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A B S T R A C T

Study region: Rwanda is a landlocked country in Africa with precipitation ranging from
800 mm yr−1 in the east to 1500 mm yr−1 in high-altitude regions in the north and west.
Study focus: Streamflow estimation is an important task that is required in water resource as-
sessments due to its importance in planning, decision-making and economic development. In this
study, streamflow characteristics of ungauged catchments in Rwanda were calculated using a
regionalization approach based on climate similarity and stepwise multiple-regression analysis.
One climatic homogeneous region was identified and datasets of nine gauged stations and gen-
eral available catchment characteristics were used to develop non-transformed and log-trans-
formed regression models.
New hydrological insights for the region: Results of this study show that climate, physiography and
land cover strongly influence the hydrology of catchments in Rwanda. Using leave-one-out cross-
validation, the log-transformed models were found to predict the flow parameters more suitably.
These models can be used for estimating the flow parameters in ungauged catchments in Rwanda
and the methodology can be applied in any other region, as long as sufficient and good quality
streamflow data is available.

1. Introduction

Assessment of water resources is of great value for national socio-economic development and stability of every country.
Nevertheless, tools and data needed to carry out such assessments are often limited or lacking, especially in developing countries with
limited technical capacity and funding (McNulty et al., 2016). At the core of the social and economic development of Rwanda is the
aspiration of the country to become a middle-income country by the year 2020. This is formulated and described in Rwanda Vision
2020 (MINECOFIN, 2000), and worked out into strategies, plans and actions for accelerated growth. This vision may not be a reality if
a country-wide assessment of water resources is lacking.

Availability of water for food production is a major concern since Rwanda has an undulating topography throughout the country
(RIWSP, 2012c). Thus, irrigation is practiced at small scales and is typically restricted to valley bottoms where 85–90% of the
Rwandan population depends on subsistence farming. However, this may likely change in the future because a number of pilot
studies in different parts of the country have been carried out to investigate the potential of rainwater harvesting for hill slope
irrigation purposes (GOR, 2007).

In addition, shortages in power production due to a drop in water levels have caused interruption of the Rugezi hydropower plant.
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Hence, as part of the national strategy to substantially increase power production, there is a need to increase the in-country hy-
dropower production (GOR, 2007; MININFRA, 2011). Furthermore, the effects of water-related natural disasters, which are mostly
connected with flood and drought conditions, cannot be over-emphasized. In general, more people are affected by droughts than
flooding events in Rwanda (WFP, 2009).

In order to achieve Rwanda Vision 2020, there is need for a country-wide assessment so as to manage changes in water demand
and supply (both surface and groundwater) for agricultural production, hydro-electric power generation, hazard mitigation and
disaster preparedness.

Changing climatic conditions over longer periods of time affect water availability and have impact on the spatial and temporal
variations of the water fluxes. An integrated water resources management relies on adequate water resources information that is
acquired through continuous data collection, in combination with suitable analysis and assessment of the water-related information
for water resources planning and development purposes (RIWSP, 2012c). In the case of Rwanda whereby such data or information is
limited or lacking, the country would benefit significantly from the water resource assessment capabilities that hydrologic modelling
can provide for predicting streamflow especially in ungauged catchments.

Predicting flow variables in ungauged or poorly-gauged catchments is one of the major concerns in hydrological studies, espe-
cially in regions with huge spatial variability of the hydrological environment and sparse or lack of data. In many parts of the world,
current measurement networks are declining and the impacts of anthropogenic changes and climate amplify this issue. Hence,
predictions of poorly gauged or ungauged catchments under these conditions are highly uncertain (Sivapalan et al., 2003).

Information from gauged catchments is usually transferred to the ungauged catchments using regionalization processes (Blöschl
and Sivapalan, 1995). Studies on regionalization in hydrology have progressed continuously as a result of the need for streamflow
predictions in ungauged catchments. Thus, understanding hydrological processes, their associated uncertainties and the development
of models with increasing predictive power have become vital. In literature, a number of definitions of regionalization could be
found, but the definition stated by Blöschl and Sivapalan (1995) is often used. They stated that “regionalization is the process of
transferring information from comparable catchments to the catchment of interest”. Since the objective of this study was to develop models
to predict flow parameters in ungauged catchments in Rwanda, a regionalization approach was used. Some studies estimate para-
meters of streamflow statistics, usually flow quantiles, while others estimate parameters of rainfall-runoff models for simulating
continuous streamflow or estimate continuous streamflow without using a model (Hrachowitz et al., 2013; He et al., 2011). There are
many methods used for parameter regionalization (Merz and Blöschl, 2004).

The spatial proximity method assumes that catchment characteristics and climate vary smoothly in space. Thus spatial proximity,
which is usually defined based on the distances between the catchment centroids or catchment outlets, between the catchments may
be an appropriate measure of similarity when selecting the donor catchment (Li et al., 2009; Randrianasolo et al., 2011). A donor
catchment is a catchment that is most similar in terms of its physiographic attributes to the catchment of interest (Parajka et al.,
2005). In order to account for nested catchments, geostatistical distances can be used (Skoien et al., 2006; Skoien and Blöschl, 2007).

