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Continuous integration (CI) development environments allow software engineers to

frequently integrate and test their code. While CI environments provide advantages,

they also utilize non-trivial amounts of time and resources. To address this issue,

researchers have adapted techniques for test case prioritization (TCP) and regression

test selection (RTS) to CI environments. In general, RTS techniques select test cases

that are important to execute, and TCP techniques arrange test cases in orders that

allow faults to be detected earlier in testing, providing faster feedback to develop-

ers. In this thesis, we provide new TCP and RTS algorithms that make continuous

integration processes more cost-e↵ective.

To date, current TCP techniques under CI environments have operated on test

suites, and have not achieved substantial improvements. Moreover, they can be in-

appropriate to apply when system build costs are high. In this thesis we explore an

alternative: prioritization of commits. We use a lightweight approach based on test

suite failure and execution history that is highly e�cient; our approach “continu-

ously” prioritizes commits that are waiting for execution in response to the arrival of

each new commit and the completion of each previously commit scheduled for test-

ing. We conduct an empirical study on three datasets, and use the APFD

C

metric

to evaluate this technique. The result shows that, after prioritization, our technique

can e↵ectively detect failing commits earlier.



To date, current RTS techniques under CI environment is based on two windows

in terms of time. But this technique fails to consider the arrival rate of test suites

and only takes the results of test suites execution history into account. In this thesis,

we present a Count-Based RTS technique, which is based on the test suite failures

and execution history by utilizing two window sizes in terms of number of test suites,

and a Transition-Based RTS technique, which adds the test suites’ “pass to mal-

function” transitions for selection prediction in addition to the two window sizes.

We again conduct an empirical study on three datasets, and use the percentage of

malfunctions and percentage of “pass to malfunction” transition metrics to evaluate

these two techniques. The results show that, after selection, Transition-Based tech-

nique detects more malfunctions and more “pass to malfunction” transitions than the

existing techniques.
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Chapter 1

Introduction

Continuous integration (CI) environments automate the process of building and test-

ing software, allowing engineers to merge changed code with the mainline code base at

frequent time intervals. Companies like Google [36], Facebook [17, 44], Microsoft [16],

and Amazon [49] have adopted CI and its ability to better match the speed and scale

of their development e↵orts. The usage of CI has also dramatically increased in

open source projects [25], facilitated in part by the availability of rich CI frameworks

(e.g., [3, 27, 50, 51]).

CI environments do, however, face challenges. System builds in these environ-

ments are stunningly frequent; Amazon engineers have been reported to conduct

136,000 system deployments per day [49], averaging one every 12 seconds [37]. Fre-

quent system builds and testing runs can require non-trivial amounts of time and

resources [7, 18, 25]. For example, it is reported that at Google, “developers must

wait 45 minutes to 9 hours to receive testing results” [36], and this occurs even though

massive parallelism is available. For reasons such as these, researchers have begun to

address issues relevant to the costs of CI, including costs of building systems in the

CI context [7], costs of initializing and reconfiguring test machines [18], and costs of

Jingjing Liang
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test execution [15, 36, 45, 58].

Regression Testing Challenges in CI. Where testing in CI development environ-

ments is concerned, researchers have investigated strategies for applying regression

testing more cost-e↵ectively. In particular, researchers [6, 15, 28, 34, 35, 36, 58] have

considered techniques (created prior to the advent of CI) that utilize regression test

selection (RTS) (e.g., [10, 19, 24, 32, 38, 39, 41, 46, 55, 56]) and test case prioritiza-

tion (TCP) (e.g., [2, 12, 23, 34, 42, 57]). RTS techniques select test cases that are

important to execute, and TCP techniques arrange test cases in orders that allow

faults to be detected earlier in testing, providing faster feedback to developers.

In CI environments, traditional RTS and TCP techniques can be di�cult to apply.

