and Stein (1997) focused on identifying classroom-based factors that support 

and inhibit students’ engagement with doing mathematics tasks. First, they examined 

tasks that were set up and implemented at the level of doing mathematics and found that 

these tasks were successful because they built on students’ prior knowledge, provided 

appropriate scaffolding, were allotted an appropriate amount of time, included modeling 

of high-level performance, and sustained pressure for explanation and meaning. 
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For the tasks that were set up as doing mathematics but declined to lower levels of 

cognitive demand or no mathematical activity, Stein et al. (1996) found that there were 

different factor profiles for each type of decline. Tasks that declined to procedures 

without connections tended to allot too much or too little time, make challenges into 

nonproblems, and shift in focus to the correct answer. Similarly, tasks that declined to 

unsystematic exploration tended to allot too much or too little time, shift in focus to the 

correct answer, and be inappropriate. Finally, tasks that declined to no mathematical 

activity tended to be inappropriate, run into classroom management problems, and allot 

too much or too little time. 

In order to clarify what the authors meant by memorization, procedures without 

connections, procedures with connections, and doing mathematics tasks, Smith and Stein 

(1998) published a paper that listed the characteristics of the four different types of tasks 

(see Table 2). These descriptions not only provided researchers with a clear 

conceptualization with each category, but also provided teachers with a framework for 

thinking about the cognitive demand of tasks. In particular, Smith and Stein illustrated 

how the Task Analysis Guide can be used in professional development activity where 

participants sort tasks into each category and talk about the reasoning behind their 

categorizations. Additional, Stein and Smith (1998) talked about how the framework 

could be used as tool for reflection when teachers observe teachers or even when teachers 

reflect on their own teaching. 
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Researchers have continued to build upon and refine the task unfolding (Figure 1) 

and cognitive demand (Table 2) frameworks developed by Smith, Stein, and their 

colleagues. In particular, researchers have focused on how to plan, set up, implement, and 

conclude tasks so that they maintain a high level of cognitive demand. To facilitate the 

design of lesson plans that would support high cognitive demand tasks, Smith, Bill, and 

Hughes (2008) developed the “Thinking Through a Lesson Protocol” (TTLP). Teachers 

using the protocol are provided with a set of questions to consider when planning their 

lesson. In the first part, they focus on selecting and setting up a mathematical task, then 

ask questions related to supporting students exploration of the task, and finally consider 

how the teacher plans to share and discuss the task. While the authors don’t suggest that 

teachers answer all of the questions included in the protocol every time they plan a 

lesson, they do suggest that teachers use the TTLP periodically and in collaboration with 

other teachers. 

Moving from the planning to the set up stage, Jackson, Shahan, Gibbons, and 

Cobb (2012) examined four crucial elements of launching complex tasks: discussing the 

key contextual features, discussing the key mathematical ideas, developing a common 

language to describe the key features, and maintaining the cognitive demand. Similar to 

the TTLP, the authors provide teachers with a set of planning questions that teachers can 

use to reflect on what they need to do to launch a complex task effectively. In another 

paper, Jackson, Garrison, Wilson, Gibbons, and Shahan (2013) examined how the launch 

of tasks related to the opportunities to learn mathematics in the concluding whole-class 

discussion. As a result, they found that attending to the crucial elements of developing a 

common language to describe the key features and maintaining the cognitive demand of 
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the task during the launch resulted in higher quality opportunities for students to learn in 

the concluding mathematics discussion. 

Instructional Examples 

Much of the research on cognitive demand has focused on mathematical tasks that 

students complete during class. However, I am interested in studying the cognitive 

demand of the examples that instructors enact. While examples are one type of 

mathematical task, they are different from a task that a teacher might give for students to 

work on. In particular, I define an example as a whole-class activity, the purpose of 

which is to solve a mathematical problem for illustrative purposes. For example, to help 

students understand why trigonometric equations can have infinite families of solutions, 

an instructor might use the example of sin𝜃 = −1/2. Or if an instructor is teaching the 

completing the square algorithm, they might introduce it by working through several 

examples before asking students to work through related problems. In this subsection, I 

review some of the literature on examples and examine how they are different from other 

types of mathematical tasks. 

Bills, Dreyfus, Mason, Tsamir, Watson, and Zaslavsky (2006) gave a general 

overview of how exemplification has been treated in mathematics education. First, the 

authors claimed that it is important to study examples and exemplification in mathematics 

for several reasons. First, examples play a central role in the development of mathematics 

as a discipline and the teaching and learning of mathematics. Second, “examples offer 

insight into the nature of mathematics through their use in complex tasks to demonstrate 

methods, in concept development to indicate relationships, and in explanations and 
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proofs” (pp. 126-127). The authors identified different ways in which examples might be 

presented, which can range from worked-out examples, where “the procedure being 

applied is performed by the teacher, textbook author or programmer, often with some sort 

of explanation or commentary,” to exercises, “where tasks are set for the learner to 

complete” (p. 127). 

For the purposes of their review, Bills et al. (2006) defined examples as “anything 

used as raw material for generalising, including intuiting relationships and inductive 

reasoning; illustrating concepts and principles; indicating a larger class; motivating; 

exposing possible variation and change, etc. and practising technique” (p. 127)3. 

Exemplification, on the other hand, is a term they use “to describe any situation in which 

something specific is being offered to represent a general class to which learners’ 

attention is being drawn” (p. 127). They also classified examples as a foundational device 

that mathematics instructors use to explain mathematics concepts (p. 133). However, just 

because examples are fundamental to mathematics teaching does not mean that they are a 

trivial part of instruction. On the contrary, Bills et al. highlighted several studies that have 

found that the art of constructing examples is a highly demanding task of teaching. 

While examples can be presented in a variety of ways, Bills et al. (2006) 

emphasized that “providing worked-out examples with no further explanations or other 

conceptual support is usually insufficient”, as “learners often regard such examples as 

specific (restricted) patterns which do not seem applicable to them when solving 

problems that require a slight deviation from the solution presented in the worked-out 

                                                
3 It is important to note that the authors’ definition of example is different from 

the definition of example that I chose to use. In particular, my definition could be viewed 
as a restriction of their definition, in that it only includes examples that are done in a 
whole-class setting and not exercises that are just given to students to work through. 
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example (Reed et al. 1985; Chi et al. 1989)” (p. 140). Therefore, the authors emphasize 

that it is important for worked-out examples to include explanations and reasoning. 

In the past ten years, several researchers have focused on studying how teachers 

use examples in their classrooms. While each researcher conceptualizes “examples” in 

different ways, they all do consider examples as tasks used for illustrative purposes, 

which fits with my definition of example. In studying the purpose, design, and use of 

mathematical examples in elementary classrooms, Rowland (2008) found that teachers 

need to attend to variables, sequencing, representations, and learning objectives when 

choosing what examples to use in the classroom. Similarly, Muir (2007) found that 

teachers need to attend carefully to the examples that they choose to use when teaching 

numeracy in order to “avoid the likelihood of students developing common 

misconceptions about important mathematical concepts” (p. 513). Finally, Zodik and 

Zaslavsky (2008) examined different characteristics of how teachers choose mathematics 

examples and developed a framework that captures the teachers’ choice and generation of 

examples (Figure 2). 

The final piece of literature on mathematical examples that I have included in my 

review is by Mesa, Suh, Blake, and Whittemore (2012). This article is particularly 

relevant to my dissertation, because they looked at the opportunities to learn that were 

provided by examples included in college algebra textbooks. Mesa et al. claimed that it is 

important to consider the examples included in textbooks because instructors often draw 

upon these activities when planning the examples they want to include in their lesson (p. 

78). In particular, the authors examined the cognitive demand of the examples included in 

textbooks because research has shown that “engaging students in activities that are high 
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in cognitive demand…can indeed foster students’ development of mathematical 

proficiency” (p. 79). 

Figure 2. Zodik and Zaslavsky’s (2008) Example Cycle 

 

Mesa et al. (2012) chose to examine ten college algebra textbooks that were 

commonly used in community colleges and universities in the state of Michigan around 

the time of the study. Of the 488 examples that were included in the textbooks, 445 

(91%) of them were coded as procedures without connections, with individual textbooks 

ranging from 75%-100% in this category. Of the remaining examples, 41 (8%) were 

coded as procedures with connections, two (<1%) were coded as doing mathematics, and 

none were coded as memorization. While the authors recognized that procedures without 



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 49 

connections examples help develop procedural fluency, they also warned that 

“concentrating only on these less cognitively demanding examples can restrict students’ 

perceptions about the nature of mathematics” (pp. 96-97) and that an over-emphasis on 

procedural fluency is detrimental for students’ learning. 

Teacher Content Knowledge 

Proxies for Measuring Teacher Content Knowledge 

As mentioned in the introduction, numerous studies have investigated the effects 

of content knowledge on teaching. However, many of these studies used proxies, such as 

general content knowledge tests, teacher education, and number of years of teacher 

experience, for measuring teacher content knowledge. Using these proxies, there have 

been mixed reports concerning whether or not teacher content knowledge is positively 

correlated with student achievement.  

In 1972, Edward Begle published a report that investigated the relationship 

between teachers' content knowledge and student achievement in algebra. In order to 

“search for characteristics which distinguish effective teachers,” Begle focused on 

examining “the degree to which the teacher understands the material being taught” (p. 4). 

While this seemed to be a natural variable which would distinguish effective teachers 

from non-effective teachers, Begle found that reviewing recent studies produced “little 

empirical evidence to substantiate any claims that, for example, training in mathematics 

for mathematics teachers will have a payoff in increased mathematics achievement for 

their students” (p. 4). Thus, Begle set out to investigate further whether or not this curious 

problem existed at the high school level. 
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In his study, Begle (1972) used two sets of tests, one for teachers and one for their 

students. The teacher test was designed to measure two levels of algebra understanding: 

“that of the algebra of the real number system, to which the ninth grade high school 

algebra course is largely devoted” and that “of the abstract algebra of groups, rings, and 

fields” (p. 6). Given the assumption that a deeper understanding of the content should 

lead to better student achievement, Begle hypothesized that the second level would be 

more closely correlated with student achievement than the first. The student tests were 

administered at the end of the ninth grade: “One was devoted to algebraic computation 

and the other to understanding of algebraic concepts” (p. 7). In order to distinguish 

between differences in students, a mathematics achievement test and basic mental ability 

test were administered at the beginning of the ninth grade. 

To analyze the effects of teacher content knowledge on student achievement, 

Begle (1972) conducted a regression analysis. Consistent with the studies Begle had 

reviewed, the analysis showed that teacher content knowledge had relatively few effects 

on student achievement. In particular, teacher understanding of modern algebra had no 

significant correlation with student achievement in either algebraic computation or 

understanding of ninth grade algebra. Teacher understanding of the algebra of the real 

number system was significantly correlated with student understanding of ninth grade 

algebra, but not with student understanding of algebraic computation. However, Begle 

reported that the significant correlation between teacher understanding of algebra of the 

real number system and student understanding of ninth grade algebra was “so small as to 

be educationally insignificant” (p. 13). Based upon his review of previous findings, Begle 
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reported that, “these results were not completely unexpected but were nevertheless 

surprising” (p. 13). 

Nine years later, Eric Hanushek (1981), an economist, reviewed studies of teacher 

effectiveness and found similar results. Recognizing that educational outcomes are often 

viewed as significant and long lasting, Hanushek approached his analysis from an 

industry perspective. In order to assess “the current state of knowledge in policy-related 

research”, Hanushek focused on “research in areas where governmental actions might 

directly affect education goals our outcomes” (p. 194). In particular, Hanushek focused 

on articles that published results on the relationship between inputs (e.g., school factors, 

family background, and student body characteristics) and outputs (e.g., standardized test 

scores). The proxy that Hanushek used for teacher knowledge was the amount of 

graduate education the teacher had finished. Hanushek identified 101 studies that tested 

the statistical significance (𝛼 = 0.05) of the relationship between teacher education and 

student achievement and found that six reported a statistically significant positive 

relationship, four reported a statistically significant negative relationship, and 90 did not 

report a statistically significant relationship. Other input factors, such as teacher 

experience, were also shown to have similar counterintuitive results. In response to these 

findings, Hanushek argued that most likely they are due to the narrow way in which 

studies have measured teacher effectiveness. 

The research indicates that it is not possible to identify and measure a set of 

homogeneous input factors that enter into the production process, even though 

differences in teacher inputs are very important. The reason seems to be that 

teaching is a very complicated process.... Because of the complexity of the task 
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and an incomplete understanding of the separate elements of effective teaching, it 

is not possible to single out a small set of factors that uniformly contribute to 

good performance. (p. 205) 

While Begle (1972) and Hanushek (1981) reported a growing mound of evidence 

that teacher content knowledge (as measured by general content tests and graduate 

education) did not have an effect on student achievement, other literature reviews 

indicated the opposite. In particular, Greenwald, Hedges, and Laine (1996) and Wayne 

and Youngs (2003) found that there was a larger body of literature that found statistically 

significant correlations. Although Greenwald et al. (1996) did not look at teacher content 

knowledge directly, they followed a similar approach to Hanushek (1981) and considered 

studies which measured teacher education. Greenwald et al. (1996) identified 38 studies 

that measured teacher education and its effect on student achievement and analyzed them 

using combined significance testing and effect magnitude estimation. To analyze 

combined significance, the authors conducted two one-tailed hypothesis tests, one in 

which the null hypothesis stated “that no positive relation exists between the resource 

input and student outcomes for the population coefficients” and another in which the null 

hypothesis stated “that no negative [emphasis added] relation exists between the resource 

input and student outcome for the population coefficient” (p. 365). The authors found that 

using teacher education as the resource input resulted in rejecting the null hypothesis in 

both cases (p. 369), which implied “that there is evidence of both some positive and some 

negative relations” (p. 366). In relation to effect sizes, the authors found that “the pattern 

of effect sizes for the newer (post-1970) studies...appear to be somewhat more positive...” 

(p. 375). 
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In their review, Greenwald et al. (1996) addressed the question of "Why have 

previous reviews failed to detect positive effects?" (p. 381). In particular, the authors 

single out the vote counting methods employed by Hanushek as erroneous and 

misleading. The authors claimed that "when individual studies have relatively low 

statistical power, only a small proportion of studies would be expected to obtain 

statistical significance, even if each study were estimating the same (nonzero) effect.... 

Hence, a large proportion of significant results would not be expected...and not counting 

would be expected to miss effects" (p. 381). However, within the same issue, Hanushek 

(1996) published his own rebuttal to Greenwald et al.'s (1996) findings. In particular, 

Hanushek (1996) criticized Greenwald et al. (1996) for presenting "a distorted and 

misleading view of the potential implications of school resource policies” (p. 397). 

Ultimately, the fundamental problem with their analysis derives from a flawed 

statistical approach for investigating issues of how and when resources affect 

student performance. Their specialized meta-analytic approach to combining data 

is applicable to circumstances very different from the present ones. They assume 

that all of the schooling situations are identical, when in fact most people believe 

for good reason that they are very heterogeneous. They further assume that all of 

the studies should receive equal weight, when in fact the studies are also 

heterogeneous.... By forcing homogeneity onto the data about effectiveness, they 

both introduce powerful biases into their analysis of the results and distract 

decision makers from the important issues. (Hanushek, 1996, p. 398) 

Whether the methods used by Hanushek (1981), Greenwald et al. (1996), or 

others present the most accurate evidence of effects of content knowledge on teaching is 
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yet to be decided. However, given the disparity of results and disagreement of 

interpretations, it is clear that measuring teacher content knowledge using proxies yields 

inconclusive findings. 

Mathematical Knowledge for Teaching 

One explanation for why studies found mixed results concerning whether or not 

teacher content knowledge has a positive effect on student outcomes is because the 

proxies used to measure content knowledge were misaligned. Instead of measuring 

content that was specific to the work of teaching, proxies either used general measures of 

teacher content knowledge or were based upon the assumption that advanced-level 

content knowledge was adequate for teaching lower levels. 

In his 1985 presidential address to the American Educational Research 

Association, Lee Shulman identified "the missing paradigm" in educational research. 

Shulman (1986) claimed that in recent history, there existed a "sharp distinction between 

content and [pedagogy]" (p. 6) as evidenced by teacher examinations in the 1970s (which 

largely focused on content and ignored pedagogy) and 1980s (which largely focused on 

pedagogy and ignored content). However, Shulman claimed that this distinction was not 

always made. In medieval universities, "the purpose of the [ceremony of doctoral 

examination was] to demonstrate that the candidate possess[ed] the highest levels of 

subject matter competence in the domain for which the degree is awarded. How did one 

demonstrate such understanding in medieval times? By demonstrating the ability to teach 

the subject (Ong, 1985)...." (p. 7). In contrast to the famous quote by George Bernard 

Shaw (1999)—"He who can, does. He who cannot, teaches."— Shulman (1986) claimed 
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that "what distinguishes the man who knows from the ignorant man is an ability to teach" 

(p. 7). 

The missing paradigm Shulman (1986) identified concerned research on the 

content knowledge used in teaching. Shulman called for researchers to begin asking 

questions such as "What are the sources of teacher knowledge? What does a teacher 

know and when did he or she come to know it? How is new knowledge acquired, old 

knowledge retrieved, and both combined to form a new knowledge base?" (p. 8). 

Shulman proposed that content knowledge for teaching could be broken down into three 

categories: subject matter content knowledge, pedagogical content knowledge, and 

curricular knowledge. He defined content knowledge as "the amount and organization of 

knowledge per se in the mind of the teacher" (p. 9). In particular, subject matter 

knowledge comprised knowledge of the substantive and syntactic structure of the 

discipline (Schwab, 1978)	. Finally, Shulman (1986) defined pedagogical content 

knowledge as content knowledge "which goes beyond knowledge of subject matter per se 

to the dimension of subject matter for teaching" (p. 9). For example, pedagogical content 

knowledge (as defined by Shulman) included familiarity with different representations 

and understanding of what makes learning topics easy or difficult. 

Building upon his AERA presidential address, Shulman (1987) wrote about 

changes that must occur in teacher education in order to address the specialized 

knowledge that teachers must possess and use. He identified some categories of the 

knowledge base that teachers must possess, including content knowledge, general 

pedagogical knowledge, curriculum knowledge, pedagogical content knowledge, 

knowledge of learners and their characteristics, knowledge of educational contexts, and 
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knowledge of educational ends. Again, Shulman emphasized the importance of blending 

content and pedagogy and, in particular, focuses on pedagogical content knowledge. 

Pedagogical content knowledge is of special interest because it identifies the 

distinctive bodies of knowledge for teaching. It represents the blending of content 

and pedagogy into an understanding of how particular topics, problems, or issues 

are organized, represented, and adapted to the diverse interests and abilities of 

learners, and presented for instruction. Pedagogical content knowledge is the 

category most likely to distinguish the understanding of the content specialist 

from that of the pedagogue. (p. 8) 

Deborah Ball: Mathematical Knowledge for Teaching. Many researchers 

answered Shulman's (1986, 1987) call and began investigating content knowledge as it is 

used in teaching. Starting with her dissertation (Ball, 1988), Deborah Ball began studying 

the mathematical knowledge that is needed for elementary teachers to teach mathematics 

effectively. Specifically, she was interested in studying what was entailed in subject 

matter knowledge for teaching (Ball, 1990). While it seemed common sense to "claim 

that teachers need substantive knowledge of mathematics—of particular concepts and 

procedures (rectangles, functions, and the multiplication of decimals, for example)" (p. 

458), Ball argued that teachers needed to know more. In particular, Ball claimed that it 

was important for teachers to also know about mathematics: "This includes understanding 

about the nature of mathematical knowledge and of mathematics as a field" (p. 458). 

The main reason why Ball (1990) claimed that there was "more" mathematics that 

teachers needed to know was due to the nature of teaching. 
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In order to help someone else understand and do mathematics, however, being 

able to `do it' oneself is not sufficient. Teachers must not only be able to describe 

the steps for following an algorithm but also discuss the judgments made and the 

meanings of and reasons for certain relationships or procedures. (pp. 458-459) 

Echoing Shulman's concerns regarding teacher examinations, Ball critiqued the current 

trend in teacher preparation programs. She claimed that "despite the fact that subject 

matter knowledge is logically central to teaching (Bachmann, 1984), it rarely figures 

prominently in teacher preparation" (p. 462). Moreover, Ball felt that "the fact that the 

subject matter preparation of [elementary] teachers is left to precollege and `liberal arts' 

college mathematics" was problematic (p. 462). In particular, Ball felt that three common 

assumptions concerning subject matter knowledge for teaching were erroneous. First, 

people assume that traditional school mathematics content is simple. Contrary to this 

belief, Ball cited various studies which show that even elementary mathematics is 

complex and difficult to teach (Duckworth, 1987; Lampert, 1985, 1986, 1989). Second, 

people assume that elementary and secondary school mathematics classes can prepare 

teachers to teach mathematics (Ball, 1990, p. 463). While it is true that most teachers 

have taken and passed the classes that they are teaching, Ball claimed that is not enough 

preparation for teaching that content. And third, people assume that majoring in 

mathematics ensures subject matter knowledge. While it may seem logical to assume that 

deeper understanding equates to better teaching, I will later review several studies that 

have shown that this is not the case. 

In 2008, Ball, Thames, and Phelps published the formal theoretical framework for 

mathematical knowledge for teaching (MKT) that Ball and her colleagues had been 
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working to develop over the past two decades. Even though several researchers had 

responded to Shulman's original call to study content knowledge for teaching, the authors 

recognized that "this bridge between knowledge and practice was still inadequately 

understood and the coherent theoretical framework Shulman (1986, p. 9) called for 

remained underdeveloped" (p. 389). In order to develop this framework, the authors used 

the work that had been produced by Ball and her colleagues at the University of 

Michigan under the Mathematics and Learning to Teach Project and Learning 

Mathematics for Teaching Project. In order to study content and its role in teaching, Ball 

and her colleagues chose to focus on the work of teaching. Instead of examining 

curriculum and standards, or asking experts mathematicians and educators to identify 

core ideas and skills, or reviewing research on students' learning, the authors began with 

practice. The aim of their analysis was to "develop a practice-based theory of 

mathematical knowledge as it is entailed by and used in teaching (Ball, 1999; Thames, 

2008)" (p. 396). 

Ball et al. (2008) defined MKT as "the mathematical knowledge needed to carry 

out the work of teaching mathematics" (p. 395). In the framework developed by Ball et 

al., MKT is broken down into the subdomains of subject matter knowledge (SMK) and 

pedagogical content knowledge (PCK), which purposefully reflect the domains of content 

knowledge that were initially identified by Shulman (1986). Subject matter knowledge is 

further broken down into common content knowledge (CCK), horizon content knowledge 

(HCK), and specialized content knowledge (SCK). Pedagogical content knowledge is 

further broken down into knowledge of content and students (KCS), knowledge of 

content and teaching (KCT), and knowledge of content and curriculum (KCC). This 
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decomposition of MKT is often referred to as "the egg", due to the diagram that it was 

originally illustrated with (see Figure 3). 

Figure 3. Ball et al.’s (2008) Decomposition of Domains of MKT 

 

Ball et al. (2008) defined common content knowledge as "the mathematical 

knowledge and skill used in settings other than teaching" (p. 399). For example, this 

would include the ability to correctly solve mathematical problems. As a point of 

clarification, the authors did no intend "common" to indicate that everyone has this 

knowledge: "Rather, we mean to indicate that this is knowledge of a kind used in a wide 

variety of settings--in other words, not unique to teaching" (p. 399). In contrast, 

specialized content knowledge was defined as "the mathematical knowledge and skill 

unique to teaching" (p. 400). For example, knowledge of how to decompress/unpack 

mathematical ideas to make them accessible to students (e.g., explaining why dividing by 

a fraction is equivalent to multiplying by its reciprocal) is an example of SCK. An 

example of knowledge of content and students is knowing common student conceptions 

and misconceptions. An example of knowledge of content and teaching is knowing how 

to sequence content for instruction. 
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Although it is not a focus of the paper, the authors do give a definition of horizon 

content knowledge: "an awareness of how mathematical topics are related over the span 

of mathematics included in the curriculum" (Ball et al., 2008, p. 403). Knowledge of 

content and curriculum is not defined, but rather they identified it as being synonymous 

with Shulman's (1986) conceptualization of curricular knowledge. Here, the authors 

noted that "we have placed Shulman's third category, curricular knowledge, within 

pedagogical content knowledge. This is consistent with later publications from members 

of Shulman's research team (Grossman, 1990)" (Ball et al., 2008, pp. 402–403). The 

authors also noted that there are several limitations of their framework. First, because it 

was developed by examining practice, the framework "brings in some of the natural 

messiness and variability of teaching and learning. As we ask about the situations that 

arise in teaching that require teachers to use mathematics, we find that some situations 

can be managed using different kinds of knowledge" (p. 403). Also, splitting up the 

domain into categories makes it appear static. 

A third problem related to the categorization of the domain is that "it is not always 

easy to discern where one of our categories dives from the next, and this affects the 

precision (or lack thereof) of our definitions" (p. 403). However, Ball et al. felt that the 

categories provide a useful structure for "studying the relationship between teachers' 

content knowledge and their students' achievement", studying "whether and how different 

approaches to teacher development have different effects on particular aspects of 

teachers' pedagogical content knowledge", and "inform[ing] the design of support 

materials for teachers as well as teacher education and professional development" (p. 

405).  
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The Knowledge Quartet. In addition to the framework for mathematical 

knowledge for teaching developed by Ball et al. (2008), other frameworks have also been 

developed. Rowland, Huckstep, and Thwaites (2005) published a framework for 

elementary teachers' mathematical subject knowledge called the Knowledge Quartet 

(KQ). Like Ball, they sought to develop an empirically based conceptual framework of 

content knowledge for teaching by analyzing videotapes of teaching. Specifically, they 

used grounded theory to analyze the practice of a group of preservice teachers who were 

at the end of their initial training in order to identify the mathematics-related knowledge 

the teachers used during their practice (p. 255). While analyzing the videos, they focused 

on “aspects of trainees' actions in the classroom that seemed to be significant in the 

limited sense that it could be construed to be informed by a trainee's mathematics content 

knowledge or their mathematical pedagogical knowledge" (p. 258). Following an 

inductive process, they generated a set of 18 codes, which they later categorized into four 

broad dimensions: foundation, transformation, connection, and contingency. 

Rowland et al. (2005) defined foundation as "the foundation of the trainees' 

theoretical background and beliefs. It concerns trainees' knowledge, understanding and 

ready recourse to their learning in the academy, in preparation (intentionally or 

otherwise) for their role in the classroom" (p. 260). The authors claimed that foundation 

is closely related to Shulman's idea of propositional form (Shulman, 1986, p. 10) and 

Shulman's first aspect of pedagogical reasoning, comprehension (Shulman, 1987, p. 14). 
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The final three dimensions follow from foundational knowledge, but are also 

markedly different in that they "focus on knowledge-in-action" (Rowland et al., 2005, p. 

261). The second dimension, transformation, is defined using the words of Shulman 

(1987): "The capacity of a teacher to transform [emphasis added] the content knowledge 

he or she possess into forms that are pedagogically powerful" (p. 15). This includes the 

ability to use teacher resources to choose examples "to assist concept formation, to 

demonstrate procedures, and [to select] exercise examples for student activity" (Rowland 

et al., 2005, p. 262). 

The third dimension, connection, "concerns the coherence of the planning or 

teaching displayed across an episode, lesson or series of lessons" (Rowland et al., 2005, 

p. 262). This includes sequencing mathematical content based upon not only the 

mathematical structure, but also the "relative cognitive demands of different topics and 

tasks" (p. 263). The authors described the final dimension, contingency, as "concern[ing] 

classroom events that are almost impossible to plan for. In commonplace language it is 

the ability to `think on one's feet': it is about contingent action" (p. 263). For example, 

teachers must be able to respond to student ideas and, when appropriate, deviate from the 

planned agenda. 

Knowledge of Algebra for Teaching. While the previous two frameworks of 

mathematical knowledge for teaching were developed by observing elementary teachers, 

the next framework was specifically developed to apply to teaching algebra at the 

secondary level. McCrory, Floden, Ferrini-Mundy, Reckase, and Senk (2012) developed 

their framework, Knowledge of Algebra for Teaching (KAT), in order to better 
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understand "both what knowledge matters and how it matters" (p. 585). The authors 

began their framework development by analyzing domains of mathematical knowledge 

from research and policy documents. This stage of analysis was used to inform the first 

dimension of their framework, which encapsulated what knowledge mattered. The second 

dimension of their framework, which encapsulated how that knowledge mattered, was 

formed by analyzing textbooks, teaching videos, and interviews with teachers. 

In developing the first dimension of KAT that describes what knowledge matters, 

McCrory et al. (2012) primarily drew upon three documents: The Mathematical 

Education of Teachers (Conference Board of the Mathematical Sciences, 2001), 

"Mathematical Proficiency for All Students: Toward a Strategic Research and 

Development Program in Mathematics Education" (RAND Mathematics Study Panel, 

2002), and "Teachers' Mathematics: A Collection of Content Deserving to be a Field" 

(Usiskin, 2001). The first category in this dimension is knowledge of school algebra, 

which is defined to include "the content that typically would be taught and tested in U.S. 

high school courses conventionally called Algebra I and Algebra II" (McCrory et al., 

2012, p. 596) and came from analysis of the CBMS book (2001) and RAND report 

(2002). The second category is knowledge of advanced mathematics, which "includes 

other mathematical knowledge, in particular college-level mathematics, that gives a 

teacher some perspective on the trajectory and growth of mathematical ideas beyond 

school algebra" (McCrory et al., 2012, p. 597) and came from the CBMS book (2001). 

The third category is mathematics-for-teaching knowledge, which the authors defined as 

"mathematics that is useful in teaching, but is not typically taught in conventional 

mathematics classes either at the high school or postsecondary levels" (McCrory et al., 
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2012, p. 598) and came from Usiskin's presentation (2001). Note that the authors also 

identified this final category as similar to what Ball and colleagues identified as 

specialized content knowledge. 

The second dimension of the KAT framework describes how the knowledge 

described in the first dimension of mathematical knowledge is used in teaching. The first 

category, decompressing, "describes the need for teachers to decompress their knowledge 

in the practice of teaching" (McCrory et al., 2012, p. 1) and is related to the idea of 

unpacking that is talked about by Ball and Bass (2000b) and Cohen (2011). The second 

category, trimming, refers to the idea that "teachers may find it useful to `trim' the 

mathematical content in a way that matches students' current level of sophistication while 

treating the mathematics with integrity" (McCrory et al., 2012, p. 604) and is related to 

Bruner's (1960) idea of intellectually honest teaching and Ball and Bass's (2000a) idea of 

maintaining mathematical integrity. The last category, bridging, is defined as "efforts to 

connect and link mathematics across topics, courses, concepts, and goals, including 

connecting the ideas of school algebra to those of abstract algebra and real analysis, and 

linking one area of school mathematics to another" (McCrory et al., 2012, p. 607). When 

taken together, the two dimensions of mathematical knowledge form an array that can be 

used to analyze the teaching algebra at the secondary level.  
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COACTIV. In Germany, another framework for mathematical knowledge for 

teaching was developed under the COACTIV study (Baumert & Kunter, 2013; Krauss et 

al., 2008). Like the other frameworks described previously, the COACTIV framework 

was also developed as a response to the call by Shulman (1986, 1987). However, the 

COACTIV model does encompass a broader range of teacher professional competence, 

such as general pedagogical, organizational, and counseling knowledge (Baumert & 

Kunter, 2013). Since the focus of my study is primarily on content knowledge and 

pedagogical content knowledge, I will only describe those aspects of their model. Like 

KAT, the COACTIV model was developed to apply to the secondary level. The 

COACTIV model distinguished four levels of understanding of content being taught: (1) 

academic research, (2) a profound understanding of the mathematical content taught in 

school, (3) a command of the mathematical content covered at the level being taught, and 

(4) everyday mathematical knowledge that all adults who graduated from high school 

should have (p. 33). 

In the COACTIV model, the content knowledge needed for teaching mathematics 

as synonymous with the second level: a profound understanding of the mathematics 

content taught in school. Baumert et al. (2010) cited this conceptualization of content 

knowledge for teaching as aligning with the National Council of Teachers of 

Mathematics (2000) and the National Mathematics Advisory Panel (2008). In regards to 

pedagogical content knowledge, the COACTIV model identified three dimensions: 

knowledge of mathematical tasks, knowledge of students' mathematical thinking, and 

explanatory knowledge (Baumert & Kunter, 2013). The first dimension, knowledge of 

mathematical tasks, is defined as "knowledge of the didactic and diagnostic potential of 
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tasks, their cognitive demands and the prior knowledge they simplicity require, their 

effective orchestration in the classroom, and the long-term sequencing of learning content 

in the curriculum" (p. 33). The next two dimensions are based directly upon Shulman's 

(1986) general categorization of pedagogical content knowledge. Knowledge of students' 

mathematical thinking is defined as "knowledge of student cognitions (misconceptions, 

typical errors, strategies) and ways of assessing student knowledge and comprehension 

processes (Baumert & Kunter, 2013, p. 33). The last dimension, explanatory knowledge, 

is defined as "knowledge of explanations and multiple representations" (p. 33).  
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CHAPTER 3: RESEARCH METHODS 

Rationale 

Studying Mathematical Knowledge for Teaching 

In their 2008 article on mathematical knowledge for teaching, Ball and her 

colleagues acknowledged that there are several ways researchers could approach the 

question, "What mathematics do teachers need to know in order to teach effectively?" 

