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a b s t r a c t

Collecting plant phenotypic data with sufficient resolution (in both space and time) and accuracy repre-
sents a long standing challenge in plant science research, and has been a major limiting factor for the
effective use of genomic data for crop improvement. This is particularly true in plant breeding where col-
lecting large-scale field-based plant phenotypes can be very labor intensive and costly. In this paper we
reported a multi-sensor system for high throughput phenotyping in plant breeding. The system com-
prised five sensor modules (ultrasonic distance sensors, thermal infrared radiometers, NDVI sensors, por-
table spectrometers, and RGB web cameras) to measure crop canopy traits from field plots. A GPS was
used to geo-reference the sensor measurements. Two environmental sensors (a solar radiation sensor
and air temperature/relative humidity sensor) were also integrated into the system to collect simultane-
ous environmental data. A LabVIEW program was developed to control and synchronize measurements
from all sensor modules and stored sensor readings in the host computer. Canopy reflectance spectra (by
portable spectrometers) were post processed to extract NDVI and red-edge NDVI spectral indices; and
RGB images were post processed to extract canopy green pixel fraction (as a proxy for biomass). The sen-
sor system was tested in a soybean and wheat field trial. The results showed strong correlations among
the sensor-based plant traits at both early and late growing season. Significant correlations were also
found between the sensor-based traits and final grain yield at the early season (Pearson’s correlation
coefficient r ranged from 0.41 to 0.55) and late season (r from 0.55 to 0.70), suggesting the potential
use of the sensor system to assist in phenotypic selection for plant breeding. The sensor system per-
formed satisfactorily and robustly in the field tests. It was concluded that the sensor system could be
a powerful tool for plant breeders to collect field-based, high throughput plant phenotyping data.

� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Next generation sequencing technologies enable scientists to
conduct plant genotyping with ever increasing speed and declining
cost (Shendure and Ji, 2008). The use of genomic data, however,
must be coupled with high quality phenotypic data to meet its full
potential. The challenge lies in the fact that characterizing plant
phenotypes is costly and time consuming, which represents a
major bottleneck in linking genotypes to phenotypes (Furbank
and Tester, 2011). Many believe that, if this challenge can be mas-
tered, we will be able to spark a new green revolution to greatly
enhance the productivity of all major food, feed, and energy crops
around the world. This success would be an essential part of the

solutions to solve the global food security problem by 2050 when
a world population of 9.7 billion is projected (Ray et al., 2012). Due
to its perceived importance, intensive research efforts are currently
underway on automated high throughput plant phenotyping
(Furbank and Tester, 2011).

Much of the research on high throughput phenotyping has
focused on the measurement of single plants using automated
imaging in environmentally controlled greenhouses (Campbell
et al., 2015; Fahlgren et al., 2015). These greenhouse based systems
are proven useful to quantify certain plant traits such as biomass or
growth rate, but they also face a number of major limitations. First,
the limited space of imaging chambers makes it difficult to mea-
sure large plants when they pass certain stages of vegetative
growth. Second, plants in greenhouses are grown in artificial envi-
ronments (such as pot, soil, water and nutrient distribution, closed
aerial environment, and artificial lighting) that can significantly
alter the normal pattern of plant growth and development
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(White et al., 2012). In addition, plants are grown in densely pop-
ulated plots in the field, which affects the kinds of traits that can be
measured effectively at the plot level compared to those at the sin-
gle plant level. For example, side-view images are common in
greenhouse phenotyping to measure plant height. In the field,
however, plot height is usually measured above crop canopy with
a height sensor. In summary, plant phenotyping in the greenhouse
may be of limited relevancy and not directly translatable to field
research (White et al., 2012; Nelissen et al., 2014).

Many authors have advocated field-based phenotyping systems
and approaches for plant breeding (Passioura, 2012; White et al.,
2012; Araus and Cairns, 2013). However, the development of
field-based phenotyping systems has been slower than their green-
house counterparts. There have been numerous reports in the liter-
ature on the vehicle based sensor systems for crop measurements
in the fields; and most of them were developed in the context of
precision agriculture (Scotford and Miller, 2004; Noh et al., 2006;
Sui and Thomasson, 2006; Sui et al., 2008; Farooque et al., 2013;
Wang et al., 2014).