A key insight behind most traditional techniques is that testing-related tasks such as

gathering code coverage data and performing program analyses can be performed in

the “preliminary period” of testing, before changes to a new version are complete. The

information derived from these tasks can then be used during the “critical period”

of testing after changes are complete and when time is more limited. This insight,

however, applies only when su�ciently long preliminary periods are available, and

this is not typical in CI environments. Instead, in CI environments, test suites arrive

continuously in streams as developers perform commits. Prioritizing individual test

cases is not feasible in such cases due to the volume of information and the amount

of analysis required. For this reason, RTS and TCP techniques for CI environments

have typically avoided the use of program analysis and code instrumentation, and

operated on test suites instead of test cases.

TCP in CI. Prior research focusing on TCP in CI environments [15, 58] has resulted

in techniques that either reorder test suites within a commit (intra-commit) or across

commits (inter-commit). Neither of these approaches, however, have proven to be
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successful.

Intra-commit prioritization schemes rarely produce meaningful increases in the

rate at which faults are detected. As we shall show in Section 3.1, intra-commit

techniques prioritize over a space of test suites that is too small in number and can

be quickly executed, so reordering them typically cannot produce large reductions in

feedback time. This approach also faces some di�culties. First, test suites within

commits may have dependencies that make reordering them error-prone. Second, test

scripts associated with specific commits often include semantics that adjust which test

suites are executed based on the results of test suites executed earlier in the commit;

these devices reduce testing costs, but may cease to function if the order in which

test suites are executed changes.

Inter-commit techniques have the potential for larger gains, but are founded on

unrealistic assumptions about CI environments. In these environments, developers

use commits to submit code modules, and each commit is associated with multiple test

suites. These test suites are queued up until a clean build of the system is available

for their execution. Extending the execution period of a commit’s test suites over

time (across commits) increases the chance for test suites to execute over di↵erent

computing resources, hence requiring additional system build time. Given the cost of

such builds (Hilton et al. [25] cite a mean cost of 500 seconds per commit, and for the

Rails artifact in our study the mean cost ratio of building over testing was 41.2%),

this may not be practical.

We conjecture that in CI environments, prioritizing test suites (either within or

between commits) is not the best way to proceed. Instead, prioritization should be

performed on commits, a process we refer to as inter-commit prioritization. Inter-

commit prioritization avoids the costs of performing multiple builds, and problems

involving test suite dependencies and the disabling of cost-saving devices for reduc-

Jingjing Liang
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ing testing within commits. We further believe that inter-commit prioritization will

substantially increase TCP’s ability to detect faulty commits early and provide faster

feedback to developers.

In this work, we investigate this conjecture by providing an algorithm that pri-

oritizes commits. An additional key di↵erence between our TCP approach and prior

work, however, is that we do not wait for a set or “window” of test suites (or in our

case, commits) to be available, and then prioritize across that set. Instead, we pri-

oritize (and re-prioritize) all commits that are waiting for execution “continuously”

as prompted by two events: (1) the arrival of a new commit, and (2) the completion

of a previously scheduled commit. We do this using a lightweight approach based on

test suite failure and execution history that has little e↵ect on the speed of testing.

Finally, our approach can be tuned dynamically (on-the-fly) to respond to changes in

the relation of the incoming testing workload to available testing resources.

RTS in CI. Prior research [15] provided a lightweight RTS technique which used

two windows based on time (we refer this as the TB technique) to track how recently

test suites1 have been executed and revealed failures, to select a subset of test suites

instead of all test suites for execution. It did so in two ways. First, if a test suite T

has failed within a given “failure window” (i.e., within a time W

f

prior to the time

at which T is being considered for execution again) then T should be executed again.

Second, if the first condition does not hold, but test suite T has not been executed

within a given “execution window” (i.e., within a time W
e

prior to the time at which

T is being considered for execution again) then T should be executed again. The first

condition causes recently failing test suites to be re-executed, and the second causes

1Traditionally, RTS techniques have been applied to test cases. In this work we apply them to
test suites, primarily because the datasets we use to study our approach include test suites, and
analysis at the test suite level is more e�cient. The approaches could also, however, be performed
at the level of test cases.

Jingjing Liang
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test suites that have not recently failed, but that have not been executed in quite a

while, to be executed again.

The TB technique utilizes relatively lightweight analysis, and does not require code

instrumentation, rendering it appropriate for use within the continuous integration

process. The empirical study result shows that the TB RTS technique can greatly

improve the cost-e↵ectiveness of testing. While the results were encouraging, the TB

technique also had several limitations.