First, one could examine curriculum and standards—the material that usually dictates the 

content that teachers are expected to convey to their students—and make a list of what 

teachers need to know. Second, one could ask content specialists—such as 

mathematicians—to identify the core ideas and skills that are required to teach the 

curriculum. However, the disadvantage of both of these approaches is that they rely on 

knowledge that is unattached from the very act of teaching itself. While the curriculum 

delineates what content they need to teach, it doesn't uncover how that content must be 

understood or what else the teacher needs to know in addition. Mathematicians may have 
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an advanced understanding of the content, but their understanding is for their personal 

use, not situated in the context of teaching others to build understanding. 

Instead of choosing either of these routes, Ball et al. (2008) approached their 

question from the perspective of practice. Instead of speculating about what teachers 

needed to know, they chose to investigate what mathematical knowledge teachers used in 

and for teaching. It is commonly accepted that teachers need to know the content for 

which they are responsible to teach to students, however, Ball et al. were interested in 

examining what else teachers needed to know beyond that. By examining teaching, they 

conducted a sort of "job analysis" in order to better ascertain "the mathematical 

knowledge needed to carry out the work of teaching mathematics" (p. 395). 

It is my intention to follow this approach in conducting my dissertation research. 

The framework by Ball et al. (2008) is the product of over twenty years of practice-based 

research that Ball and her colleagues have been conducting on teacher knowledge. 

Several other researchers have also attempted to answer the question of "What 

mathematical knowledge do teachers need to know in order to teach effectively?” 

however, not everyone has continued to follow the approach heralded by Ball. Some 

researchers have attempted to take the practice-based theory developed by Ball et al., 

which was developed using a collection of records of elementary teaching, and extend it 

to higher grade levels. However, Speer, King, and Howell (2015) claimed that such an 

extension is not necessarily appropriate. Instead, the authors challenged researchers to 

explore "the types of knowledge entailed in the work of teaching...through the same kinds 

of careful study of the mathematical demands of teaching that sparked the early work on 

mathematical knowledge for teaching (Ball and Bass 2000)" (p. 119). 
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Grounded Theory 

In reading the works of Ball, I found it difficult to ascertain exactly what 

methodological approach she was using. However, there was a recurrent theme that 

sprung up in her descriptions: 

• "In order to ground our inquiry, we analyze data from elementary classroom 

teaching of mathematics" (Ball & Bass, 2000a, p. 198), 

• "We seek to identify patterns, themes, mathematical issues and lacunae, and to 

support the identification of those with evidence in the records" (Ball & Bass, 

2000a, p. 201), 

• "...when theoretical ideas emerge from observations of patterns across the data, 

we can use them as a sense for viewing other records, of other teachers' practices, 

and either reinforce or modify or reject our theoretical ideas in line with their 

adaptability to the new data.... This would permit the discussion of theoretical 

ideas to be grounded in a publicly shared body of data, inherently connected to 

actual practice" (Ball & Bass, 2003, pp. 5–6). 

In these quotes, we can see that Ball and her colleagues aimed to develop theory that is 

grounded in data through the identification of patterns. 

It is for this reason that I believe that Ball's approach to studying the practice of 

teaching agrees with the purpose and tenants of grounded theory. Strauss and Corbin 

(1994) defined grounded theory as "...a general methodology for developing theory that is 

grounded in data systematically gathered and analyzed" (emphasis added, p. 273). Herein 

we see the connection to Ball's method of studying the practice of teaching. Both 

approached theory development from the perspective that it should be intrinsically 
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connected to data. In addition, not only do both agree on the approach to developing 

theory, but they also agree that the purpose of theory is to identify plausible relationships 

through systematic analysis of data, not to uncover "preexisting reality" (p. 279). Instead, 

Strauss and Corbin proposed that "...grounded theories...are systematic statements of 

plausible relationships" (p. 279). Similarly, Ball (1999) cited that her aim is to "...produce 

plausible analyses of teaching and learning that interplay mathematical perspective with 

pedagogy, with an eye to expand the range of mathematical possibility that might be 

seen, heard, located, and, in turn, nurtured, in teaching and learning" (p. 31). 

Even if I temporarily put aside the methods used by Ball, I believe that grounded 

theory is still the best tool to use in answering my research questions. If I want to focus 

my analysis on the work of teaching, then staying grounded in data when developing my 

theory is of upmost importance. Also, the coding process for grounded theory is iterative 

and focused upon the development of theory. First, the researcher begins with open 

coding, which "...is the interpretive process by which data are broken down analytically" 

(Corbin & Strauss, 1990, p. 423). The purpose of using open coding is to help the analyst 

situate themselves in the data and to break "...through standard ways of thinking about 

(interpreting) phenomena reflected in the data" (p. 423). As the researcher begins to 

identify categories that emerge during open coding, they next engage in axial coding, 

wherein "...categories are related to their subcategories and those relationships are tested 

against data" (p. 423). Finally, in order to reach the point of saturation, which is "...when 

no new information seems to emerge during coding..." (Strauss & Corbin, 1998, p. 136) 

the grounded theory researcher must conduct theoretical sampling and coding. 

Theoretical sampling is defined as “data gathering driven by concepts derived from the 
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evolving theory and based on the concept of ‘making comparisons’," (p. 191). By 

conducting theoretical sampling, the analyst will be able to conduct the final round of 

selective coding, which “...is the process by which all categories are unified around a 

central `core' category and categories that need further explanation are filled in with 

descriptive detail" (Corbin & Strauss, 1990, p. 424). 

It is evident that Anselm Strauss and Juliet Corbin heavily influence my 

conceptualization of the grounded theory methodology. However, I feel that it is 

important for me to acknowledge that there are several approaches to grounded theory. 

Grounded theory was first introduced by Barney Glaser and Anselm Strauss in The 

Discovery of Grounded Theory (1999\1967). Since then, Glaser and Strauss have 

developed separate approaches to grounded theory and more recently Kathy Charmaz 

(2006) has developed an approach called constructivist grounded theory. Glaser's (1992) 

approach to grounded theory is a purely inductive process focused on theory development 

and is less structured. Strauss and Corbin (1998) use both inductive and deductive 

processes, stress the importance of verification, and use a more structured analytic 

process. Finally, Charmaz (2006) focus on the influence of the perspective of the 

researcher as they are involved in constructing the theory. The reason I chose to use 

Strauss and Corbin's (1998) approach is because I want to use the power of both 

induction and deduction (which as I mentioned previously, is similar to abduction) and 

because I like the structure that is provided using their method.  

One question that naturally arises as a result of my choosing grounded theory as 

my methodological framework is why am I qualified to do grounded theory research? 

Strauss and Corbin (1998) cited six characteristics that a grounded theorist must possess. 
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First, a grounded theorist must have "the ability to step back and critically analyze 

situations" and "the ability to recognize the tendency toward bias" (p. 7). As I have taken 

courses in qualitative research methodology and been involved in several projects that 

have used grounded theory, I have begun to develop the ability to critically analyze 

situations. However, Strauss and Corbin emphasize that the ability to analyze must be 

coupled with the ability to step back and recognize the tendency toward bias. Since I am 

familiar with the literature surrounding mathematical knowledge for teaching, I realize 

that this might be one area I struggle with. However, Erickson (1986) argued that there is 

a way to combat bias and preconceived notions in order to make sure that the data is 

speaking for itself. 

One can argue that there are no pure inductions. We always bring to experience 

frames of interpretation, or schemata. From this point of view, the task of 

fieldwork is to become more and more reflectively aware of the frames of 

interpretation of those we observe, and of our own culturally learned frames of 

interpretation we brought with us to the setting. (p. 140) 

Acknowledging that it is natural to bring hypotheses to any research, Erickson claimed,  

"...`observing without any preconceptions'...is a misleading characterization. 

Preconceptions and guiding questions are present from the outset, but the researcher does 

not presume at the outset to know where, specifically, the initial questions might lead 

next" (p. 143). 

Next, Strauss and Corbin (1998) stated that a grounded theorist must have "the 

ability to think abstractly" (p. 7). In the coursework I have completed for my 

undergraduate and graduate degree, I have been trained to think abstractly in the field of 
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mathematics4. While this field does differ from social science in many ways, I believe 

that I can draw upon my experience with reasoning abstractly in mathematics in order to 

reason abstractly in conducting grounded theory research.  

Strauss and Corbin (1998) also claimed that grounded theorists must have "the 

ability to be flexible and open to helpful criticism" (p. 7). Unlike the previous traits, this 

is a characteristic I have more recently begun to develop. I often excelled in school and 

sought to please my parents at home, so criticism is something I was rarely exposed to. 

However, I am finding that in learning to become an educational researcher, I must learn 

to be open to "helpful criticism." While I'm not opposed to "helpful criticism" at face 

value, I often find that I want to work privately until I can present what I view to be as 

my finished or perfected work. Yet, I realize that by limiting what I share and, therefore, 

what feedback I receive, I am limiting my personal growth. Thus, this is a characteristic I 

feel I am still developing, but conscious of my need for. 

Next, Strauss and Corbin claimed that grounded theorists need "sensitivity to the 

words and actions of respondents" (p. 7). While on one hand I am naturally a "listener," 

I'm also developing my sense of "sensitivity" to what people say. While reading in 

preparation for writing my literature review, I realized from conversations with others 

that often the way I would summarize a paper was heavily influenced by the main point 

that I took away from it. Once I recognized that I was confounding what I took away 

from the paper with the main argument the paper made, I felt like I was able to begin 

                                                
4 It is important to note that although I am completing my dissertation research in 

the field of mathematics education, I am still earning a doctoral degree in mathematics. In 
particular, I have taken all of coursework required for doctoral students in the 
mathematics department who study pure and applied mathematics and have passed both 
qualifying and comprehensive exams in mathematics. Therefore, I view myself as a 
mathematician who is trained to conduct research in mathematics education. 



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 78 

parsing the two apart. The final characteristic that Strauss and Corbin identified as 

something that grounded theorist must have is "a sense of absorption and devotion to the 

work process" (p. 7). While perhaps I am making too broad of a generalization, I believe 

that it is safe to say that most people who pursue a Ph.D. must possess such devotion. 

Therefore, I believe that although I may not be a grounded theorist specialist and I 

recognize that I still have much to learn, I am able to complete grounded theory research 

in an appropriate manner. 

Stimulated-Recall Interviews 

The ideal study of the pedagogical work and knowledge entailed in teaching 

would collect data on the exact work done and knowledge used while teaching. However, 

since such data mostly occurs in the mind of the teacher and often is not observable, such 

instantaneous data collection is impossible. Thus, the practice of teaching must be studied 

through other means. This could be done by asking teachers, "What knowledge do you 

use when...?" However, hypothetical questions are not situated in practice, which is a 

scenario I want to avoid. Alternatively, we could a priori ask, "What knowledge did you 

use when...?" However, retrospective questions depend upon the interviewer being able 

to correctly recall the situation and reconstruct the knowledge they used. A third 

alternative would be to use the method of think-aloud protocol (Lewis, 1982), which asks 

the interviewee to verbalize their thoughts as they work through an activity. However, 

using a think-aloud protocol with observations would necessitate that the teacher think-

aloud while teaching, which would be unnatural and disruptive for the students. 

An alternative to the previous methods is to use stimulated-recall interviews. 

Bloom (1953) is often cited as the founder of the technique, although he drew inspiration 
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for his interview methodology from other researchers. In his study, Bloom audio recorded 

lectures on tape and them played them back to students during interviews in order to 

revive "memories after the class in order to determine the thoughts which occurred during 

the class" (p. 161). According to Bloom, "the basic idea underlying the method of 

stimulated recall is that a subject may be enabled to relive an original situation with 

vividness and accuracy if he is presented with a large number of cues or stimuli which 

occurred during the original situation" (p. 161). Bloom admitted that even stimulated-

recall is bound to include some elements of retrospective thought. However, he "found 

that as high as 95 per cent [sic] accurate recall of such overt, checkable events within two 

days" (p. 162). Thus, Bloom suggested that researchers using stimulated-recall could 

anticipate "that the accuracy of the recall of conscious thoughts is high enough for most 

studies of learning situations--if the interviews are made within a short time after the 

event" (p. 162). 

Like Bloom (1953), other researchers have discussed the limitations and problems 

associated with using stimulated-recall. Yinger (1986) pointed out "that the participant is 

not likely to know if a thought is recalled or constructed. A researcher is even less likely 

to be able to untangle these two very different types of reports" (p. 270). Also, when the 

interviewer is asked to view a video or audio recording of themselves and then report 

what they were thinking in that moment, they are tasked with the cognitive demand of 

understanding and interpreting their past behavior, which is not easily done. Additionally, 

Calderhead (1981) pointed out that "some areas of a person's knowledge have never been 

verbalized and may not be communicable in verbal form" (p. 213). In particular, he 

points out that this may be especially true for experienced teachers, since they most likely 
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have reached a level of cognitive atomization. Since my plan is to observe and interview 

experienced teachers, this is a limitation of my study that I will have to keep in 

consideration. 

Data Collection 

Participants 

The graduate student instructors involved in my study had experience teaching 

precalculus courses. Here, I defined experienced as any graduate student instructor who 

has taught precalculus for at least two semesters previously. The reason why I chose to 

study experienced instructor is twofold. First, the mathematics department that my 

participants taught in required that precalculus instructors use specific instructional 

methods. Instruction is centered on group work and very little time is allocated each 

lesson for lecturing. Given the fact that this is atypical, although increasing in prevalence, 

for undergraduate courses, my assumption is that novice first-year instructors will not 

have taught using primarily group work before. 

Second, precalculus instructors are given and asked to follow specific lesson 

guides for each day. While the standardization of lesson guides is beneficial in the sense 

that it provides the teacher with suggested sequencing, examples, and timing, novice 

instructors will still be teaching the content for the first time. Therefore they may struggle 

with not knowing the content as well as they need to in order to teach it or the expansive 

amount of variation associated with the content, such as student conceptions and 

misconceptions or different approaches to teaching procedures and concepts. So taking 
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these two factors into consideration, I chose to observe experienced rather than novice 

graduate student instructors. 

Sampling 

During the first semester that I observed instructors, I asked them to provide me 

with three different dates, spread out through the semester, where I could come into their 

classroom to observe. Since the instructor was picking these dates, I observed lessons at 

random. Also, there were several lessons that I only observed part of because even if they 

were spread out over multiple days, I only asked to observe one day at a time. During the 

second semester that I observed instructors, I chose specific lessons that I wanted to 

observe and verified that these dates would work with the instructors. The lessons that I 

chose were more procedural in nature, because I thought that these would give me an 

opportunity to observe examples that could be enacted as either high or low cognitive 

demand, since procedural tasks can be enacted with or without an emphasis on 

connections. Several of these lessons were spread out over two days, so I would come to 

the classroom both days to observe. 

Pre-Observation Interview 

Before each classroom observation, I meet with the instructor to discuss their 

lesson plan. In particular, I focused on the examples that they chose to include and 

unpacked why they chose to include them. Typically, we met the morning before they 

taught the lesson, although occasionally this did not work with the instructors’ schedule, 

so we would meet the day before. The full semi-structured pre-observation interview 

protocol can be found in Appendix B.  
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Observation 

During the classroom observations, I videotaped the examples that the instructor 

enacted. Since my dissertation primarily focuses on the instructor, I only used one video 

camera on a tripod to capture what the instructor was doing. I also took detailed field 

notes in my observation protocol, which can be found in Appendix B. During each 

example, I would capture both what was said and what was written on the board. Then, if 

there was time between the end of one example and the beginning of another, I would 

capture my thoughts related to the cognitive demand of the example. After each 

observation, I would fill in more details about each example and reflect on the lesson as a 

whole. The full observation protocol that I used can be found in Appendix B. 

Post-Observation Interview 

Usually within 24 hours after each classroom observation I conducted a 

stimulated-recall interview with the instructor, lasting between 30 minutes to an hour. 

Occasionally this timeframe did not work out with the instructor, but we were always 

able to meet within 48 hours of the class. Before the interview, I will complete a pre-

analysis of the video observation and tag moments to unpack with the instructor. In 

particular, I chose moments that related to decompressing, bridging, trimming, eliciting 

and interpreting student thinking, and using multiple representations5.  

                                                
5 I chose to focus on decompressing, bridging, and trimming because these three 

teaching practices were identified by McCrory, Floden, Ferrini-Mundy, Reckase, and 
Senk (2012). Since instructors presented examples in different ways, I wanted to know 
how they were gaging whether or not students were following or understanding the 
example, which is why I asked about eliciting and interpreting student thinking. Finally, 
many high cognitive demand examples involve multiple representations, which is why I 
wanted to unpack this aspect. 
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During the interview, I showed the instructor 30 seconds to one minute of the 

moments that I tagged to help them recall what was happening. I then asked the instructor 

about the pedagogical work and the mathematical knowledge they used during the 

example enactment. As I brought up earlier, the use of interviews is standard in grounded 

theory but not always recommended by researchers who are studying knowledge used in 

teaching. My initial belief was that using stimulated-recall interviews would aid me in 

understanding the mathematical knowledge the instructor used in teaching. However, it is 

possible that the teachers’ reflections were inaccurate or contrived. 

Data Analysis 

Since my dissertation follows a three-paper structure, I have reserved discussion 

of the analytical frameworks I used in my analysis for each individual paper (Chapters 4-

6). However, in the following sections I will discuss the general procedures that I 

followed during my data analysis. 

Primary Coding Stages 

There were four stages of coded that I conducted for my data analysis. 

Cognitive demand. First, I used my modified framework for cognitive demand 

(see Table 7) to code the cognitive demand of the example. The purpose of conducting 

this stage of coding was to identify examples that were enacted at a high level of 

cognitive demand for me to analyze in my subsequence stages of coding. 

Roles of instructors. Next, I went through each high cognitive demand example 

and segmented it into times where the instructor was modeling content, practices, and 
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strategies for students; facilitating whole class discussions; and monitoring students as 

they worked through parts of the example individually or in small groups. The purpose of 

doing this stage of analysis was to help answer RQ2 and the second parts of RQ3 and 

RQ4. 

Pedagogical work. In my third stage, I conducted open, axial, and selective 

coding (which are described in the next section) of the pedagogical work entailed in 

enacting high cognitive demand examples. The purpose of doing this stage of analysis 

was to help answer RQ3. 

Mathematical knowledge. In my final primary stage of coding, I conducted 

open, axial, and selective coding of the mathematical knowledge entailed in enacting high 

cognitive demand examples. The purpose of doing this stage of analysis was to help 

answer RQ4. 

Secondary Coding Stages 

Strauss and Corbin (1998) described grounded theory coding as consisting of 

three stages: open coding, axial coding, and selective coding. 

Open coding. Open coding requires the analyst to break down the data and 

examine it for the purpose of comparing for similarities and differences and identifying 

emergent categories. By comparing data to bring to light similarities and differences, the 

analyst should begin to identify patterns that emerge from the data. Given these patterns, 

conceptually similar ideas are grouped together to form categories. In identifying 

emergent categories, it is also important to define their properties and how they vary 

dimensionally. Strauss and Corbin (1998) suggested three different ways of doing open 

coding: line-by-line analysis, sentence or paragraph analysis, and entire document 
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analysis. In order to uncover both specific and general categories, open coding should be 

done at each level. 

Axial coding. Following the identification of emergent categories, axial coding is 

used to uncover how the categories are related to their subcategories. In open coding, the 

data is broken down into discrete pieces of information to ensure that it can be closely 

examined. The purpose of axial coding is to "begin the process of reassembling data that 

were fractured during open coding" (Strauss & Corbin, 1998, p. 124). To identify the 

relationships between categories and subcategories, the analyst must both consider the 

structure and the process by which they are connected. The structure is manifested in the 

conditions that answer the questions of why, where, how come, and when. The process is 

manifested in the actions and interactions "made by individual or groups to issues, 

problems, happenings, or events that arise under those conditions" (p. 128) and results in 

consequences. Each of these aspects (conditions, actions/interactions, and consequences) 

must be identified through axial coding in order to establish the relationships between the 

categories and subcategories. Once saturation has been reached, which occurs "when no 

new information seems to emerges during coding" (p. 136), then we are ready to move on 

to the final stage of coding. 

Selective coding. The final stage of coding for grounded theory is necessary for 

theory development to have conceptual density, which "...refers to richness of concept 

development and relationships—which rests on great familiarity with associated data and 

are checked out systematically with these data" (Strauss & Corbin, 1994, p. 274). In the 

process of selective coding, categories are refined and integrated. In particular, 

identification of a central "core" category is important. The "core" must appear frequently 
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in the data, be logically and consistently related to the categories, sufficiently abstract, 

possess explanatory power, and yet account for variation. The analyst must also refine the 

theory by evaluating for internal consistency and logic, filling in underdeveloped 

categories, trimming overdeveloped categories, and validating. Instead of functioning as 

a separate stage of coding, selective coding rather is used to strength both the categories 

identified through open coding and the relationships established during axial coding. 

For an overview of my study and to see how my research questions, data 

collection, and data analysis align, I have included a study diagram in Figure 16 in 

Appendix C. 
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CHAPTER 4: EXAMINING THE ROLE OF THE INSTRUCTOR 

The cognitive demand of mathematical tasks is something that has been widely 

studied in the literature (Boston & Smith, 2009; K. J. Jackson et al., 2012; Kisa & Stein, 

2015; Smith & Stein, 1998; Stein et al., 1996) . Studies have found that high cognitive 

demand tasks provide students with more opportunities to learn (Floden, 2002; K. 

Jackson et al., 2013; Smith & Stein, 1998; Stein et al., 2007). Researchers have also 

found that high cognitive demand tasks are difficult for instructors to enact (Henningsen 

& Stein, 1997; Rogers & Steele, 2016) and are related to mathematical knowledge for 

teaching (Charalambous, 2010). But what would it mean to have a high cognitive demand 

mathematical example? Examples are different from mathematical tasks that are 

primarily worked on by students. Examples may involve input from students or 

opportunities for students to work independently or in groups on parts of the example, but 

usually the teacher plays a leading role in working out or explaining the mathematics. 

While studies have shown that students do not learn as much from observing a 

worked out example as they do from actively engaging in the problem solving process 

(Richey & Nokes-Malach, 2013), the examples that teachers use still play an important 
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role in the learning process (Chick, 2007; Muir, 2007; Rowland, 2008; Zaslavsky & 

Zodik, 2007). In particular, Ball and her colleagues (TeachingWorks, 2017) identified 

“explaining and modeling content, practices, and strategies” as a high-leverage practice 

that is part of the core fundamentals of teaching. In addition, we create a dissonance in 

our classrooms if we expect our students to successfully engage with high cognitive 

demand tasks, but only ever present low cognitive demand examples. The purpose of this 

paper is to modify the Task Analysis Guide developed by Smith and Stein (1998) so that 

it can be used to analyze examples. In addition, I illustrate how high cognitive demand 

examples can differ in terms of the role and participation of the teacher and the students. 

Conceptual Frameworks 

Task Unfolding 

Stein et al. (1996) defined a mathematical task as “a classroom activity, the 

purpose of which is to focus students’ attention on a particular mathematical idea” (p. 

460). They also described the phases involved in the unfolding of a mathematical task 

and the factors that influence this unfolding. In 2007, Stein, Remillard, and Smith 

generalized task unfolding to apply to curriculum unfolding more generally, but the 

underlying process remained the same. In Figure 4, the rectangle boxes represent the 

three phases of task unfolding. The written task describes how the mathematical task is 

represented in the written curriculum or instructional materials. The intended task 

describes the teacher’s plan for implementing the task during instruction. Finally, the 

enacted task captures how the mathematical task is actually implemented during 

instruction. While each phase has an impact on student learning (represented by the 
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triangle in Figure 4), studies have shown that the enacted task has the greatest impact 

(Carpenter & Fennema, 1991). The bottom oval identifies some factors that influence 

how teachers plan out a task for implementation in the classroom and how the task is 

actually implemented in the classroom. Finally, it is important to note that the return 

arrows from the enacted task and student learning represent the impact that these will 

have on future teaching actions. 

Figure 4. The Phases and Factors Influencing Task Unfolding 

 

Cognitive Demand of Tasks 

In order to differentiate between tasks of different types, Smith and Stein (1998) 

analyzed the cognitive demand of a task. They defined lower-level demand tasks as 

“tasks that ask students to perform a memorized procedure in a routine manner” and 

higher-level demand tasks as “tasks that require students to think conceptually and that 

stimulate students to make connections” (p. 269). Each of these categories was then 
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broken down into two subcategories: memorization, procedures without connections, 

procedures with connections, and doing mathematics. Smith and Stein differentiated 

procedures with and without connections as representing differing levels of cognitive 

demand. They separated these two types of tasks in order to categorize mathematical 

tasks that “use procedures, but in a way that builds connections to the mathematical 

meaning” of the underlying concept as a higher-level demand task. Doing mathematics 

tasks are categorized as higher-level demand tasks that require “students to explore and 

understand the nature of relationships” (p. 347). 

To aid in differentiating between the different types of tasks, Smith and Stein 

(1998) developed the Task Analysis Guide, which lists characteristics of the four types of 

mathematical tasks. Later, when utilizing the Task Analysis Guide to code the third phase 

of task unfolding, Stein et al. (1996) added a third type of lower-level demand task called 

unsystematic exploration. This type of task, which applies to only the third phase of task 

unfolding, describes declines in cognitive demand that are characterized by “motivated 

student engagement, well-intentioned teacher goals for complex work, and well-managed 

work” but “the cognitive activity…was not at a high enough level to be characterized as 

engagement in complex mathematical thinking and reasoning” (p. 478).  

Categorizing Task Unfolding Using Cognitive Demand 

In their 1996 study, Stein et al. used the Task Analysis Guide to analyze a sample 

of 144 tasks that were implemented in reform-oriented classrooms. They focused on the 

transition from the second to the third phase of task unfolding and found that the majority 

of the tasks were coded as maintaining or declining in cognitive demand. They also found 

that “the higher the cognitive demands of tasks at the set-up phase, the lower the 
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percentage of tasks that actually remained that way during implementation” (p. 476). This 

finding provides confirming evidence for the claim that tasks with high cognitive demand 

are difficult to enact (National Council of Teachers of Mathematics, 2014, p. 17). In 

2010, Charalambous conducted a similar case study, but explicitly categorized task 

unfolding by the type of path they follow (Figure 5). In his categorization, Charalambous 

used the Task Analysis Guide to code cognitive demand as high or low at each phase in 

task unfolding, which resulted in eight possible types that a task unfolding could follow. 

It is worth noting that Charalambous only observed five of the eight possible types of 

task unfolding (Types 1, 5, 6, 7, and 8 in Figure 5) in the cases he studied and I added in 

the type numberings for ease of reference. 

Figure 5. Categorization of Possible Types of Task Unfolding 
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Purpose 

The purpose of this study is to propose a revised framework for assessing the 

cognitive demand of examples and examine the roles that instructor take when enacting 

high cognitive demand examples. First, I will spend some time explaining how I have 

view examples as different from mathematical tasks that students are responsible to work 

on during class. Then I propose that we modify the language used in the Task Analysis 

Guide in order to allow for different ways of enacting high cognitive demand examples. 

Finally, I describe three different roles (modeling, facilitating, and monitoring) that 

instructors might take on when enacting high cognitive demand examples and provide 

narrative descriptions of what these role profiles look like in undergraduate precalculus 

classrooms.  

Assessing the Cognitive Demand of Examples 

Before introducing my modified framework for analyzing the cognitive demand 

of examples, I first spend some time differentiating between examples and exercises, 

which are two types of mathematical tasks. I distinguish between the two types of tasks 

because while Stein et al.’s (1996)  definition of mathematical tasks is broad enough to 

encompass both examples and exercises, the Task Analysis Framework (Stein & Smith, 

1998) seems to apply more to exercises than examples. The main difficulty that I found in 

using the Task Analysis Framework to analyze examples is that the language that Smith 

and Stein use often specifies that students are doing the mathematical work. However, 

examples can be presented in a variety of formats, which might include the teacher 
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modeling how to work through the mathematics in the example as students take notes. 

Therefore, I propose a modified framework for analyzing the cognitive demand of 

examples that focuses on what mathematics is included in the examples instead of who is 

doing the mathematics. 

While it is still important to provide students with opportunities to work on 

exercises, I argue that examples also provide students with opportunities to learn. 

Opportunities to learn are defined as “whether or not…students have had the opportunity 

to study a particular topic or learn how to solve a particular type of problem presented on 

a test” (Husén, 1967, pp. 162–163). While studying actual student learning is important, 

studies have found that differences in actual learning are related to differences in 

opportunities to learn (Husén, 1967; National Research Council, 2002). Therefore, it is 

important to understand what high cognitive demand examples look like, since they 

provide students with an opportunity to learn how to solve high cognitive demand tasks 

on their own. Also, I argue it is important to differentiate between opportunities to learn 

and opportunities for students to struggle, since examples that presented by just the 

instructor can still bring explicit attention to concepts. Finally, I illustrate how an 

example related to the Law of Sines might be transformed to different levels of cognitive 

demand to illustrate each category in my modified framework. 

Differentiating Exercises from Examples 

Stein et al.’s (1996) definition of mathematical tasks is broad and has been 

interpreted in many ways. In my work, I differentiate between mathematical tasks that are 

given to students to work on (e.g., exercises) and mathematical tasks that are completed 

as a whole class activity (e.g., examples). In particular, I define examples as 
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mathematical problems that are completed as whole-class activities and solved for 

illustrative purposes. For example, to help students understand why trigonometric 

equations can have infinite families of solutions, an instructor might use the example of 

sin𝜃 = −1/2. Or if an instructor is teaching the completing the square algorithm, they 

might introduce it by working through several examples before asking students to work 

through related problems. While some authors have found that it is not necessary to 

differentiate between tasks in this way when analyzing the cognitive demand (Mesa et al., 

2012), I found it difficult to use the Task Analysis Guide (Smith & Stein, 1998) to 

analyze the cognitive demand of examples. In particular, Smith and Stein’s framework 

for the cognitive demand of mathematical tasks makes it clear that they assume that 

students are the ones responsible for doing the mathematics in a mathematical task. While 

it may be true that some instructors ask students to do the mathematics involved in an 

example, there are also times when instructors work out the mathematics for the students 

as part of the example. 

I found that it was important to conceptualize examples independent of who is 

doing the mathematical work due to the fact that some instructors choose to model 

examples for students, while others involve students more in working out the 

mathematics. While these different approaches to presenting examples may provide 

students with different opportunities to learn, both approaches can be used to illustrate 

concepts, practices, and strategies. In either approach, one important feature of examples 

is that they include explanations. Bills, Dreyfus, Mason, Tsamir, Watson, and Zaslavsky 

(2006) emphasized that “providing worked-out examples with no further explanations or 

other conceptual support is usually insufficient”, as “learners often regard such examples 
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as specific (restricted) patterns which do not seem applicable to them when solving 

problems that require a slight deviation from the solution presented in the worked-out 

example (Reed et al. 1985; Chi et al. 1989)” (p. 140). 

Analyzing the Cognitive Demand of Examples 

While I originally planned to use the Task Analysis Guide (1998) to analyze the 

cognitive demand of examples, I ended up needing to create a modified framework .The 

biggest difference between my modified framework and the Task Analysis Guide is the 

language that is used concerning who is expected to be doing the mathematics. For 

example, in the original framework, students are situated as the doers of mathematics. 

This makes sense, as the framework was developed to analyze mathematical tasks that 

students engage with during instruction. However, examples may involve some work 

done by students and other work done by the instructor. Still, many of the same metrics 

can be used to measure the cognitive demand. Below, I go into more detail concerning 

how I modified each of the cognitive demand categories to fit with the context of 

examples. 

Table 7. Modified Framework for Analyzing the Cognitive Demand of Examples 

Lower Level 

Memorization 
• Involve either reproducing previously learned facts, rules, formulae, or definitions OR committing 

facts, rules, formulae, or definitions to memory. 
• Cannot be solved by using procedures because a procedure does not exist or because the time frame 

in which the example is being completed is too short to use a procedure. 
• Are not ambiguous—such examples involve exact reproductions of previously seen material and 

what is to be reproduced is clearly and directly stated. 
• Does not make connections to the meaning that underlies the facts, formula, or definitions being 

learned or reproduced. 

Procedures Without Connections 
• Are algorithmic. Use of the procedure is either specifically called for or its use is evident based on 

prior instruction, or placement of the example. 
• They can be solved by applying well-established procedures. 
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• Require limited cognitive demand for students to follow. There is little ambiguity about what needs 
to be done and how to do it. 