Montes et al. (2011) reported a field phenotyping system
employing a light curtain and spectral reflectance sensors for the
biomass determination of maize in early developmental stages.
To measure the canopy water mass of tropical maize hybrids,
Winterhalter et al. (2011) developed a sensor system comprising
a spectroradiometer and infrared thermometer. Romano et al.
(2011) used a thermal imaging system to distinguish tropical
maize genotypes in water stress. Comar et al. (2012) reported a
semi-automatic sensing system for phenotyping wheat cultivars
in field conditions. The system was based on a hyperspectral
radiometer and two RGB cameras, which allowed the authors to
calculate two vegetation indices (correlated to leaf chlorophyll)
and the fraction of green area per unit ground area. Andrade-
Sanchez et al. (2014) developed a field phenotyping system that
incorporated three sensing modules to measure plant canopy
height, temperature, and NDVI (Normalized Difference Vegetation
Index). Three separate data loggers were used to record the sensor
data, which were post processed and merged to individual plots for
further analysis. Sharma and Ritchie (2015) reported a high
throughput phenotyping system for cotton. This system included
sensors that automatically measured plant height, ground cover
fraction, NDVI, and canopy temperature.

For the sensor systems being suitable for high throughput field
phenotyping, they should meet two requirements. First, the system
should measure multiple plots simultaneously to improve
throughput. Second, the system should be able to measure and fuse
a multitude of traits that take different data formats (point mea-
surements, spectra (1-d arrays), and images (2-d arrays)). There

are many off-the-shelf sensors that are suitable for plant measure-
ment, but challenge remains to bring them into an integrated sys-
tem to maximize the capability and efficiency of phenotyping (in
terms of sensor type and number, and data formats).

In this paper, we reported the development of a multi-sensor
system aiming at collecting high throughput, plot-level trait mea-
surements for plant breeding. Emphases were given to the integra-
tion of various sensing modules enabling the collection of
collocated and georeferenced data including point measurements,
reflectance spectra, and optical images, which facilitated subse-
quent data post processing and trait analysis. We also reported
the field testing of the system in soybean and wheat field trials.

2. Materials and methods

2.1. High throughput field phenotyping multi-sensor system

2.1.1. The platform
The platform that carried the sensor system (Fig. 1) was based

on the proximal sensing cart in White and Conley (2013). There
had been a number of platforms proposed for field phenotyping
including manually operated carts, self-propelled tractors,
unmanned aerial vehicles (UAVs), and remote sensing towers
(Ahamed et al., 2012; Deery et al., 2014; Sankaran et al., 2015).
Our focus was mainly on breeding trials which were no more than
a few acres in size. We therefore chose a manually operated plat-
form that was adequate to cover the area within a few hours. Com-
pared to self-propelled tractors, this platform caused minimum
mechanical disturbance to plants and soil compaction to the fields.
Compared to UAVs, it was not limited by payload and can carry
more sensors for simultaneous measurements of different traits.

2.1.2. Sensing modules employed on the sensor system
The sensing modules employed on the field phenotyping sys-

tem are given in Table 1. The important sensor parameters and
the plant traits targeted by these sensors are also summarized in
Table 1. Fig. 2 shows one sensor suite to measure one crop row
(or plot), and the system can accommodate up to four sensor
suites.

The ultrasonic sensor outputs analog voltage signals (0–10 V)
proportional to the distance D between the sensor and plant
canopy. The linear relationship between the voltage output and D
was found by a sensor-specific calibration procedure conducted in
the lab before field surveys. The canopy height (h) was calculated
by the sensor height (H, which was the distance between the sen-
sor and the ground and was precisely measured with a tape mea-

Fig. 1. The platform to mount the multi-sensor system for high throughput field phenotyping.
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sure before each field survey) less the distance (i.e., h = H � D). The
sensor had a specified repeatability of 0.2% of active readings.

The NDVI sensors were passive-type and rely on solar radiation
to function. They are different from active-type Green Seeker or
Crop Circle NDVI sensors which use their own frequency-
modulated LED light sources for illumination and crop canopy
reflectance retrieval. The sensor had an up-looking unit (pointing
to the sky, Fig. 2) to measure the down-welling solar radiation at
the NIR (near infrared) and red band (NIRD and REDD), and a
down-looking unit (pointing to plant canopy) to measure the up-
welling reflected solar radiation (NIRU and REDU). Canopy NDVI
was then calculated by using the equation below.

NDVI ¼ ðqNIR � qREDÞ=ðqNIR þ qREDÞ

¼ NIRU

NIRD
� REDU

REDD

� �
NIRU

NIRD
þ REDU

REDD

� ��
ð1Þ

The sensor system can accommodate up to four down-looking
NDVI units (one for each plot under measurement), but required
only one up-looking unit (mounted at the center of the platform,
Figs. 1 and 2) to compensate for the fluctuation of solar radiation
for NDVI measurement.