First, the windows that the TB technique relies on are measured in terms of time,

which means that it does not consider the arrival rate of test suites. In the middle

of a busy work day, test suites can arrive far more frequently than, say, on a Sunday

evening. The TB technique does not account for this, and this can result in selection

of excessively large, or excessively small, numbers of test suites. More importantly,

this can conceivably result in the selection of test suites that are not as cost-e↵ective

as might be desired.

To make up for this limitation, we provide a modified Count-Based RTS technique

(CB), which utilizes two window sizes in terms of numbers of test suites instead of

time. For example, when deciding whether to execute a given test suite T that is

being considered for execution, the technique considers whether T has failed within

the past W
f

test suite executions, or whether T has not been executed at all during

the past W
e

test executions, and bases its selection on that.

Second, the TB and CB RTS methods are both based on the results (“pass” or

“fail” status) of test suite executions by using a failure window to check whether

the test suite has recently failed. However, these techniques fail to consider the

“transitions” between test suites’ executions, where “transition” means a transition

from one execution status to another. For example, if a test suite T has been executed

3 times, and the corresponding execution statuses are: “pass”, “pass”, and “fail”; then
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T is considered to have 3 transitions: “new to pass”, “pass to pass”, and“pass to fail”.

Therefore, if T has both “pass” and “fail” statuses, then T has 4 possible transitions:

“pass to pass”, “pass to fail”, “fail to pass”, “fail to fail”. To detect a failure, however,

test suite T can have only two possible transitions: “pass to fail” and “fail to fail”. In

the the result-based techniques (TB and CB), for any test suite, if it has been detected

to fail, it would be selected for execution multiple times in the following arrivals, and

more failures (if existing) could be detected. Obviously, the result-based techniques

could help to detect “fail to fail” transitions. However, result-based techniques fail

to consider the greater importance of “pass to fail” transitions. In addition, “pass

to fail” transitions could provide us with more information than just “pass to pass”,

“fail to pass” or “fail to fail” transitions. Most transitions (more than 99% on the

datasets we study) are “pass to pass” transitions, and such transitions could only tell

us that the testing process is successful. RTS techniques, however, aim to detect more

malfunctions; therefore, we want to select these transitions as little as possible. “Fail

to fail” transitions could indicate that the same problem still exists, or that some

other new problems have occurred. In actual testing, developers will definitely look

for such problems and re-execute the program to check whether these problems are

fixed when a failure occurs, so this type of transition is less important to test. “Fail

to pass” transitions could tell us that a problem has been fixed and there is no need

to select a test suite again for execution. In contrast to all of these, “pass to fail”

transitions signal that a new problem has occurred, and if the test suite repetitively

has “pass to fail” transitions, this could provide us with more information about code

changes, and we could assume that code related to the test is churning.

To make up for this limitation, we provide a Transition-Based RTS technique

(TrB), which keeps track of the percentage of each test suite’s “pass to fail” transitions

in addition to just utilizing two windows. For example, when deciding whether to

Jingjing Liang
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execute a given test suite T that is being considered for execution, the technique

considers whether T has failed within the pastW
f

test suite executions, whether T has

not been executed at all during the pastW
e

test executions, or whether T ’s percentage

of “pass to fail” transitions is higher than a threshold and bases its selection on that.

To investigate the e↵ectiveness of the CB and TrB techniques, we use the follow-

ing two metrics for evaluation. First, since the CB RTS technique is based on the

conjecture that some test suites’ execution results are inherently better than others

at revealing failures, we use the percentage of malfunctions detection as a metric to

evaluate the technique, and also apply this metric to the TrB technique for a com-

parison. Second, since the TrB RTS technique is based on the conjecture that test

suites’ “pass to fail” transitions could provide more information about problems in

the code, and detecting “pass to fail” transitions could potentially help us make more

precise malfunction predictions, we use the percentage of “pass to fail” transitions as

a metric to evaluate the performance of the TrB technique and also apply this metric

to the CB technique for comparison.