• Have no connection to the concepts or meaning that underlie the procedure being used. 
• Are focused on producing correct answers rather than developing mathematical understanding. 
• Require no explanations or explanations that focus solely on describing the procedure that was used 

(e.g., the instructor or students simply describe the steps they followed in solving a problem). 

Higher Level 

Procedures With Connections 
• Focus students’ attention on the use of procedures for the purpose of developing deeper levels of 

understanding of mathematical concepts and ideas (i.e., the example can be solved using a 
procedure but the procedure is connected to the underlying mathematical concept). 

• Suggest pathways to follow (explicitly or implicitly) that are broad general procedures that have 
close connections to underlying conceptual ideas as opposed to narrow algorithms that are opaque 
with respect to underlying concepts. 

• Usually are represented in multiple ways (e.g., visual diagrams, manipulatives, symbols, problem 
situations). Making connections among multiple representations helps to develop meaning. 

• Require some degree of cognitive effort for students to follow. Although general procedures may be 
followed, they cannot be followed mindlessly. Students’ attention needs to be focused on the 
conceptual ideas that underlie the procedures in order to develop understanding. 

Doing Mathematics 
• Require complex and nonalgorithmic thinking (i.e., there is not a predictable, well-rehearsed 

approach or pathway explicitly suggested by the example, example instructions, or previously 
worked-out examples). 

• Require the instructor or the students to explore the nature of mathematical concepts, processes, or 
relationships. 

• Involve explicit self-monitoring or self-regulations of cognitive processes. 
• Require the instructor or students to access relevant knowledge and experiences and make 

appropriate use of them in working through the example. 
• Require the instructor or students to analyze the example and actively examine example constraints 

that may limit possible solution strategies and solutions. 
• Require considerable cognitive effort for students to follow and may involve some level of anxiety 

for the students due to the unpredictable nature of the solution process required. 
• May include, but are not limited to, making and testing conjectures, framing problems, looking for 

patterns, examining constraints, knowing when the problem is solved, justifying, and explaining. 

In each of the category descriptions, I first replaced the word “tasks” with 

“examples.” The first category, memorization examples, exactly mirrors the original 

description of memorization tasks. The second one, procedures without connections 

examples, is similar, but required slight modifications. Here, I will address the 

modifications I made to the language. However, later I address a general modification 

that I made concerning how cognitive demand is interpreted, but this modification applies 

across categories. The primary modification I made to the language of the second lower-

level demand category was in the final descriptor concerning explanations. Since it is 
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possible that either the instructor or students may be giving explanations during an 

example, I modified the descriptor to reflect that it is not important who is explaining, but 

rather what they are explaining. 

In the third category, procedures with connections examples, I left the first 

descriptor as is because even if the instructor is working out the example, they should still 

be focusing students’ attention on the use of procedures for developing deeper 

understanding. I also modified the final descriptor to match this language and reflect the 

fact that while students may not be responsible for successfully completing the example, 

their attention should be focused on developing understanding. 

The final category, doing mathematics examples, was modified the most. I 

modified the second descriptor so that it includes the instructor or the students working 

through the example. I also removed “understand” from this descriptor, since examples 

are primarily used for explaining concepts and not as opportunities for students to 

demonstrate understanding. That is not to say that examples can never be used in this 

way, but rather a way to highlight that they are usually employed as tools for building, 

not testing, understanding. Since the purpose of an example is to explain or model 

content, practices, and strategies, I changed the language used in the third descriptor to 

reflect the fact that cognitive processes should be made explicit as the example is being 

worked out. I modified the fourth and fifth descriptors so that they included the phrase 

“instructor or students”. The sixth descriptor talks about cognitive demand, which I will 

talk about more below, but I did add the phrase “for students to follow”, which can apply 

to examples where both the instructor and students are responsible for working through 

the mathematics. Finally, the last descriptor essentially remained the same. 
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In the procedures without connections, procedures with connections, and doing 

mathematics example descriptions, the phrases “cognitive demand” and “cognitive 

effort” are used. In the original framework, it is obvious that cognitive demand is 

dependent upon the students, since they are the ones completing the mathematical tasks. 

However, what would it mean for an example to require cognitive effort if the instructor 

is the one who is working through the mathematics? While it may be the case that the 

instructor would find the example cognitively demanding themselves, this is not as likely. 

However, students may still find the example to be cognitively demanding, even if they 

were not responsible for doing the mathematics. To capture this difference, I modified the 

language concerning cognitive demand to make it clear that this is a student, not 

instructor, dependent variable. 

Differentiating Students’ Opportunities to Struggle 

In my framework, I have attempted to define cognitive demand in a way that is 

independent of who is working through the mathematics. However, since much of the 

work on cognitive demand has been situated in the context of mathematical tasks that are 

given to students, a natural question that arises is, “How can an example be cognitive 

demanding if students are not the ones working through the mathematics?” To answer 

this question, I will explain how my modified framework for cognitive demand 

differentiates between the mathematical cognitive demand of an example and student 

struggle. 

In my work, I conceptualize high cognitive demand examples as examples that 

bring explicit attention to concepts and provide students with opportunities to struggle 

with important mathematics.  This conceptualization builds upon Hiebert and what 
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(2007) key features of teaching that promotes conceptual development: explicit attention 

to concepts and student struggle with important mathematics. The authors identify 

explicit attention to concepts as “treating mathematical connections in an explicit and 

public way” (p. 383) and student struggle with important mathematics as “the 

engagement of students in struggling or wrestling with important mathematical ideas” (p. 

387). In their work, the authors are careful to define struggle as meaning that “students 

expend effort to make sense of mathematics, to figure something out that is not 

immediately apparent” and not “needless frustration or extreme levels of challenge 

created by nonsensical or overly difficult problems” (p. 387). 

While it is important to consider whether or not students actually engage in this 

struggle, my modified framework for cognitive demand focuses on providing students 

with opportunities to struggle. If one instructor chooses to work through all of the 

mathematics at the board, while another instructor lets students work through parts of the 

example, then the opportunities to struggle may be different. In the first case, the 

students’ opportunities to struggle are mostly internal and may only be observable if they 

ask questions. In the second case, the students’ opportunities to struggle are more 

observable as they work through the mathematics. 

This conceptualization of opportunities to struggle is based upon the work of 

Stein, Correnti, Moore, Russel, and Kelly (2017). Starting with Hiebert and Grouws’ 

(2007) two key features, Stein et al. (2017) built a matrix that reflected how explicit 

attention to concepts (EAC) and students’ opportunities to struggle (SOS) can interact 

and be enacted at different levels (Figure 6). According to Stein et al., teaching that falls 

in Quadrant 2 “can take a variety of forms, [but] often involves teacher demonstration of 
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a general procedure for solving a problem with time taken to explain concepts as they 

relate to procedures and to encourage and entertain student questions” (p. 4). However, 

this quadrant still captures high cognitive demand tasks, since it still involves multiple 

representations, explaining concepts, and drawing connections. Even though students’ 

opportunities to struggle are limited, “that does not mean, however, that students can 

mindlessly follow the pathway, but rather, they have to think about what they are doing 

and why” (p. 4). 

Figure 6. Stein et al.’s (2017) Matrix Comparing High and Low SOS and EAC 
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In my conceptualization of cognitive demand, I argue that cognitive demand is 

more dependent upon high levels of explicit attention to concepts than high levels of 

students’ opportunities to struggle. In particular, the first three characteristics of 

procedures with connections examples all focus on concepts (“developing deeper 

understanding of mathematical concepts and ideas”, “broad general procedures that have 

close connections to underlying conceptual ideas”, and “making connections among 

multiple representations…to develop meaning”). It is the final characteristic, “requiring 
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some degree of cognitive effort for students to follow” that captures opportunities for 

students to struggle. Similarly, the first two characteristics of doing mathematics 

examples focus on concepts, while the next three focus on explicit attention to the 

cognitive processes involved in solving the problem, and only the sixth characteristic 

focuses on opportunities for students to struggle. Therefore, high cognitive demand 

examples might fall in either Quadrant 1 or Quadrant 2. While these two quadrants do 

provide students with different opportunities to struggle, they both “involve making 

connections, analyzing information, and drawing conclusions” (Van de Walle et al., 

2013, p. 36), which are some of the essential features of high cognitive demand tasks. 

It is important to note that although I claim that high cognitive demand examples 

can be enacted with either high or low levels of opportunities for students to struggle, I 

am not claiming that it is not important to provide opportunities for students to struggle. 

In particular, my dissertation focuses only on the examples used during class, and not 

other activities such as group work, where students might be provided with higher levels 

of opportunities to struggle. Also, my work is focused on identifying what high cognitive 

demand examples might look like and does not examine the impact of these examples on 

actual student learning. However, it is interesting to note that Stein et al. (2017) found 

that students in Quadrant 2 classrooms performed well, but not quite as well as students 

in Quadrant 1 classrooms, which may suggest that “there could be affordances for 

learning associated with struggle but that some forms of bounded struggle might be worth 

exploring” (p. 16). 
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Transforming the Cognitive Demand of an Example 

The purpose of this section is to demonstrate how an example can be presented at 

different levels of cognitive demand. The example that I present here comes from one of 

the examples that I observed an instructor enact in his classroom. The example was 

couched in a lesson that introduced the Law of Sines and Cosines and was situated as the 

first example to be completed after going through the proofs of each law. In Table 8, I 

include the four examples at the different levels of cognitive demand, and then I will 

explain how each one exemplifies the descriptors associated with that category. 

The first version of the example is a memorization example because it involves 

reproducing the Law of Sines, which would have already been presented earlier in the 

lesson. Also, it cannot be solved using a procedure, is not ambiguous because it clearly 

and directly states what is to be reproduced, and does not make connections to the 

underlying meaning. The second version of the example is what was provided to the 

instructor in the written lesson guides. This version is a procedures without connections 

example because it is algorithmic, the procedure is specifically called for, it can be solved 

by applying a well-established procedure, requires limited cognitive demand for students 

to follow, is not ambiguous about what needs to be done or how to do it, has no 

connections to the concepts or meaning that underlie the procedure being used, is focused 

on producing the correct answer rather than developing mathematical understanding, and 

requires no explanation. 
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Table 8. Transforming the Cognitive Demand of an Example 

Lower Level 

Memorization 
Use the Law of Sines and the given triangle to 
fill in the missing information below. 

 
𝑥

sin (45) =
?

sin (30) 

Procedures Without Connections 
 

 
Use the Law of Sines to solve for the unknown 
side length, 𝑥, in the given triangle. 

Higher Level 

Procedures With Connections 
 

 
Identify and use a procedure that can help us 
solve for the unknown side length, 𝑥, in the 
given triangle. 

Doing Mathematics 
 

 
Explain how the unknown side lengths, 𝑥 and 𝑦, 
in the given triangle are related. 

The third version of the example is close to how the instructor modified the 

written example to be included in his intended lesson plan. This version differs from the 

previous one in that it does not suggest a solution pathway. Rather, figuring out a solution 

strategy is part of the example itself. Also, the example focuses specifically on helping 

students to identify a procedure that can be used. In order to do this, the instructor should 

focus on why the Law of Sines is appropriate to use here and perhaps even why the Law 
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of Cosines is not appropriate. Since students often struggle with identifying what 

procedure is appropriate to use in order to solve a problem, this would require some 

cognitive effort on the part of students. However, as illustrated in the lesson that I 

observed, the instructor would need to carefully attend to these features in order to 

maintain the higher level of cognitive demand. 

In the final version of the example, the focus is no longer on following a 

procedure or producing a correct answer. Rather, the purpose of this example is illustrates 

how we can make connections between variables, even if they are unknown. This is a 

doing mathematics example because it requires nonalgorithmic thinking, exploration of 

mathematical relationships, accessing relevant knowledge and making appropriate use of 

it, analyzing the figure and examining constraints that may limit possible solution 

strategies (i.e., non-right triangle), and considerable cognitive effort on the part of the 

students. As the instructor is working through this example, it is important that they make 

cognitive processes explicit and also attend to students’ level of anxiety. 

Methods 

In order to examine the roles that instructors take when enacting high cognitive 

demand examples, I conducted semi-structured interviews and observations of examples 

enacted in undergraduate precalculus classrooms. For the purposes of this study, 

precalculus courses included college algebra, trigonometry, and the combined college 

algebra + trigonometry, which were all taught in one semester.  
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Participants 

The instructors that I observed were all experienced graduate students who were 

teaching a precalculus course. These graduate student instructors were experienced in two 

ways. First, they were in at least their third year in their graduate studies, which means 

that they had earned their M.S. in Mathematics and were working towards their Ph.D. 

Second, they were all teaching their respective course for at least the third time. The 

population of precalculus instructors that I had access to were mostly first-time graduate 

student instructors, so these instructors were experienced in comparison to many of their 

peers. Table 9 below provides a descriptive profile for each of the graduate student 

instructors that I observed. Instructors were asked to pick a pseudonym in order to 

conceal and protect their identity. 

Table 9. Descriptive Profiles of Participants 

Instructor Course Year in Graduate Program 

Alex College Algebra + Trigonometry 4 

Dan College Algebra + Trigonometry 4 

Emma College Algebra + Trigonometry 3 

Greg Trigonometry 5 

Juno College Algebra + Trigonometry 3 

Kelly College Algebra + Trigonometry 3 

Selrach College Algebra + Trigonometry 5 

Data Sources 

There are three primary sources of data that were collected for the purposes of this 

study. First, I conducted semi-structured pre-observation interviews with instructors 
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before observing them. These typically occurred within 24 hours of the class that I was 

observing, but occasionally had to occur earlier due to scheduling issues. During these 

interviews, I asked questions regarding what topics they had covered in the previous class 

and what topic they were covering in the next class as well as what examples they 

planned to use and why. The full interview protocol for these interviews can be found in 

Appendix B. I also collected the lesson guides provided to the instructors, the lesson 

plans they created and planned to use, and the student workbook pages that they planned 

to use during class. 

Second, I collected video observation data of the examples that the instructor 

enacted during class. During the observation I took field notes to record how the 

examples were enacted and how they fit into the larger lesson. I also recorded ways in 

which the enacted example differed from the intended example and whether or not any 

examples were added to the lesson that were not present in the lesson plan. The full field 

note guide that I used to record notes during and after the observation can be found in 

Appendix B. 

Finally, I conducted semi-structured post-observation interviews with the 

instructors. These typically occurred within 24 hours of the observation. Between each 

observation and post-observation interview, I watched the video and selected one or two 

examples to discuss with the instructor. I tagged interesting moments during these 

examples and used these clips as video-stimulated recall during the post-observation 

interview. The full post-observation interview protocol that I used can be found in 

Appendix B. 
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Coding Procedures 

Each enacted example was first coded using my modified framework for the 

cognitive demand of examples (Table 7). Next, I open coded the high cognitive demand 

examples to examine the roles the instructors took in enacting high cognitive demand 

examples. Three roles emerged out of this open coding (modeling, facilitating, and 

monitoring), which I will unpack more in the following section. I then went back and 

recoded each example using the final coding scheme for instructor roles. 

Analysis Procedures 

In order to better understand the different ways in which instructors modeled, 

facilitated, and monitored while enacting high cognitive demand examples, I analyzed the 

role profiles for each instructor. This involved calculating the aggregated amount of time 

that each instructor spent modeling, facilitating, and monitoring during the high cognitive 

demand examples that I observed. Next, I examined each example individually to see 

how instructors switched back and forth between these roles. 

Sampling 

For this study, I observed 24 different lessons over the course of a year. Every 

instructor, except for Greg, only taught their respective course during one semester, so I 

observed three lessons for each of them. Greg taught trigonometry both semesters, so I 

was able to observe six of his lessons. In the first semester I asked participants to choose 

three dates (spread out over September-December) that worked best for them, so my 

lesson sampling this semester was random. During the second semester I chose specific 

lessons that I wanted to observe and confirmed that the corresponding dates worked for 

the instructors. So my sampling here was more purposeful. The lessons that I chose were 
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more procedural, because I thought they would provide me with an opportunity to see 

whether instructors chose to present examples as Procedures With or Without 

Connections. Also, I only observed one day of instruction in the first semester, regardless 

of whether or not the lesson was spread out over two days. However, if a lesson was 

spread out over two days in the second semester, I observed both days of instruction. 

Role Profiles of HCD Examples 

A full description of the examples used in the 24 lessons that I observed can be 

found in Table 34 in Appendix C. The 24 lessons spanned 33 days and included 93 

different examples. Of those, 25 were high cognitive demand (HCD) examples. 

Table 10. Overview of Examples by Instructor 

Instructor Number of 
Lessons 

Number of 
Days 

Number of 
Examples 

Number of 
HCD Examples 

Alex 3 3 5 3 
Dan 3 6 18 3 

Emma 3 3 9 1 
Greg 6 8 25 10 
Juno 3 5 14 4 
Kelly 3 3 7 4 

Selrach 3 5 15 0 

Totals 24 33 93 25 

When enacting HCD examples, instructors used a variety of approaches. Some 

instructors modeled content, practices, and strategies for their students, which required 

minimal contributions from students. In these cases, the instructor primarily worked 

through the example independently and expected students to follow along and copy the 
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example into the their notes. Other instructors facilitated whole class discussions6 as they 

worked through examples. The types of student contributions in these situations varied 

from providing simple computational answers to providing ideas of what to do next or 

justification for why a step or answer was reasonable. Other instructors placed even more 

responsibility on students and required students to work through parts of the example in 

small groups or independently while the instructor monitored their progress. 

Table 11. Definitions of Modeling, Facilitating, and Monitoring 

Term Definition 

Modeling An instructor is modeling content, practices, and strategies if they are 
working through a problem independently and expecting students to follow 
take notes. 

Facilitating An instructor is facilitating a whole class discussion if they work through a 
problem together with their students. 

Monitoring An instructor is monitoring if they are requiring students to work through a 
problem independently or in small groups. 

It is important to note that while some instructors primarily used one format of 

enacting high cognitive demand examples, others transitioned back and forth between 

different formats. For the high cognitive demand examples that I observed, Dan and 

Emma chose to just model the content, practices, and strategies for students. Juno 

incorporated both facilitating and modeling in the HCD examples that I observed and 

Kelly incorporated both monitoring and facilitating. Finally, Alex and Greg used all three 

formats for enacting HCD examples. Table 12 illustrates the different HCD example role 

profiles of each instructor that I observed. Table 12-Table 18 illustrate the different role 

profiles of each example that I observed, broken down by instructors. 

                                                
6 Here, a whole class discussion is interpreted broadly as any time when both the 

instructor and the students are working through part of the example. 
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Table 12. Role Profiles of Instructors’ Observed HCD Examples 

 

Table 13. Role Profiles of Alex’s Observed HCD Examples  
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Table 14. Role Profiles of Dan’s Observed HCD Examples 

 

Table 15. Role Profiles of Emma’s Observed HCD Examples 
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Table 16. Role Profiles of Greg’s Observed HCD Examples 
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Table 17. Role Profiles of Juno’s Observed HCD Examples 

 

Table 18. Role Profiles of Kelly’s Observed HCD Examples 
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Modeling 

Many instructors chose to use different formats of presenting examples, but some 

chose to just model examples for their students. While students do not have an 

opportunity to struggle with the mathematics in this type of setting, they do have an 

opportunity to have high cognitive demand processes modeled for them. For the high 

cognitive demand examples that I observed, Dan and Emma only modeled and Alex and 

Juno used this presentation format for some of their examples In order to maintain the 

cognitive demand while modeling, instructors focused on making their cognitive 

processes explicit and attending to student understanding. In the following narrative, I 

illustrate how Emma modeled an example for students while still maintaining a high level 

of cognitive demand. 

Emma. The example that I observed Emma enact at a high level of cognitive 

demand was situated at the end of a chapter on function transformations. Emma chose the 

example because it was a question on the chapter quiz that many of the students had 

struggled with7. In particular, she wanted to reemphasize the connection between order 

of operations and order of transformations and explain how to check their work using an 

alternative method. The example gave the graph of a piecewise linear function, shown in  

 

Figure 7, and asked students to sketch a graph of 3𝑃(𝑡 + 1)− 2 for 0 ≤ 𝑡 ≤ 9 on 

a provided grid. 

                                                
7 Throughout my study, I talk about the reasons why instructors chose to do 

things, which I determined based upon the pre- and post-observation interviews I 
conducted with them. Since these types of references come up so often, I chose to not 
include citations linking them to the data sources. However, it is important to note that 
these claims are backed up by the data. 
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Figure 7. Original Function Given in Emma’s Function Transformation Example 

 

Emma worked through the example by first identifying the order of 

transformations based upon the transformed equation, 3𝑃 𝑡 + 1 − 2. First, she identified 

that there was only one horizontal transformation (a shift left by 1 unit), but two vertical 

transformations (a vertical stretch by a factor of 3 and a shift down by 2 units). Since 

many of her students had struggled with doing the vertical transformations in the wrong 

order, she next focused on explaining the order of vertical transformations. To help her 

students understand why the stretch had to occur before the shift, she explained how the 

process of transforming a graph is connected to order of operations, which students are 

familiar with. Next, she discussed how horizontal and vertical transformations are 

independent of each other, so order did not matter. 

Next, Emma explained what points they could pick to transform (endpoints and 

corners) and how the graph in-between these points will just be a straight line. From 

there, she worked out a step-by-step transforming each of the endpoints and corners. 

Since the transformed graph was supposed to be drawn on the domain 0 ≤ 𝑡 ≤ 9, Emma 

then talked about what to do with the transformed point that was outside of this domain 
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and how to find the new endpoint within this domain. Finally, she graphed her 

transformed endpoints and corners and connected them to draw the final transform graph. 

At this point, Emma paused and asked students for questions. One student asked about 

how she had found the new endpoint in the domain and Emma explained how she had 

used the original graph, as well as alternate strategies that students could use. 

Next, Emma talked about a different method that students could use to solve the 

problem if they were not sure about the order of transformations. For this second method, 

Emma constructed an input-output table where the input values were 𝑡 = 0,1,… 9 and the 

output values were found using the transformed equation 3𝑃 𝑡 + 1 − 2.  She then 

explained how they could just solve the problem by inputting a value for 𝑡, using the 

graph to find the corresponding output value of 𝑡 + 1, multiplying that output by 3, and 

then subtracting 2. Emma concluded the example by asking if any students had questions, 

and a new student asked a similar question as the one asked before concerning how she 

had found 𝑃(2) = 4/3 .  Several students piped up in agreement that they did not 

understand this step, so Emma explained how to use the slope of the first line segment to 

find the output value. In her explanation, she focused on not only calculating the slope, 

but also interpreting how it relates to finding the output values between integers.  

I coded this as a procedures with connections example because of the following 

reasons. First, Emma focused students’ attention on the use of procedures for the purpose 

of developing deeper understanding of mathematical concepts and ideas. To help her 

students remember the order of vertical transformations, she focused on the underlying 

mathematical concept of order of operations. Also, to help her students find exact output 

values, she focused on the underlying concept of slope and how to interpret it in a way 
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that is helpful for calculating non-integer values. In her example, Emma presented two 

different pathways that students could follow to solve the problem (using order of 

transformations to move points or using an input-output table). In explaining each 

pathway, Emma focused on the underlying conceptual ideas (order of operations and 

evaluating function compositions), instead of the narrow algorithms. The example 

involved graphical, algebraic, and tabular representations and Emma often made 

connections between each of them. Finally, the number of student questions and the 

prevalence of student struggle on the problem when it was presented on the quiz are 

evidence that the example required some degree of cognitive effort for students to follow.  

Facilitating 

Of the six instructors that I observed enacting high cognitive demand examples, 

only Greg and Kelly chose to present an entire example as a whole class discussion. 

Interactions were coded as whole class discussions if instructors engaged students in the 

problem solving process in some significant way. For some instructors, this just involved 

asking students questions about computations. Other instructors had students engage in 

making more meaningful contributions, such as discovering patterns and making 

connections. Below I illustrate two narrative case descriptions, one in which the students 

were asked to make more superficial contributions and one in which the students were 

asked to make more significant contributions. The purpose of including both of these 

narratives is to compare and contrast how instructors maintain the cognitive demand of 

the example in each case. 

Greg. There were two examples that I observed Greg enact at a high level of 

cognitive demand where he chose to facilitate the presentation of the example as a whole 
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class discussion. In the example that I will focus on, Greg is explaining how to find all 

solutions to a trigonometric equation that has standard unit circle angle values. This topic 

was presented after students had learned about using inverse trigonometric functions to 

find solutions within the interval 0 ≤ 𝜃 ≤ 2𝜋. Now, Greg was turning their focus to 

finding all solutions to a trigonometric equation. To introduce this topic, Greg used 

Demos to project the graph of 𝑦 = cos𝜃 and 𝑦 = 𝑑, where 𝑑 was a slider set equal to 

0.3. His purpose for starting with this visual representation was to spend more time 

thinking about the relationship between solutions to equations and the intersections of 

graphs and to illustrate why trigonometric equations might have infinitely many 

solutions. In particular, Greg talked about how even though there are infinitely many 

solutions, the periodicity of trigonometric equations means that these solutions repeat in a 

predictable way. 

The first example that Greg chose to use involved finding all solutions to 

cos𝜃 = 3/2. Greg chose this example to start with because it was simple enough that 

students didn’t have to deal with the more technical aspects associated with sinusoidal 

equations and non-standard unit circle angles. Greg started the discussion by asking 

students what the initial solutions are in the first period (0 ≤ 𝜃 ≤ 2𝜋) using the unit 

circle. One student responded immediately with 𝜃 = 𝜋/6, but the class seemed to be 

struggling with finding the second initial solution, as no one volunteered another answer. 

Greg responded by explaining that because the value of cosine is positive ( 3/2), the 

corresponding angles on the unit circle will be in the first and fourth quadrant. Following 

his explanation, a student volunteered the answer 𝜃 = 11𝜋/6. 
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Drawing upon the earlier discussion, Greg reminded his class that the infinite 

families of solutions to trigonometric equations can be written as 

(initial)+ (period)𝑘     𝑘 = any integer. 

He then explained that there would be two families of solutions corresponding to each of 

the initial solutions they had found. Next he asked his students, “What is the period of 

cos𝜃?” Students responded with 2𝜋 and Greg emphasized that we knew this was true 

because there was not a horizontal stretch or compression factor in the original equation. 

Next Greg used Demos to project the graphs of 𝑦 = cos𝜃 and 𝑦 = 3/2. He then made 

connections between the intersection points of the graphs and the solution families that 

they had found. 

I coded this as a procedures with connections example because of the following 

reasons. First, Greg focused students’ attention on the use of procedures for the purpose 

of developing deeper levels of understanding of mathematical concepts and ideas. Instead 

of presenting the example algorithmically, Greg focused on how we can use solutions in 

the first period and the periodicity of trigonometric functions to help find all solutions to 

a trigonometric equation. Second, the solution strategy that Greg used (finding initial 

solutions and then adding on multiples of the period) is a broad general procedure that is 

closely connected to the underlying conceptual ideas. Greg used both algebraic and 

graphical representations and made connections between them to help students develop 

understanding of what it means to have an infinite family of solutions. While students 

were able to easily answer most of the questions that he asked, the general procedure that 

he was describing could not be followed mindlessly. In particular, students had to attend 
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to the conceptual ideas of determining the number of initial solutions and the period of 

the function. 

Kelly. Of the four high cognitive demand examples that I observed Kelly enact, 

she chose to present two by facilitating a whole class discussion. This example was 

situated in a unit on polynomial functions. The day before she introduced long-run 

behavior and earlier in class on this day she introduced short-run behavior (i.e., whether 

or not the graph of a function bounces or crosses the 𝑥-axis at zeros of the function). In 

previous examples, Kelly had worked with students to determine how short-run behavior 

is connected to multiplicities and how to graph a polynomial given its equation. For this 

example, Kelly challenged students to think backwards and find a formula for a 

polynomial with the lease degree possible based upon a given graph. The graph she 

provided at the beginning of the example is shown below in Figure 8. 

Figure 8. Polynomial Graph from Kelly’s Example 
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To start off the example, Kelly asked her students how they could find a formula 

for the graph. One student responded and said, “We will need (𝑥 − 0) times (𝑥 + 3), 

right?” Kelly then simplified this equation to 𝑥(𝑥 + 3) and asked, “What else do we 

know?” The same student responded by saying that we need (𝑥 + 3) to be raised to the 

second power. Kelly responded by asking if everyone saw why that was true. To make 

sure her students understood, she asked explicitly, “So where does the 2 come from? Or 

why do we need the 2 there?” Several students responded simultaneously, “Because it 

bounces at −3.” Kelly then directed her students’ attention to the other factor, 𝑥, and 

asked if we needed to change the exponent there. Her students responded by saying no, 

and Kelly went on to reiterate that we are looking for a polynomial of lease degree, so we 

want to use the smallest exponents possible. 

At this point, Kelly asked, “What else do we have to do here? Is this our 

equation?” A student responded by saying, “No. If you plug in −1, you don’t get −8.” So 

Kelly asked, “So what else do we need here?” and a student responded by saying, “A 

coefficient out front.” Kelly then wrote 𝑦 = 𝑎𝑥 𝑥 + 3 ! on the board and asked, “How 

can we find 𝑎?” A student suggested that we could plug in 𝑥 = −1 and 𝑦 = −8, and 

Kelly worked through the algebra to find that 𝑎 = 2. Finally, Kelly asked if their 

equation made sense in terms of the long-run behavior that the graph is exhibiting and her 

students agreed that the equation and the graph both acted like 𝑦 = 2𝑥! in the long-run. 

I coded this example as a doing mathematics example because of the following 

reasons. First, while the example could have been solved using an algorithm, this 

algorithm was never presented formally. So Kelly and her students worked together to 

construct an algorithm, as opposed to following a predictable, well-rehearsed approach or 
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pathway. Also, in order to construct the equation, students had to explore the nature of 

graphical properties of polynomials and think about how they are connected to the 

algebraic properties of their equations. To do this, Kelly asked her students to access 

relevant knowledge (e.g., the connection between zeros and the factored form, the 

connection between short-run behavior and multiplicities, the implication of what it 

means for a point to lie on a graph) and make appropriate use of it while working through 

the example. She also asked students to analyze the example (e.g., points on the graph, 

the long-run behavior) and actively examine example constraints (e.g., the degree) in 

order to limit possible solution strategies and solutions. While her students were able to 

work through the example successfully, it did require cognitive effort and was 

unpredictable in that it was student, not teacher, lead. Finally, Kelly asked her students to 

examine constraints, justify, explain, and determine when the problem was solved. 

Comparison. Comparing and contrasting the two different ways in which Greg 

and Kelly worked through a high cognitive demand examples shows that instructors can 

facilitate whole class discussions in very different ways. In Greg’s example, students 

were primarily responsible for doing the less cognitively demanding work. On the other 

hand, Kelly relied on students to guide the entire problem solving process. However, it is 

important to note that in both cases, there was an emphasis on explaining content, 

processes, and strategies and making connections between representations, which is why 

they both illustrate what it might look like to facilitate a high cognitive demand 

examples. 
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Modeling and Facilitating 

None of the instructors that I observed enacting high cognitive demand examples 

chose to only monitor students while they worked through the problem. However, there 

were several instructors that chose to present an example by both modeling and 

facilitating. Alex, Greg and Juno all integrated these two roles when presenting some of 

their examples. Table 19 illustrates the different ways in which these instructors 

presented examples by modeling and facilitating. 

Table 19. Role Profiles of Examples that were Modeled and Facilitated 
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Half of the examples (4/8) were split into two different chunks of time, one in 

which the instructor modeled content, practices, and strategies for students, and another 

in which the instructor facilitated a whole-class discussion of the example. However, the 

other four examples involved a back and forth between these two forms of presentation, 

with Greg’s Example #5-6 having the highest number of switching points. Also, half of 

the examples (4/8) began with a whole-class discussion, however in Greg’s Example #5-

5, this quickly morphed into him modeling for his students. In the large majority of the 

examples (5/8), more time was spent on the whole-class discussion than on the modeling. 

However, on average 52% of the example enactment time was dedicated to facilitating 

and 48% was dedicated to modeling. Below I present two narrative accounts of Juno’s 

example that was segmented into almost equal segments of facilitating and modeling and 

Greg’s example that had a high number of switching points. 

Juno. This example that Juno enacted at a high level of cognitive demand was 

situated in a lesson on the tangent and reciprocal trigonometric functions. Now that 

students were exposed to all of the main trigonometric functions, including sine, cosine, 

tangent, cotangent, secant, and cosecant, Juno introduced the idea of cofunctions. Two 

functions are called cofunctions if they are equal on complementary angles. Juno started 

off by doing two examples to show that sin(𝜋/6) = cos(𝜋/3) and sin(15°) = cos(75°). 