The thermal infrared radiometer (TIR, spectral response band-
width 8–14 lm) sensor output differential voltage signals (sensi-
tivity 20 lV/�C) proportional to the temperature difference
between the target surface (i.e., plant canopy) and the body tem-
perature of the TIR detector (which was measured by an onboard
thermistor). The calibration equations provided by the manufac-
turer were then used to convert the differential voltage signals to

canopy temperature (The sensor specific calibration gave an over-
all measurement accuracy of ±0.2 �C).

Each portable spectrometer was coupled with a fiber optics
cable (4-m long, 200-lm core diameter, 0.22 numeric aperture,
and pointing to plant canopy) to measure canopy reflectance. The
spectrometers had a spectral range from 500 to 900 nm, and with
a narrow spectral sampling interval of 1/6 nm (six data points per
nm). This spectral range and sampling interval allowed the retrie-
val of many useful vegetation indices such as NDVI, Photochemical
Reflectance Index (PRI ¼ q531�q570

q531þq570
, Garbulsky et al., 2011), and Solar

Induced Fluorescence (SIF, Meroni et al., 2009; Guanter et al.,
2013). The sensitivity of the photo detector employed by the spec-
trometer is 160 V/(lx�s) with a signal to noise ratio of 2000:1. Sim-
ilar to the NDVI sensors, portable spectrometers were also passive-
type, meaning one spectrometer coupled with an up-looking fiber
optics cable (with a cosine corrector) was used to provide the base-
line hemispherical down-welling spectrum of solar radiation
(Fig. 2). Canopy reflectance was calculated by taking the ratio
between the up-welling spectra and the down-welling spectra.

Finally, Logitech web cameras were employed to capture RGB
images from individual plots. Images were taken roughly 1.0 m
above the canopy. The web cameras had a resolution of
1920 � 1080 pixels, and were controlled through USB connection
for image acquisition without a frame grabber. This significantly
simplified the complexity of system hardware and was the main
reason to use the USB web cameras.

In addition to the above sensing modules for plant trait mea-
surement, we also integrated two environmental sensors into the
system: a solar radiation sensor (model LI-200, LICOR Biosciences,

Table 1
Sensing modules, their parameters for system integration, and the canopy trait measured by each sensor.

Sensor Sensor Model and Manufacturer Powered by Output Field of view Canopy trait measured

Ultrasonic sensor ToughSonic30, Senix Corporation, Hinesburg, Vermont 12 VDC Analog Voltage NA Height
NDVI sensor SRS, Decagon Devices, Pullman, Washington 12 VDC Digital (SDI-12) 18� NDVI
Thermal infrared radiometer SI-131, Apogee Instruments, Inc., Logan, Utah 2.5 VDC Analog Voltage 14� Temperature
Portable spectrometer CCS175, Thorlabs Inc., Newton, New Jersey 5 VDC (via USB) Digital (via USB) 13� Reflectance spectra
RGB camera C615, Logitech 5 VDC (via USB) Digital (via USB) 33� by 20� RGB image

NDVI = Normalized Difference Vegetation Index.
SDI-12 (www.sdi-12.org) was converted to RS232 using a RS232 to SDI12 converter (H-4191, YSI Incorporated, Yellow Springs, Ohio) before connected to the data acquisition
board.
Field of view was defined by the half-angle of the conic shape subtended by the unobstructed view of the sensor.

Fig. 2. The five sensing modules mounted on a sensor bar to measure one crop row or plot (A); and the GPS receiver, air temperature/relative humidity sensor, and up-looking
SRS NDVI sensor mounted at the center of the platform (B).
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http://www.sdi-12.org


Lincoln, Nebraska) and an air temperature and relative humidity
sensor (model CS215-L, Campbell Scientific Inc., Logan, Utah). We
used these co-registered environmental sensor readings to account
for the influence of environmental fluctuation on crop trait mea-
surements. For example, canopy temperature Tc minus air temper-
ature Ta was a better probe for canopy thermal status than Tc alone,
especially when air temperature fluctuated substantially during
the field survey.

A high quality GPS (AgGPS 216, Trimble Navigation Ltd., Sunny-
vale, California) was used to geo-reference sensor readings. The
GPS used WAAS correction and had a pass-to-pass positioning
accuracy of 20 cm. This was considered adequate for our applica-
tions when compared to a 0.75 m row width of soybean and
1.5 m plot width of wheat.

The distance between the sensor bar (Fig. 1) and crop canopy
was important for the collection of high quality plant phenotypic
data. In our study we adjusted the height of the sensor bar during
the growing season such that it was placed approximately 1.0 m
above the canopy (Supplemental Fig. 1). This distance was deter-
mined by examining the field of view of each sensor to ensure a
representative subarea in each plot was scanned (Supplemental
Fig. 1). As mentioned earlier, the exact height of the sensor bar
above soil was measured at the beginning of each field survey.