Similarity of catchment characteristics and climate, as an alternative method, selects the donor catchment(s) based on the si-
milarity of the catchment characteristics and climate in the catchments. Similarity is calculated by the root mean square difference of
all the characteristics in a pair of catchments (Blöschl et al., 2013). In order to make the characteristics comparable, they are usually
standardized. Kokkonen et al. (2003) transferred the entire set of parameters from the catchment which has the most similar ele-
vation to that of the catchment outlet while McIntyre et al. (2004) defined the most similar catchment on the basis of the catchment
area, standardized annual mean precipitation and base-flow index. While some studies (Parajka et al., 2005; Zhang and Chiew, 2009)
used a large number of catchment characteristics, others (e.g. Oudin et al., 2010) used fewer, yet more relevant catchment char-
acteristics.

The model averaging method uses a weighted combination of the parameter sets from more than one donor catchment, where the
catchments are chosen either based on spatial proximity, catchment characteristics or both (Seibert and Beven, 2009). Each
catchment can either be assigned to its own group of donor catchments or, alternatively, the region can be divided into groups of
catchments (Burn and Boorman, 1993).

Parameter regression is the most widely used method for rainfall-runoff model regionalization (McIntyre et al., 2004). This
method relates the model parameters explanatorily to physiographic characteristics in the gauged catchments through empirical
equations which can then be used to predict the model parameters in the ungauged catchments (Merz and Blöschl, 2004; Mazvimavi
et al., 2004, 2005; Wagener and Wheater, 2006; Young, 2006; Parajka et al., 2013). To investigate the value of seasonality indices for
regionalizing low flows, Laaha and Blöschl (2006, 2007) used stepwise-multiple regressions based on physical catchment char-
acteristics and seasonality indices to make regionalization models. Using cross-validation, they assessed the value of different models
that incorporate seasonality by different approaches in order to predict low flows in ungauged catchments. They compared the
models for the 95% quantile of specific discharges and also examined the specific low flow discharges of the summer and winter
periods (q95s, q95w). Their results showed that grouping the study area into different regions and separate regressions in each region
provides the best model performance. According to Laaha and Blöschl (2006, 2007), a global regression model yields the lowest
performance and a global regression model that uses regional calibration coefficients only performs slightly better. They re-
commended that separate regression models in each of the regions are to be chosen over a global model in order to represent
differences in the way catchment characteristics are related to low flows.

In order to make reliable predictions in ungauged basins, it is preferable that the equations which relate the model parameters and
the catchment characteristics should be hydrologically reasonable. According to Sefton and Howarth (1998), this is not always
possible because the explanation of the regression equations is often not straightforward by reason of unrepresentative catchment
characteristics and issues related to the selection of model parameters (Blöschl, 2005). As pointed out by Kokkonen et al. (2003), high
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significance of regression models does not necessarily give a set of parameters with a good predictive power. Hence, interpreting the
physical meaning of regression relationships amongst model parameters and characteristics needs careful consideration.

Model averaging and parameter regression can also be applied simultaneously by calibrating the coefficients of these relationships
as an alternative to first estimating model parameters at each gauged catchment and then relating them to the catchment char-
acteristics by an empirical equation. This permits the finding of more reliable parameters compared to merely calibrating the model
parameters themselves and drawing on the spatial data contained within the catchment characteristics (Parajka et al., 2013). Rather
than using only one method, some studies compare regionalization methods for estimating the model parameters in ungauged
catchments (e.g., Merz and Blöschl, 2004).

The objective of this study is to assess the spatial characteristics of water resources of gauged catchments in Rwanda and to
regionalize the information to estimate, in an optimal way, flow quantiles (mean, low and high flows) and the slope of flow duration
curve in ungauged catchments. The aim is to gain more knowledge from the differences and similarities between catchments, and to
interpret the differences in terms of the underlying climate and landscape characteristics. This study addresses (1) the extent to which
prediction performance correlate with climate and catchment characteristics, (2) which type of stepwise-parameter regression per-
forms better (non-transformed or log-transformed regression), (3) how hydrologically meaningful the explanatory variables chosen
by the forward stepwise regression procedure are, and (4) how model complexity impacts performance. The regression models
developed will contribute more towards understanding the water fluxes of the catchments, and also lead to a better design of
integrated water resources management plans.

2. Material and methods

2.1. Study site and datasets

This study was carried out in Rwanda using data from from 1961 and 2013. Rwanda is a land-locked country with a surface area
of 26,338 km2, of which 2165 km2 is water. It is a mountainous country with over 70% of the land surface having slopes greater than
10%. Elevation ranges from 950 m above sea level (m ASL) at Rusizi River in the southwest to 4507 m ASL at Volcan Karisimbi in the
northwest (Fig. 1). The topography is complex and composed of interlocking rolling hills in most parts of the country (McSweeney,
2011; Museruka et al., 2011). The Congo-Nile Ridge, which is a range of mountains with an altitude ranging between 2500 and
4500 m ASL, forms the drainage divide between the Congo River basin, occupying 20% of the area in the West, and the Nile River
basin covering 80% of the area in the East (RIWSP, 2012c).