As a final example, Juno chose to prove that sine and cosine are cofunctions. While 

proving is not a main component of this course, it does come up in some of the 

trigonometry lessons. So Juno wanted to go beyond just demonstrating that sine and 

cosine are equal for some complementary angles and prove that it was true for any 

complementary angles. 
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Juno begins by drawing and labeling the right triangle shown in Figure 9. She 

then asks her students to use the SOH-CAH-TOA definition to find what cos𝜃 is equal 

to. A student responds with “Adjacent over hypotenuse,” which Juno then interprets as 

𝑏/𝑐. Juno then asks, “What is sin𝜙 equal to?” and a student responds with 𝑏/𝑐. Finally, 

Juno asks what we know about the two angles, 𝜃 and 𝜙, and a student responds with 

“They have to add up to 90. Juno explains why, using the fact that the sum of all of the 

interior angles of a triangle must equal 180°, and since we know that one of the angles is 

equal to 90°, the sum of the other two must equal 90°. Therefore 𝜃 and 𝜙 must be 

complementary angles. 

Figure 9. Right Triangle from Juno’s Example #1-5 

 

Juno then transitions from facilitating a whole-class discussion about the example 

to modeling content, practices, and strategies for students. First, she explains that the 

work they have done tells them that no matter what angle 𝜃 is, cos𝜃 = sin(𝜋/2− 𝜃), 

where 𝜋/2− 𝜃 = 𝜙. Finally, Juno explains that while they had previously checked that 

cos𝜃 = sin(𝜋/2− 𝜃) for 𝜃 = 𝜋/6 and 𝜃 = 15°, the work they have now done proves 
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that this is true for all angle 𝜃8. She pauses here to ask if there are any questions, but none 

of her students pipe up. Before she moves on, Juno goes back to the list of trigonometric 

functions and points out that if sine and cosine are cofunctions, then it would make sense 

for tangent and cotangent, secant and cosecant to also be cofunctions, assuming that they 

were named properly.  Finally, she directs her students to start working on one of the 

problems in the workbook, which asks them to explore cofunctions graphically. 

Even though doing proofs is a form of doing mathematics, I coded this as a 

procedures with connections example for the following reasons. First, Juno wanted to 

give a proof because it shows that cos𝜃 = sin(𝜋/2− 𝜃) for any angle 𝜃, not just 

𝜃 = 𝜋/6 and 𝜃 = 15°. So her focus was on using the procedure (i.e., the proof) for the 

purpose of developing deeper levels of understanding of the mathematical concepts and 

ideas. The proof technique that she chose was closely connected to the underlying 

concept of the right triangle definition of sine and cosine. Also, Juno used multiple 

representations (pictorial and algebraic) and made connections between the 

representations to help develop meaning. Finally, students could not follow the proof 

mindlessly, but rather needed to make connections between the different representations 

in order to develop understanding. 

Greg. The high cognitive demand example where Greg switched back and forth 

between modeling and facilitating was situated in the second lesson on finding all 

solutions to trigonometric equations. After spending a day exploring the structure of the 

infinite families of solutions and working through simpler problems that did not involve 

                                                
8 8 It is important to note that Juno’s proof assumes that 0 ≤ 𝜃 ≤ !

!
, which is not 

implicit in the definition of complementary angles that she was using. While this would 
have been a fruitful topic to dig into during the post-observation interview, it 
unfortunately was not something that I recognized at the time. 
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shifts and stretches, Greg introduced more complicated sinusoidal functions. First, Greg 

did two examples that only involved vertical transformations. For his final example, Greg 

chose to find all solutions to sin 3𝜃 − 1 = 1/4. Greg chose this function for several 

reasons. First, he wanted his students to learn how to find all solutions when the period is 

not equal to 2𝜋. Second, he wanted to give an example with both a horizontal shift and a 

period change because he knew that problems of this type would come up on the online 

homework as well as the exam. Finally, he didn’t want to use a standard unit circle angle 

and instead force students to use arcsine. 

Greg started by first modeling content, practices, and strategies for students. After 

writing the problem on the bard he describing how this problem was different from the 

previous two examples they had worked through in class that day, which were, “Find all 

solutions to 1+ 2 cos𝜃 = 4/3 and 3 tan𝜃 − 1 = 4.” In particular, he emphasized that 

they no longer had a linear equation in terms of sine, but rather a linear equation inside of 

sine. To make the equation more clear and appear less complicated, Greg decided to set 

𝑋 = 3𝜃 − 1. In the first example, Greg had set 𝑋 = cos𝜃 and talked about how they 

could set 𝑋 = tan𝜃 if they wanted to. His idea for doing this was to remove the part of 

the equation that looks unfamiliar and highlight that first they needed to isolate the input 

of sine. Greg also explained to his students that this step was not necessary, so they could 

skip it if they knew what they needed to do. 

Next, Greg switched to facilitating a whole class discussion. First, he asked how 

they could proceed from sin(𝑋) = 1/4 to solve for 𝑋. A student suggested that they 

could use arcsine, so Greg wrote 𝑋 = sin!!(1/4) and explained that this gives us the 

first solution. When Greg asked where the second solution is, no students responded 
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immediately, so Greg explained that currently they were generating initial solutions for 

the problem and that they had found one solution for this sine equation, but still needed to 

find the second solution. A student piped up and said “𝜋 minus…”, which Greg 

interpreted to mean 𝑋 = 𝜋 − sin!!(1/4).  

From here, Greg switched to modeling. First he explained that they had started 

with 𝜃s, so they needed to end with 𝜃s and swap out the 𝑋s. Doing this resulted in the 

following two equations: 3𝜃 − 1 = sin!!(1/4) and 3𝜃 − 1 = 𝜋 − sin!!(1/4). Before 

solving for 𝜃, Greg paused to explain that this problem “was a little bit more involved 

than the other [examples] because we generate our initial solutions and then we have to 

keep working to…find the initial solutions just in terms of 𝜃.” From here, Greg works 

through the algebra to solve for 𝜃 and ends with the following two equations:  

𝜃 = 1/3(sin!!(1/4)+ 1) and 𝜃 = 1/3(𝜋 − sin!!(1/4)+ 1). 

At this point, Greg switches back to facilitating by saying, “I’m going to pause 

here and ask who is lost? Who has a question? It’s totally reasonable to be lost. There’s a 

lot that goes into these. So just let me know where you are lost.” Greg phrased his 

question this way because he had noticed that asking, “Are there any questions?” was not 

eliciting responses from students. But explicitly saying “it’s totally reasonable to be lost” 

made students more comfortable asking questions. A student did pipe up and asked, 

“Why divide by 3? Where did the 1/3 come from?” Greg first asked if the student was 

ok with everything that had come before, then went on to explain the algebraic step the 

student was stuck on. Next a student asked, “Will we still involve adding the period times 

𝑘 at the end?” Greg explained that was the next step and reiterated that the work they had 

done so far was all to get the initial solutions. 
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At this point, there was a hushed conversation going on between two students, so 

Greg asked if they had any questions. At first no one said anything, and then Greg 

encouraged the students whispering to share their questions with the whole class, because 

most likely other students had similar questions. One of the students piped up and said, “I 

was just gone yesterday, so I had no clue what’s going on…so I was just kind of catching 

up.” Greg then moved on to talk about all possible solutions and reminded the class that 

they should be of the form (initial)+ (period)𝑘. So he asked, “What is the period of 

[sin(3𝜃 − 1)]?” None of his students responded, so he reminded them that they could 

identify the period of a function by considering the 𝐵-value associated with  

sin(𝐵 𝜃 − ℎ ). Still, no students offered an answer, so Greg asked specifically if they 

could identify what is 𝐵 by mapping sin(3𝜃 − 1) to sin(𝐵 𝜃 − ℎ ) to see what the 

coefficient is on the variable. 

At this point, one student responded by saying 𝐵 is the period. Greg responded by 

saying, “𝐵 is related to the period. It’s not directly the period.” Another student spoke up 

and said, “Isn’t the period 2𝜋/3?” Greg then asked, “Why is it 2𝜋/3?” and she 

responded with, “Because that’s the way you find the period when you have 𝐵.” Greg 

agrees that the period is given by 2𝜋/|𝐵| and then goes on to say that the student must be 

using the fact that 𝐵 = 3 in order to say that the period is 2𝜋/3. The student who had 

volunteered the answer 2𝜋/3 then asked, “Is that right? Even though there’s not any 

parentheses around the 𝜃 and the 1?... So if you put the parentheses around the θ-1, does 

it still make the 𝐵 = 3?” Greg then explains that 𝐵 would still be 3 in that case, but just 

adding parentheses would result in a different function with a different horizontal shift. 
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He then shows how to rewrite the equation as sin(3(𝜃 − 1/3)), but emphasizes that they 

don’t have to factor the 3 out to know what 𝐵 is equal to. 

At the end, Greg switched frequently back and forth between modeling and 

facilitating. He first modeled how to use the two initial solutions they had found, as well 

as the period, in order to write out the two families of solutions. Then several students 

piped up to ask questions about whether or not this was a problem that could show up on 

a test, clarification of the general process was for solving the problem, and whether or not 

the parentheses around the period are required. Greg then took the time to summarize the 

whole process and highlighted the following steps. 

1. Get sine all by itself. 
2. Set 𝑋 equal to inside of sine. 
3. Use inverse sine to get two initial solutions. 
4. Replace 𝑋 with original 𝜃 expression. 
5. Solve for 𝜃. 
6. Find the period. 
7. Find all solutions. 

Finally, Greg wrapped up the example by allowing students to ask questions.  

I coded this example as procedures with connections for the following reasons. 

While parts of this example strayed into lower cognitive demand tasks, the majority of 

the problem was focused on the broad general procedure of using the initial solutions and 

the periodicity of sinusoidal functions to find all solutions. First, Greg consistently 

focused students’ attention on the underlying structure of solutions to trigonometric 

equations: (initial)+ (period)𝑘. While there was a lot of algebra involved in getting the 

initial solutions and students struggled to find the period, Greg always brought the focus 

back to this underlying concept. While the example was algebraic, Greg emphasized the 

connections between the general form of solutions and the specific families of solutions 
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that they had found. For example, Greg emphasized that 1/3(sin!!(1/4)+ 1) represents 

one initial solution and 2𝜋/3 represents the period. Also, the number of questions asked 

by students is one form of evidence to support the claim that this example required some 

degree of cognitive effort for students to follow. 

Comparison. The two narrative accounts I have given where Juno and Greg both 

modeled and facilitated illustrate how these role profiles may look very different. Juno 

started off by asking students questions and having them contribute to the problem 

solving process. However, once she got to the main point of her example, she switched to 

modeling. Greg, on the other hand, switched back and forth between modeling and 

facilitating throughout his example. In particular, he allowed students to ask questions 

throughout the example and used these opportunities to make sure that students 

understood. However, in both cases, it was primarily the instructor who modeled the 

more challenging aspects of the problem and guided its unfolding. 

Facilitating and Monitoring 

None of the observed high cognitive demand examples were enacted by modeling 

and monitoring, which is perhaps not surprising because monitoring student work time 

was always followed up by facilitating a whole class discussion. However, Greg and 

Kelly both enacted high cognitive demand examples where they only relied upon 

facilitating and monitoring. Greg did this once, where he gave his students time to work 

through a problem in the middle of a whole-class discussion of the example. Kelly did 

this two different times in two different ways. In one instance, she started off by having 

students work on the problem, then switched back and forth between facilitating and 

monitoring. In the other example, she started off by first facilitating a whole-class 
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discussion of the example and then gave students time to work through parts of the 

example. Below I will present and compare two different example narratives, one where 

Greg started by facilitating a whole-class discussion before modeling and another where 

Kelly did the opposite. 

Table 20. Role Profiles of Examples that were Facilitated and Monitored  
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illustration shown in Figure 10 and asked, “How long are the cables? (Give an exact 

answer.)” 

 

Figure 10. Greg’s Illustration of a Tower Stabilized by Cables 

 

At this point, Greg asked if anyone could think of a way to relate c to the other 

pieces of information they had in the problem so far.  One student suggested, “Couldn’t 

you like cross-multiply the angles? If you like know the angles, can’t we set up an 

equation to compare the length of sides with the angles?” Greg interpreted her response 

as referring to finding side lengths of similar triangles and explained how they could use 

information about a larger tower to find the height of a smaller tower that had a similar 

setup. Greg then solicited students to think of other ways to combine the information they 

had. A new student piped up and said, “sin𝜃 = 150/𝑐.” Greg agreed and explained that 

if they felt stuck in this class, then looking for a triangle or a circle, since that is what this 

class is about. He then focused students’ attention on the triangle formed by the ground, 
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the tower, and the left cable. Using this triangle, he showed how we get  

sin 60° = 150/𝑐 and then continued to solve for 𝑐 with the help of his students.  

Next, Greg told his students to figure out how far the cables must be from the 

base of the tower. He also announced that once they figured out how to do that, they 

should begin working on a problem from the workbook. Greg gave students 3 minutes 38 

seconds (henceforth notated as 3:38) to work through this second part of the example 

individually or in small groups. During this time Greg walked around the room and 

monitored students’ who were working through the problem.9 As class was about to end, 

Greg mentioned that he saw a couple of different approaches and asked his students to 

share their different approaches. One student piped up and suggested that they could use 

the Pythagorean theorem, which Greg then worked through quickly. Another student 

suggested that we could also use tangent and Greg quickly worked through that method 

as well. 

I coded this example as procedures with connections for the following reasons. 

First, Greg did not set up or encourage that students use only one method for solving this 

problem. Rather, he focused on making connections between the information they were 

given and the trigonometric equations that they had been studying. In particular, he 

focused students’ attention on using the triangle definition of trigonometric equations in 

order to solve for unknown variables. He represented the problem in words, algebraically, 

and pictorially and focused on making connections between the algebra and the picture. 

Finally, deciding what procedure to use required some degree of cognitive effort on the 

part of students. 

                                                
9 My IRB did not include taking video of students, so I was not able to capture 

what instructors did as they moved around and interacted with students. 
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Kelly. The example where Kelly began by monitoring students was situated at the 

beginning of the lesson introducing exponential functions. Kelly gave her students 3:23 

to work through the following questions. 

Suppose you have 100 dollars to deposit into a savings account. If you put your 

money into Bank A, they will deposit an additional 10 dollars per year into your 

account. If you put your money into Bank B, they will increase your balance by 

10% per year. How much money would you have after one year if you put your 

money into Bank A? How about Bank B? How much money would you have after 

two years if you put your money into Bank A? How about Bank B? After three 

years? Which bank should you use? 

During this time, she asked a group to write the balances in Banks A and B after one year 

on the board. 

Kelly then brought the class back together to see if everyone agreed with what the 

students had written on the board for the balances after one year. She then asked a student 

to volunteer the balances after two years and wrote those on the board. Kelly then asked 

her students what the balances would be after three years, which students were able to 

calculate on the spot. Kelly then asked, “Which one would you chose?” A choral of 

students said “Bank B,” and Kelly explained why that was correct. At this point, Kelly 

gave her students a similar problem to work on: Suppose you are investing $500 at an 

annual rate of 4.5%. Before moving on, she paused to make sure that everyone 

understood what “annual” meant and explained that they were just putting $500 in a bank 

account and leaving it alone to see how it grows. Then she asked her students to fill in a 

table that shows what the balance is after 𝑡 = 0,1,2,3 years. In addition, she asked her 
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students to come up with a formula that would model how much money is in the bank 

account after 𝑡 years. 

Kelly gave her students 5:40 to work through this problem. During this time, she 

walked around the room and interacted with students as they worked. After 40 seconds, 

Kelly made an announcement to the whole class to clarify that 𝑡 = 0 is the very 

beginning, when $500 is deposited into the account. She also encouraged students to 

check with each other to make sure they are getting the same numbers. About half way 

through their work time, Kelly reminded the class that once they figured out the balances 

at the end of the first three years, they needed to find a general formula that would give 

the balance after 𝑡 years. 

Next, Kelly brought the whole class back together for a discussion of the general 

formula. Some students said they didn’t have a formula yet, but Kelly assured them that 

they would figure it out together. First, Kelly asked students to volunteer the answers 

they got to fill in the table and verified that everyone had gotten the same answers. Then 

Kelly asked, “So how are we getting these numbers?” One student explained that they 

were using the formula 𝑎 1+ 𝑟 ! and Kelly acknowledged that this was what they were 

going towards, but she wanted them to figure out how we could come up with that 

formula using the numbers in the table. 

To help start the discussion, Kelly asked, “How did we get from $500 to 

$522.50?” Another student responded with, “Times 500 by 0.045.” Kelly responded by 

explaining how we could times 500 by 0.045 and then add 500, but asked if anyone 

knew an easier way of doing that. A new student piped up and said, “Times 500 by 

1.045.” Kelly responded by explaining how we could factor out a 500 from both terms in 
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500 ∗ 0.045+ 500 and get 500(0.045+ 1). Next Kelly asked how they had found that 

$546.01 was the balance after two years. A student responded with, “522.5 times 

1.045,” which Kelly agreed with. Kelly asked, “What’s another way of writing 522.5?” 

After waiting a few seconds and receiving no response, Kelly wrote added = 522.5 to the 

end of the equation 500(1.045) written on the board and said, “Maybe I will 

suggestively write that.” After repeating her question a second time, she still received no 

response until a question asked, “Can you repeat your question?” 

Kelly then explained how 522.5(1.045) = 546.01 and checked to see if 

everyone understood why that was true. Then she asked, “So how can we rewrite this 

522.5?” Finally, a student responded immediately to her question by saying, “Couldn’t 

we write 500(1.045)?” Kelly agreed and explained that this was where 522.5 had come 

from. So then to get 546.01, we needed to multiply that again by 1.045 to end up with 

500(1.045)(1.045) = 546.01. After writing this all on the board, Kelly asked her 

students if they saw a pattern and if they could guess what the formula for t years would 

be. A student responded with 500 1.045 !. Kelly then encouraged her class to plug in 

𝑡 = 3 and verify that the value agreed with what they found in their table. Kelly asked for 

any final questions, with no response, and then asked, “So what kind of formula is that?” 

A student responded with exponential and Kelly explained that this is what the new 

chapter was all about. 

I coded this as a procedures with connections example for the following 

reasoning. First, Kelly expected her students to be familiar with exponentials and know 

how to work with them computationally, but she really focused the example on the 

underlying concept of multiplicative growth. Students were not provided with any 
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specific pathways to follow and Kelly encouraged them to solve the problem in different 

ways in order to check their work. Kelly also used tabular and algebraic representations 

of the problem. Finally, not every student was able to come up with a formula during 

their small group time, so we know that it required some degree of cognitive effort for 

students to complete. 

Comparison. While Kelly and Greg both enacted high cognitive demand 

examples by monitoring and facilitating, they did so in different ways. Greg first worked 

through one part of his example with the whole class, and then gave them time to work 

through another part individually or in small groups. While some students chose to do 

these two parts in different ways, Greg expected that they would have used the same 

method. So he set up his example in a way where they could first see a problem worked 

out, and then try a similar problem on their own. Kelly, on the other hand, asked her 

students to dive in and work on the mathematics from the start. Instead of working 

through a similar problem for them, Kelly relied on her students to provide answers and 

ideas of what to do next. 

Modeling, Facilitating, and Monitoring 

The final type of role profile associated with the high cognitive demand examples 

that I observed is when instructors incorporated modeling, facilitating, and monitoring 

into parts of their example. Alex and Greg were the only two instructors who enacted 

high cognitive demand examples in this way. There were no clear patterns that emerged 

from these examples, so I just selected one to describe in more detail below. 
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Table 21. Role Profiles of Examples that were Modeled, Facilitated, and Monitored 

 

Greg. One of the high cognitive demand examples that Greg enacted by 

monitoring, facilitating, and modeling was done during a class where they were 

reviewing for the final exam. Greg had done a series of examples that were all related. 

The overarching problem context was situated in real-life Ferris wheel problem. The 

students were told that the Ferris wheel was 65 feet above the ground at its highest point 

and that people boarded the Ferris wheel on a 10-foot platform at the 6 o’clock position. 

Also, one revolution of the Ferris wheel took 6 minutes. In the first few examples, Greg 

constructed a formula that modeled the distance off the ground of someone riding the 

Ferris wheel as a function of time; found all times between 𝑡 = 0 and 𝑡 = 18 when the 

person is 15 feet off the ground; and found how far the person traveled after 1 minute, 30 

seconds, and 13 seconds. In the final example related to this problem, Greg asked them to 
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modify their formula to represent the trip starting at the 4 o’clock position instead of at 

the 6 o’clock position. 

Greg started by asking students talk amongst themselves about the problem for 

three minutes. After 1:18, Greg announced to the whole class that he heard several groups 

say that starting at a different position is the same as applying a horizontal shift, so they 

just needed to figure out what the horizontal shift is. He also said that it is easiest to keep 

the 𝐵-value the same and write the equation as 𝑔 𝑡 = −27.5 cos(2𝜋/3(𝑡 − ℎ))+ 37.5, 

where |ℎ| is the amount they should shift left or right by. Greg then suggested that if 

students were not sure if they wanted to shift right or left, they should graph both of them 

and see what the difference is in shifting right versus left on this problem.  Greg then 

gave students another 2:02 to work on the problem and monitored their progress. 

Towards the end of this time, he drew the following figure on the board. 

Figure 11. Illustration Used by Greg to Talk About Position on Ferris Wheel 

 

Greg brought the class back together by asking, “How much do we want to shift 

by? Let’s start by deciding that.” No one responded immediately, so Greg drew line 
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segments from the center of the circle in Figure 11 to the 6 o’clock, 5 o’clock, and 4 

o’clock positions. He explained that 𝑡 is measured in minutes and so the shift should also 

be measured in minutes. Then he asked, “If we are starting at 4 o’clock instead of 6 

o’clock, how many minutes have we shifted by?” Greg looked around the room and said, 

“Some people said 2, others are giving me 1.” He then turned back to his drawing and 

asked, “How much time does it take me to get from 6 o’clock to 5 o’clock?” One student 

responded with 60 minutes, to which Greg responded with, “Sixty minutes to get from 6 

o’clock to 5 o’clock?... Well, so if I get the whole way around in 6 minutes, each of these 

is 1/12 of…” At this point, a chorus of students started speaking and the student who 

gave the response of 60 minutes said, “Oh, I meant that to get from 6 o’clock to 5 o’clock 

it takes 60 minutes.” At this point, Greg realized that his students had been thinking of a 

literal clock, as opposed to using the times as positions. So he recognized that it was 

slightly confusing, but since it takes 6 minutes to get all the way around and going from 

one position to the next is the same as going 1/12 of the way around, moving one 

position (like from 6 o’clock to 5 o’clock) takes 30 seconds. So we want to shift by 1 to 

change from the 6 o’clock position to the 4 o’clock position. 

Now that they had the shift amount figured out, Greg asked if anyone had graphed 

both a shift left and a shift right to see what the difference between them is. When no one 

responded, Greg started sketching each graph on the board. At this point, a student spoke 

up and said they wanted to shift to the left and Greg asked why. The student responded 

by saying, “Because if you board at the 8 o’clock position, you shift to the right.” Next, 

Greg pointed out that we actually don’t know which direction the Ferris wheel is turning. 

The student piped up and said, “Sorry, I messed up. Just flip around whatever I just said.” 
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Greg responded by returning back to his point that we actually don’t know which 

direction the Ferris wheel is turning (clockwise or counterclockwise). So, in short, both 

answers were actually right because we didn’t know which direction the wheel is turning. 

In conclusion, Greg explained that shifting to the left corresponds with turning 

counterclockwise and shifting to the right corresponds with turning clockwise. 

I coded this as a procedures with connections example for the following reasons. 

First, Greg chose this example because it was more difficult and he wanted his students to 

learn how everything they had learned throughout the semester worked together. In 

particular, this example focused students’ attention on how to identify the amount and 

direction a graph is shifted by when they are only given a verbal description of the shift. 

The problem itself did not explicitly tell students that they needed to use a horizontal 

shift, but rather this was something they had to figure out as part of the problem. Greg 

also relied heavily upon the clock diagram that he drew to talk about moving the start 

position and how long that would take given what they know about how long it takes to 

travel around the whole Ferris wheel. Finally, it was clear from the students’ questions 

and responses that the example required some degree of cognitive effort for students to 

follow. 

Discussion 

In this part of my study, I examined what high cognitive demand examples look 

like in precalculus courses and identified three different roles that instructors took on 

when enacting high cognitive demand examples. Originally, I sought to use the Task 

Analysis Guide developed by Smith and Stein (1998) to code the cognitive demand of 
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enacted examples. However, the Task Analysis Guide includes language that specifies 

that students are the ones doing the mathematical work (e.g., “require students to 

explore…students need to engage…”). However, while some instructors did involve 

students explicitly in working out examples, others chose to do most of the mathematical 

work themselves. Therefore, I created a modified framework for analyzing the cognitive 

demand of examples (Table 7) that removed any language concerning who is doing the 

mathematical work. 

Using this modified framework, I analyzed 93 examples that were enacted in 

precalculus classrooms and found that 25 of them were enacted at a high level of 

cognitive demand. In these examples, I found that there were three roles that instructors 

took on during the enactment: modeling, facilitating, and monitoring (Table 11). Using 

these three different ways of working through an example, I was able to construct role 

profiles of the instructors involved in my study as well as of the high cognitive demand 

examples that they enacted. As a result, I found that while some instructors chose to just 

model examples for their students (e.g., Dan and Emma), others chose to switch between 

different roles. Juno also modeled examples for her students, but often asked for student 

involvement and switched to facilitating. On the other hand, Alex and Greg switched 

back and forth between all three roles, while Kelly chose to never model and instead just 

facilitated a whole class discussion or monitored her students as they worked on parts of 

the example independently or in small groups. 

In each of these examples, the instructors presented the material in a variety of 

ways. While the students in Dan and Emma’s class did not have the opportunity to 

struggle with the mathematics involved in the example, they still had the opportunity to 
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learn from the high cognitive demand examples that Dan and Emma did enact. On the 

other hand, the students in Alex, Greg, Juno, and Kelly’s class all had the opportunity to 

contribute to the mathematical work entailed in solving these high cognitive demand 

examples. 

A natural question that arises is, “Why is it reasonable to assume that modeling, 

facilitating, and monitoring capture every type of role that an instructor might take on 

when enacting an example during class?” One way of thinking about these three roles is 

in terms of the continuum of student-centered and teacher-centered instruction. 

According to Felder and Brent (1996), “student-centered instruction is a broad teaching 

approach that includes substituting active learning for lectures, holding students 

responsible for their learning, and using self-paced and/or cooperative (team based) 

learning” (p. 43). In my framework, monitoring is a form of student-centered instruction 

while modeling is a form of teacher-centered instruction. On the other hand, facilitating 

whole class discussions exists somewhere in the continuum between the two. So 

altogether, the three roles are intended to cover the entire spectrum of student- and 

teacher-centered instruction. 

Limitations 

One limitation of this study is that the data I collected focused on the instructor 

and did not incorporate the student perspective. Therefore, I had to assess the cognitive 

demand of each example based upon the questions that students asked and the 

mathematical content of each example. While I tried to define the four different levels of 

cognitive demand so that a classroom observer could categorize examples, it was still 
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difficult at times to determine whether or not an example required cognitive efforts for 

students to follow or understand. 

Another limitation is that even though I did conduct a multiple case study, all of 

the instructors that I observed were teaching precalculus in the same mathematics 

department. In particular, all of the instructors were provided with lesson guides from the 

department, so they all had access to and drew from the same curriculum. While 

instructors could modify these lesson guides, many of them stuck to them and used the 

examples that were provided. So the cognitive demand of the enacted examples was 

probably influenced by the cognitive demand of the examples included in the lesson 

guides. 

Another limitation of this study was that is difficult to determine when an 

instructor is switching between modeling and facilitating. In particular, facilitating still 

requires contributions from the teacher, so it can be difficult to determine exactly when 

an instructor stopped modeling and started facilitating a whole-class discussion. 

Therefore, the role profiles should be interpreted as having a margin of error any time an 

instructor switched between modeling and facilitating. 

Implications 

The modified framework that I developed for analyzing the cognitive demand of 

examples is useful for both researchers and practioners. First, this framework gives 

researchers a way to analyze the cognitive demand of tasks independent of who is doing 

the mathematical work. This is especially important for examples, since instructors can 

present them in a variety of ways. While it is similar in many ways to the Task Analysis 

Guide (Smith & Stein, 1998), I modified their original framework by removing any 
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references to who is doing the mathematical work. The framework is also useful for 

practioners as a planning and reflection tool. As teachers plan and reflect on their 

teaching, they can use this framework to assess the cognitive demand of the examples 

they use. 

The three roles that I identified (modeling, facilitating, and monitoring) are also 

useful for both researchers and practioners. First, these roles provide researchers with a 

way to identify what teachers do when they present examples and what they expect their 

students to do. In particular, researchers can construct role profiles for teachers and the 

examples that they enact and see how these profiles might correspond with student 

engagement and opportunities to learn. On the other hand, practioners may find it helpful 

to think about what role they plan to take on when enacting examples and why it might 

be useful to model, facilitate, or monitor in different circumstances. Also, being aware of 

these different roles can help instructors reflect in-the-moment on whether or not they 

should switch from modeling to facilitating or pause and monitor students as they work 

through part of an example. 

Conclusion 

The purpose of this paper was to identify what high cognitive demand examples 

look like in undergraduate precalculus classrooms and to examine the roles that 

instructors take on when presenting examples. While I originally intended to use the Task 

Analysis Guide (Smith & Stein, 1998) to analyze examples, I found that it was difficult to 

use because some of the language seemed to specify that students must be the ones doing 

the mathematical work. Since examples are different than tasks in that sometimes the 

instructor models them for students, I developed a modified framework for analyzing the 
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cognitive demand of examples (Table 7) that focuses more on the cognitive demand of 

the mathematics involved in the example and less on who is doing the example. While 

this modified framework was useful for my study, other researchers who want to study 

cognitive demand independent of who is doing the mathematical work can also use it. 

Also, practioners can use this framework as a way to examine the cognitive demand of 

the examples that they use in their classrooms. In my study, I also found that instructors 

took on three different roles when presenting examples: modeling, facilitating, and 

monitoring. To help illustrate what these roles look like, I provided narrative descriptions 

of different examples that were presented by instructors in different ways. Using these 

three roles, other researchers can construct role profiles for teachers and the examples 

that they use and study how these role profiles might afford different opportunities for 

students to learn and struggle. Also, being aware of these roles can help instructors think 

about who is doing the mathematical work in their classrooms and what opportunities 

they are giving their students to learn and struggle with the content.  
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CHAPTER 5: DECOMPOSING THE PEDAGOGICAL WORK 

ENTAILED IN ENACTING HIGH COGNITIVE DEMAND 

EXAMPLES 

This paper decomposes the pedagogical work of enacting high cognitive demand 

examples by identifying the teaching tasks entailed in enactment. In this chapter, I argue 

that instructors must attend to the mathematical point, make connections, provide clear 

verbal explanations, articulate cognitive processes, and support student understanding 

when enacting high cognitive demand examples. This case study was conducted using a 

thematic analysis of 25 high cognitive demand examples that were enacted by instructors 

in undergraduate precalculus classrooms. This paper contributes to the corpus of 

literature that decomposes the practice of teaching so that novice teachers can more easily 

see and replicate the work that teachers do. 
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Introduction 

Examples are often used in mathematics classrooms as a way to explain and 

model content, practices, and strategies, which is a basic fundamental of teaching 

(TeachingWorks, 2017). Explaining and modeling goes beyond just working out an 

example at the board and should include the teacher thinking aloud and demonstrating 

complex academic practices and strategies. One way of classifying the complexity of an 

example is by examining the cognitive demand (Stein et al., 1996). Stein, Grover, and 

Henningsen defined cognitive demand as “the kind of thinking processes entailed in 

solving [a] task” (p. 461) and identified four categories to describe the cognitive demand 

of a task: memorization, procedure without connections, procedure with connections, and 

doing mathematics. 

Despite the importance of explaining and modeling complex academic practices 

and strategies, I have found that the examples teachers often use do not involve high 

cognitive demand tasks (Chapter 4). Of the 93 examples that I observed in my study, only 

25 (27%) of them were enacted at a high level of cognitive demand. While it may be true 

that students in these classrooms had the opportunity to engage with high cognitive 

demand tasks in other contexts (such as small group work and homework exercises), it is 

troubling that the problems that the teachers chose primarily focused on explaining and 

modeling memorization and procedures without connections tasks. In particular, while 

the teachers may have expected students to engage with high cognitive demand tasks in 

other settings, they often did not demonstrate the type of thinking entailed in solving 

these complex problems. 
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The paucity of high cognitive demand examples may be attributed to several 

factors. Teachers may have viewed small group work or homework as a more appropriate 

opportunity for students to engage with high cognitive demand tasks. Stein, Grover, and 

Henningsen (1996) also pointed out that high cognitive demand tasks are “often less 

structured, more complex, and longer than tasks to which students are typically exposed” 

(p. 462), which makes them more difficult to enact. In their study, the authors found that 

even tasks that were set up at a high level of cognitive demand could decline into low 

level due to the inappropriateness of the task for students, the focus shifting to the correct 

answer, too much or too little time, and several other factors (p. 479). 