2.1.3. Hardware integration and software of the system
A laptop computer was used as a controlling unit to control and

synchronize measurements from all sensor modules. A USB data
acquisition board (Model U6, LABJACK, Lakewood, Colorado) was
used to read measurements (voltage signals) from the ultrasonic
sensors, TIR sensors, and the solar radiation sensor through its ana-
log input ports. NDVI sensors and air temperature/relative humid-
ity sensors were also read by LABJACK U6 through its serial ports
(RS232). Measurements from portable spectrometers (in the form
of spectra, �2400 data points per spectrum) and web cameras
(1920 � 1080 pixels per image) were captured directly with the
USB ports on the computer (through a USB hub due to the number
of USB ports needed in total).

A LabVIEW program (Version 2014, National Instruments, Aus-
tin, Texas) was developed to run on the laptop computer for the
acquisition of sensor measurements. The main functions of the
program were as follows.

(1) Read the sensor outputs (Ultrasonic sensors, TIR sensors, and
the solar radiation sensor) from analog input ports of the
LABJACK U6 board and apply their respective calibration
equations to convert sensor voltages to physical quantities
(cm, �C, and W/m2).

(2) Read the up-looking and down-looking NDVI sensor units
via RS232 and apply Eq. (1) to convert the readings to NDVI;
and read the air temperature/relative humidity sensor also
via RS232.

(3) Read the spectral measurements of plot canopy from both
up-looking and down-looking portable spectrometers.

(4) Trigger the web cameras and capture RGB images of plot
canopy through LabVIEW’s IMAQdx vision acquisition
module.

(5) Record the NMEA-0183 messages (GPRMC sentence) from
the GPS receiver, extract longitude and latitude coordinates,
and convert them into UTM NAD83 projected coordinate
system. Depending on the number of sensor suites used
and platform travel direction, position correction was imple-
mented to tag the corrected GPS coordinates to each plot
reading.

(6) Store the sensor readings on the computer. Point measure-
ments including GPS, height, canopy temperature, NDVI,
air temperature, relative humidity were stored in a spread-
sheet (CSV format) file. Reflectance spectra and plot images
were stored as individual files using a predetermined file
naming pattern so that they can be associated with the indi-
vidual records in the CSV file in post processing.

The front panel of the LabVIEW program (Fig. 3) displayed the
readings from all sensor modules in real time, including reflectance
spectra and RGB images. This allowed us to quickly know when a

Fig. 3. The front panel of the LabVIEW program of the field phenotyping sensor system.
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problem occurred (such as the malfunction of certain sensors) dur-
ing field data collection. LabVIEW subVIs for some selected pro-
gram functions are provided in Supplemental Fig. 2.

We employed a ‘‘stop-measure-go” fashion to take the plot-
level phenotypic measurements with the sensor system. That is,
the operators manually pushed the platform to the center of the
plots and pressed the ‘‘measure” button on the front panel of the
program (Fig. 3) to record the measurements. This was different
from some other field phenotyping studies in which ‘‘continuous
measurement” was employed (Andrade-Sanchez et al., 2014). The
main reason was that some sensor modules in our system had slow
response time. For example, the TIR sensors had a response time of
0.6 s. The portable spectrometers also required integration time of
150 ms under normal sunny sky conditions to achieve strong sig-
nal level. Since the system controlled four groups of sensors, these
slow response sensors made it not practical for a continuous data
logging mode at a rate of, for example, 1 Hz. The disadvantage of
the ‘‘stop-measure-go” mode was that the throughput of measure-
ment inevitably decreased. There were also two advantages.
Firstly, the plot images were all captured without blurry. Secondly,
all sensor measurements were aligned with plots, which elimi-
nated the need of post processing to remove measurements on plot
borders and alleys.

2.2. Testing of the multi-sensor system for field phenotyping

The multi-sensor system was tested in a soybean and wheat
field trial on the University of Nebraska-Lincoln’s research farms
in 2015.

The soybean experiment was a water use experiment consisting
of 15 soybean genotypes and two water treatments (well-watered
versus drought). The treatments were replicated four times giving
a total of 120 plots. The well-watered plots were irrigated with sur-
face drip irrigation whereas the drought plots were covered with
plastic films on soil surface to prevent rain infiltration. Each plot
had four rows of soybean, and was six m long and three m wide.
Soybean was plant on May/22 and harvested on Sep/30. Field data
collection with the sensor system was conducted six times during
the growing season.