Despite being located in the tropical belt, Rwanda experiences a temperate climate due to its high elevation. Mean precipitation
ranges from 800 mm yr−1 in the east to 1500 mm yr−1 in high-altitude regions in the north and west (RIWSP, 2012c). The lowest
mean temperatures, 15 °C, are observed in the high altitude ranges of the Nile-Congo drainage divide and in the northern moun-
tainous regions. Moderate mean temperatures ranging between 18 and 20 °C are found in the central plateau of the country. The
highest mean temperatures between 20 and 24 °C are recorded in the lowland undulating plains in the eastern and south-central
regions (McSweeney, 2011; Museruka et al., 2011; RIWSP, 2012c). Mean annual potential evapotranspiration ranges from less than
1000 mm in the northwest to more than 1400 mm in the southern border margin (RIWSP, 2012c) as shown in Fig. 2. Rwanda has
quite a number of meteorological stations but with relatively fewer stream gauging stations. About half of the stream gauging stations
have only stage measurements with sparse or no discharge measurements. The spatial distributions of the hydrological and me-
teorological stations as well as the boundaries of nine stream gauged catchments with sufficient and good quality streamflow data are
shown in Fig. 3. For this study, the six major land cover classifications used were: cropland, grassland, shrubland, forest, salt hardpan
and water bodies (RIWSP, 2012c). Climatological stations are those that measure and record rainfall as well as surface air tem-
perature and some other parameters. Precipitation stations are those which measure and record daily rainfall only. Agro-synoptic and
synoptic stations are those which observe and record all the surface meteorological data such as precipitation, minimum and
maximum temperature, wind speed and direction, relative humidity, solar radiation, clouds, atmospheric pressure, sunshine hours,
evaporation and visibility. Agro-synoptic stations are run by Rwanda Meteorology Agency.

Stage and/or discharge records of only 17 stations are documented by RWRIS in HydroScape Version 2.0 (RIWSP, 2012b) as
shown in Table 1. These records were evaluated, cleaned from obviously erroneous data and, where possible, corrected by checking
for reading or typing errors of individual observations, manually filled parts in the record, consistency in seasonal variability, abrupt
shifts in stage, and gauge datum shifts as well as range changes after record gaps. In addition, the discharge rating curves were
checked. For some of the stations, it was necessary for the rating curves and the existing discharge records to be discarded while for
the other stations they were either acceptable or revised from the discharge measurements (RIWSP, 2012a). This resulted in nine
stations with 4–51 years of quality record between February 1961 and January 2013 and an average record period of 35 years. Flow
data from neighboring countries were not available as at the time of this study hence, analysis was limited to flow records from
Rwanda only.

Two sets of catchments were used in this study. The first was a set of nine gauged catchments which was used in estimating
selected parameters and developing models for prediction. The second set included 68 ungauged catchments (based on Level 2 of the
Pfafstetter Coding system) to which the prediction models were applied. The physiographic and hydro-climatic datasets for the nine
gauged catchments (referred to by the names of the stream gauging stations) and 68 ungauged catchments were obtained from
RWRIS HydroScape 2.0 as shown in Fig. 4 (RIWSP, 2012b). The RWRIS HydroScape was also used to define several catchments
characteristics (Table 2). Variability of catchment characteristics for all gauged and ungauged catchments is shown in Table 3.
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2.2. Methodology

In order to compute the mean areal water balance distribution, an estimate of the spatially distributed rainfall was carried out to
obtain mean annual rainfall for the entire domain covered by the sub-basins shown in Fig. 4. Annual rainfall for all gauged and
ungauged sub-basins was calculated using GIS tools and FAO Local Climate Estimator (New_LocClim) which was developed to
provide an estimate of climatic conditions at locations for which no observations are available. The values were compared with the
corresponding estimates for the rainfall stations, and showed that the estimated values agree within 10% or better. Potential eva-
potranspiration was also calculated for all sub-basins using GIS tools and FAO New_LocClim. Actual evapotranspiration was directly
obtained as the difference between precipitation and runoff based on the principle that the change in storage over long periods of

Fig. 1. Rwanda DEM (RIWSP HydroScape, 2012b) (m ASL is meters above sea level).
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time equals zero (RIWSP, 2012d).
Climatic classification was conducted for the gauged catchments based on the hydro-climatic region in which catchments were

located using a Budyko curve approach. Budyko (1974) used the long-term average water and energy balance variables to develop a
climatic classification scheme. According to Gerrits et al. (2009), the Budyko curve is often used in water resources studies to predict
evaporation as a function of dryness index (ETpot/PREC). Fig. 5 shows the application of the Budyko climatic classification method to
compare the nine gauged catchments. The climate of each of these catchments is presented on the Budyko curve, which is a plot of
ETact/PREC, the ratio of average annual actual evapotranspiration (ETact) to average annual precipitation (PREC) as a function of the
dryness index. Actual evapotranspiration (ETact) for each catchment was calculated as the long-term difference between precipitation
and runoff for the nine catchments. This assumes all recharge discharged to the stream. The lines on the Budyko curve represent
globally averaged results obtained by Schreiber (1904), Pike (1964) and Budyko (1974). Three climatic thresholds were used for
Budyko analysis of the gauged catchments. A dryness index between 0 and 0.7 was considered wet while a dryness index between 1.3

Fig. 2. Spatial distribution of mean annual precipitation (RIWSP, 2012c).
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and infinity was considered dry. Values between 0.7 and 1.3 were considered medium category (i.e. not too wet nor too dry). It can be
seen from the figure that all the catchments are in the medium category with dry index values between 0.86 and 1.18. Although all
nine gauged catchments fall within the medium category, they were only used in one pool for regionalization analysis because they
have comparable evaporative indices (between 0.56 and 0.88). This implies similarity of climate in the catchments with respect to
relative water and energy availability and hence no need for using different regional equations to predict model parameters for wet
and dry catchments. Thus, all nine gauged catchments were selected as donor catchments and the entire parameter set was trans-
ferred from these catchments to the ungauged catchments.