Another factor that may contribute to the cognitive demand of examples is the 

teachers’ mathematical knowledge for teaching (MKT). Charalambous (2010) found 

evidence of this connection in a study of elementary school teachers, which used the 

Learning Mathematics for Teaching test (Hill, Sleep, Lewis, & Ball, 2007) to measure 

teachers’ MKT. Since no similar measure exists at the secondary or undergraduate level, 

I built upon Charalambous’ (2010) finding and examined the MKT entailed in enacting 

high cognitive demand examples (Chapter 6). 

Finally, another reason why instructors may struggle to enact high cognitive 

demand examples is because they are not aware of the work that goes into setting up and 

enacting them. While most people have experienced years of sitting in a classroom and 

observing their teachers, much of the work of teaching is not observable or difficult to 

recognize. In fact, Clark and Lampert (1986) pointed out that teachers have to do many 

complex things at once, and yet need to make it all look effortless in order to maintain 
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credibility with their students. While this hidden work of teaching is vital, it is often 

difficult for novices to recognize and reproduce. 

The purpose of this paper is to examine the work of teaching entailed in enacting 

high cognitive demand examples. Through my analysis of the examples that instructors 

were able to enact at a high level of cognitive demand, I decomposed the work of 

teaching entailed in explaining and modeling content, practices, and strategies. The 

purpose of this decomposition is to create a framework that breaks down teaching with 

examples so that novice instructors can both see the work involved and model their own 

teaching practices after it. In my work, I define an example as a mathematical task that an 

instructor facilitates with the entire class for illustrative purposes. While students may be 

asked to work individually or in small groups on parts of the example, the majority of the 

example is done together as a whole class. 

In the next subsection, I provide a narrative of an example that declined in 

cognitive demand during enactment, even though the instructor intended for the example 

to be of higher cognitive demand. The purpose of this narrative is to illustrate how 

examples can quickly decline in cognitive demand if the instructor does not attend to the 

work of maintaining the cognitive demand. 

Greg’s Law of Sines Example 

Greg is teaching trigonometry, which meets on Tuesdays and Thursdays for 50 

minutes each day. It is the beginning of the semester and Greg is finishing the first 

chapter that introduces trigonometric functions. In this lesson, Greg is introducing the 

Laws of Sines and Cosines as a way to talk about finding the side lengths and angle 

measures of non-right triangles. At the beginning of the lesson, Greg planned to first 
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derive the Laws of Sines and Cosines. Next, Greg wanted to give students an opportunity 

to practice applying these Laws. However, instead of just giving them a problem and 

telling them what procedure to use, Greg wanted to provide students with an opportunity 

to think critically about what procedure would be appropriate. 

Greg’s students had worksheets with problems that they worked through during 

every class period. The first problem on their worksheet for this lesson is given below in 

Figure 12. In the written example, the students were told that the goal of the problem was 

to study how to use the Law of Sines to solve for 𝑥. However, Greg knew that identifying 

the correct procedure to use to solve a problem is what students struggle with. So he 

decided to use this worksheet problem as an example, but without the goal statement. 

Instead, Greg planned to just draw the triangle on the board and ask students to figure out 

how we can use the information given to solve for 𝑥. Greg wanted to help get his students 

used to looking at a problem, identifying the given information, and then identifying what 

tools they have that can take that given information and produce what we want. 

Figure 12. Greg’s Law of Sines Written Example 

Goal: To study how to use the Law of Sines to find the length of an 
unknown side. 
Exercise: Solve for 𝑥 in the triangle below. 

 

Greg thought that this problem, in particular, was appropriate for helping students 

learn how to “choose the right tool” because it’s a simpler case. In the example, the 

students are given a lot of information and a specific outcome. In later problems on the 

worksheet, there were problems where students are only given side lengths and asked to 
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fill in every piece of information that they can. But with this example, students just have 

to figure out one piece of information. Greg anticipated that students might try to solve 

the problem using the Law of Cosines, since they will have talked about both Laws 

before working through this example. 

During class, Greg set up the example as he had intended by just drawing the 

triangle and not giving the goal statement. However, he told students that it was the first 

problem on their worksheet so many students began flipping through their workbook to 

find the right page. Greg then asks, “Based on what we have done today…we are going 

to use our new tools…. What information allows us to combine side lengths and opposite 

angles?” A student immediately responded with sines, which Greg interpreted as meaning 

Law of Sines. Greg then asked, “What does the Law of Sines tell us in this case?” One 

student responded with, “Break this into two triangles,” which Greg interpreted as 

referring the method that they had used previously to derive the Law of Sines. 

Greg went on to explain that they could re-deduce the Law of Sines, but it would 

be easier if they just used the final equation that they had come up with in the first place: 

sin 𝐴 /𝑎 = sin 𝐵 /𝑏, where 𝐴 is the angle opposite the side of length 𝑎 and 𝐵 is the 

angle opposite the side of length 𝑏. A student then suggested that they could write 

sin 30 /5 = sin 45 /𝑥. Greg then worked through the algebra of solving for 𝑥. He 

then paused and asked if there were any questions of what they did in the example or why 

they did it. Two students asked questions about some of the algebraic steps involved in 

solving for 𝑥, which Greg explained by writing out some of the steps he had skipped. 

I coded the intended example as procedures with connections, because Greg said 

that his main focus for doing this example was on understanding why a procedure is 
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appropriate to use based upon the given information and problem solving goals. So 

Greg’s plan was to focus students’ attention on the use of the procedure for the purpose 

of developing deeper understanding of why it is appropriate to use in this case. Greg also 

planned to remove the goal statement, so the use of the procedure was no longer 

specifically called for. However, the cognitive demand of the example changed during 

the enactment of the example. First, Greg specifically told students that the example was 

in their workbook, so if students flipped to the right page, they could easily read off the 

goal statement and therefore know right away what procedure they were supposed to use. 

Second, Greg’s cued that they should be using one of the Laws when he told students that 

the example was “based on what we have done today” and that “we are going to use our 

new tools.” Finally, instead of taking time to pause and unpack why it’s appropriate to 

use the Law of Sines, Greg quickly moved on to finding the right answer. Therefore I 

coded the enacted example as procedures without connections. 

In later sections, I will provide a decomposition of the work entailed in enacting 

high cognitive demand examples. The purpose of providing this narrative is to illustrate 

that even if an instructor intends to enact an example at a high level of cognitive demand, 

what they do during class has a large impact on whether or not the cognitive demand is 

maintained. Later, when I provide examples of the work that instructors did to enact high 

cognitive demand examples, I will highlight how Greg did not attend to these things in 

this first narrative.  
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Goals of the Study 

The first research question that guides this study is, “What do instructors do when 

enacting examples to help maintain the cognitive demand?” In answering my first 

research question, I aim to decompose the work entailed in enacting high cognitive 

demand examples. The second research question that guides this study is, “How does this 

work relate to the roles that instructors and students take on when enacting high cognitive 

demand examples?” In answering my second research question, I aim to draw 

connections between the results of this study and the results I found in my previous study 

(Chapter 3), which examines how instructors model, facilitate, and monitor. 

Theoretical Foundations 

Decompositions of practice were first identified as a critical aspect of professional 

education by Grossman, Compton, Igra, Ronfeldt, Shahan, and Williamson (2009). In 

order to develop a framework to describe and analyze the teaching of practice, Grossman 

et al. examined the professional preparation of clergy, teachers, and clinical 

psychologists. Through their cross-professional analysis, they found that there are three 

key concepts that influence the construction of understanding of pedagogies of practice: 

representations, decomposition, and approximations of practice. In their work, 

representations of practice involved “the different ways that practice is represented in 

professional education and what these various representations make visible to novices” 

(p. 2058). A decomposition of practice “involves breaking down practice into its 

constituent parts for the purposes of teaching and learning” and an approximation of 
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practice “refer[s] to the opportunities for novices to engage in practices that are more or 

less proximal to the practices of a profession” (p. 2058). 

Since Grossman et al.’s (2009) study, there have been several researchers who 

have focused on developing decompositions of the practice of teaching mathematics. 

Sleep (2012) decomposed the work entailed in steering instruction toward the 

mathematical point. Through her analysis of preservice teachers, Sleep identified seven 

central subtasks, along with strategies and problematic issues associated with each 

subtask. The main contribution of Sleep’s work is that she provided “an articulation of a 

key aspect of the work of teaching at a grain size that is directly usable in the design of 

practice-based teacher education” (p. 965). Other examples of decompositions of 

mathematics teaching include Smith, Bill, and Hughes’ protocol for thinking through a 

lesson (2008); Jacobs, Lamb, and Philipp’s framework for professional noticing of 

children’s mathematical thinking (2010); Smith and Stein’s 5 Practices for Orchestrating 

Productive Mathematics Discussions (2011);  Herbst’s decompositions of promoting and 

managing students’ discourse (2011a), explaining concepts and propositions (2011b), 

setting norms for mathematical work (2011c), explaining procedures (2013), and 

assigning and reviewing students’ work (2014); and the LESRA mathematics instruction 

framework (Wisconsin Department of Public Instruction, 2013). 

In developing my decomposition of practice, I drew upon the curriculum 

framework developed by Stein, Remillard, and Smith (2007). Instructors are often given 

or seek out curriculum resources, which the authors refer to as the written curriculum. 

Drawing upon these resources, the instructors create their lesson plans, which make up 

the intended curriculum. Finally, what actually occurs during class is described as the 
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enacted curriculum. Between the phases of written curriculum and intended curriculum 

and within the phase of enacted curriculum, there are several factors that contribute to the 

transformation of the curriculum. For example, teachers may change the written 

curriculum based upon their beliefs or knowledge or classroom structures and norms may 

influence how the curriculum is enacted. 

Smith, Bill, and Hughes (2008) published a lesson planning protocol that 

decompose the work of planning high cognitive demand tasks. Although very similar to 

the work that I aim to do, Smith et al. focused on the first stage of transformation that a 

task goes through as it is taken from the written curriculum and transformed in the 

teacher’s lesson plan. In their protocol, Smith et al. identified three parts of the lesson 

planning process: selecting and setting up a mathematical task, supporting students’ 

exploration of the task, and sharing and discussing the task. Within each part, the authors 

provided several guiding questions for teachers to consider as they are planning their 

lesson. While they admitted that thinking through all of the questions in the protocol 

might be overwhelming for teachers to do with every task in their lesson plan, the authors 

argued that it could be used as a tool for collaborative planning. They also highlighted 

how teachers have used the protocol in pieces until it becomes a more natural part of their 

thinking process when lesson planning. 

Data and Methods of Analysis 

To decompose the work of enacting high cognitive demand examples, I analyzed 

25 examples that graduate student instructors were able to enact at a high level of 
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cognitive demand. These examples came from a larger set of 92 examples that I observed 

seven different instructors enact over the period of a year (Chapter 3). 

Participants 

The six graduate student instructors that participated in my study came from a 

larger sample of seven graduate student instructors  (hereafter called instructors) that I 

observed. The one instructor, Selrach, that was not included in the analysis for this study 

was removed from the data set because I did not observe any examples that he enacted at 

a high level of cognitive demand. The six instructors were doctoral mathematics graduate 

students in at least their third year of study at a large public university in the Midwestern 

United States. Graduate instructors were selected based on their level of experience 

teaching their course (they had to be teaching their respective course for at least the third 

time) and willingness to participate in the study. All of the instructors were provided with 

essentially the same written curriculum, which was developed by the mathematics 

department they were teaching in. However, they were using slightly different versions, 

as the curriculum was still in development and undergoing revisions. 

Data 

Each instructor was observed teaching three mathematics lessons, which spanned 

either one or two days each, and was interviewed both before and after teaching. 

Recordings were made of all of the interviews (audio) as well as the classroom 

observations (video and field notes). Any curriculum materials used and lesson plans 

created by the instructors were captured. 

Pre-observation interviews. The semi-structured pre-observation interviews 

focused on providing context for the observation and motivation for the examples. The 
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instructor was first asked about the topic of the previous lesson(s), whether or not the 

instructor had taught this topic before using the same or different s, and what curriculum 

materials the instructor used to develop their lesson plan. Next, the instructor was asked 

to talk about each example included in their intended lesson plan and identify the 

mathematics they intended for students to learn through the example and why they chose 

to use this particular example. 

Lesson observations. Table 22 shows the instructors pseudonyms as well as a 

short description of the topics of each lesson where I observed them enact a high 

cognitive demand example. All of the instructors, except for Greg, were teaching college 

algebra and trigonometry, which met five days a week. Greg, on the other hand, was 

teaching trigonometry, which met two days a week. The examples enacted during each 

lesson were video recorded and I took observational field notes. As I observed each 

example, I attended to whether or not the instructor made any changes to their intended 

lesson plan and what the instructor did while enacting the examples. 

Table 22. Descriptions of Observed High Cognitive Demand Examples 

Example ID Lesson Example Description Cognitive 
Demand 

Alex 1-1 Introduction to 
Exponentials 

Exploring the notions of exponential 
vs. linear growth High 

Alex 1-2 Introduction to 
Exponentials 

Building an exponential function from 
a word problem High 

Alex 2-1 Function 
Compositions 

Exploring the notion of function 
compositions through unit 

conversions 
High 

Dan 2-4† Function 
Compositions 

Decomposing function compositions 
into any two functions High 

Dan 3-1† 
Trig Equations & 

Inverse 
Functions* 

Graphing solutions to trig equations as 
points of intersection High 

Dan 3-8† Trig Equations & Finding all solutions in a given High 
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Example ID Lesson Example Description Cognitive 
Demand 

Inverse 
Functions* 

interval to sinusoidal equations 

Emma 2-1 Function 
Transformations Transforming the graph of a function High 

Greg 2-1 Trig Equations & 
Inverse Functions 

Illustrate why sine and cosine may 
have 2 solutions/period, but tangent 

has 1 
High 

Greg 4-1 
Tangent & 
Reciprocal 

Trig Functions* 

Exploring the behavior of tangent 
using 

standard unit circle angles 
High 

Greg 4-4 
Tangent & 

Reciprocal* 
Trig Functions* 

Solving real-life problems using 
tangent High 

Greg 5-1† 
Trig Equations & 

Inverse 
Functions* 

Using graphs to identify how many 
solutions are in a single period High 

Greg 5-2† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to trig equations 
with standard unit circle angles High 

Greg 5-3† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to trig equations 
with non-standard unit circle angles High 

Greg 5-5† 
Trig Equations &  

Inverse 
Functions* 

Finding all solutions to tangent 
equation with non-standard unit circle 

angles 
High 

Greg 5-6† 
Trig Equations &  

Inverse 
Functions* 

Finding all solutions to sinusoidal 
equations with non-standard unit 

circle angles 
High 

Greg 6-3† Review* Finding a sinusoidal equation given a 
description of a real-life context High 

Greg 6-9† Review* Finding the horizontal shift of a 
sinusoidal function High 

Juno 1-5 
Tangent & 
Reciprocal 

Trig Functions* 

Proving that sine and cosine are 
cofunctions High 

Juno 2-1† 
Trig Equations & 

Inverse 
Functions* 

Graphing solutions to trig equations as 
points of intersection High 

Juno 2-2† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to trig equations 
with standard unit circle angles High 

Juno 2-3† Trig Equations & Finding all solutions to trig equations High 
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Example ID Lesson Example Description Cognitive 
Demand 

Inverse 
Functions* 

with non-standard unit circle angles 

Kelly 1-1 Introduction to 
Exponentials 

Exploring the notions of exponential 
vs. linear growth High 

Kelly 2-1 
Polynomials & 

Rational 
Functions 

Exploring the behavior of 
polynomials near the roots High 

Kelly 2-2 
Polynomials & 

Rational 
Functions 

Graphing polynomials given the 
equation in factored form High 

Kelly 2-3 
Polynomials & 

Rational 
Functions 

Constructing polynomial equations 
given the graph High 

Note: The example ID represents the instructor, the observation number, and the enacted 
example number. 
*These lessons were purposefully sampled because of their focus on procedures. 
†These examples were spread out over two days of instruction. 
 

Post-observation interviews. After each observation, I met with the instructor 

(typically the next day) to conduct a post-observation interview. Between the observation 

and the interview, I analyzed the video recordings of the examples that the instructor 

enacted during class and selected one to talk about with the instructor. When possible, I 

selected an example that was enacted at a high level of cognitive demand. If all of the 

examples were enacted at a low level of cognitive demand, then I either chose one that 

declined in cognitive demand (i.e., was intended, but not enacted, at a high level of 

cognitive demand) or selected a random example to unpack. 

I began the post-observation interview by first asking the instructor if the class 

had went as planned and why they chose to either add or skip examples. Next, we 

watched pre-selected video clips (30-60 seconds in length) together and I probed their 

thinking regarding what they were doing at specific moments and their reasoning behind 

their actions. Given that some time had elapsed between the observation and the 
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interview (usually somewhere between 12 and 24 hours), I used the video clips to help 

with video-stimulated recall (reference). The interviews usually included specific 

conversations centered around 5-10 video clips and lasted 45-60 minutes. 

Analysis 

I began my analysis of the work of enacting high cognitive demand examples by 

first identifying general themes based on literature, my own experiences teaching, and my 

observations during data collection. The full list of these codes can be found in Appendix 

D. I organized these themes into general categories, which were used in the initial coding 

stage. As I analyzed the set of high cognitive demand examples I observed, the categories 

and subcategories were reorganized and added based upon what I observed in my data. 

This refined coding scheme can be found in Table 35 in Appendix D. I then conducted an 

axial coding in order to organize my decomposition codes into broad tasks and tasks. 

Finally, I used this semi-final set of codes and recoded all 25 examples. The final tasks 

and subtasks that resulted from this analysis will be discussed in the following section 

and can be found in Appendix D. 

Results: Pedagogical Work of Enacting High Cognitive Demand Examples 

Based upon my analysis, I found that the work of enacting high cognitive demand 

examples can be broken town into five broad tasks: 

1. Attending to the mathematical point, 
2. Making connections, 
3. Providing clear verbal explanations, 
4. Articulating cognitive processes, and 
5. Supporting student understanding. 
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Each of these tasks will be discussed in turn, with narrative descriptions of how the 

instructors that I observed did these things. I will also talk about the first narrative that I 

presented in the introduction of Greg and his Law of Sines example in order to illustrate 

how he did not attend to these things during the example enactment.  

Attending to the Mathematical Point 

The importance of attending to the mathematical point has been highlighted by 

the work of Sleep (2012). Sleep identified seven central tasks entailed in steering 

instruction toward the mathematical point: attending to and managing multiple purposes, 

spending instructional time on mathematical work, spending instructional time on the 

intended mathematics, making sure students are doing the mathematical work, 

developing and maintaining a mathematical storyline, opening up and emphasizing key 

mathematical ideas, and keeping a focus on meaning. While Sleep’s work focused on 

attending to the mathematical point throughout a lesson as a whole, I found that it was 

also an important aspect of enacting high cognitive demand examples. While Sleep broke 

down attending to the mathematical point into seven subtasks, I examined this task of 

teaching at a larger grain size. In particular, I found that instructors introduced the 

mathematical point as a way to set the focus of the example, maintained the focus of the 

example on the mathematical point, and summarized the example to reiterate the 

mathematical point. In the following subsections, I address each of these subtasks 

separately and provide narrative descriptions of how the instructors in my study did these 

things. 

Introducing. Out of the six instructors that I observed enacting a high cognitive 

demand example, five of them made sure to introduce the mathematical point as a way to 
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set the focus of the example. However, these instructors chose to introduce the 

mathematical point at different times during the example. In two of the three high 

cognitive demand examples that I observed Alex enact, she introduced the mathematical 

point at the very beginning of the example. Before asking students to explore the notions 

of exponential versus linear growth, Alex drew a web diagram on the board that mapped 

out the different families of functions they had studied so far. In particular, she explained 

that today they were going to begin exploring the family of exponential functions. 

Dan, on the other hand, sometimes chose to wait until the end of an example to 

introduce the mathematical point. After explaining how we can visualize solutions to 

equations by finding points of intersection on graphs, Dan brought attention to the fact 

that trigonometric equations can have infinitely many solutions. Dan is also very specific 

in the language that he uses and answers the question, “What is the point?” for two of the 

three high cognitive demand examples that he enacted. Juno and Greg also introduced the 

mathematical point as a way of interpreting the mathematics that they had been working 

through. 

In the example narrative that I presented at the beginning of this chapter, Greg 

had a clear mathematical point in mind for the example he did on using the Law of Sines 

to solve for an unknown side. In particular, Greg wanted to give students an opportunity 

to think about the information they were given and decide what tools they could use to 

get the desired result. However, this point was never explicitly introduced during 

instruction. In fact, the mathematical point that Greg seemed to be making during class 

was that this was a problem we can use our new “tools” to solve. Since this change in 

direction reduced the cognitive demand of figuring out what tools are appropriate, not 
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introducing the original mathematical point contributed to the decline of the cognitive 

demand. 

Maintaining. Since many of the instructors chose to enact examples by either 

facilitating whole-class discussions or monitoring students as they worked individually or 

in small groups on parts of the example, it was important for instructors to make sure that 

the example stayed focused on the mathematical point. Even for instructors who chose to 

model the example for students, they still were explicit about making sure that students 

were focusing on the mathematical point and not getting lost in the arithmetic. 

The work of maintaining the mathematical point was particularly important in 

examples of longer duration. For example, after taking the first five minutes to determine 

the order of transformations and move individual points on the graph, Emma reminded 

her students that the point of the example was to graph the transformed graph between 

𝑡 = 0 and 𝑡 = 9, which meant that not all of the transformed points would be on the final 

graph. In another example, Greg first calculated sin𝜃 / cos𝜃 for all 𝜃 in the first 

quadrant and asked students to calculate these values for the rest of the quadrants, but 

reminded his class that the real purpose of doing this was to see if 𝑦 = sin𝜃 / cos𝜃 is 

periodic. 

When monitoring students as they worked through parts of the example 

individually or in small groups, Greg and Kelly maintained the mathematical point by 

asking students to make sure they were discussing a particular question. In Greg’s 

example, he anticipated that students might be struggling with identifying whether or not 

they should shift a function to the right or the left, so he reminded them that they could 

graph both transformations and see which one fit the phenomenon they were trying to 
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model. In Kelly’s example, she asked students to fill in a table of input-output values and 

find a general formula that would give the output values for any input. After monitoring 

students as they worked on this problem for three minutes, she made an announcement to 

the whole class to remind them to try to find a general formula. 

In the Law of Sines example that Greg enacted, the mathematical point turned 

quickly from focusing on identifying a procedure to computing the answer. If Greg had 

paused after the student quickly responded with the correct procedure and asked, “Why 

would hat be that an appropriate procedure to use?” or “Why do our problem conditions 

make that an ideal procedure to use?” or “Is that the only procedure we could use? Can 

we generate other strategies that would also work?”, then he could have maintained the 

focus of the example on the original mathematical point. 

Summarizing. The final subtask associated with attending to the mathematical 

point was summarizing the example. For the six instructors that I observed, every one of 

them did this during at least one of their high cognitive demand examples. Alex was the 

most consistent, as she summarized the mathematical point at the end of every high 

cognitive demand example that I observed her enact. Most of her high cognitive demand 

examples were also longer in length (5:17, 8:22, and 15:02), which may contribute to her 

tendency to always summarize at the end. 

Dan also used summarizing the mathematical point as a way to conclude his 

examples. In particular, Dan highlighted the strategies that he used to solve problems. In 

his example where he explained how to decompose function compositions into two 

functions, Dan wrapped up by highlighting that students could use a similar strategy of 

identifying an “inside” and “outside” function when working on similar problems in the 
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future. Emma summarized her high cognitive demand example in a similar way by 

highlighting the two different approaches that she had demonstrated and explaining that 

students could use whatever one made more sense to them. When finding all solutions to 

a sinusoidal equation, Greg also ended his example by summarizing what all the steps 

were that they had gone through to find their families of solutions. 

In the Law of Sines example that Greg did, the majority of the example ended up 

being focused on the computations needed to solve for 𝑥. In our post-observation 

interview, Greg mentioned that he had not expected students to struggle with the 

computational aspect of the problem. However, he was responsive to their questions and 

made sure that everyone understood the algebra involved in the problem. One way that he 

could have wrapped up the example and brought his students attention back to the 

original mathematical point that he had intended would have been by summarizing. Even 

though his students seemed to struggle with the algebra more than the selection of the 

procedure, providing a summary of why that procedure was appropriate would have 

helped refocus his students attention on what he originally intended. 

Making Connections 

The importance of making connections is well studied in the mathematics 

education literature (Baki, Çatlıoğlu, Coştu, & Birgin, 2009; Elia, Gagatsis, & Heuvel-

Panhuizen, 2014; Gainsburg, 2008; Sidney & Alibali, 2015). In order for students to 

build a deeper, more conceptual understanding of mathematics, it is important for them to 

see how mathematics is connected as a domain and to other domains. However, 

connections are not just important in building conceptual understanding, but also in 

building understanding of procedures. The Task Analysis Guide (Smith & Stein, 1998) 
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highlights this importance by categorizing procedures without connections tasks as lower 

cognitive demand and procedures with connections tasks as higher cognitive demand. 

Therefore, it is not surprising that making connections was something that emerged from 

my data set. 

While there are many ways one can make connections and many things one can 

make connections between, there were three primary subtasks that emerged from my 

analysis. First, instructors made connections to previously learned content, practices, and 

strategies. This finding is similar to what Stein, Grover, and Henningsen (1996) found in 

that one factor that influences the maintenance of the cognitive demand of a task is 

building upon prior student knowledge. Teachers also made connections between 

algebraic, graphical, tabular, pictorial, and verbal representations. Finally, instructors 

made connections between concepts, such as exponential and linear growth. 

Prior knowledge. Making connections to previously learned content, practices, 

and strategies came up in almost every high cognitive demand example that I observed. 

Many instructors used connections to prior knowledge as a way to transition into a new 

topic. For example, Alex used a problem from a previous exam as a way to reintroduce 

the concept of function compositions. Her class had briefly explored function 

compositions at the beginning of the semester and was tested over it on their first exam. 

Later on in the semester, they took a deeper dive into topic, but Alex purposely used an 

example they had seen before as a way to help students make connections to their prior 

knowledge. 

Instructors also made connections to prior knowledge as a way to help students 

recognize that they could use similar problem solving strategies. When explaining how to 
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find all solutions to sinusoidal equations, Dan focused on the ways in which the problem 

solving process was the same as the one they had used for solving less-complex 

trigonometric equation. Again, the language that Dan used was very purposeful and 

explicit in expressing how these two problems were similar. 

Now just like last time, this equation means something on the unit circle. That still 

doesn’t change. Sine of whatever corresponds to 𝑦-coordinates on the unit circle. 

Which 𝑦-coordinate? Well, −1/2. So just like last time, we are going to draw in 

our picture of the unit circle. Just like last time, I’m interested in 𝑦-coordinates—

that’s sine—being equal to −1/2. Just like last time, this gives me two points on 

the unit circle. 

In the example where Juno proved that sine and cosine are cofunctions, Juno used 

prior knowledge to build up intuition before attacking a proof. Before attempting the 

proof, Juno did two examples to show that sine and cosine are equivalent on certain pairs 

of complementary angles. Her purpose of using these examples was to motivate her proof 

that sine and cosine are equal on all complementary angles. After proving that this was 

true, Juno pointed out that if sine and cosine are properly named, then we could also 

expect that tangent and cotangent and secant and cosecant are also cofunctions, which is 

what she asked her students to prove next. 

In Greg’s Law of Sine example, there is really only one time when connections 

are made to prior knowledge. When Greg asks, “What does the Law of Sines tell us in 

this case?”, a student responds by saying, “Break this into two triangles.” This student 

was referring to the method that Greg had used at the beginning of class to derive the 

Law of Sines. While this is a valid method, Greg explained that instead of going through 
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all the work again, we could instead just use the final result. So while Greg did 

acknowledge that the student was making connections to prior knowledge, he also 

implicitly labeled that knowledge as unnecessary or unhelpful in solving this problem. 

Representations. Since many of the high cognitive demand examples that I 

observed were coded procedures with connections, it is not surprising that making 

connections among multiple representations was a common theme. Again, the majority of 

the high cognitive demand examples that I coded involved making connections between 

representations. However, the types of representations that the instructors were making 

connections between (e.g. verbal and pictorial or algebraic and graphical) differed. 

Although Emma only had one example that I observed her enact at a high level of 

cognitive demand, this one example was coded six different times with the 

representations code. In the example, Emma was explaining two different methods that 

could be used to sketch a graph transformation. The problem provided the graph of 𝑓(𝑥), 

which was piecewise linear, and then asked for the graph of 3𝑓(𝑥 + 1)− 2 on the 

interval [0,9]. Throughout the example Emma consistently made connections between 

the algebraic and graphical representations. After deciding what the order of 

transformations was, Emma went back to the graph and explained that if we move the 

corner points, we can then connect them with a line in our transformed graph. She also 

made connections between verbal and algebraic representations of function 

transformations as she transformed individual points. Finally, when her students 

struggled to understand the algebra behind finding outputs that did not land on integer 

values in the original graph, Emma consistently turned the conversation back to making 

connections between using the slope of the graph to calculate non-integer output values. 
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In the Law of Sines example that Greg enacted, few connections were made 

between representations. Once they were able to use the Law of Sines to set up 

inequalities, the original triangle was never referenced again. In particular, there were no 

connections drawn between the triangle given in the problem and the triangles that they 

had used previously to derive the Laws of Sines and Cosines. If Greg had wanted to focus 

on developing an understanding of why the Law of Sines was an appropriate procedure to 

use, then it seems like it would have made sense to draw connections between the values 

given in the two triangle diagrams. In particular, drawing these connections may have 

helped students develop a deeper understanding of when it might be appropriate to use 

the Law of Sines versus the Law of Cosines. 

Concepts. Making connections between concepts was not as prominent of a 

theme as making connections between representations, but was common enough that I 

added it to my final coding scheme. One reason for this is because connections between 

representations and connections between concepts are not easily teased apart. For 

example, when introducing the concept of multiplicities of the zeros of polynomials, 

Kelly focused on explaining how multiplicity and degree are related concepts. However, 

in order to do this, she relied upon students’ understanding of what polynomials look like 

graphically. In particular, Kelly used the example of parabolas and explained that 

depending on where they lie on the 𝑥𝑦-plane, they will have zero, one, or two 𝑥-

intercepts. 

In her example where she focused on building an exponential function from a 

word problem, Alex asked her students to make connections between the equation they 

had derived and the standard form of an exponential. In particular, Alex focused her 
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students’ attention on making connections between the particular numbers involved in 

their equation and the different components (e.g., initial value, growth factor, and growth 

rate) of the standard form. 

In the example that Greg did involving the Law of Sines, Greg focused more on 

the algebra than he did on making connections between concepts. In particular, Greg 

talked about making connections between the given information and the problem solving 

goals, but these connections were never explicitly focused on or verbalized during class. 

Given that a student identified right away that the Law of Sines was an appropriate tool to 

use to solve the problem, it is perhaps true that his students were already making these 

connections on their own. However, given that Greg told them the example came from 

the first problem on their worksheet and that many students flipped to this page as he was 

drawing the picture on the board, it’s impossible to tell if they figured out this connection 

on their own or just read the goal statement printed on the worksheet. 

Providing Clear Verbal Explanations 

According to TeachingWorks (2017), “explaining and modeling are practices for 

making a wide variety of content, academic practices, and strategies explicit to students” 

(emphasis added). In order to provide equal access to education for all, there has been a 

recent focus on the importance of using explicit instruction (Archer & Hughes, 2010). 

Doabler and Fien (2013) identified teacher modeling as an essential element of explicit 

mathematics instruction. They identified that two key components of teacher modeling 

are using clear and consistent wording and providing unambiguous explanations and 

demonstrations. Similarly, I found that providing clear verbal explanations was a 

prominent task that teacher engaged in when enacting high cognitive demand examples. 
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The instructors that I observed provided explanations of a variety of aspects of each 

example, which I will explain in more detail in the following subsections. 

Instructions. Since the examples that instructors used were often not included in 

the students’ workbooks, instructors were careful to provide clear explanations of the 

example set up, constraints, and goal. This included providing clear instructions for what 

they expected students to do if they chose to monitor students as they worked through 

parts of the example individually or in small groups. While instructors often wrote the 

example instructions on the board, they also provided additional verbal explanations to 

explain the problem set up, constraints, and goal. For example, after writing up a long 

description of a word problem that asked students to compose a function that gives the 

temperature (in °F) of a kiln after 𝑡 minutes with a function that transforms °F to °C, Alex 

went back and explained that what they were trying to do was come up with a function 

that would give the temperature (in °C) of a kiln after 𝑡 minutes. 

This practice often went hand-in-hand with attending to the mathematical point, 

but other times was focused more on making sure that students understood the example 

set up and constraints. Greg, for example, made sure that his students understood how to 

interpret a graph before engaging with trying to find the equation of the graph. In the 

example, a weight is suspended from the ceiling by a spring. The students were provided 

with a graph that showed the distance (in centimeters) from the ceiling to the weight as a 

function of time (in seconds). Greg anticipated that his students might have a hard time 

interpreting the graph, since whenever the graph is bigger the weight is further away from 

the ceiling. To make sure that his students understood the example set up, Greg explained 
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that the graph is increasing when the weight moves downward, which is opposite of what 

his students might expect if they are thinking about the visual motion of the weight. 