The wheat experiment was a quantitative trait loci (QTL) map-
ping study which involved 204 recombinant inbred lines (RILs)
plus three checks. An augmented design with 12 blocks was used
to evaluate all wheat lines, each block containing 17 unique RILs
(un-replicated) plus the three checks (replicated for each block).
This gave a total of 240 plots. Each plot was approximately 4.5 m
long by 1.6 m wide and had four rows of wheat. Wheat was
planted on Sep/29/2014 and harvested on Jul/20/2015. Field data
collection was conducted seven times during the season. See Sup-
plemental Fig. 3 for the field maps of the soybean and wheat plots.

At the end of the season, soybean and wheat grain yield data
were collected from each plot, and were used to correlate with
the in-season crop traits measured by the sensor system.

2.3. Sensor data post processing and analysis

Plot canopy height, NDVI by the NDVI sensor (referred to as
NDVI-SRS), canopy temperature, solar radiation, and air tempera-
ture and relative humidity were point measurements, and used
directly without further processing.

For canopy reflectance spectra measured by the portable spec-
trometers, we first took the ratio between the down-looking spec-
tra and the up-looking spectra to obtain canopy reflectance
spectra. Second, we derived from the reflectance spectra two spec-
tral indices, namely NDVI and red-edge NDVI, for further analysis
[referred to as NDVI-spec (to distinguish from NDVI-SRS) and RE-
NDVI-spec]. NDVI-spec was calculated from reflectance at 630

and 800 nm. RE-NDVI-spec was calculated from reflectance at
705 and 750 nm. Compared to NDVI, red-edge NDVI is more sensi-
tive to green vegetation and leaf area toward the late growing sea-
son (Sims and Gamon, 2002).

Canopy RGB images were used to extract green pixels and cal-
culate green pixel fraction (GPF). It is a useful and sensitive index
to estimate vegetation biomass, in particular in early season before
canopy closure. Illumination variations (day-to-day variation and
within-day variation) and shadows (casted by clouds and the sen-
sor platform itself) made the development of automatic image seg-
mentation quite challenging. We tried a couple of different
methods and found that converting the images from RGB to L⁄a⁄b
color space and then using a component for thresholding (using
Otsu’s adaptive thresholding algorithm) gave the most robust
result to segment green pixels from the background across various
solar illumination levels and shadows. After image segmentation,
total green pixel count was divided by image size to obtain GPF.

After the analysis, there were six sensor-based traits measured
by the field phenotyping sensor system. They were: Height, Tc-Ta
(canopy temperature minus air temperature), NDVI-SRS (NDVI
measured by the NDVI sensor), NDVI-spec (again, NDVI measured
by the portable spectrometers), RE-NDVI-spec (red-edge NDVI
measured by the portable spectrometers), and GPF (Green Pixel
Fraction from RGB images). We then examined (1) the inter-
correlation among these six sensor-based traits, (2) the temporal
dynamics of these traits across the growing season, and (3) the cor-
relation between these six sensor-based traits and final grain yield.

3. Result and discussion

3.1. Overall performance of the multi-sensor system in the fields

The sensor system was tested to conduct field survey six times
for soybean and seven times for wheat during the growing season.
Each field survey lasted for two to three hours and was carried out
between 10 AM and 3 PM (which was the most appropriate time
window for field phenotyping data collection). With the highest
survey speed, we covered all 240 wheat plots in 1.0 h, including
the time spent on end-row turning. This was equivalent to a survey
speed of 0.2 ha (or 0.5 acre) per hour. This speed was lower than
the speed of 0.84 ha per hour reported in Andrade-Sanchez et al.
(2014). This was mainly because our platform was manually oper-
ated with lower travelling speeds through the plots. More sensors
with slower response time also contributed to this lower survey
speed. The speed could be improved if the system was mounted
on a self-propelled vehicle. On the other hand, many breeding pro-
grams use land of one or two acres. Therefore, even with this low
survey speed, a breeding field can be adequately covered in a
few hours.

The platform can be easily maneuvered by two operators, with
little problem to navigate through the plots or turn at the end rows.
The mechanical disturbance to the plots was not discernable. The
mechanical structure of the phenotyping platform was stable and
durable. No mechanical or structural failure occurred during the
season long field surveys. It is important to note that both the
wheat and soybean fields were flat with a slope of 0–2%. Field slope
would have large impact on the survey speed and mechanical sta-
bility of our platform. Therefore, more extensive testing under var-
ious field conditions is needed. During the first two surveys in the
wheat field, there was a GPS logging error in the LabVIEW program
and it was fixed thereafter. No other software warnings or excep-
tions occurred in the subsequent field surveys. All sensor modules
functioned properly. Overall the field phenotyping system per-
formed satisfactorily and robustly in the field test. In the following
sections, we present the field data collected by the sensor system
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with an emphasis on soybean. There were a few reports on wheat
field phenotyping (Comar et al., 2012; Kipp et al., 2014) but the
information on soybean was not previously reported, to the best
of our knowledge.