In order to predict flow magnitudes in ungauged catchments of Rwanda, the mean-daily, 5-, 50-, and 95-percent-flow duration
(Qmean, Q5, Q50, Q95,) in addition to the slope of the flow duration curve (FDCslp) were estimated for the nine gauging stations. To
make the flow quantile values more comparable across scales, specific high flow discharges qi (l/s·km2) were computed by stan-
dardizing Qi values by respective catchment areas (Table 4). The shape of a FDC gives a measure of variability and is determined by
hydrologic and geologic characteristics of the catchment. Fig. 6 shows the flow duration curves (plotted on a log-normal scale) for the
gauged catchments. Slopes of the flow duration curves (FDCslp) were estimated from the standard deviation of the logarithms of the
discharges.

After determining the flow parameters (flow quantiles and index) and physiographic characteristics of the selected gauged
catchments, a multiple regression analysis, which is a statistical approach for investigating the relationship between a dependent and

Fig. 3. Locations of the gauging and climate stations in Rwanda with gauged catchments boundaries.
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Table 1
Summary of discharge data for all stream gauging stations .

Station name Data acquisition Data update Record start Record end Hydrometric observation Percent missing Record period (years)

Flow Stage

Bugarama 07/01/2013 09/01/2013 03/01/1974 21/12/2012 Y 61% 38
Nyundo 05/01/2013 09/01/2013 02/01/1974 31/12/2012 Y Y 54% 38
Kagitumba 05/01/2013 09/01/2013 03/01/1974 01/01/2013 Y Y 61% 38
Nyagahanga 07/01/2013 09/01/2013 02/01/1983 31/12/2012 Y Y 61% 29
Rusumo 15/12/2012 21/12/2012 02/01/1970 24/08/2012 Y Y 44% 42
Mfune 07/01/2013 09/01/2013 02/01/1971 31/12/2012 Y 26% 41
Rwinzoka 07/01/2013 09/01/2013 09/09/2008 01/01/2013 Y 3% 4
Kanzenze 05/01/2013 09/01/2013 08/03/1971 30/12/2012 Y Y 57% 41
Gihinga 07/01/2013 09/01/2013 02/01/1974 31/12/2012 Y 59% 38
Butare-Ngozi Rd 05/01/2013 09/01/2013 02/01/1971 31/12/2012 Y Y 37% 41
Ruliba 05/01/2013 09/01/2013 02/01/1961 31/12/2012 Y Y 32% 51
Nemba 07/01/2013 09/01/2013 17/05/1972 31/12/2012 Y 60% 40
Nyakinama 07/01/2013 09/01/2013 08/07/1995 01/01/2013 Y 42% 17
Mwaka 05/01/2013 09/01/2013 02/10/1971 31/12/2012 Y Y 42% 41
Mudasomwa 07/01/2013 09/01/2013 25/08/1987 31/12/2012 Y Y 60% 24
Nyabisindu 07/01/2013 09/01/2013 07/03/1972 31/12/2012 Y 47% 40
All stations 02/01/1961 01/01/2013

Fig. 4. Ungauged catchments in Rwanda.
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multiple independent (explanatory) variables, was used. The most widely used multiple regression equations are based on linear
relationships although different relationships such as a logarithmic equation are also used. Eqs. (1) and (2) show examples of linear
non-transformed and linear log-transformed multiple regressions based on three independent variables. In this study both non-
transformed and log-transformed, which avoids heteroscedasticity and non-normality of the residuals of the regressions, were used.

′ = + + +Y β β X β X β X0 1 1 2 2 3 3 (1)

′ = + + +Y β β X β X β Xlog( ) log( ) log( ) log( ) log( )0 1 1 2 2 3 3 (2)

Eq. (2) can be re-written as

′ = × × ×Y X X X10β β β β
1 2 30 1 2 3 (3)

Where Y′ is the estimated dependent variable by the regression equation, β0 is the intercept which is a constant value, and βi (i= 1, 2,
3) are the regression coefficients which assign the effects of the independent variables Xi on the dependent variable.

Regression models were fit to all gauged catchments for predicting the flow quantiles (q5, q50, qmean, q95) and index (FDCslp). This
was done based on the catchment characteristics, and in ascending order of the number of explanatory variables added by forward

Table 2
Abbreviations and units of all catchment characteristics for multiple regressions .