In the Law of Sines example that Greg enacted, the problem was clear enough 

that perhaps no explanation of the set up was needed. However, one way that Greg could 

have been more explicit in his explanation is by making it clear what the problem 

constraints were and relating that to a discussion of knowing which procedure is 

appropriate. For example, Greg could have emphasized that it made sense to use Law of 

Sines because it relates two pairs of side lengths and opposite angle measures (which is 

exactly what was provided in the diagram). He could have also discussed why using the 

Law of Cosines would be less ideal, because we would need to know the third side length 

of the triangle, which was not given in the initial example. 

Content, practices, and strategies. Providing clear verbal explanations of 

content, practices, and strategies was the most common subtask used in this category and 

was something that every instructor attended to when enacting high cognitive demand 

examples. In many of his examples, Dan focused on explaining the problem solving 

strategy that he was using. When explaining how to decompose a function composition 

into two functions, Dan explained that he uses the strategy of thinking “outside” and 

“inside”. Dan had used similar language when demonstrating how to compose two 

functions, so he drew connections between the work they had done before and the work 

that they were doing now. In particular, he focused on explaining we can look at the 

function composition and try to identify an outside and inside function. Once they had 

done this, he then explained how to check their work by composing the two functions 

they had found and verifying that they ended up back at the given function composition. 
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In several of Juno’s examples she elicited student thinking as she worked through 

parts of the example and made sure that it was clear to everyone what they were doing. 

When proving that sine and cosine are cofunctions, Juno asked students to identify the 

values for sine and cosine using the right triangle definitions. After each student 

response, Juno made sure that it was clear where the student had gotten their answer from 

by referring back to the right triangle that she had drawn. Other instructors asked students 

to provide verbal explanations, which I will discuss in the later section on articulating 

cognitive processes. 

In Greg’s example of using the Law of Sines, he did provide verbal explanations, 

but they were mostly of the algebraic steps involved in solving for 𝑥. However, since 

several of his students seemed confused by these steps, Greg was responding to his class 

and providing clear verbal explanations as a way to support student understanding. 

However, the explanations mostly focused on the computational aspects of the problem 

and not on the strategy that they had used to solve the problem or other higher-cognitive 

demand aspects. 

Similarities and differences. Providing clear verbal explanations of similarities 

and differences between content, practices, and strategies was one way that instructors 

made connections. So these two tasks are also inherently linked. In explaining why the 

degree of a polynomial is always greater than or equal the number of zeros, Kelly talked 

about how moving around a parabola could give us zero, one, or two zeros. Similarly, she 

talked about how they could shift the graph of a quartic function and get more or less 

zeros depending upon its position. Other instructors focused on explaining differences 

between content, practices, and strategies. When explaining how to find all solutions to a 
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trigonometric equation, Juno explained that they could use either – cos!! 𝜃 or  

2𝜋 − cos!! 𝜃 as the second initial solutions. She emphasized that graphically these 

represent two different intersection points but they also produce the same solution family 

once multiples of the period are added on. 

Several of the high cognitive demand examples that I observed were focused on 

finding all solutions to sinusoidal equations. In these examples, Dan and Greg focused on 

identifying both similarities and differences between finding all solutions to 

trigonometric equations versus finding all solutions to sinusoidal equations. Earlier I 

highlighted how Dan used specific language to make connections to their prior 

knowledge of how to solve trigonometric equations. Greg used a similar strategy by 

identifying that periodic equations will always have solutions of the form (initial)+

(period)𝑘, where 𝑘 = any integer. However, Dan and Greg emphasized that even 

though these two types of problems are similar, the process involved in finding the initial 

solutions of sinusoidal functions is more involved. 

In Greg’s example with the Law of Sines, he asked, “What information allows us 

to combine side lengths and opposite angles?” The root of this question is asking students 

to find similarities between the given problem and the tools that they had learned about 

that day. However, Greg did not spend time explaining these similarities after a student 

suggested the correct solution strategy. On the other hand, Greg did spend time 

explaining differences between a derivation and a procedure. When Greg asked, “What 

does the Law of Sines tell us in this case?”, a student responded with, “Break this into 

two triangles.” Greg recognized that the student thought using the Law of Sines meant 

going through the all the derivation steps, instead of just using the final end product. So 
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Greg took time to explain that they only had to do the derivation once, and from then on 

they could just use the final result. 

Representations. Since most of the high cognitive demand examples that I 

observed were coded as procedures with connections, many of them involved multiple 

representations. Instructors often took the time to explain representations at the beginning 

of an example in order to make sure everyone understood the example setup. In order to 

illustrate why sine and cosine might have two solutions per period, but tangent will 

always have exactly one, Greg first took time to explain what the graphs of sine, cosine, 

and tangent look like. Greg first took time to make sure that students were comfortable 

with the graphs of these functions because he felt it would be easier for his student to 

understand initial solutions if he drew connections to visual representations of the 

functions. 

Other times, instructors introduced representations later on in the example and 

then took the time to explain how they were to be used. In the example where Alex asked 

her students to explore the notions of exponential versus linear growth, Alex asked her 

students to come up with an equation that would model compound interest. Alex wanted 

to see if her students could use their intuition of how interest accumulates as a way to 

derive the exponential formula. However, most of her students approached the problem 

by building a recursive formula. To help her students see how exponential functions 

grow, Alex introduced an input-output table and focused on how the output values were 

changing. However, before using the table to solve the problem, Alex first took time to 

explain the setup of the table as a way to make sure that everyone understood the new 

representation that she was introducing. 
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In the Law of Sines example that Greg enacted, little time was spent explaining 

the pictorial representation that was given in the problem. In particular, Greg quickly 

brushed over the fact that the given triangle had two pairs of side lengths and opposite 

angle measures. However, it is possible that the simplicity of the pictorial representation 

made these additional explanations unnecessary. 

Notation and vocabulary. Another subtask that teachers attended to when 

enacting high cognitive demand examples was providing clear verbal explanations of 

mathematical notation and vocabulary. Instructors attended to this subtask at various 

points during their instruction. In some examples, the instructor made sure to explain the 

notation and vocabulary they were using at the very beginning. Other times, instructors 

paused during the middle of instruction to make sure that students understood the 

notation and/or vocabulary that they had been using. 

When Alex used an input output table in the exponential versus linear growth 

example, she introduced the notation 𝐴(𝑡) and 𝐵(𝑡) as functions modeling the balance in 

Bank A and Bank B after 𝑡 years. Previously, students had been working through this 

problem individually or in small groups as Alex monitored their progress. Now that she 

was bringing everyone together to facilitate a whole-class discussion, she wanted to make 

sure that everyone understood the notation, even if it was different from the notation they 

had been using. Doing this was important because Alex was helping transition the class 

from individual/small group work to a whole-class discussion, so it was important that 

people could used a shared notation when talking about similar ideas. 

Instructors were also careful to explain both formal and informal vocabulary that 

they were using. When explaining how to find all solutions to trig equations, Juno 
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introduced the vocabulary of “initial” or “base” solutions. She then explained that these 

are the solutions in one period and that with sine or cosine, there are usually two of them. 

Juno was also careful with her wording and made sure to not make any claims regarding 

the uniqueness of initial solutions. Later, this became important in another example when 

Juno talked about the equivalence of using – cos!! 𝜃 and 2𝜋 − cos!! 𝜃 as initial 

solutions. Dan also introduced the informal vocabulary of identifying “inside” and 

“outside” functions as a way to provide students with a way to talk about decomposing 

function compositions. 

In the Law of Sines example that Greg enacted, I had a hard time identifying any 

ways in which Greg could have attended more to explaining notation and/or vocabulary. I 

think that this example, in particular, did not have any new or confusing notation or 

vocabulary for the students, which is why I don’t think Greg needed to attend to 

explaining these things. 

Checking your work. The final subtask associated with providing clear verbal 

explanations has to do with checking your work. Instructors talked about checking your 

work in different ways. First, they discussed how to check your work at the end of an 

example to make sure you had not made any computational errors along the way. Second, 

they also explained how you could check your work if you were unsure of your answer. 

In both context, the instructors focused on helping students determine what a reasonable 

answer might be and interpret their results in terms of the problem context. However, 

checking your work at the end was used as more of a method to find mistakes, whereas 

checking your work while problem solving was used more of a method of determine 

whether or not a solution strategy is correct. 
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In an example where Kelly asked her students to find an equation of a polynomial 

of least degree given the graph, Kelly asked her students to check their work at one point 

to see whether or not they were done. So far, they had used the zeros and multiplicities to 

set up the factors and the exponents. They had not yet attended to the leading coefficient, 

but instead of pointing this out, Kelly asked her students to check and see if they had 

found the final equation. One student responded with no, because the graph went through 

the point (−1,−8), but plugging −1 into the equation they had did not result in −8. So 

Kelly asked her students how they could adjust their equation to meet this final 

constraint. 

After asking her students to compare exponential and linear growth using 

compound and simple interest, Alex asked students to write an equation to model an 

exponential word problem. Both of these examples were done before presenting the 

standard form of an exponential, but Alex had used the first example (with interest) as a 

way to build up students’ understanding of exponential growth. In this example, Alex 

asked her students to consider why the base of the exponent should be 1.25 instead of 

0.25. One student piped up and said, “Because the 1 is kind of like the initial value and 

we want to show a 25% increase. So that’s why you tack on the 1. Because if it were 

0.25 then that would be saying it’s a 75% reduction.” Alex then took this opportunity to 

build upon what the student had said and explain that the word problem was clearly 

describing exponential growth, so we would want our function to also model growth. 

However, if we used 0.25 as the base of the exponent, then this would give us a 

decreasing function. 
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In the Law of Sines example that Greg enacted, Greg spent most of the time 

working through and explaining the algebraic manipulations that were required to solve 

for x, but never explained how they could check their work. Since students struggled to 

understand the algebra involved in the problem, it is reasonable to assume that they 

would have struggled with successfully completing the algebraic manipulations on their 

own. So one way that Greg could have responded to his students would have been by 

taking time to explain how they could check their work on problems when they are 

unsure about the algebra involved. 

Articulating Cognitive Processes 

According to TeachingWorks (TeachingWorks, 2017), explaining and modeling 

content, practices, and strategies might involve just simple verbal explanations, examples, 

and representations. However, more complex academic practices and strategies may 

require “thinking aloud and demonstrating”. It is this process of thinking aloud that I 

have coded as articulating cognitive processes. I differentiated between the two because I 

wanted to identify thinking aloud as something that the teacher might do when modeling 

or facilitating from asking students to provide justification or reasoning during a whole-

class discussion. Yet, these two categories both relate to making cognitive processes 

more clear. 

Thinking aloud. The process of thinking aloud involves the instructor doing 

more than just verbalizing what they are doing mathematically, but also making their 

metacognitive activities more explicit. When teaching his class how to find all solutions 

to sinusoidal functions, Dan talked through the logic involved in each step of the problem 

solving process. First, he explained that the first thing to do with these types of problems 
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is isolate the trigonometric function. Then, Dan explained how the next few steps were 

exactly the same as the first few steps involved in solving a simpler trigonometric 

function (for a full description of this, see the subsection on Prior Knowledge). Next, Dan 

explained how the process differed with sinusoidal equations because they needed to 

isolate 𝜃 in order to find the initial solutions. In each step, Dan focused on articulating his 

thinking and explaining the process that he was going through to approach solving the 

problem. 

Juno did one thing that was unique in terms of how she articulated her cognitive 

processes. While many instructors did this primarily verbally, Juno often took the time to 

capture her thinking in writing on the board. In the example where Juno graphed 

solutions to trigonometric equations as points of intersection, Juno took the time to write 

out on the board (in full sentences) what she was doing at each step in the process and 

why. In doing this, Juno not only made each step in the problem solving process clear, 

but also provide students with explicit, written explanations could help them decipher 

what they were doing and why they were doing it later while reviewing their notes. 

In the Law of Sines example that Greg enacted, Greg mainly used the think-aloud 

strategy when working through the algebra. While this was still important for him to do, 

as his students struggled to understand what he was doing algebraically at each step, he 

did not spend time articulating the cognitive processes that had went into deciding what 

“tool” to use to find the value of 𝑥. In the next subsection, I will discuss how some 

instructors asked their students to provide justification and reasoning, which is another 

approach that Greg might have taken to help articulate the cognitive processes involved 

in solving the problem. 
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Student thinking. Instead of being the sole articulators of cognitive processes, 

some instructors asked their students to provide justification and reasoning to support the 

mathematics. However, it is interesting to note, but perhaps not surprising, that none of 

the instructors who presented examples by just modeling them for their students chose to 

use teacher think-alouds instead of asking students to provide justification or reasoning. 

Even the instructors who did chose to engage students in the example enactment by 

facilitating whole-class discussions or monitoring students as they worked on parts of the 

example individually or in groups sometimes chose to do all of the articulating 

themselves. However, there were still several examples of times when the instructor 

asked students to provide justification and reasoning. 

During an example where Greg was explaining how to find all solutions to trig 

equations with non-standard unit circle angles, Greg would ask his students what they 

should do next at different points in the example. In one of these instances, a student 

responded that they should use arcsine in order to isolate 𝜃. Another student spoke up 

immediately and asked, “How did we know to use arcsine right there?” Instead of 

answering the question himself, Greg asked the student who had offered the idea 

originally to explain why he had chosen to do this. Doing this not only helped make it 

clear to the second student why this step was appropriate, but also gave the first student 

the opportunity to verbally articulate his reasoning for choosing to do that as the next 

logical step. 

Out of all of the instructors, Kelly was the most consistent in asking her students 

to provide justification and reasoning for their answers. During every example, Kelly 

facilitated whole-class discussions and monitored students as they worked through parts 



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 184 

of the example. In fact, I never observed Kelly enacting a high cognitive demand 

example by just modeling for her students: she always included them actively in the 

example enactment. During whole-class discussions, Kelly consistently asked students to 

explain how they had gotten their answers. Even when doing computations, Kelly asked 

her students to articulate what they were doing. Also, Kelly would press her students to 

make connections to definitions as a way to provide justification for why statements were 

true. Finally, if Kelly was not sure that everyone understood a concept, she would pause 

her instruction and ask someone to articulate his or her reasoning for why it was true. 

When Greg enacted the example that used the Law of Sines, his original intent 

was to focus students’ attention on determine what an appropriate “tool” would be for 

solving this problem. However, when he enacted this example, he did not press his 

students to articulate their reasoning. If Greg had asked, “Why is Law of Sines an 

appropriate tool to use in this case,” it would have been interesting to see if he students 

could articulate a justification beyond, “Because it says we should in the workbook.” 

While it may be true that he students understood why this was an appropriate procedure, 

Greg did not take advantage of this moment as an opportunity to dig into their 

understanding and bring attention to their cognitive processes. 

Supporting Student Understanding. 

The final task that instructors attended to when enacting high cognitive demand 

examples was supporting student understanding. Since examples can be enacted in 

different ways that include different levels of student participation and opportunities to 

struggle, it is important for instructors to be attention to whether or not their students are 

following and understanding the example the instructor is enacting. Instructors did this in 
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a variety of ways by providing students with opportunities to ask questions, recognizing 

when students were struggling to follow or understand, and providing scaffolding for 

students who were struggling. 

Student questions. All of the instructors provided opportunities for students to 

ask questions, although they each did this in different ways. Dan ended every example by 

asking if there were any questions, however he was often met by silence and then quickly 

moved on. Occasionally a student would ask a question during the example, but Dan 

rarely paused for longer than five seconds and pressed them to ask questions during 

whole-class presentations. Dan did provide his students with opportunities to work on 

workbook problems individually or in small groups, so it is possible that students used 

this opportunity to ask questions. But for the most part, his students were silent during 

examples. 

Alex, on the other hand, provided her students with opportunities to ask questions 

and used other informal ways of measuring their understanding. In several cases, Alex 

would ask her students to give thumbs up, down, or sidewise to express how well they 

understood. She would also stop frequently during examples in order to make sure that 

her students were following what they had done so far. Emma used a similar technique in 

her function transformation example and paused after working through critical pieces of 

the example to see how well students understood. However, instead of just asking for a 

thumb indicator of understanding, Emma asked explicitly for questions and several of her 

students piped up, asking for clarification. 

Out of all of the instructors, Greg was the only one who communicated to his 

students that having questions was a good thing. Greg had found that in his experience 
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asking, “Are there any questions?” often did not elicit responses from his students. So 

instead, Greg would ask, “What questions do you have?” in an attempt to communicate 

that it was completely fine to have questions. In one instance, Greg paused in the middle 

of a long example and said, “I’m going to pause here and ask who is lost? Who has a 

question? It’s totally reasonable to be lost. There’s a lot that goes into these. So just let 

me know where you are lost.” While this technique did not work every time, Greg’s 

students often were willing to speak up and ask questions or verbalize where they had 

gotten lost or identify what they were struggling to understand. 

In the Law of Sines example that Greg enacted, Greg’s students did pipe up and 

ask questions, but mostly they were focused on the algebraic manipulations. One way 

that Greg could have attended to whether or not students understood the justification 

behind why they chose to use Law of Sines is by explicitly asking students if they had 

any questions regarding why this might be a good method to use.  

Student struggle. Instructors used a variety of techniques to recognize when 

students were struggling to follow or understand. For many of them, they provided 

students with an opportunity to ask questions as a way to verbal their struggle. In other 

cases, it was students’ silence and not their questions or answers that cued instructors that 

they were struggling with a concept or idea. Some instructors actually used student 

struggle as a guide for choosing and designing examples. Finally, the instructors who 

monitored students as they worked through parts of the example also used this time to 

interact with students individually and in small groups and identify when they were 

struggling. 
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The one high cognitive demand example that I observed Emma enact originally 

was presented as a problem on a quiz. However, when grading Emma realized that most 

of her students had struggled with the problem in ways that she had not anticipated. So 

Emma decided to work through the problem the next day as an example at the beginning 

of class. In this case, Emma actually recognized that students were struggling with a 

concept and then purposefully incorporated an example into her lesson plan to help 

students overcome their struggles and misconceptions. 

When students were working on trying to find an equation to model the balance in 

a bank account that earned simple and compound interest after 𝑡 years, Alex took a quick 

survey of the class to see whether or not they needed more time. Based upon their 

responses, Alex decided to give them more time to work individually and in small groups 

on this part of the example. She also reminded them that the point of the example was to 

try to come up with equations to model the two different bank balances. 

In the example that Greg enacted that used the Law of Sines, he had not 

anticipated that students would struggle as much with the computational aspect. Also, the 

one part that he had anticipated they might struggle with (identifying the right “tool” to 

use) seemed to be an easy task for them. Also, the way that Greg set up the example 

reduced the students’ opportunities to struggle with identifying the right “tool” to use. In 

particular, the language that Greg used to set up the example cued his students that it was 

in their workbooks, which contained the goal statement that told them which procedure to 

use, and that it was directly related to what they had learned that day. So while Greg did 

think about ways in which his students might struggle with this example, he actually 

reduced their opportunity to struggle when he set it up. 
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Scaffolding. Providing scaffolding has been identified as one important feature of 

explicit instruction (Archer & Hughes, 2010; Doabler et al., 2012; Rosenshine, 2012). In 

the high cognitive demand examples that I observed, instructors provided scaffolding in 

two different ways. Some instructors purposefully designed their example(s) so that they 

were scaffolded to support student understanding. Other times, instructors incorporated 

in-the-moment scaffolding in response to recognizing that students were struggling to 

follow or understand. 

Instructors incorporated scaffolding into their lesson plans in a variety of ways. In 

the lessons where I observed Dan, Greg, and Juno teach students how to find all solutions 

to trig equations, each of the instructors scaffolded their examples by ordering them in a 

certain way. Most of them started off by first doing an example of how to find all 

solutions to simple trigonometric equations with standard unit circle angles. Next, they 

would do a similar example, but with a non-standard unit circle angle in order to 

introduce students to the strategy of using inverse trigonometric functions to find initial 

solutions. After giving students some practice solving these simpler types of 

trigonometric equations, they would then move on and do some examples of sinusoidal 

functions with both standard and non-standard unit circle angles. While not all of these 

examples were enacted at a high level of cognitive demand, many of them were, which 

means that the instructors were able to scaffold in a way that did not decrease the 

cognitive demand. 

In the example where Kelly asked her students to come up with an equation to 

model the balance in a bank account that earned 4.5% annual interest, her students had 

no problem using a recursive formula to find the balance after one, two, and three years. 
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However, her students struggled to see how to generate a formula that did not depend 

upon knowing the balance in the bank account the year before. To help scaffold her 

students understanding of exponential growth, Kelly focused in students attention on how 

they could rewrite the balance at the end of year two in terms of the balance at the 

beginning of year one. Then, she asked her students how they could use a similar idea to 

rewrite the balance at the end of year three in terms of balance at the beginning of year 

one. Finally, her students were able to come up with the final exponential equation that 

gave the balance at the end of year 𝑡 in terms of the balance at the beginning of year one. 

By providing this scaffolding of looking at beginning cases and seeing how they related 

to subsequent cases, her students were able to transform their way of thinking about the 

example from viewing it as a recursive relationship to an exponential relationship. 

Given that the Law of Sines example that Greg chose to use was simpler, it’s hard 

to imagine what scaffolding might look like in this case. 

Results: Relationships Between Tasks and Roles 

In a previous paper (Chapter 3), I examine three different roles that instructors can 

take on when enacting high cognitive demand tasks. First, instructors can model content, 

practices, and strategies for students. Second, instructors can facilitate whole-class 

discussions of the example. And finally, instructors can monitor students as they work 

through parts of the example individually or in small groups. While some instructors 

enacted examples by just modeling, many of them switched back and forth between 

different roles. 
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In order to address my second research question, I examined how the five tasks 

entailed in enacting high cognitive demand examples overlapped with the three roles that 

instructors could take on. Table 23 illustrates the overlap of these two sets of codes. 

Table 24-Table 28 then break down each of the five main tasks and provide the role 

profiles of each individual subtask. One thing to note is that my IRB did not cover 

capturing video of the students, so I was not able to really capture what the instructors did 

while they monitored student work time. Therefore, the overlap between the Monitor role 

code and the decomposition codes is only representative of the how the instructor 

interacted with the class as a whole during these times. 

Table 23. Role Profiles of Tasks Entailed in Enacting HCD Examples
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Table 24. Role Profiles of Mathematical Point Subtasks 
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Table 26. Role Profiles of Explanations Subtasks 

 

Table 27. Role Profiles of Cognitive Processes Subtasks 
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Table 28. Role Profiles of Understanding Subtasks 
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provide clear verbal explanations of the example set up, constraints, and goal; of content, 

practices, and strategies; of similarities and differences; of representations; of notation 

and vocabulary; and of how to check your work. Depending on whether an instructor 

models or facilitates the presentation of the example, the instructor might make cognitive 

processes explicit by thinking aloud as they work through the example or asking students 

to provide justification and reasoning. Finally, instructors need to support student 

understanding by providing opportunities for students to ask questions, recognizing when 

students are struggling, and providing scaffolding to support struggling students. 

Table 29. Decomposition of the Work Entailed in Enacting HCD Examples 

1. Attend to the mathematical point 
• Introduce the mathematical point as a way to set the focus of the example 
• Maintain the focus of the example on the mathematical point 
• Summarize the example in order to reiterate the mathematical point 

2. Make connections 
• To previously learned content, practices, and strategies  
• Between representations 
• Between concepts  

3. Provide clear verbal explanations  
• Of the example set up, constraints, and goal 
• Of content, practices, and strategies 
• Of similarities and differences 
• Of representations 
• Of notation and vocabulary 
• Of how to check your work 

4. Articulate cognitive processes 
• By thinking aloud as you work through the example 
• By asking students to provide justification and reasoning 

5. Support student understanding 
• By providing opportunities for students to ask questions 
• By recognizing when students are struggling to follow or understand 
• By providing scaffolding for struggling students without decreasing the 

cognitive demand 
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One thing that is important to note is that instructors did not have to attend to all 

five tasks and their associated subtasks in order for the example to be classified as high 

cognitive demand. In fact, some of the instructors only attended to three of the five main 

tasks during enactment. However, on average an instructor attended to at least four of the 

tasks, so these tasks do reflect a reasonable portrait of the pedagogical work that was 

entailed in maintaining the cognitive demand of an example. 

Limitations 

One limitation of this decomposition of the work entailed in maintaining the 

cognitive demand of examples is that the tasks are not necessarily independent. For 

example, in practice it may be hard to distinguish between making connections and 

explaining similarities and differences. Also, unless an observer speaks with the 

instructor beforehand, they may not know what the mathematical point of the example is, 

so it would be difficult for them to know if the instructor is introducing, maintaining, or 

summarizing. 

Another limitation of this decomposition is that some of the tasks could be 

enacted at a superficial level, which may not end up contributing to the decline instead of 

maintenance of cognitive demand. For example, if an instructor says that an example is 

connected to a previously learned concept, but does not explain that connection, then they 

would not be building understanding of the underlying concepts. Similarly, an instructor 

might introduce the mathematical point as a way to set the focus of the example, but 

never return to this point or summarize. Therefore, it is important that instructors attend 

to multiple tasks instead of just one or two in isolation.  
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Implications 

One reason why it is important to decompose the work of teaching is because it 

makes the hidden work of teaching more visible for novices. When novices observe 

teaching, it can be difficult for them to identify what the instructor does that creates the 

classroom experience. In addition, it is often difficult for experienced instructors to 

reflect on their teaching and unpacking everything that they do to support instruction. 

Therefore, it is important for researchers to decompose the work of teaching to make it 

more visible.  

Doing this not only provides novice teachers with a way to see the work of 

teaching, but also provides teachers with a tool for reflection. Oftentimes, things do not 

go as planned in the classroom. In particular, if an instructor chose a high cognitive 

demand example to include in their intended lesson plan, but found that the cognitive 

demand declined during enactment, then it would be helpful for them to reflect on 

whether or not they engaged in pedagogical work associated with maintaining the 

cognitive demand. For example, upon reflection, a teacher might realize that an example 

became more algorithmic because they forgot to make connections or explain the 

cognitive processes involved in working through the problem. 

Conclusion 

In this paper I examined the pedagogical work entailed in enacting high cognitive 

demand examples. After conducting open and thematic coding of 25 HCD examples, I 

found that there are five main teaching tasks that instructors attend to when enacting 

HCD examples: attending to the mathematical point, making connections, providing clear 

verbal explanations, articulating cognitive processes, and supporting student 
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understanding. While instructors may not attend to all of these tasks during a single 

example, I found that they do attend to many of them, which supports my claim that they 

are the main teaching tasks that contribute to the maintenance of cognitive demand. This 

decomposition of the work of enacting HCD examples is useful for both researchers who 

might be interested in studying factors that contribute to the maintenance or decline of 

cognitive demand and for practioners who want to reflect on their own teaching.  
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CHAPTER 6: IDENTIFYING THE MATHEMATICAL 

KNOWLEDGE ENTAILED IN ENACTING HIGH COGNITIVE 

DEMAND EXAMPLES 

The purpose of this collective case study is to examine mathematical knowledge 

for teaching examples in precalculus. The instructors involved in the study were 

experienced graduate student instructors who were teaching their course for the third 

time. Utilizing a social constructivist and cognitive theory approach, I analyzed video 

recordings of enacted examples. The central question that guided this analysis was: What 

is the mathematical knowledge for teaching entailed in enacting high cognitive demand 

examples? The goal of this study is to examine undergraduate mathematical knowledge 

for teaching from the perspective of practice, instead of relying on existing frameworks. 

As a result of this study, I identified five domains of mathematical knowledge for 

teaching that support the maintenance of cognitive demand: knowledge of connections, 

representations, unpacking, students, and sequencing. 
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Introduction 

Mathematical knowledge for teaching (MKT) has been defined as the 

“mathematical knowledge needed to perform the recurrent tasks of teaching mathematics 

to students” (Ball et al., 2008, p. 395). While MKT has been studied extensively at the 

elementary level (Ball et al., 2008; Carpenter & Fennema, 1991; Hill et al., 2007; Ma, 

2010) and at the secondary level (Krauss et al., 2008; McCrory et al., 2012; Rowland et 

al., 2005), research on MKT at the undergraduate level is still a growing field (N. Speer 

et al., 2010). The goal of this study is to contribute to that field by building upon the link 

between MKT and high cognitive demand tasks (Charalambous, 2010) in order to study 

mathematical knowledge for teaching examples in precalculus from the perspective of 

practice. 

Problem 

Often, it is assumed that earning a degree in mathematics is what initially 

qualifies ones to teach at the undergraduate level. Historically, university instructors 

learned to teach by following the role model of mentors. However, Bass (1997) pointed 

out that there is much that cannot be learned through observations alone. To address lack 

of teaching preparation, many doctoral programs today offer teaching professional 

development for graduate student instructors (GSIs), who will make up the future 

workforce of university instructors (Bressoud et al., 2015; Ellis, 2014). While offering 

some teaching PD is better than none, the content of what is being taught is an important 

aspect to consider. 
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Of course, pedagogical knowledge is a component of teaching and should be 

included in GSI PD. However, studies have shown that despite their formal mathematical 

education, GSIs still lack mathematical knowledge that is needed for effective teaching 

(Kung & Speer, 2009; N. Speer & Hald, 2008). In these studies, the authors relied on 

existing frameworks for MKT that where developed at the K-12 level. While it is 

reasonable to assume that K-12 and undergraduate MKT are similar, Speer et al. pointed 

out that there are important differences between K-12 and university instructors that need 

to be attended to (N. M. Speer et al., 2015). Therefore, the goal of this study is to 

examine MKT at the undergraduate level from the perspective of practice, instead of 

relying on existing frameworks. 

Significance 

As previously stated, there is little research on MKT at the undergraduate level. 

But why is it important to study MKT to start with? First, studies have found that pure 

content knowledge is not a predictor of teaching quality and student achievement (Begle, 

1972; Greenwald et al., 1996; Hanushek, 1981, 1996). However, studies at the K-12 level 

have shown that MKT is a predictor of teaching quality and student achievement (Hill et 

al., 2008, 2007; Krauss et al., 2008). This knowledge is not usually taught in content 

courses, hence why many GSIs seem to be lacking MKT. While no measures of MKT at 

the undergraduate level exist, it is reasonable to assume that this positive relationship still 

exists at the undergraduate level. Therefore, if we can identify what MKT at the 

undergraduate level looks like and integrate it into GSI professional development 

programs, we can have a positive impact on undergraduate education. 
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The other question that is reasonable to ask is why focus on precalculus? As the 

number of students needing to take introductory mathematics courses for their degree 

increases, the teaching burden of mathematics departments increases (Ellis, 2014). 

Approximately 1,000,000 college students take introductory level mathematics courses 

each year (Gordon, 2008). Of these, approximately 85-90% are non-STEM intending 

(Rasmussen & Ellis, 2013) and success rates are typically around 50% (Gordon, 2008). 

Even for STEM-intending students, studies have found that difficulty passing 

introductory-level courses is contributing to the “leaking pipeline” of students leaving 

STEM (Thompson et al., 2007). Therefore the instructional quality of precalculus has a 

large impact on undergraduate students.  

Background 

While research on MKT at the undergraduate level is sparse, there is a large body 

of research on K-12 MKT. While my goal is to examine MKT at the undergraduate level 

from the perspective of practice instead of using existing frameworks of MKT that were 

developed at the K-12 level, the two are bound to be closely related. In an effort to situate 

my study within the existing field of research on MKT and avoid the assumption that I 

am attempting to study MKT at the undergraduate level in an epistemological vacuum, I 

will first present a broad overview of existing research on MKT. Also, I chose to study 

MKT by building upon its relationship with the cognitive demand of tasks. This decision 

was motivated by Charalambous’ (2010) exploratory study, which found that MKT and 

the cognitive demand of enacted tasks are positively related.  
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Mathematical Knowledge for Teaching 

Following the studies that showed that subject matter knowledge was not a 

predictor of teaching quality and student outcomes, Lee Shulman (1986, 1987) proposed 

that researchers begin studying pedagogical content knowledge. Shulman defined 

pedagogical content as going “beyond knowledge of subject matter per se to the 

dimension of subject matter knowledge for teaching” (1986, p. 9). Shulman situated 

pedagogical content knowledge in contrast to subject matter knowledge, which is “the 

knowledge, understanding, skill, and disposition” of a subject matter (1987, p. 8). Since 

then, mathematics education researchers have begun looking into professional knowledge 

for teaching mathematics. Hill, Rowan, and Ball (2005) found that elementary teacher’s 

MKT was a significant predictor of student gains. Similarly, Baumert et al. (2010) 

showed that secondary teachers’ MKT was a predictor of student outcomes. In both of 

these examples, the mathematical knowledge that is specific to the work of teaching is 

not usually taught in general undergraduate mathematics courses. Therefore, using the 

number of mathematics courses taken beyond calculus is not the same as measuring 

content knowledge for teaching. 