3.2. Plot level canopy reflectance spectra and RGB images

Fig. 4(A) and (B) shows the average reflectance spectra of the
wheat plots (May/13) by the up-looking and down-looking porta-
ble spectrometers. Due to high spectral resolution, several fine
absorption features of solar radiation can be identified. The spec-
tral window in the up-looking graph indicates the large variation
of solar intensity during the field survey; whereas the spectral win-
dow in the down-looking graph indicates the variation of reflected
solar intensity from the wheat plots. The Fraunhofer O2-A (at
760 nm) and O2-B (at 687 nm) lines are visible in both graphs.
These two spectral absorption bands coincide with the two chloro-
phyll fluorescence peaks, which can be utilized to detect SIF of
plants in a strong reflectance background. SIF is a useful index to
probe plant stress as it directly measures chlorophyll and photo-
synthetic activity.

Fig. 5 shows the average canopy reflectance spectra of the soy-
bean plots derived from ratioing the spectra from the down-
looking and up-looking spectrometers. Ratioing successfully

removed the absorption features in the solar spectrum. The reflec-
tance spectrum at early season exhibited a relative low contrast
between the visible (500–700 nm) and the NIR region (750–
900 nm). This was due to the fact that soil spectrum was mixed
with the vegetation spectra when canopy was open (soil had a
much flatter transition from visible to NIR). As the season pro-
gressed and plant canopy continued to close, reflectance values
in the visible region continued to decrease (caused by higher
chlorophyll absorption) whereas reflectance values in the NIR
range continued to increase (caused by stronger structural reflec-
tion of thicker plant canopy), which is consistent with our knowl-
edge of canopy reflectance. At late season (Sep/2), the average plot
reflectance began to show some characteristic of crop maturity
(wilted plant leaves in canopy), with high reflectance in visible
and low reflectance in NIR.

Because different plant chemical constituents (such as pigments
and water) and physiological processes can influence optical prop-
erties of leaf or canopy, many vegetation indices are developed as
rapid and non-destructive probes to measure plant stress. Among
them, NDVI is most widely used to sense vegetation abundance
and nitrogen status. But other spectral indices can also be very use-
ful for plant phenotyping. In addition to SIF discussed earlier, pho-
tochemical reflectance index (PRI) is another spectral index to
surrogate light use efficiency and xanthophyll cycle of plants
(Gamon et al., 1997; Garbulsky et al., 2011). Unlike NDVI, PRI
and SIF require reflectance measured at fine spectral resolution.
This makes the construction of dedicated optical sensors for these
spectral indices challenging; and high resolution spectrometers
therefore would be essential sensors to extract these useful spec-
tral indices for plant phenotyping.

Fig. 6 gives an example of RGB images collected from a soybean
plot on the six field survey days during the season. The color tone
of these images was quite different, due to the day to day variation
in solar radiation (i.e., sunny versus overshadow days). While not
shown in this figure, the influence of short-term fluctuation of
solar illumination (within the field survey window) can also be
substantial. At early stage, canopy was open and there was good
contrast between plants and soil, and image processing was rela-
tively simple. Green pixel segmentation became more difficult as
the season progressed. The canopy structure made part of the
canopy sunlit and other parts shaded. Shades were also from the
sensor platform itself. On 9/2 as soybean progressed into matura-
tion, a portion of plant canopy turned yellow. These factors are
challenges to develop a robust image processing algorithm for
GPF estimation.

Fig. 4. The spectral intensity curves captured by the up-looking portable spec-
trometer (A: relative energy intensity of down-welling solar radiation) and the
down-looking portable spectrometers (B: relative energy intensity of reflected solar
radiation from crop canopy). The black lines are the mean spectra of all plots and
the gray windows are the maximum and minimum bounding boxes showing the
variation.

Fig. 5. The average canopy reflectance spectra of the soybean plots derived from
the up-looking and down-looking portable spectrometers on different dates during
the season. The solid vertical lines denote the wavelengths to calculate NDVI (630
and 800 nm) and the dashed vertical lines denote the wavelengths to calculate red-
edge NDVI (705 and 750 nm).
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3.3. Inter-correlations among sensor-based trait measurements

Figs. 7–9 show the inter-correlation among the six sensor-based
soybean traits on Jun/30, Jul/31, and Sep/2, respectively. In Fig. 7,
strong and significant correlations existed among all the variables.
The highest correlations were among the three vegetation indices.
This is not surprising because they all measure the same biophys-
ical parameter. The consistency among NDVI-SRS, NDVI-spec, and
RE-NDVI-spec provides an internal validation that both SRS sensors
and portable spectrometers were working properly in the field. Tc-
Ta shows consistent (and significant) negative correlations with all
other variables. The amount of plant biomass in each plot appears
to play a dominant role for the correlation pattern on this early
season day (when the canopy wasn’t closed yet and soil fraction
was still high when viewed from above). Height, NDVIs, and GPF
all measured certain aspect of biomass. Vegetation usually shows
lower surface temperature than air temperature (due to active
transpiration) whereas the surface temperature of soil is usually
higher than that of air temperature during middays (when field
data collection was conducted). Therefore, a lower Tc-Ta indicates
the vegetation fraction is higher in TIR sensor’s field of view, which
explains the strong negative correlation between Tc-Ta and all
other five parameters.