Symbol Characteristic description Unit

Physiographic
A Catchment area km2

CP Catchment perimeter km
Hm Mean catchment elevation m
H+ Maximum catchment elevation m
H− Minimum catchment elevation m
HR Range of catchment elevation m
CS Mean catchment slope %
D River density km/km2

Climatic
PREC Mean annual precipitation mm
ETpot Mean annual potential evapotranspiration mm

Hydrologic
qp Streamflow (p= 5%, 50%, 95% and mean) l/s km2

FDCslp Slope of flow duration curve (−)

Land cover
LC Percent of cropland %
LG Percent of grassland %
LS Percent of shrubland %
LF Percent of forest %
LHP Percent of salt hardpan %
LW Percent of water bodies %

Table 3
Summary of catchment characteristics for gauged and ungauged catchments .

Gauged Ungauged

Min Mean Max Min Mean Max

Area (km2) 215 6811 30644 10 780 12232
Perimeter (km) 75.00 436.00 1120.00 14 141 735
Mean Elevation (m) 1642 1934 2419 979 1620 2295
Minimum Elevation (m) 1284 1487 2023 771 1280 1792
Maximum Elevation (m) 2225 3295 4468 1491 2356 4477
Range Elevation (m) 829 1809 3127 238 1076 3334
Slope (%) 16 20 28 5 16 38
Precipitation (mm) 996 1196 1320 907 1117 1511
ETpot (mm) 1137 1235 1327 1128 1257 1434
River Density (km/km2) 0.22 0.25 0.26 0.17 0.27 0.38
Forest (%) 0.20 25.60 81.70 0.00 22.90 100.00
Shrubland (%) 0.00 19.00 39.40 0.00 3.45 34.75
Grassland (%) 0.00 3.50 12.70 0.00 71.12 100.00
Cropland (%) 5.50 51.50 99.80 0.00 1.13 23.94
Salthardpans (%) 0.00 0.00 0.20 0.00 0.04 1.21
Waterbodies (%) 0.00 0.40 1.40 0.00 0.01 0.83
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stepwise-regression procedure. Forward stepwise-multiple regression was carried out using the R statistical computing software. For
each flow parameter, the forward stepwise method started by considering a simple linear model for predicting the parameter as a
constant value (i.e. starting with no variables in the model). The method adds an extra explanatory variable (if any) to the model at
each step, choosing the variable that minimizes the Akaike information criterion (AIC) which is a measure of the relative quality of a
statistical model (Lindsey and Sheather, 2010). As shown in Fig. 7, the forward stepwise procedure is repeated until no further
reductions in AIC can be obtained. The best set of explanatory variables (catchment characteristics) and the estimates of βi, (with
i= 0, 1,...., N) for the regression models were identified using an ordinary least-squares (OLS) algorithm.

The prediction accuracy of the non- and log-transformed models was evaluated and compared using the adjusted R2 from the
MASS package in R software (Ripley et al., 2013) as well as the mean absolute error (MAE), root mean square error (RMSE) and
adjusted Nash-Sutcliffe Efficiency (NSEadj,) from the hydroGOF package (Zambrano-Bigiarini, 2014). The hydroGOF pack is oriented
for use during calibration, validation, and application of hydrological models. Equations for the evaluation statistics are shown
below.

∑

∑
=

−

−
R

x x

x x

( ˆ )

( )
i i

i i

2
2

2
(4)

= −
− −

− +
R R N

N p
1 (1 )( 1)

( 1)adj
2

2

(5)

Fig. 5. Climatic classification based on the observations from nine gauged catchments. The 1:1 line defines the available energy limit to evapotranspiration
(ETpot < PREC), while the horizontal line defines the available water limit (ETact < PREC).

Table 4
Flow quantiles and index of gauged catchments.

Location q5 (l/s km2) q50 (l/s km2) qmean (l/s km2) q95 (l/s km2) FDCslp (−)

Kagitumba 9.2 3.3 4.04 1.71 0.22
Nyundo 24.2 11.6 13.39 8.65 0.14
Rusumo 13.8 7.4 8.01 4.95 0.13
Kanzenze 14.2 7.6 8.34 4.91 0.14
Butare-Ngozi Rd 27.6 11.1 13.22 5.17 0.23
Ruliba 20.8 9.9 11.13 6.01 0.16
Mwaka 26.3 11.1 13.09 6.87 0.18
Mudasomwa 41.0 14.2 18.06 8.04 0.21
Nyagahanga 11.8 2.3 3.80 0.53 0.38
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Fig. 6. Flow duration curves for the 9 gauged catchments.

Fig. 7. Flowchart of the forward stepwise regression procedure.
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xi = observed values
=x̂ predicted valuesi
=x observed mean value

N = number of catchments
p = number of explanatory variables
In order to compare the non- and log-transformed multi-regression models and to select the most suitable models, the perfor-

mance of the models were examined using the corrected Akaike information criterion (AICC) and Leave-one-out cross-validation
(LOOCV). AIC is asymptotically equivalent to LOOCV when N is large (Chen et al., 2013; Simon et al., 2003). Since N is much less than
the total number of explanatory variables (p) considered in this study, AICC which is recommended when the number of observations
(N) is less than 40 times the number of parameters (Burnham and Anderson, 2002) was considered. It is related to the usual AIC by

= +
× −

− +
AIC AIC

p N
N p

2 ( 1)
( 1)C

(10)

and

= −AIC p L2 2ln( ) (11)

where L is the maximized value of the likelihood function for the estimated model. AIC values for all models were computed using the
MASS package in R software (Ripley et al., 2013).