Speer, Smith, and Horvath (2010) conducted a literature review to search for 

empirical research on the practices of undergraduate teachers of mathematics. As a result, 

the authors identified only five articles, indicating that “collegiate teaching practice 

remains a largely unexamined topic in mathematics education” (p. 100). Since then, more 

studies have been published specifically on MKT at the postsecondary level (Bargiband, 

Bell, & Berezovski, 2016; Callingham et al., 2012; Castro Superfine & Li, 2014; 

Firouzian & Speer, 2015; Hauk, Toney, Jackson, Nair, & Tsay, 2013; Jaworski, Mali, & 
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Petropoulou, 2017; Musgrave & Carlson, 2017; Rogers & Steele, 2016; Rogers, 2012; N. 

Speer & Wagner, 2009; Vincent & Sealy, 2015). However, some of these studies used 

existing frameworks for MKT that were developed at the K-12 level, which can be 

problematic (N. M. Speer et al., 2015). Therefore, the purpose of this study is to 

contribute to this growing body of research by examining MKT at the undergraduate 

level from the perspective of practice. 

Cognitive Demand and Task Unfolding 

Smith and Stein (1998) defined lower-level demand tasks as “tasks that ask 

students to perform a memorized procedure in a routine manner” and higher-level 

demand tasks as “tasks that require students to think conceptually and that stimulate 

students to make connections” (p. 269). Stein, Remillard, and Smith (2007) also created a 

framework to describe the temporal process of task unfolding and factors that contribute 

to this transformation. In this process, teachers use a written task to formulate their 

intended task, which in turn influences the enacted task. Each phase in this process is 

motivated by the goal of producing student learning and is influenced by factors, such as 

teacher’s beliefs and knowledge. In 2010, Charalambous found that there was a 

connection between elementary teachers’ MKT and their ability to enact tasks at a high 

level of cognitive demand. It is this relationship between MKT and cognitive demand that 

I plan to build upon in this study. 
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Purpose and Research Question 

The purpose of this collective case study is to examine mathematical knowledge 

for teaching examples in precalculus. I will do this by first examining cognitive demand 

in order to identify examples that were enacted at a high level of cognitive demand. 

Building upon Charalambous’ (2010) results, I believe that these examples will provide 

me with fertile ground for examining MKT. While I believe that MKT influences every 

stage in the process of example unfolding, this report will focus on the final stage of 

example unfolding. The central question that guides this study is: What is the 

mathematical knowledge for teaching entailed in enacting high cognitive demand 

examples? To narrow the focus of this study, I will primarily attend to answering the 

following subquestions: 

1. What mathematical knowledge enables instructors to enact examples at a high 

level of cognitive demand? 

2. How can we characterize this knowledge? 

3. How does this knowledge related to specialized content knowledge and 

pedagogical content knowledge? 

4. How does this knowledge relate to the roles that instructors take on when enacting 

high cognitive demand examples? 
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Methods 

Setting and Participants 

For the purposes of this study, precalculus courses are defined to include the 

college algebra, trigonometry, and combined college algebra + trigonometry courses. The 

participants from this study were all instructors at the same large public university in the 

Midwest. At the university involved in the study, second-year graduate students make up 

the majority of the instructors for precalculus. Since second-year graduate students are 

teaching their own class for the first time, I chose to exclude them from my data set and 

instead only recruited participants who were teaching a precalculus course for at least the 

third time. The participants in this study included one trigonometry instructor (Greg) and 

six college algebra + trigonometry instructors (Alex, Dan, Emma, Juno, Kelly, and 

Selrach). All of them were graduate students in their third, fourth, or fifth year, had 

already earned their M.S., and were working towards their Ph.D. in mathematics. Also, 

all of the instructors were teaching their respective course for at least the third time. 

Design and Procedures 

In order to answer my research questions, I am utilizing a collective case study 

design (Stake, 1995). In order to examine MKT more generally, I included multiple 

instructors and collected data on multiple examples. Since I have included a limited 

number of participants, there is little is known about mathematical knowledge for 

teaching precalculus, and I seek to propose new theoretical insight into MKT, I chose to 

use an exploratory case study (Yin, 2014). The unit of analysis I am focusing on is the 

examples enacted by precalculus instructors. Studying teaching from the perspective of 
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practice can be difficult, so I used the frameworks of cognitive demand and task 

unfolding to help make the knowledge the teachers were using more visible. Building 

upon Charalambous’ (2010) finding that MKT and cognitive demand are positively 

related, I used cognitive demand as a way to identify examples that would provide me 

with rich opportunities to examine MKT. Second, studying teaching through the task 

unfolding framework (Stein et al., 2007) allowed me to see the instructors’ decision-

making and examine how their mathematical knowledge enabled them to enacting 

examples. 

Coding proceeded in two stages that concentrated on cognitive demand and then 

knowledge. In the first stage, I use my modified framework for analyzing the cognitive 

demand of examples (Table 7) to code the cognitive demand of enacted example. 

Examples that were coded as enacted at a high level of cognitive demand were then 

analyzed in the second stage, which has two cycles. In the first cycle, I used inductive 

descriptive coding (Miles, Huberman, & Saldaña, 2014) to identify mathematical 

knowledge that enabled the instructors to enact the example at a high level of cognitive 

demand. This round of coding would help me to answer my first research question. To 

answer my second research question, I conducted a second cycle of pattern coding in 

order to identify emergent themes and relationships between the codes that resulted from 

the first cycle. I then looked at the relationships between the knowledge domains I 

identified and SCK/PCK and the roles that instructors take on when enacting examples. 
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Results 

In total, there were 93 examples that I observed the seven instructors enact. Of 

those, 25 were enacted at a high level of cognitive demand. It is also important to note 

that almost all of these high cognitive demand examples were coded as procedures with 

connections tasks (Smith & Stein, 1998). In the second stage of coding, five main 

domains of knowledge emerged: knowledge of connections, representations, unpacking, 

students, and sequencing. In the following subsections, I describe each of these domains 

and provide narratives of instances where instructors used this knowledge to maintain the 

cognitive demand of the example. In my analysis, I focus primarily on content knowledge 

that goes beyond what the instructors expected their students to learn and know. This 

includes both specialized content knowledge10 and pedagogical content knowledge. 

Knowledge of Connections 

Given that procedures with connections examples focus on “developing deeper 

levels of understanding of mathematical concepts and ideas”, “have close connections to 

underlying conceptual ideas”, make “connections among multiple representations”, it is 

not surprising the knowledge of connections was one of the main domains that emerged 

from my analysis. Here, I define knowledge of connections as knowledge of 

mathematical relationships between content, practices, and strategies. While this was a 

type of knowledge that instructors wanted their students to build, instructors also used 

knowledge of connections that went beyond what they expected their students to 

                                                
10 I recognize that this term is used by Ball, Thames, and Phelps (2008) in their 

framework for MKT, but I am using it somewhat differently in that I define specialized 
content knowledge as knowledge that is essential (but not necessarily unique) to the work 
of teaching. 
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necessarily know or learn. However, the connections that we want our students to learn 

are still different than the connections we should know, as their teachers. In particular, 

Ambrose, Bridges, DiPietro, Lovett, and Norman (2010) identified that one of the biggest 

differentiators between novices (e.g., students) and experts (e.g., instructors) is that 

experts have a much richer “density of connections among the concepts, facts, and skills 

they know” (p. 49). 

Dan, Greg, and Juno. Of all of the knowledge domains that emerged from my 

analysis, knowledge of connections was the most prominent. Almost every instructor 

relied on their knowledge of connections when enacting high cognitive demand 

examples. Several of the high cognitive demand examples that I observed came from 

instructors who were teaching the same lesson on trig equations and inverse functions. 

This lesson was spread out over two days and focused on finding all solutions to 

trigonometric and sinusoidal equations using the unit circle and inverse trigonometric 

functions. In particular, I observed Dan, Greg, and Juno all enact high cognitive demand 

examples during this lesson. Since these three instructors drew upon their knowledge of 

connections in a similar way, I will talk about them collectively. 

Previous to teaching this lesson, the instructors had taught their students how to 

find a solution to a trigonometric equation using either the unit circle or inverse 

trigonometric functions. However, up to this point they had not discussed how to find all 

solutions to these types of equations. To help their students transition from the routine 

problem of finding one or two solutions to finding infinite families of solutions, the 

instructors first drew upon their knowledge of a similar, but less complicated, problem: 
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finding solutions to quadratic equations. The particular quadratic that they used to begin 

their example was 𝑥! − 2 = 1. 

In choosing to use this quadratic, the instructors drew upon their knowledge of 

connections in the following ways. First, they knew that this quadratic would provide 

them with two solutions. This is significant because the whole purpose of the example 

was to illustrate to the students that trigonometric equations had multiple solutions. 

Second, the instructors talked about how the students could use the graphical 

representation to help them recognize how many solutions they should anticipate to find 

algebraically. In particular, Juno talked about how looking at the graph might help 

students remember that they need to include both the positive and negative solution when 

taking a square root. Finally, the instructors used this quadratic to emphasize that the 

number of solutions they found algebraically should always match the number of 

intersection points between the graphs of 𝑦 = 𝑥! − 2 and 𝑦 = 1. 

Building upon these connections, the instructors then introduced the idea that 

solutions to trigonometric equations could also be represented as intersection points of 

graphs. First, the instructors drew the graphs of a trigonometric function and the line 

𝑦 = 𝑐 (where −1 ≤ 𝑐 ≤ 1) and emphasized that since these two graphs intersected an 

infinite number of times, the corresponding trigonometric equation must have an infinite 

number of solutions. They then made the connection that if they tried solving these 

equations in the way that they had done before, which involved finding just the solutions 

between 0 and 2𝜋, then that would only get them some initial solutions. Finally, the 

instructors drew upon their knowledge of how the periodicity of trigonometric functions 

relates to the infinite families of solutions that they needed to find. In particular, Greg 



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 210 

used the graph to show his students why these infinite families of solutions would all take 

the form 

(initial)+ (period)𝑘     𝑘 = any integer. 

In each of these high cognitive demand examples that I observed Dan, Greg, and 

Juno enact, the instructors used their knowledge of connections in planning which 

equations they were going to use. By choosing equations that illustrated similar concepts, 

but also highlighted differences, the instructors were able to maintain the cognitive 

demand of the examples so that they focused on developing deeper understanding of the 

underlying mathematics. 

Knowledge of Representations 

Since procedures with connections examples are “usually represented in multiple 

ways” (Smith & Stein, 1998, p. 348), it is also not surprising that representations emerged 

as a main domain of knowledge that supported the maintenance of cognitive demand. 

Here, I define knowledge of representations as knowledge of graphical, pictorial, tabular, 

algebraic, verbal, and written forms of mathematical content, practices, and strategies. In 

many cases, knowledge of connections and knowledge of representations went hand-in-

hand, since instructors were utilizing multiple representations of the same ideas. 

Knowledge of representations has been studied in depth by Mitchell, Charalambous, and 

Hill (2014). Instead of providing a deep dive into this domain of knowledge, the purpose 

of this study is to highlight how this knowledge is used in maintaining the cognitive 

demand of examples. 

Knowledge of representations was used in a variety of ways. In the narrative 

presented in the previous subsection, we can see how the instructors drew upon their 
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knowledge of representations in order to illustrate why trigonometric equations have 

infinitely many solutions. When students seemed stuck, instructors often drew upon their 

knowledge of graphical and pictorial representations as a way to help students visualize 

the mathematics that they were working through algebraically. Another common theme 

that emerged from my data analysis was that instructors drew upon their knowledge of 

representations when they attended to the mathematical point of the example. In the 

narratives presented below, I give two examples of how instructors used their knowledge 

of representations to attend to the mathematical point in two different ways. 

Greg. In the lesson where the concept of tangent was first introduced, Greg 

thought it was important to provide students with a real-life application problem in order 

to illustrate how tangent is useful in solving problems. In the example, Greg used a tower 

that was 150 feet tall and stabilized by cables that formed an angle of 60° with the 

ground. He then asked his students to calculate how long the cables needed to be and how 

far they needed to be anchored from the tower. As Greg verbalized the problem, he wrote 

it on the board as well. Immediately afterwards, Greg chose to draw a picture of the 

situation (Figure 13).  

As they were figuring out how to solve for c, Greg reminded his students that 

many of the problems they worked with in trigonometry involved triangles and circles, so 

it would be helpful to identify a triangle in the picture they had drawn. After successfully 

doing this and using sine to solve for c, Greg then asked the students to work individually 

or in small groups on calculating how far the cables needed to be anchored from the 

tower. As the students worked, Greg drew a simpler version of the picture, with some 

information removed and other information filled in, on another board (Figure 14). 
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Figure 13. Greg’s Illustration of a Tower Stabilized by Cables 

 

Figure 14. Greg’s Simpler Version of the Tower Triangle 

 

 During the post-observation interview, I asked Greg why he had decided to 

represent the problem using two different diagrams. Greg explained that he wanted to 

draw the first picture because it would help his students recognize that they could use 

sine to solve for 𝑐. However, once they had engaged with a more accurate pictorial 
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representation of the problem, he thought it was important to strip away the unnecessary 

aspects and just draw the simple triangle that they were working with. Greg also 

explained that he thought it was important to start with the more detailed picture because 

it provided students with a way to make connections between the written problem and the 

mathematical operations they were using to solve the problem. In particular, Greg 

thought it was important that students had the opportunity to see how to go from a written 

to a detailed picture to a basic picture when solving the problem. 

Throughout this example, Greg used his knowledge of representations to help 

maintain the mathematical point. At first, he wanted students to recognize that the 

situation described in words gave us a right triangle, so we could use trigonometric 

functions to solve for the unknown length. Then, Greg wanted his students to just focus 

on using the given information about the triangle to solve for the final unknown side. By 

including written and two different pictorial representations of this problem, Greg was 

able to maintain the cognitive demand and keep the discussion focused on the 

mathematical point. 

Alex. During her first lesson on exponential functions, Alex asked students to 

come up with equations that modeled simple and compound interest. Even though they 

had not talked about exponential equations explicitly, Alex expected that her students 

were familiar with these types of equations and could use their intuition of how to 

calculate interest in order to come up with an exponential equation. After introducing the 

example setup, Alex asked her students to work individually or in small groups to come 

up with an equation to model the balance in a bank account that starts with a $100 

deposit and earns $10 in interest per year versus a bank account that starts with a $100 
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deposit and earns 10% in interest per year. In particular, Alex asked students to first 

compute how much money would be in each bank after one and two years, and then 

come up with a formula that would calculate the balance in each bank after 𝑡 years. 

As students worked through the problem, Alex walked around the room and 

monitored their progress. After allowing students seven minutes to work through the 

problem, she brought them together for a whole-class discussion. Alex had noticed that 

many of the students were thinking about the compound interest recursively, so Alex 

decided to capitalize on this and start by building a table of input and output values. As 

students helped her fill in the corresponding output values for each bank, Alex asked 

them to explain how they had calculated their answers. Even though different students 

responded, they all used the technique of calculating outputs recursively. When Alex 

asked what a general formula was for the simple interest bank, the students were able to 

quickly recognize that it was linear. However, the students struggled to move away from 

a recursive formula for the compound interest bank. 

To help her students move to the mathematical point that Alex wanted to make, 

Alex went back to the table values that they had calculated for 𝑡 = 1 and 𝑡 = 2. In 

particular, she focused on rewriting the recursive calculations so that they only depended 

upon the starting value. After using the fact that 𝐵(1) = 𝐵(0)(1.1) to rewrite  

𝐵(2) = 𝐵(1)(1.1) as 𝐵(2) = 𝐵 0 1.1 !, Alex showed how they could rewrite 

𝐵(𝑡) = 𝐵(𝑡 − 1)(1.1) as 𝐵(𝑡) = 𝐵 𝑡 − 2 1.1 !. A student then piped up and 

conjectured that they would eventually be able to rewrite 𝐵(𝑡) = 𝐵 0 1.1 !, which is 

what Alex was hoping they would eventually get to. 
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In this example, Alex had to find a way to help her students move from thinking 

about compound interest recursively to thinking about compound interest exponentially. 

In order to do this, Alex used her knowledge of representations and chose to introduce the 

table as a way to make a connection between the students’ current way of thinking about 

the problem and her intended mathematical point. However, it is really the integration of 

representations that made this connection so powerful. Alex not only identified a 

representation (the table) that reflected her students’ thinking (recursive relations), but 

also integrated other representations (algebraic) in order to help move their thinking 

towards the intended point (an explicit exponential formula). 

Knowledge of Unpacking 

In the literature, the idea of unpacking has been conceptualized several different 

ways. Ball, Thames, and Phelps (2008) claimed that teacher must hold unpacked 

mathematical knowledge because teaching involves making features of particular content 

visible to and learnable by students” (p. 400). McCrory, Floden, Ferrini-Mundy, Reckase, 

and Senk (2012) referred to unpacking as decompressing, but shift the emphasis from 

knowledge to work. Here, I define knowledge of unpacking as knowledge of the essential 

features of mathematical content, practices, and strategies. Not surprisingly, knowledge 

of unpacking was the most frequent knowledge domain that was coded with the teaching 

tasks of providing clear verbal explanations, making cognitive processes explicit, and 

supporting student understanding. In the narrative below, I talk about how Emma relied 

upon her knowledge of unpacking in the one example that I observed her enact at a high 

level of cognitive demand. 
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Emma. After giving students an end-of-the-chapter quiz on function 

transformations, Emma decided to review one of the quiz problems as an example at the 

beginning of the next class. Most of the students had struggled with the problem, so 

Emma wanted to address some of the misconceptions she had recognized during class 

and show them another way they could do the problem if they were struggling to 

remember the correct order for transformations. In the problem set, the students were 

given a piecewise linear graph (Figure 15) and asked to sketch a graph of 3𝑃(𝑡 + 1)− 2 

for 0 ≤ 𝑡 ≤ 9 on a provided grid.  

Figure 15. Original Function Given in Emma’s Function Transformation Example 

 

In grading the quizzes, Emma had realized that students were struggling to 

identify the correct order of transformations and to use the order of transformations to 

sketch the graph. In some cases, the students had done the vertical transformations in the 

wrong order, but correctly sketched their graph based upon the order that they had used. 

But in other cases, the students were not able to correctly use the order of transformations 

they had determined in order to sketch the graph. In order to set up the example in a way 

that would help clear up these misconceptions, Emma relied upon her knowledge of 

unpacking graph transformations to demonstrate two different methods. 
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In the first method, Emma broke down the essential features involved in 

determining and using the order of transformations. The first essential feature that she 

identified was determining the order of transformations from the provided function 

(3𝑃(𝑡 + 1)− 2). In presenting this step, Emma focused on explaining why the order of 

horizontal versus vertical transformations does not matter, but the order of horizontal 

versus horizontal and vertical versus vertical does. She also focused on making 

connections to order of operations in order to help her students remember whether or 

stretch or shift first. The second essential feature that Emma identified was transforming 

individual points. In presenting this step, she focused on explaining how to use the order 

of transformations that they had identified in step one to move the endpoints and corners. 

The final essential feature that Emma identified was graphing the transformed points. 

While many of the transformed points fell within the desired interval (0 ≤ 𝑡 ≤ 9), one 

endpoint did not, so Emma explained how to find the new endpoint for the transformed 

graph. 

After working through this first method, Emma unpacked a second, alternative 

method for the problem. In this method, Emma identified that there were really only two 

essential features that the students had to understand, and both of these were things that 

the students should feel comfortable with. The first feature was input values. Since the 

example asked students to graph the transformed function on the interval 0 ≤ 𝑡 ≤ 9, 

Emma emphasized that students could start by focusing on the inputs 𝑡 = 0,1,… ,9. The 

second essential feature, then, for this method was the function 3𝑃(𝑡 + 1)− 2. Since 

they were given a graph of 𝑦 = 𝑃(𝑡), Emma explained that they could just plug in values 

for 𝑡 and begin solving this equation using the graph of 𝑦 = 𝑃(𝑡). Finally, Emma 
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emphasized that this was a method that would have worked well for students who were 

unsure about what the correct order of transformations was. 

In this example, Emma used her knowledge of unpacking to maintain the 

cognitive demand of the example in the following ways. First, she focused students 

attention on the mathematical point by breaking down each method into the essential 

feature required to solve in. In doing this, Emma drew the attention away from the 

algebra involved in the example and instead focused on building understanding of the 

underlying concepts. Second, Emma supported students understanding by using her 

knowledge of unpacking to provide scaffolding for struggling students. In particular, 

Emma set up the example on the board so that each essential feature of the first method 

was highlighted in a separate space. By providing students with this visual scaffolding, 

Emma was able to focus their attention on one essential feature at a time. 

Knowledge of Students 

Since I am interested in studying mathematical knowledge for teaching, 

knowledge of students involves an intersection of content and pedagogical knowledge. 

Lee Shulman first introduced the idea of pedagogical content knowledge (1986) and Ball 

and her colleagues (2008) identified knowledge of content and students as a component 

of pedagogical content knowledge. Here, I define knowledge of students as knowledge 

about how students interact with and think about mathematical content, practices, and 

strategies. This involves both knowledge that is used in the moment of teaching and 

during the planning stage when instructors anticipate how students will interact with and 

comprehend the lesson. Of all of the instructors that I observed, Alex drew upon her 

knowledge of students the most during her lesson planning and enactment. In the 
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following narrative, I describe the different ways in which she drew upon this knowledge 

to maintain the cognitive demand of examples. 

Alex. Alex relied upon her knowledge of students in primarily two ways. First, 

Alex considered how students might interact with and think about mathematical content, 

practices, and strategies as she planned out the examples. The lesson guides that Alex 

was using introduced function compositions briefly at the beginning of the semester, and 

then came back to them again towards the end for a deeper dive. At the beginning of the 

“deeper dive” lesson, Alex decided to use a problem from the first exam to reintroduce 

the idea of function compositions. Her reason for doing this was because she used an 

example that was familiar in order to focus students’ attention on the underlying 

concepts. In particular, Alex wanted to use a function diagram and have students think 

critically about interpreting what each set and arrow represented in relation to the given 

story problem. 

In choosing this example, Alex drew on her knowledge of students in multiple 

ways. First, Alex recognized that in order to focus her students’ attention on the 

underlying concepts, she needed to build upon their prior knowledge. In this case, the 

students had worked with the example algebraically on a test, so Alex used that 

foundation to build a more conceptual understanding. Second, Alex knew that students 

struggled to interpret and understand both function diagrams and function compositions 

as a whole. Alex recognized that notation can be hard for students, but it is important and 

can be a roadblock for students if they go on to take calculus. 

Second, Alex considered how students might interact with and think about 

mathematical content, practices, and strategies during the enactment of the examples. In 
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one example, Alex asked her students to come up with the equation for an exponential 

function given a word problem. Previous to this example, students had worked through 

the simple and compound interest problem, but Alex still had not introduced the standard 

form of an exponential. So students were using their intuition of exponential growth to 

come up with an equation. The example that Alex chose to use involved both an initial 

value of 25 and a growth rate of 25%. Alex knew that some students might be struggling 

to identify the relationship between the two 25s in the equation and the two 25s in the 

story problem, so she asked her students to explain this correspondence. 

Once the students had come up with the equation, Alex introduced the standard 

form of an exponential as well as the terms initial value, growth factor, and growth rate. 

Alex knew that students often struggle to differentiate between the growth rate and the 

growth factor of an exponential. So she focused the rest of the example on differentiating 

between these two terms as well as helping her students see how they were related. In the 

interviews, Alex talked about how she knew that students often struggled with this 

concept, so she made this the main mathematical focus of the example. 

Knowledge of Sequencing 

The final domain of knowledge that I identified as helping maintain the cognitive 

demand of an example is knowledge of sequencing. While sequencing the presentation of 

content and activities is a form of pedagogical work, I am more concerned with the 

knowledge that instructors rely upon when deciding how to sequence. While this 

knowledge is often activated in the lesson planning stage, it can also be used during class 

time. Here, I define knowledge of sequencing as knowledge of the difficulty and 

appropriateness of mathematical content, practices, and strategies in relationship to each 
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other. While some of this sequencing was suggested by the lesson guides that the 

instructors used, instructors often chose to alter the way they presented the content and 

added or subtracted from the lesson guides. So I am interested in identifying the 

mathematical knowledge that instructors relied upon when making these decisions. 

Kelly. In the lesson on the short-term behavior of polynomials, Kelly relied on 

her knowledge of sequencing when deciding how to present the content. Within the 

lesson, Kelly needed to introduce the ideas of multiplicities of zeros and short-term 

behavior (i.e., whether or not the graph bounces off of or crosses the x-axis at zeros) and 

draw connections between the degree, multiplicities, and number of zeros. While Kelly 

could have presented these ideas all separately, she chose to build upon their 

connectedness and introduce the all using one example. 

The example that Kelly chose was 𝑝(𝑥) = 𝑥! 𝑥 + 3 𝑥 − 5 !. In choosing the 

polynomial to use for the example, Kelly had to consider whether or not it was robust 

enough to model everything that she wanted to address. In particular, Kelly often relied 

upon her students to recognize patterns and make connections, so the polynomial that she 

chose had to support their ability to do that. Kelly chose to start by introducing the idea of 

multiplicity and then asked students, “What could happen at the zeros?” After providing 

her students with some additional scaffolding in the form of questions, her students 

recognized that the graph of a polynomial would either bounce off the 𝑥-axis or cross it at 

each zero. Kelly then asked students to consider the graph of 𝑦 = 𝑝(𝑥) and use that to see 

if they could figure out a pattern for when the graph bounces and when it crosses. 

Because Kelly had chosen a polynomial that had multiple zeros with even and odd 

multiplicities, her students were able to make this connection. 
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Next, Kelly asked her students to consider how degree and multiplicities are 

related. One student conjectured that the degree was equal to the product of the 

multiplicities, which was true in this case, but Kelly then explained how expanding out 

the factored form would lead us to add, not multiply, the multiplicities. Finally, Kelly 

asked her students to identify the relationship between the degree and the number of 

zeros, which again was a connection that her students were able to make. 

In this example, Kelly drew upon her knowledge of sequencing in several ways. 

First, Kelly chose to present the four main ideas in the example in a way so that they 

naturally built upon each other. Also, Kelly could have presented the ideas first and then 

asked students to apply them to the specific example. However, Kelly wanted her 

students to make the connections and generate the relationships, so she chose to situate 

the ideas within and not before or after the example. Finally, Kelly integrated several 

representations, both algebraic and graphical, throughout the example as a way to help 

the students recognize patterns and make connections. 
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Relationships 

The five knowledge domains that I identified reflect what other researchers have 

found, but highlights the knowledge that supports the maintenance of high cognitive 

demand examples. I also wanted to see how these domains are connected to specialized 

and pedagogical content knowledge, as well as the instructor roles and decomposition of 

pedagogical work that I have identified in previous chapters (Chapters 4 and 5). So in the 

following subsections, I examine the relationships between each of the knowledge 

domains and SCK/PCK, instructors’ roles, and the decomposition categories. 

SCK and PCK. Each time I used one of the knowledge domain codes, I also 

decided whether or not that instance was representative of specialized content knowledge 

(SCK) and/or pedagogical content knowledge (PCK). While every knowledge domain 

was coded at least once in both categories, knowledge of connections, representations, 

and unpacking were primarily categorized as subdomains of SCK. Knowledge of 

students, on the other hand, was primarily categorized as a subdomain of PCK. However, 

knowledge of sequencing was almost an even split between the two categories. 

Table 31. Overlap of Knowledge Domains and SCK/PCK 

 Connections Representations Unpacking Students Sequencing 
SCK 28 22 19 0 4 
Both 2 0 1 3 0 
PCK 4 5 0 16 6 
Total 34 27 20 19 10 

 

Instructor roles. In an earlier chapter (Chapter 3), I identified three different 

roles that the instructors took on when enacting high cognitive demand examples. First, 

some instructors modeled content, practices, and strategies for their students as they took 
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notes. Others facilitated whole-class discussions where they worked through the example 

together with the students. Finally, some instructors chose to monitor students while they 

worked independently or in groups on parts of the example. Most of the instructors 

switched back and froth between different roles, although some chose to just use one way 

of presenting the example. In Table 32 I have constructed role profiles that show the 

relationship between the knowledge domains and the instructors’ roles. It is important to 

note that my IRB did not allow me to video the students, so I was often not able to 

capture what the instructors did or said while they were monitoring. Therefore, the 

overlap between the different knowledge domains and the monitoring code is probably 

not representative of the actual occurrences. 

Table 32. Role Profiles of Knowledge Domains 

 

Decomposition of pedagogical work. In addition to identifying the different 

roles that instructors took on when enacting high cognitive demand examples, I also 
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decomposed the work entailed in maintaining the cognitive demand of examples. Table 

33 captures the overlap between these two coding schemes. It is not surprising that the 

making connections decomposition code overlaps primarily with the knowledge of 

connections domain. However, it was surprising to see that knowledge of unpacking was 

the dominant overlapping knowledge domain with the other four decomposition codes. 

Table 33. Overlap of Knowledge Domains and Decomposition Codes 

 Connections Representations Unpacking Students Sequencing 
Mathematical 

Point 5 3 9 2 1 

Connections 45 35 30 18 9 
Explanations 63 57 78 39 9 

Cognitive 
Processes 34 30 49 13 4 

Understanding 14 14 31 18 1 

Discussion 

In analyzing the data, I found that knowledge of connections, representations, 

unpacking, students, and sequencing help instructors enact examples at a high level of 

cognitive demand. I also found that these knowledge domains overlap primarily with 

specialized content knowledge and that knowledge of unpacking was used heavily in 

almost all of the tasks of teaching that I identified in my decomposition. 

Limitations 

First, as noted previously, the five domains of knowledge are not assumed to be 

independent. From a quantitative standpoint, this is a limitation of the model, but I 

believe it accurately reflects the interconnected nature of teaching. Second, since almost 

all of the high cognitive demand examples were coded as procedures with connections 
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tasks, this model may overemphasize knowledge of connections and representations. 

However, “doing mathematics” may not be well suited for examples and it may be 

reasonable to assume that most high cognitive demand examples are procedures with 

connections tasks. Also, since this study was a collective case study and all of the 

instructors were graduate students, it may not be generalizable.  

One limitation of this study is that I focused on identifying observable 

knowledge. In particular, my analysis focused on identifying the knowledge that I could 

observe during the enactment stage of example unfolding. While analyzing knowledge 

from an observational perspective does require some assuming on the side of the 

observer, I relied upon the pre- and post-observational interview data to verify claims that 

I made concerning knowledge used during enactment. This is a limitation because there is 

knowledge that the instructors may have been relying upon that was not observable. 

Therefore, my results only highlight a portion and not the totality of knowledge entailed 

in enacting high cognitive demand examples. Another related limitation is that I only 

analyzed the knowledge entailed in enactment, so it is possible that instructors were 

drawing upon other forms of knowledge during the planning stage. 

Another limitation of this work is that the instructors involved in the study were 

teaching a coordinated course. In this context, course coordination meant that the 

syllabus, course schedule, lesson guides, student workbook, online homework, chapter 

quizzes, and exams were the same for all sections. The department chose to provide this 

much structure for the graduate students who taught these precalculus courses because 

they wanted the instructors to focus on using active learning during class time and not 

worry as much about the curricular and assessment aspects of teaching. Since much of 
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the pedagogical structure is laid out for the teachers in the lesson guides, this might be 

one reason why I mainly observed instructors using specialized content knowledge 

instead of pedagogical content knowledge.  

Future Research 

There is still much work that needs to be done to understand MKT at the 

undergraduate level, but this study provides a starting point for future investigations. In 

particular, it would be interesting to extend this study in several different directions. First, 

expanding the sample size and including instructors with a variety of backgrounds and 

teaching experience would test whether or not the model could be generalizable. Second, 

observing enacted examples that are doing mathematics examples (Smith & Stein, 1998) 

would help further refine the model and test whether or not procedures with connections 

examples had a large influence on the knowledge domains that emerged. Third, in order 

to better understand MKT at the undergraduate level at large, it would be beneficial to 

collect classroom data that focuses on more than just examples. Finally, my intention is to 

dig into the entire process of example unfolding and see what knowledge instructors use 

in the planning stage and use pre- and post-observation interview data to dig further into 

the knowledge used by instructors when teaching precalculus. 

Conclusions 

Given that examples are an important part of teaching, it is important to identify 

the mathematical knowledge that supports the maintenance of high cognitive demand 

examples. These knowledge domains can be used in designing teaching professional 

development opportunities for GSIs. In particular, professional development should be 

designed to help GSIs develop knowledge of connections, representations, unpacking, 
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students, and sequencing. This chapter benefits the community of mathematics education 

by identifying the mathematical knowledge used by instructors when teaching examples 

in precalculus. While it is similar to other models of MKT, it is also different in several 

important ways. First, the domains of knowledge are inherently connected. Second, while 

knowledge of connections and representations are implicit in many of the other models, 

they are not explicitly emphasized. 



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 230 

CHAPTER 7: CONCLUSION 

In summary, the purpose of my dissertation has been to examine the teaching 

tasks and mathematical knowledge entailed in enacting high cognitive demand examples. 