On Jul/31, the correlations among the six sensor-based traits
became much weaker. At this stage of growth, the crop canopy
was closed; and there was no dominant effect of soil on the canopy
trait measurement. GPF and NDVI indices tended to saturate, and
became less sensitive to soybean biomass accumulation. Because

of full canopy, Tc-Ta was an indicator of the evaporative status of
the canopy rather than fraction of vegetation. Due to these reasons,
the strong correlations in the early season were not observed
among these variables. Three NDVI indices were still significantly
correlated with each other, but with lower correlation coefficient
compared to the early season.

The inter-correlation among the sensor-based traits became
stronger again on Sep/2. At this late stage, some plots entered into
maturity with wilted leaves. These were also the plots that tended
to have higher Tc-Ta (less evaporation), lower NDVI, and lower GPF
(wilted leaves were not classified as green pixels). This was the
main reason for a strong negative correlation between Tc-Ta and
all other variables.

One big advantage of sensor-based traits is that repeated mea-
surements can be taken throughout a season, which provides the
opportunity to elucidate their temporal dynamics and plant
growth pattern. Fig. 10 shows the six sensor-based traits (averaged
over all 120 soybean plots) plotted with date. It can be seen that
crop height increased steadily from Jun/30 to Aug/10. Height
increase appeared to be faster in the early season (Jun/30 to
Jul/21) than the mid-season (Jul/21 to Aug/10). Height on Sep/2
was lower than Aug/10, which was partly due to lodging of the soy-
bean plants as they matured.

The two NDVI indices (NDVI-SRS and NDVI-spec) exhibited the
same pattern, all rising sharply at the early season and approaching
a plateau on Jul/21. Their consistency with each other again pro-
vided a validation of the performance of the NDVI sensors and
the portable spectrometers. RE-NDVI-spec followed the same pat-

Fig. 6. RGB images collected by the sensor system from a soybean plot at the six dates during the season. Black and white images below the raw images are the results of
image segmentation to calculate green pixel fraction.
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tern as NDVI, but had a lower amplitude and still showed sensitiv-
ity to biomass accumulation when NDVI indices were near satura-
tion (Jul/21 to Aug/10). This is in agreement with the literature that
proposes to use red-edge NDVI as a more responsive index when
vegetation canopy is full. All three spectral indices showed
decrease on Sep/2. This was due to maturation and some sign of
late season drought that turned part of the canopy brown and
yellow.

There was a continuous decrease in Tc-Ta from Jun/30 to Jul/30.
This was due to the accumulation of biomass during which the soil
fraction became smaller and smaller in TIR sensor’s field of view. At
late season, Tc is about 1.5 �C below Ta. This was to be expected
because evaporative cooling made the canopy temperature lower
that air temperature.

GPF indicated a fast plant growth from Jun/30 to Jul/8. But the
index stayed almost constant from Jul/8 to Aug/10. Fig. 6 shows
that plots reached full canopy coverage between Jul/8 and Jul/21,
making it not responsive to plant growth (whereas the height,
Tc-Ta, and NDVI were still responsive). At these dates, average
GPF was between 0.53 and 0.58 (approximately half of the pixels
were classified as background). Since we know canopy was full,
this apparent bias was caused by the fraction of canopy that was
shaded (dark pixels) and misclassified as background (see Fig. 6).

On 9/2 average GFP dropped significantly to 0.44. This was because
the canopy turned yellow as soybean matured.

3.4. Correlation between sensor-based measurements and yield

Yield is commonly the most important trait and the main focus
of breeding programs. Therefore, a critical question posed by
breeders for high throughput field phenotyping systems is that
whether the traits captured by sensors can be related to the final
yield. If a sensor-based trait measured at a particular growth stage
is found to be consistently highly correlated with yield, it indicates
this trait can potentially be used to assist the selection process; or
to recover data from trials lost to adverse conditions after the
sensor-based trait was measured (e.g., late season hail). Table 2
gives Pearson’s correlation between the six in-season, sensor-
based traits and final grain yield of soybean.