Leave-one-out cross-validation (LOOCV) is the degenerate case of K-Fold cross-validation, where K is chosen as the total number
of catchments (N). In this approach, each gauged catchment was treated as ungauged and the parameters for that catchment esti-
mated from remaining gauged catchments. The procedure was repeated for each catchment in turn and the LOOCV was computed for
each flow parameter as the mean square error using R statistical computing software, and in particular the “cv.lm()” function in the
DAAG package (Maindonald and Braun 2013).

Although AICC penalizes for the number of explanatory variables and small sample size, AICC and LOOCV do not always lead to
the same model being selected for a small sample size. Thus, this study gives preference to LOOCV in model selection because it
considers all the uncertainty components which include input data uncertainty, model uncertainty and parameter uncertainty
(Wagener and Montanari, 2011). In a case where two or more models have almost equal LOOCV values, the model with the lowest
AICc amongst them is selected if it also has the lowest number of explanatory variables.

Evaluating the significance of the explanatory variables identified for predicting the different flow parameters requires some a
priori knowledge of the physical relationships between physiographic and climatic variables. Regrettably, these relationships are not
well defined at catchment scale. Although forward stepwise regression analysis can identify the physiographic and climatic variables
that are good predictors of the flow parameters, as stated by Sefton and Howarth (1998), the relationships identified are only
empirical. Some of these relationships may simply be an accident of the data although statistically significant. While some re-
lationships may have strong physical significance, others may be surrogate predictors or may represent process interactions which
cannot be explained by current knowledge of the relationships between hydrological processes and parameters controlling them at
the catchment scale (Mohamoud, 2008).

3. Results and discussions

Table 5 shows the explanatory variables for the best non-transformed regression models for each flow parameter, along with
residual standard error, R2

adj, NSEadj, MAE, RMSE, AICC and the LOOCV. It should be noted that even though models with more

Table 5
Non-transformed regression models.

Parameter Explanatory variables Residual standard error R2
adj NSEadj MAE RMSE AICc LOOCV

q5 LF 4.38 0.81 0.81 3.35 3.86 28.9 23.6
qmean PREC L, F 1.22 0.93 0.93 0.84 1.00 7.98 3.8
q50 PREC L L, ,F HP 1.03 0.93 0.93 0.62 0.77 8.08 1.8

q95 PREC 1.25 0.78 0.78 0.93 1.11 6.37 2.2
FDCslp +H L L H, , ,C G m 0.02 0.95 0.93 0.01 0.01 −59.6 0.0
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explanatory variables generally tend to have better fit between predicted and observed values (in terms of higher R2
adj and NSEadj, and

lower standard residual error, MAE and RMSE), this does not necessarily imply that the addition of more variables improves the
predictive performance of models. Although R2

adj and NSEadj are widely used in most studies, their tendency to select models with too
many variables makes them less suitable for prediction than either AICC or LOOCV.

The best non-transformed stepwise-regression model for each flow parameter was selected on the basis of LOOCV except in a case
whereby two or more models have very similar LOOCV values. In this case, the model with the lowest AICc amongst them is selected
if it also has the lowest number of explanatory variables. For qmean, q95 and FDCslp, the AICC and LOOCV indicated the same ‘best’
models.

For predicting high flows (q5), it was observed that percent of forested area (LF) is the only explanatory variable. For median and
mean flows, it was observed that precipitation (PREC) and LF are the two dominant explanatory variables. For predicting low flows
(q95), only PREC appears in the stepwise model. The significant explanatory variables for estimating the slope of flow duration curve
(FDCslp) using non-transformed model are maximum elevation (H+), percent cropland (LC), percent grassland (LC) and mean ele-
vation (Hm).

The non-transformed OLS regression models developed were based on the assumptions that the residuals (predicted minus ob-
served) are independent, homoscedastic and normally distributed. Since non-transformed linear regression models often exhibit
heteroscedasticity (Viglione et al., 2007; Vezza et al., 2010), logarithmic transformations were used on all flow parameters and
explanatory variables (except land use variables which have some zero values) to avoid heteroscedasticity and non-normality of the
residuals of the regressions.

Table 6 shows the explanatory variables for the best log-transformed regression models along with residual standard error, R2
adj,

NSEadj, MAE, RMSE, AICC and the LOOCV. It should be noted that except for FDCslp, the AICC and LOOCV indicated the same “best”
models for the flow quantiles. The best log-transformed stepwise regression models for all flow parameters were chosen based on
LOOCV with the exception of FDCslp for which AICC was used since the model with 3 explanatory variables (least AICC) and that with
5 variables (least LOOCV) both had almost equal AICC and LOOCV values. The removal of two explanatory variables from the LOOCV
model simplified the model without significantly harming the predictive ability of the AICC model.

It was observed that all flow quantiles had precipitation (PREC) as the dominant explanatory variable while elevation char-
acteristics had the most significance for FDCslp prediction. Hope and Bart (2012) also found precipitation to be the dominant predictor
for similar flow quantiles in a study in Cape Floristic Region of South Africa.