While high cognitive demand tasks have been studied extensively in the educational 

literature, many of these studies have focused on the tasks that students engage with 

either during class work time, in homework on assignments, or on assessments. However, 

little research has focused on the cognitive demand of the examples that the instructors 

choses to do during class. 

Since examples differ from other mathematical tasks in that it is usually the 

teacher, not the students, who takes on the responsibility for doing the mathematical 

work, I first examined what it would mean for an example to be enacted at a high level of 

cognitive demand. While the Task Analysis Guide developed by Smith and Stein (1998) 

was general in many aspects, it also made explicit references to how the students were 

engaging with the mathematics. Since I wanted to analyze the cognitive demand of an 

example, regardless of whether or not the teacher or the students were engaging with the 
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mathematics, I modified this framework to not include any language about who is doing 

the mathematics. 

For initial data analysis, I conducted classroom observations and pre- and post-

observation interviews with seven graduate student instructors who were teaching a 

precalculus course for at least the third time. After observing these instructors enact 93 

different examples in their classrooms, I used my modified framework to analyze the 

cognitive demand of each example. As a result, I found that the instructors enacted 25 of 

the examples at a high level of cognitive demand. I also identified three different roles 

that instructors took on when enacting examples. First, some of them chose to model 

content, practices, and strategies for students while they took notes. Others chose to work 

through the example by facilitating a whole-class discussion. Finally, some chose to 

monitor students while they worked individually or in small groups on part of the 

example. In many cases, instructors chose to switch between these different roles as the 

presented examples. However, some instructors chose to just model or facilitate. Then, 

based on my analysis, I constructed role profiles to see how instructors distributed their 

time in the three different roles. I also examined the role profiles of some of the high 

cognitive demand examples in order to see how instructors switched back and forth 

between different roles. 

Next, I focused on identifying the teaching tasks entailed in enacting high 

cognitive demand examples. Using open and axial coding, I found that there are five 

main tasks that teachers engage in to maintain the cognitive demand of examples. First, 

instructors attended to the mathematical point. To do this, instructors introduced the 

mathematical point as a way to set the focus of the example, maintained the focus of the 
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example on the mathematical point, and summarized the example in order to reiterate the 

mathematical point. Second, instructors made connections to prior knowledge, between 

representations, and between concepts. Third, instructors provided clear verbal 

explanations. These explanations could focus on the example set up, constraints, and 

goal; the content, practices, or strategies; similarities and differences; representations; 

notations and vocabulary; or on how to check your work. Fourth, instructors articulated 

cognitive processes. Some instructor chose to think aloud as they worked through the 

example, while other asked students to provide justification and reasoning. Finally, 

instructors supported student understanding by providing students with opportunities to 

ask questions, recognizing when students were struggling to follow or understand, and 

scaffolding the example. 

Finally, I examined the mathematical knowledge entailed in enacting high 

cognitive demand examples. Through open and axial coding, I identified five domains of 

mathematical knowledge for teaching that support the maintenance of the cognitive 

demand of examples. First, instructors used knowledge of connections, which I defined 

as knowledge of mathematical relationships between content, practices, and strategies. 

Second, instructors used knowledge of representations, which I defined as knowledge of 

graphical, pictorial, tabular, algebraic, verbal, and written forms of mathematical content, 

practices, and strategies. Third, instructors used knowledge of unpacking, which I defined 

as knowledge of the essential features of mathematical content, practices, and strategies. 

Fourth, instructors used knowledge of students, which I defined as knowledge about how 

students interact with and think about mathematical content, practices, and strategies. 

And finally, instructors used knowledge of sequencing, which I defined as knowledge of 
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the difficulty and appropriateness of mathematical content, practices, and strategies in 

relationship to each other. 

While these knowledge domains emerged from my data analysis, they are 

connected in many ways to the work that other researchers have done. In particular, 

knowledge of connections, representations, and unpacking overlap primarily with 

specialized content knowledge (Ball et al., 2008). Knowledge of students, on the other 

hand, overlaps primarily with pedagogical content knowledge (Shulman, 1986). 

However, knowledge of sequencing was split almost evenly between the two. I also 

analyzed how these knowledge domains overlapped with both the roles that instructors 

take on when enacting high cognitive demand examples and the teaching tasks entailed in 

maintaining the cognitive demand. Not surprisingly, knowledge of connections 

overlapped significantly with the teaching task of making connections. However, I was 

surprised to find that knowledge of unpacking was the knowledge domain that had the 

most overlap with the other four tasks of teaching. 

Through my dissertation study, I have sought to identify the knowledge and work 

entailed in enacting high cognitive demand examples. In doing this, I aim to help our 

field move one step closer to improving student outcomes and teaching quality in first-

year undergraduate mathematics courses. While there are many aspects of teaching, I 

chose to focus on examples because they are one of the essential components of 

instruction in mathematics classrooms. Also, while many studies have focused on the 

cognitive demand of the tasks that we give students to work on, few have looked at the 

cognitive demand of the examples that we use. Therefore, my dissertation contributes to 

this field by identifying what high cognitive demand examples might look like, 
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examining the different roles instructors and students take on during the enactment of 

examples, decomposing the work entailed in maintaining the cognitive demand of 

examples, and examining the mathematical knowledge for teaching entailed in enacting 

high cognitive demand examples. While there is still a lot of work that needs to be done 

to improve undergraduate precalculus courses, this work provides both researchers and 

practioners with a way to think about the quality of the examples that we use.
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APPENDIX A: CHANGES MADE TO ORIGINAL STUDY 

When I first started my dissertation, I was focused on deep procedural knowledge 

(DPK) and the teaching tasks of decomposing, bridging, and trimming. While these 

frameworks are still connected to what I am doing, I have moved away from talking 

about DPK and instead used Smith and Stein’s framework for cognitive demand. In 

addition, instead of using the teaching tasks of decomposing, bridging, and trimming, I 

decided to study pedagogical work entailed in enacting high cognitive demand examples 

from a grounded theory perspective and use the framework of decompositions of 

practice. So while I have moved away from using this language in talking about my 

research, you will still find it in my data collection protocols. However, I want to note 

that this is mainly just a shift in language use.  

Also, I collected data on two faculty members who were teaching precalculus. 

However, I chose to only analyze the data from the seven graduate student instructors 

that I observed, since together they made up a coherent population of instructors.
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APPENDIX B: DATA COLLECTION PROTOCOLS 

Pre-Observation Interview 

General Information and Previous Experience 

1. What is the topic of the lesson taught right before this lesson? (Add 
description to field notes.) 

2. Have you previously taught the content that you are teaching today? 
Yes No 

a. If so, have you previously taught with this same exact lesson plan? Yes 
No 

i. If not, is this the first time you have used this lesson plan or is 
it a modified version of a lesson plan you have used 
previously? 

1. If it was modified, ask whether or not examples were 
modified and probe into those examples specifically 
later. 

3. Is the lesson plan that you intend to use one that was given to you, one 
that you found from another source, or one that you created yourself? 

Identifying Examples that May Afford Opportunities to Learn DPK 

4. First, what was the mathematics that you intended the students to learn 
through the use of the given example? 

a. Why did you want your students to learn this? 
b. What about the example made you believe that it was an appropriate 

way to learn that mathematics? 
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I'm specifically interested in examples that involve procedures. The definition for 

procedure that I'm utilizing is “a series of steps, or actions, done to accomplish a goal” 

(Rittle-Johnson, Schneider, Star, 2015). 

5. Do you think that this example involves a procedure? Yes No 
If yes... 

a. What is that procedure? 
b. Are there any other procedures that could be used in this example? Yes 

No 

While procedural knowledge is often thought of as superficial, there is such a 

thing as deep procedural knowledge (DPK). In particular, deep procedural 

knowledge is defined as having three independent characteristics: 

comprehension, flexibility, and critical judgment. Comprehension is knowing why 

a procedure works, flexibility is characterized by knowledge of multiple 

procedures and the ability to select the most appropriate one, and critical 

judgment is knowing when it is appropriate to use a procedure. 

c. Do you think that this example affords an opportunity for students to 
learn deep procedural knowledge? Yes No 
If yes... 

i. What characteristics of DPK do you think this example affords 
an opportunity for students to learn and how does this example 
afford an opportunity for students to learn these characteristics 
of DPK? 

Observation 

General Information 

Instructor ID:       Date:       

Course ID:       Observer:      

Start Time:       End Time:      
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Demographics 

Number of Students 

 Total Enrolled:    Males:    

 Females:    

 Total In Attendance:    Males:    Females:    

Room Setup 

o Tables      Number of Seats/Table:    

o Individual Desks Arranged in Groups Number of Desks/Group:    

o Individual Desks 

Room Diagram: (note location of camera & observer)  
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Researcher Positioning 

Description of relationship between researcher & instructor:     

            

            

             

Perceived attitudes concerning the researcher’s presence in the classroom:    

            

             

Perceived effect of the video camera’s presence in the classroom:     

            

             

Description of researcher’s thoughts, feelings, and experiences prior to observation:  

            

            

             

Consideration of how these prior thoughts, feelings, and experiences may affect 

researchers’ perception of the observation:        

            

            

             

Important events/occurrences:         
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Purpose of Sampling 

What is the exact purpose of observing this particular instructor, course, and/or lesson? 

            

             

Mathematical Context 

Previous Lesson Topic:           

Description of Previous Lesson (specifically include where left off):    

            

             

Today’s Lesson Topic:           

Description of Today’s Lesson:         

            

             

Potential DPK Examples 

List (and number) all examples in the lesson plan that were identified as affording 

opportunities for explaining and modeling concepts, practices, or strategies that require 

the use of DPK. Attach a copy of the lesson plan used during class. 
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General Observation Notes !!! START AUDIO RECORDING !!!  
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Anticipated Example #____ 

Pre-Observation Notes 

Short description (see attachment for full text):       

             

Origin of Identification: 

o Researcher 

o Instructor 

Anticipated Use of DPK: 

o None   Not Very Likelihood Extremely 

o Flexibility   1 2 3 4  

o Critical Judgment  1 2 3 4  

o Comprehension  1 2 3 4  

Details concerning anticipated use of DPK:        

            

             

Anticipated Use of Mathematical Teaching Practices: 

o None    Not Very Likelihood Extremely 

o Decompressing  1 2 3 4  

o Trimming   1 2 3 4  

o Bridging   1 2 3 4 

Details concerning anticipated use of practices:       
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Anticipated Example #____ 

Start Time:      

Detailed observation notes: (Attend to how the instructor elicits & interprets student 

thinking.) 

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

             

End Time:      
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Anticipated Example #____ 

Quick Post-Reflection During Observation 

Use of DPK: 

o None   Not Very Likelihood Extremely 

o Flexibility   1 2 3 4  

o Critical Judgment  1 2 3 4  

o Comprehension  1 2 3 4  

Eliciting & Interpreting Student Thinking: 

o None 

o Before Example 

o During Example 

o After Example 

Mathematical Practices: 

o None    Not Very Likelihood Extremely 

o Decompressing  1 2 3 4  

o Trimming   1 2 3 4  

o Bridging   1 2 3 4  

Preliminarily Nominate as Exemplary: 

o Yes 

o Maybe 

o No 
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Anticipated Example #____ 

Full Post-Observation Reflection 

Date:        Time:       

General comments:           

            

            

            

            

             

DPK:     Not Very Likelihood Extremely 

o Flexibility   1 2 3 4  

o Critical Judgment  1 2 3 4  

o Comprehension  1 2 3 4  

Details concerning perceived use of DPK:        
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Eliciting & Interpreting Student Thinking: 

o Before Example 

o During Example 

o After Example 

Details concerning eliciting & interpreting student thinking:     

            

            

            

             

             

            

             

Mathematical Practices: Not Very Likelihood Extremely 

o Decompressing  1 2 3 4  

o Trimming   1 2 3 4  

o Bridging   1 2 3 4 

Details concerning perceived use of mathematical practices:     
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Perceived MKT Used:          

            

            

            

            

            

            

            

             

             

             

Other Comments:           

            

            

            

            

            

            

             

Officially Nominate as Exemplary: 

o Yes 

o Maybe 

o No  
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Unanticipated Example #____ 

Observation Notes 

Start Time:      

Short Description:           

             

Detailed observation notes: (Attend to how the instructor elicits & interprets student 

thinking.) 

            

            

            

            

            

            

            

            

            

            

            

            

            

            

             

End Time:      



HIGH COGNITIVE DEMAND EXAMPLES IN PRECALCULUS 270 

Unanticipated Example #____ 

Quick Post-Reflection During Observation 

Use of DPK: 

o None   Not Very Likelihood Extremely 

o Flexibility   1 2 3 4  

o Critical Judgment  1 2 3 4  

o Comprehension  1 2 3 4  

Eliciting & Interpreting Student Thinking: 

o None 

o Before Example 

o During Example 

o After Example 

Mathematical Practices: 

o None    Not Very Likelihood Extremely 

o Decompressing  1 2 3 4  

o Trimming   1 2 3 4  

o Bridging   1 2 3 4  

Preliminarily Nominate as Exemplary: 

o Yes 

o Maybe 

o No 
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Full Post-Observation Reflection 

Date:        Time:       

Type: 

o In original lesson plan, but not identified in lesson plan analysis. 

o Not in original lesson plan, but add purposely by instructor before lesson began. 

o Not in original lesson plan, but added spontaneously during the lesson. 

General comments:           

             

DPK: Not Very Likelihood Extremely 

o Flexibility  1 2 3 4  

o Critical Judgment  1 2 3 4  

o Comprehension 1 2 3 4  

Details concerning perceived use of DPK:        
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Eliciting & Interpreting Student Thinking: 

o Before Example 

o During Example 

o After Example 

Details concerning eliciting & interpreting student thinking:     

            

            

            

            

            

            

             

Mathematical Practices:  Not Very Likelihood Extremely 

o Decompressing  1 2 3 4  

o Trimming   1 2 3 4  

o Bridging   1 2 3 4 

Details concerning perceived use of mathematical practices:     
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Perceived MKT Used:          

            

            

            

            

            

            

            

            

             

Other Comments:           

            

            

            

            

            

            

            

             

Officially Nominate as Exemplary: 

o Yes 

o Maybe 

o No 
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Details concerning why example was not anticipated:      
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General Post-Observation Reflection 

Date:        Time:       
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Post-Observation Identification of Exemplary Example 

For use in the post-observation interview, identify one example that I feel is exemplary:  

             

Describe reasoning for choosing this example:       
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Reflection on Researcher Positioning 

Changes in relationship between researcher & instructor:      

            

             

Changes in perceived attitudes concerning the researcher’s presence in the classroom:  

            

             

Changes in perceived effect of the video camera’s presence in the classroom:   

            

             

Consideration of how the prior thoughts, feelings, and experiences may have affected 

researchers’ perception of the observation:        

            

             

Description of researcher’s thoughts, feelings, and experiences after observation:   

            

             

Consideration of how the thoughts, feelings, and experiences after observation may affect 

researchers’ perception of the observation:        

            

             

Important events/occurrences:         
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Reflection on Purpose of Sampling 

Did the observation serve the intended purpose? 

o Yes 

o No 

Comments:            

            

            

             

             

            

            

             

Reflections on Mathematical Context Observation #_____ 

Description of Lesson:          
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Post-Observation Interview 

Reviewing Planned Examples 

You planned on using the following examples during class. 

1. Did you use all of the examples you planned on covering? Yes No 
a. If not, why? 

Examining Mathematical Knowledge for Teaching 

I identified one example that you used in your lesson that I would like to concentrate on 

for the remainder of the interview. 

2. Before we start talking about this example, I first want to know if there 
was a specific example that stands out in your mind as affording the 
best opportunity to learn DPK. 

3. What about the example you identified made it stick out in your mind as 
special? 

Intended Learning Outcome 

4. During our pre-observation interview, you said that you wanted to use 
this example because you intended for students to learn. 

a. Do you believe that your students learned the mathematics that you 
intended? Yes No 

i. If so, how do you know? 
ii. If not, why not? 

Opportunity to Learn Deep Procedural Knowledge 

5. During our pre-observation interview, you said that you thought that 
this example provided an opportunity for your students to learn. 

a. When you used this example in class, do you believe it provided an 
opportunity to learn this? Yes No 

i. If yes, how do you know? 
ii. If no, why not? 

Identifying the Intended Procedure 

6. What are the steps of the specific procedure that you intended to use in 
this example? 

a. If the instructor lists steps... 
Based on what you did during the observation, I wrote down these 
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steps. Do you think they are the same as the steps you outlined? Yes 
No 

1. If no... 
i. How do they differ? 

ii. Are these differences important? 
b. If the instructor is not able to list steps... 

Based on what you did during the observation, I wrote down these 
steps. Do you think this procedure matches what you did during the 
observation? Yes No 

2. If no... 
i. How do they differ? 

ii. Are these differences important? 
7. Are there any other procedures you could have followed? Yes No 
3. If yes... 

a. What are the steps of that procedure? 
b. Did you consider using this procedure instead of the one you chose? 

Yes No 
i. Why or why not? 

c. Are there benefits to using one procedure over the other? 
d. Are there disadvantages to using one procedure over the other? 

Decision Making 

There are a couple of clips from the video of this example that I want to watch together 

and discuss. (For each clip...determine which of the following questions are appropriate 

to ask.) 

Decompressing. During this part of the example, it seemed like you were 

unpacking the mathematics to make it comprehensible for your students. 

1. What exactly were you trying to unpack? 
2. What made you decide to unpack it? 
3. How did you determine a way to unpack it? 

Bridging. During this part of the example, it seemed like you were making 

mathematical connections across topics, assignments, representation, or domain. 

1. How did you make connections? 
2. What made you decide to make these connections? 
3. How did you determine a way to make these connections? 
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Trimming down. During this part of the example, it seemed like you removed 

some mathematical complexity to make it more comprehensible for your students? 

1. How did you determine what you could remove? 
2. What made you decide to remove it? 
3. How did you maintain the integrity of the problem? 

Trimming up. During this part of the example, it seemed like you added some 

mathematical complexity to make it more challenging for your students? 

1. How did you determine what you could add? 
2. What made you decide to add it? 
3. How did you maintain the integrity of the problem? 

Eliciting and interpreting student thinking. During this part of the example, 

you elicited and interpreted student thinking. 

1. What made you elicit the students' thinking? 
2. What response did you anticipate? 
3. What did you interpret the student to mean mathematically when he/she gave their 

response to your prompt? 

Representations. During this part of the example, you used the following 

representation(s). 

1. What made you decide to use this representation? 
2. Were there any other representations that you considered using? 

Other. Use this IF AND ONLY IF none of the other categories _t. Write out 

questions beforehand and associate them with a code and memo explaining why these 

questions needed to be asked and did not fit into any of the other categories. 
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APPENDIX C: SUPPLEMENTARY FIGURES & TABLES 

Table 34. Full List of Observed Examples 

Example ID Lesson Example Description Cognitive 
Demand 

Alex 1-1 Introduction to 
Exponentials 

Exploring the notions of exponential 
vs. linear growth High 

Alex 1-2 Introduction to 
Exponentials 

Building an exponential function 
from a word problem High 

Alex 2-1 Function 
Compositions 

Exploring the notion of function 
compositions through unit 

conversions 
High 

Alex 2-2 Function 
Compositions 

Finding the formula for a function 
composition Low 

Alex 3-1 Inverse Trig 
Functions 

Finding all solutions to trig equations 
with standard unit circle angles Low 

Dan 1-1† The Vertex of a 
Parabola* 

Identifying the vertex of a parabola 
given the vertex-form of the function Low 

Dan 1-2† The Vertex of a 
Parabola* 

Writing the equation of a parabola 
given its vertex and a point Low 

Dan 1-3† The Vertex of a 
Parabola* 

Factoring quadratics that are perfect 
squares Low 

Dan 1-4† The Vertex of a 
Parabola* 

Using completing the square to write 
equations in vertex form Low 

Dan 1-5† The Vertex of a 
Parabola* 

Completing the square when the 
coefficient on 𝑥 is odd Low 

Dan 1-6† The Vertex of a 
Parabola* 

Completing the square when the 
coefficient on 𝑥! is not 1 Low 
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Example ID Lesson Example Description Cognitive 
Demand 

Dan 2-1† Function 
Compositions 

Exploring the notion of function 
compositions using a word problem Low 

Dan 2-2† Function 
Compositions Evaluating function compositions Low 

Dan  2-3† Function 
Compositions 

Decomposing function compositions 
given the outside function Low 

Dan 2-4† Function 
Compositions 

Decomposing function compositions 
into any two functions High 

Dan 3-1† 
Trig Equations & 

Inverse 
Functions* 

Graphing solutions to trig equations 
as points of intersection High 

Dan 3-2† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to trig equations 
with standard unit circle angles Low 

Dan 3-3† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to trig equations 
with non-standard unit circle angles Low 

Dan 3-4† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to trig equations 
with only one initial solution Low 

Dan 3-5† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to trig equations 
with standard unit circle angles Low 

Dan 3-6† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to sinusoidal 
equations with vertical 

transformations 
Low 

Dan 3-7† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to sinusoidal 
equations with horizontal 

transformations 
Low 

Dan 3-8† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions in a given 
interval to sinusoidal equations High 

Emma 1-1 Introduction to 
Quadratics 

Expanding a factored quadratic to 
standard form Low 

Emma 1-2 Introduction to 
Quadratics 

Factoring a quadratic when the 
coefficient on 𝑥! is 1 Low 

Emma 1-3 The Vertex of a 
Parabola 

Using vertex form of a quadratic to 
graph a parabola Low 

Emma 2-1 Function 
Transformations Transforming the graph of a function High 

Emma 2-2 Function 
Compositions 

Evaluating and simplifying function 
compositions Low 
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Example ID Lesson Example Description Cognitive 
Demand 

Emma 2-3 Function 
Compositions Evaluating function compositions Low 

Emma 2-4 Function 
Compositions 

Decomposing function compositions 
into any two functions Low 

Emma 3-1 Arc Length Finding distance using arc length Low 

Emma 3-2 
Sinusoidal 

Functions & 
Their Graphs 

Using function transformations to 
graph sinusoidal functions Low 

Greg 1-1 Law of Sines & 
Cosines 

Using the Law of Sines to solve for a 
side length Low 

Greg 2-1 Trig Equations & 
Inverse Functions 

Explaining why sine and cosine may 
have 2 solutions/period, but tangent 

can only have 1 
High 

Greg 2-2 Trig Equations & 
Inverse Functions 

Finding all solutions to sinusoidal 
equations Low 

Greg 3-1 Review Sketching the graph of a sinusoidal 
function Low 

Greg 3-2 Review Evaluating trig functions given value 
of sine and quadrant of 𝜃 Low 

Greg 3-3 Review Evaluating trig functions using sum 
and difference formulas Low 

Greg 4-1 
Tangent & 
Reciprocal 

Trig Functions* 

Exploring the behavior of tangent 
using 

standard unit circle angles 
High 

Greg 4-2 
Tangent & 
Reciprocal 

Trig Functions* 

Using the unit circle definition to 
evaluate tangent Low 

Greg 4-3 
Tangent & 
Reciprocal 

Trig Functions* 

Using the triangle definition to 
evaluate sine, cosine, and tangent Low 

Greg 4-4 
Tangent & 

Reciprocal* 
Trig Functions* 

Solving real-life problems using 
tangent High 

Greg 5-1† 
Trig Equations & 

Inverse 
Functions* 

Using graphs to identify how many 
solutions are in a single period High 

Greg 5-2† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to trig equations 
with standard unit circle angles High 

Greg 5-3† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to trig equations 
with non-standard unit circle angles High 
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Example ID Lesson Example Description Cognitive 
Demand 

Greg 5-4† 
Trig Equations &  

Inverse 
Functions* 

Finding all solutions to trig equations 
with non-standard unit circle angles Low 

Greg 5-5† 
Trig Equations &  

Inverse 
Functions* 

Finding all solutions to tangent 
equation with non-standard unit 

circle angles 
High 

Greg 5-6† 
Trig Equations &  

Inverse 
Functions* 

Finding all solutions to sinusoidal 
equations with non-standard unit 

circle angles 
High 

Greg 6-1† Review* Finding the sign of trig functions 
given the quadrant of 𝜃 Low 

Greg 6-2† Review* Connecting outputs of tangent, sine, 
and cosine Low 

Greg 6-3† Review* Finding a sinusoidal equation given a 
description of a real-life context High 

Greg 6-4† Review* Finding the distance traveled given 
the distance function Low 

Greg 6-5† Review* Finding sinusoidal equation given a 
description of a real-life context Low 

Greg 6-6† Review* Finding all solutions to a sinusoidal 
equation Low 

Greg 6-7† Review* Finding the distance travelled using 
arc length Low 

Greg 6-8† Review* Finding the distance travelled using 
unit conversions Low 

Greg 6-9† Review* Finding the horizontal shift of a 
sinusoidal function High 

Juno 1-1 
Tangent & 
Reciprocal 

Trig Functions* 

Using unit circle definition to 
evaluate tangent Low 

Juno 1-2 
Tangent & 
Reciprocal 

Trig Functions* 

Using the right triangle definition to 
evaluate tangent Low 

Juno 1-3 
Tangent & 
Reciprocal 

Trig Functions* 

Evaluating sine and cosine on 
complementary angles Low 

Juno 1-4 
Tangent & 
Reciprocal 

Trig Functions* 

Evaluating sine and cosine on 
complementary angles Low 

Juno 1-5 
Tangent & 
Reciprocal 

Trig Functions* 

Proving that sine and cosine are 
cofunctions High 
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Example ID Lesson Example Description Cognitive 
Demand 

Juno 1-6 
Tangent & 
Reciprocal 

Trig Functions* 

Proving that tangent and cotangent 
are cofunctions Low 

Juno 2-1† 
Trig Equations & 

Inverse 
Functions* 

Graphing solutions to trig equations 
as points of intersection High 

Juno 2-2† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to trig equations 
with standard unit circle angles High 

Juno 2-3† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to trig equations 
with non-standard unit circle angles High 

Juno 2-4† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to sinusoidal 
equations Low 

Juno 2-5† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions in a given 
interval to sinusoidal equations Low 

Juno 3-1† Review* Graphing sinusoidal functions Low 

Juno 3-2† Review* Using Law of Sines to find unknown 
side lengths and angle measures Low 

Juno 3-3† Review* Finding points of intersection using 
polar coordinates Low 

Kelly 1-1 Introduction to 
Exponentials 

Exploring the notions of exponential 
vs. linear growth High 

Kelly 1-2 Introduction to 
Exponentials 

Differentiating exponential growth 
and decay given exponential function Low 

Kelly 2-1 
Polynomials & 

Rational 
Functions 

Exploring the behavior of 
polynomials near the roots High 

Kelly 2-2 
Polynomials & 

Rational 
Functions 

Graphing polynomials given the 
equation in factored form High 

Kelly 2-3 
Polynomials & 

Rational 
Functions 

Constructing polynomial equations 
given the graph High 

Kelly 3-1 Arc Length Finding arc length on the unit circle Low 

Kelly 3-2 Arc Length Finding arc length on a non-unit 
circle Low 

Selrach 1-1 Logarithms & 
Their Properties* 

Finding the equation of an 
exponential function given two Low 
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Example ID Lesson Example Description Cognitive 
Demand 

points 

Selrach 1-2 Logarithms & 
Their Properties* 

Solving equations using exponentials 
and logarithms Low 

Selrach 1-3 Logarithms & 
Their Properties* 

Solving equations using exponentials 
and logarithms Low 

Selrach 1-4 Logarithms & 
Their Properties* 

Solving equations using exponentials 
and logarithms Low 

Selrach 1-5 Logarithms & 
Their Properties* 

Solving equations using properties of 
logarithms Low 

Selrach 1-6 Logarithms & 
Their Properties* 

Solving equations using properties of 
logarithms Low 

Selrach 2-1† Inverse 
Functions* 

Examining what is an inverse & 
whether or not every function has an 

inverse 
Low 

Selrach 2-2† Inverse 
Functions* 

Examining functions that are not 
invertible Low 

Selrach 2-3† Inverse 
Functions* 

Finding an inverse function using 
function diagrams Low 

Selrach 2-4† Inverse 
Functions* 

Finding an inverse function 
algebraically Low 

Selrach 2-5† Inverse 
Functions* 

Evaluating inverse functions using a 
table Low 

Selrach 3-1† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to sinusoidal 
equations Low 

Selrach 3-2† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions in a given 
interval to sinusoidal equations Low 

Selrach 3-3† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions to complex trig 
equations by factoring Low 

Selrach 3-4† 
Trig Equations & 

Inverse 
Functions* 

Finding all solutions in a given 
interval to sinusoidal equations Low 

Note: The example ID represents the instructor, the observation number, and the 
enacted example number. 
*These lessons were purposefully sampled because of their focus on procedures. 
†These examples were spread out over two days of instruction. 
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Figure 16. Study Diagram 
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APPENDIX D: CODING SCHEMES 

Decomposition of Practice 

Initial Coding Scheme 

The initial coding scheme that I developed for capturing the work of enacting 

high cognitive demand examples was generated before I began data analysis. I generated 

this coding scheme based upon literature, my own experiences teaching, my observations 

during data collection, and my conversations with instructors during the pre- and post-

observation interviews. 

• Set up 
o Transition from the previous activity or beginning of class. 
o Explain the mathematical point of the example. 
o Make connections between the example and other content, practices, and 

strategies students are familiar with. 
• Enactment  

o Modeling 
§ Make connections to previously learned content, practices, and 

strategies. 
§ Explain their thinking process. 
§ Make connections between representations. 
§ Monitor time spent on the example. 
§ Steer the example towards the mathematical point. 
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o Facilitating 
§ Elicit, interpret, and respond to student thinking. 
§ Gauge student understanding and engagement. 

o Monitoring 
§ Give instructions on what they expect students to do. 
§ Monitor and respond to student struggle. 
§ Steer students towards the mathematical point. 

• Wrap up. 
o Reiterate the mathematical point of the example. 
o Summarize the content, practices, and/or strategies that were used in the 

example. 
o Reiterate or make new connections to related content, practices, or 

strategies. 
o Transition to the next activity or the end of class. 

Refined Coding Scheme 

As I used my initial coding scheme to code the high cognitive demand examples, 

I began refining it to reflect what I was seeing in the data. One big difference I noticed 

between my initial and my refined coding scheme was that the hierarchical structure of 

the initial coding scheme did not fit the data as nicely as I had expected. So I decided to 

remove the hierarchy as I was coding. Table 35 shows the resulting refined coding 

scheme as well as the frequency with which I used each code. 

Table 35. Refined (Non-Hierarchical) Codes with Frequency Counts 

Code Frequency 
Explaining 474 
Solution Strategy or Procedure 342 
Modeling 308 
Connect 293 
Facilitating 238 
Think-Aloud 236 
Student Thinking 230 
Representations 221 
Concepts 97 
Notation or Vocabulary 66 
Student Understanding 65 
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Previous Knowledge or Examples 60 
Scaffolding 59 
Student Struggle 51 
Differences 48 
Maintain Mathematical Point 21 
Transition 19 
Introduce Mathematical Point 14 
Monitoring 14 
Student Work Time 14 
Set Up the Example 13 
Instructions 13 
Mathematical Point 13 
Similarities 11 
Student Engagement 10 
Connect 9 
Multiple solution strategies 9 
Abstract to Concrete 9 
Transition 9 
Summarize 7 
Real Life 6 
Checking final answer 5 
Connect 4 
Prioritize 3 
Monitor Time 1 
Ran Out of Time 0 

Final Coding Scheme 

After I finished my first round of coding, I realized that my original hierarchical 

structure was not working quite as I planned because instructors would do similar things 

when modeling as they did when facilitating or monitoring. So I decided to split off those 

three codes (Modeling, Facilitating, and Monitoring) into a separate category, which I 

now refer to as roles. Doing this allowed me to see how the remaining codes were related 

and create a new hierarchical structure for my final coding scheme. After using axial 
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coding to create this semi-final coding scheme, I went back and re-coded all 25 examples. 

While coding, I made small tweaks until I had a stable final coding scheme that described 

the work of enacting high cognitive demand examples. For descriptions of these codes 

and video clips that were coded with these codes, read through my results section. 

• Attend to the mathematical point 
o Introduce the mathematical point as a way to set the focus of the example 
o Maintain the focus of the example on the mathematical point 
o Summarize the example to reiterate the mathematical point 

• Make connections 
o To previously learned content, practices, and strategies 
o Between representations 
o Between concepts 

• Provide clear verbal explanations 
o Of the example set up, constraints, and goal 
o Of content, practices, and strategies 
o Of similarities and differences 
o Of representations 
o Of notation and vocabulary 
o Of how to check your work 

• Articulate cognitive processes 
o By thinking aloud as you work through the example 
o By asking students to provide justification and reasoning 

• Support student understanding 
o By providing opportunities for students to ask questions 
o By recognizing when students are struggling to follow or understand 
o By providing scaffolding for struggling students without decreasing the 

cognitive demand 
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