When comparing among the sensor-based traits, it appears that
all of them have comparable predictive power to soybean yield,
with GPF showing a slightly higher overall correlation followed
by NDVI indices and then Tc-Ta and Height.

The correlations with grain yield tend to be higher at both early
(Jun/30) season and late (Sep/2) season, but low in the mid-season.
While the same correlation structures are observed at these two

Fig. 7. The correlation matrix of the six soybean traits measured by the multi-sensor system at the plot level on Jun/30/2015. The upper triangle of the matrix denotes
Pearson’s correlation coefficients among the variables.
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stages, we reason that they were determined by different underly-
ing mechanisms. The strong correlations at early season were dri-
ven by vegetation coverage, which indicated that establishing
larger vegetative stature and accumulating high biomass can be
beneficial for yield. This result is encouraging because these
sensor-based traits can be applied at very early season to guide
selection and potentially accelerate the pace of breeding.

At the late reason (Sep/2), the strong correlations seemed to be
driven by wilted versus still healthy canopy in the plots. Healthy
canopy at this stage indicated a prolonged grain filling which often
increased the final yield. What captured by the various sensor
modules were essentially similar to the ‘‘stay green” trait com-
monly used by the breeders for late reason growth and resource
utilization.

3.5. Future development and testing of the sensor system for high
throughput field phenotyping

In the short term, we will expand the capability in system’s
software to process reflectance spectra and RGB images in real
time fashion. This would eliminate tedious post processing,
improve the throughput of data analysis, and allow breeders to
assess phenotype data immediately after data collection. In addi-

tion to NDVI and RE-NDVI, other spectral indices such as PRI and
SIF can be extracted from the reflectance spectra. These additional
spectral indices can be proxies for different aspects of plant phys-
iological response to environmental stresses. Processing RGB
images in real time requires more demanding computing power
of the host computer, which can be a practical challenge for real
time computing.

In the long term, we will explore to integrate more advanced
sensor modules into this multi-sensor system. Low-cost depth
imaging sensors (for example, Microsoft Kinect), LIDAR (Light
Detection and Ranging), light curtain, and multi/hyper spectral
imaging are deemed promising technologies for plant phenotyp-
ing, and they are now extensively tested in the controlled environ-
ments (Fanourakis et al., 2014; Ge et al., 2016; Paulus et al., 2014a,
2014b). Adoption of these sensor modules in the field for an inte-
grated plant phenotyping system is challenging for the following
reasons. First, they are susceptible to environment variations such
as sun illumination, temperature, humidity, wind and mechanical
vibration. Second, they usually require dedicated controlling unit
and specialized software to operate, making it not easy for system
level integration. In terms of LIDAR and hyperspectral imaging, the
volume of data generated is huge, and data post processing for
information extraction is almost inevitable. Therefore, to seam-

Fig. 8. The correlation matrix of the six soybean traits measured by the multi-sensor system at the plot level on Jul/31/2015. The upper triangle of the matrix denotes
Pearson’s correlation coefficients among the variables.
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Fig. 9. The correlation matrix of six soybean traits measured by the multi-sensor system at the plot level on Sep/02/2015. The upper triangle of the matrix denotes Pearson’s
correlation coefficients among the variables.

Fig. 10. The six sensor-based plot traits measured by the sensor system at different dates. The values are the average over all 120 soybean plots; and the standard deviations
are indicated as error bars.
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lessly bring these advanced sensors into the current multi-sensor
system is not trivial; and such efforts may rely on future advance-
ments of the sensor modules, computing power, and data analytics.

4. Conclusion

In this paper, we reported an integrated sensor system aiming
at high throughput field phenotypic data collection for plant breed-
ing. The system comprised five sensing modules: ultrasonic dis-
tance sensors, infrared thermal radiometers, NDVI sensors,
portable spectrometers and RGB cameras. In addition, the system
also integrated a solar radiation sensor and air temperature/rela-
tive humidity sensor to measure environmental variables. From
these sensors six crop canopy traits were extracted: height, tem-
perature, two NDVI indices, red-edge NDVI index, and green pixel
fraction. A LabVIEW program was developed to control and syn-
chronize sensor measurements and store them on the computer
for further analysis. The sensor system was tested in a soybean
and wheat field with satisfactory and robust performance. Results
of data analysis showed strong inter-correlations among the
sensor-based traits, providing an internal validation of the reliabil-
ity of sensors in field data collection. Plotting the sensor-based
traits as a function of time (as allowed by repeated field measure-
ments during the season) provided the characterization of the tem-
poral dynamics of these traits. Strong correlations were also found
between all six sensor based traits and final grain yield of soybean,
suggesting the usefulness of the sensor system in plant breeding.
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