The performances (in terms of LOOCV) of non- and log-transformed models were compared to make the final selection of the
overall best-performing regression models. In general, LOOCV values were much smaller for log-transformed models than for non-
transformed models. The stepwise regression analysis identified precipitation (PREC) and river density (D) as the overall best pre-
dictors for q5. The selection of D as the second explanatory variable indicates that high flow response of the catchments is also
controlled by the flow concentration processes and runoff. This seems reasonable as the negative relationship between q5 and D
(r = −0.45) can be explained by the fact that specific high flow discharges q5 (l/(s km2)) were computed by standardizing Q5 values
by respective catchment areas in order to make the values more comparable across scales. As expected, the correlation between Q5

and D is positive (r = 0.63) thus justifying the high D (which depends on soil permeability and underlying rock type) and high Q5

found in rugged regions and catchments with high range elevation. In a similar study by Laio et al. (2011), the power law regression
model for predicting peak flows also included precipitation and a soil permeability index.

For qmean, the log-transformed model also out-performed the non-transformed model. Among the response descriptors, pre-
cipitation (PREC) and percentage of cropland (LC) had the most significant effects on qmean and were selected as the best explanatory
variables. High precipitation produces high qmean. Precipitation has also been used previously in studies by Wolock et al. (2004) and
Santhi et al. (2007). The relevance of LC can be justified by the fact that cropland, which is the largest land cover in the gauged
catchments, has higher runoff coefficient when compared with forest, shrubland and grassland. Increasing LC will increase Qmean but
will reduce the specific mean flow (qmean) due to the negative correlation of qmean with catchment area.

The log-transformed model gave the best LOOCV value for q50, and precipitation (PREC) was the best explanatory variable,
followed by mean catchment slope (CS). The exponent related to CS is −0.93, meaning that q50 actually decreases with increasing
mean catchment slope (r =−0.22). Unsurprisingly, Q50 is also negatively correlated to CS (r = −0.48). There is less storage in small
catchments with high slopes due to high surface runoff and rapid drop in water table (Rastogi, 1988; Paniconi et al., 2003) which
results in quick drainage of the catchments. Since smaller catchments tend to have larger CS in Rwanda, an increase in CS has a
negative effect on q50.

The best model for predicting q95 was the log-transformed model. Low flow conditions were influenced by both the climate and

Table 6
Log-transformed regression models.

Parameter Explanatory variables Residual Standard Error R2
adj NSEadj MAE RMSE AICc LOOCV

q5 PREC D, 0.08 0.87 0.81 2.80 3.58 −41.91 1.0
qmean PREC L, C 0.06 0.94 0.88 1.04 1.35 −47.03 1.0
q50 PREC C, S 0.06 0.94 0.87 0.85 1.18 −45.08 1.0
q95 PREC C ET H, , ,S pot R 0.07 0.97 0.89 0.46 0.58 −36.28 1.0

FDCslp +H L ET, ,HP pot 0.05 0.87 0.80 0.02 0.03 −45.05 1.0
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physiography of the catchments. Precipitation (PREC), catchment slope (CS), potential evapotranspiration (ETpot) and range elevation
(HR) were identified as the significant variables controlling water fluxes at the land surfaces of the catchments in dry seasons when
there is little precipitation and high evaporation rates. Catchment and climatic characteristics such as slope and mean annual pre-
cipitation were also used in similar studies for low-flow analysis (Flynn, 2003; Wright and Ensminger, 2004).

The positive relationship between precipitation and low flow in the model is obvious. Water which is stored in various ways in the
catchments (in groundwater systems, in soil, in lakes, etc.) is released at different times to the streams and rivers. Given that smaller
gauged catchments in Rwanda tend to have larger CS, an increase in CS has a negative effect on q95. A study by Pearson (1995) also
showed a negative relationship between log specific discharge and catchment slope. As expected, the negative exponent of evapo-
transpiration indicates loss of water from catchments when it increases. The effect of a combination of range elevation (HR) and
catchment slope (CS) is capable of describing a catchment's shape and size, which both have effect on the streamflow regime and
thereby playing a significant role on q95 prediction. Based on the signs of the exponents, the ratio HR/CS may be seen as a measure of
the main channel length of a catchment. A study in Italy (Castellarin et al., 2004) with climate and topography relatively similar to
Rwanda shows that relief and main channel length play significant roles in low flow predictions.

The best model selected for predicting slope of flow duration curve (FDCslp) was the log-transformed model. Maximum elevation
(H+), percentage of hardpans (LHP), and potential evapotranspiration (ETpot) are identified to be the most significant variables for the
regionalization of FDCslp. According to Castellarin et al. (2013), current studies on flow duration curves predictions depend con-
siderably on statistical methods, and topographic elevation (in mountainous regions) is among the most frequently used predictors of
the slope and shape of FDCs. In this study, it was observed that maximum elevation (H+) is positively correlated to area (A), and that
both H+ and A are negatively correlated to FDCslp. This has a significant influence on catchment response time since larger catch-
ments flow for more of the time. Thus the relevance of H+ can be justified if one assumes that the slope of the FDC probably decreases
with the area of the catchment as a result of larger storage capacities. As expected, the regression model indicates higher FDCslp for
catchments with larger percentage of impermeable salt hardpans (LHP) since there will be less infiltration and release of water to
streams and rivers during low-flow periods. Catchments with high percentage of hardpans (LHP) are dominated by overland flow and
are usually quickly responding or ‘flashy' catchments. The positive exponent of potential evapotranspiration (ETpot) can be explained
by the FDC response to vegetation. An increase in the percentage of forest or shrubland in a catchment may lead to reduced high
flows and even more reduced low flows (i.e. higher FDCslp). Similar results were found by Schofield (1996) and Vertessy (2000) that
deforestation in some Australian catchments led to a quick rise of the groundwater table, and associated groundwater flow which
resulted in large increases in low flows.

The developed models are limited to the study area and to the ranges in the values of the gauged catchment characteristics used in
estimating the coefficients of regression. Owing to the high spatio-temporal heterogeneity of topography and land cover char-
acteristics in Rwanda, using the models to estimate flow parameters of ungauged catchments remains full of uncertainties as the
accuracy of the estimates might decrease. For example, the percentage of forest (LF) of an ungauged catchment may be very large
compared to the LF for the gauged catchments used in the regression analysis. If LF is not selected as an explanatory variable in the
stepwise procedure, the regression model will not detect the effect of extrapolation when transferring the information to the un-
gauged catchment. Hence care should be taken by evaluating the ungauged catchments of interest to find out if the regression models
are appropriate for their intended use. In addition, in order to apply the procedure to other regions around Rwanda with similar
climate and landscape, new regression models have to be developed. Better quality data and more well-gauged stations might give
different estimates with less uncertainty (Snelder et al., 2013).

3.1. Spatial patterns of predictions of ungauged catchments

The spatial patterns of flow parameter predictions in ungauged catchments were assessed by maps (Fig. 8) in the study area. The
figure uses the same intervals for comparison of the flow quantiles. Each panel shows a flow parameter predicted using the overall
“best” regional regression model. For q5, qmean and q50, the predicted values are large in the west of the country and near the Congo-
Nile drainage divide southwest of the country while values are low in the eastern regions. To some extent, the spatial patterns for q5,
qmean and q50 look similar to the spatial distribution of mean annual precipitation (Fig. 2). This is because, in general, and being the
most significant explanatory variable, precipitation increases westward to 1400–1500 mm near the Congo-Nile drainage divide. It
reaches more than 1500 mm in the southwestern part, up to 2000–2400 mm in the region of the northwestern volcano peaks, and
about 1000 mm or less in the eastern regions.

Although the spatial patterns for qmean and q50 are quite similar, they differ from each other due to the different second ex-
planatory variables selected by their respective models (Table 6). Predicted low flow (q95) values are lower than 3.23 L/(s km2) for
most of the catchments in the Nile Basin when compared with those in the Congo Basin. During dry seasons, streamflow is greatly
reduced by the evapotranspiration from the forest, cropland and shrubland which consume water from the soil and the groundwater
system thus reducing baseflow. The spatial pattern for q95 shows agriculture and hydropower production could be affected more in
the eastern parts. Catchments in the eastern regions are farther from the drainage divide which reduces the effect of regional sub-
surface flow systems contributing to baseflow. The regional sub-surface flow from high precipitation regions near the divide will
likely end up in Lake Victoria farther east of Rwanda.

Relatively high FDCslp predictions in the eastern catchments indicate highly variable streamflow mainly from direct runoff from
open shrublands. FDCslp values are low in the western catchments close to the Congo-Nile drainage divide which denotes the presence
of surface- or ground-water storage as a result of forest which increases infiltration and leads to reduced high flows.
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Fig. 8. Spatial patterns of q5, qmean, q50, q95 and FDCslp predictions for ungauged catchments.
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4. Conclusions

This study presented a method to regionalize flow parameters in ungauged catchments in Rwanda. A combination of climate
similarity and parameter regression was investigated as a method to develop models for predictions at ungauged catchments. The
regionalized flow parameters were q5, qmean, q50, q95 and FDCslp. A regression model was developed for each parameter using a
forward stepwise-regression procedure and by considering non-transformed and log-transformed equations. Since the aim of the
study was to predict the parameters in ungauged catchments, leave-one-out cross validation was used as the criterion for selecting the
best performing models.

The results indicated that the log-transformed models out-performed the non-transformed ones. Using the log-transformed
models, climate, physiographic and land cover descriptors were observed to strongly influence the hydrology of the study area. The
most significant climate descriptor for all flow quantiles was mean annual precipitation. River density, mean catchment slope,
minimum and maximum catchment elevation were among the dominant physiographical descriptors for the flow parameters. The
dominant land cover descriptors identified were percentages of cropland and shrubland salt hardpans.

It is believed that the method presented in this study is a valuable tool for the prediction of flow parameters in ungauged
catchments. The models developed can be used by government agencies and catchment stakeholders for water resources assessments
and for better understanding of water fluxes in Rwandan catchments. Although the models were developed using data for the study
area, parameter regression can be used anywhere in the world if regional regression models are established following the approach
presented in this study. This depends on knowledge of the catchment, data quality and availability, and a thorough understanding of
all the explanatory variables used.
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