We conducted empirical studies of our new TCP and RTS approaches on three

non-trivial data sets associated with projects that utilize CI. The results of CCBP

(the new TCP technique) show that our algorithm can be much more e↵ective than

prior TCP approaches. Our results also reveal, however, several factors that influence

our algorithm’s e↵ectiveness, with implications for the application of prioritization in

CI environments in general. The results of the CB and TrB RTS techniques show that

both of these two algorithms could detect the malfunctions and “pass to malfunction”

transitions cost-e↵ectively, and after comparison, the TrB technique has a slightly

better performance under both of the two metrics.

The remainder of this paper is organized as follows. Chapter 2 provides back-

ground information and related work. Chapter 3 presents our commit level priori-

Jingjing Liang
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tization technique. Chapter 4 presents test suite level RTS techniques. Chapter 5

concludes and discuss future work.



9

Chapter 2

Background and Related Work

We next provide background information on Continuous Integration and on related

work about test case prioritization (TCP) and regression test selection (RTS).

2.1 Related Work

Let P be a program, let P 0 be a modified version of P , and let T be a test suite for P .

Regression testing is concerned with validating P

0. To facilitate this, engineers often

begin by reusing T , but this can be expensive. Thus, a wide variety of approaches

have been developed for rendering reuse more cost-e↵ective via test case prioritization

(TCP) (e.g., [9, 12, 23, 42, 47, 48, 57]) and regression test selection (RTS) (e.g., [19,

32, 38, 39, 41, 46, 55]).

Other Related Work. There has been considerable research on predicting fault-

prone modules in software systems. Some of this work has considered dynamic pre-

diction, as we do, most notably work by Hassan et al. [22] and Kim et al. [30]. This

work, however, does not consider CI environments, or attempt to use fault proneness

information in the service of regression testing techniques.
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There has been some recent work on techniques for testing programs on large

farms of test servers or in the cloud (e.g., [4, 31, 48]). This work, however, does not

specifically consider CI processes or regression testing.

Hilton et al. [25] report results of a large-scale survey of developers to understand

how and why they use or do not use CI environments. One of the implications

they derive is that CI requires non-trivial time and resources, and thus, the research

community should find ways to improve CI build and testing processes.

Test Case Prioritization. Test case prioritization (TCP) techniques reorder the

test cases in T such that testing objectives can be met more quickly. One potential

objective involves revealing faults, and TCP techniques have been shown to be capable

of revealing faulting more quickly.

Do et al. [8], Walcott et al. [53], Zhang et al. [59], and Alspaugh et al. [1] study test

case prioritization in the presence of time constraints such as those that arise when

faster development-and-test cycles are used. This work, however, does not consider

test history information or CI environments. Other work [2, 29, 54] has used test

history information and information on past failures to prioritize test cases, as do we,

but without considering CI environments.

Prioritization in CI has emerged as a large issue but until this work it focused

exclusively on test cases or suites. Jiang et al. [28] consider CI environments, and

mention that prioritization could be used following code commits to help organiza-

tions reveal failures faster, but their work focuses on the ability to use the failures

thus revealed in statistical fault localization techniques. Busjaeger and Xie [6] present

a prioritization algorithm that uses machine learning to integrate various sources of

information about test cases. They argue that such algorithms are needed in CI

environments, and they analyze the needs for such algorithms in one such environ-
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ment, but their focus remains on prioritizing individual test cases. Marijan et al. [35]

present prioritization algorithms that also utilize prior test failure information to per-

form prioritization but focus on individual test cases. Yoo et al. [58], also working

with data from Google, describe a search-based approach for using TCP techniques

in CI environments for test suites within commits. Elbaum et al. [15] also describe a

prioritization technique for use in CI environments considering information on past

test failures and elapsed time since prior test executions. Their approach, however,

applies to individual test suites without considering commit boundaries. They also

perform prioritization over windows of test suites and not continuously.

Regression Test Selection. Regression test selection (RTS) techniques select, from

test suite T , a subset T 0 that contains test cases that are important to re-run. When

certain conditions are met, RTS techniques can be safe; i.e., they will not omit test

cases which, if executed on P

0, would reveal faults in P

0 due to code modifications [43].

Memon et al. [36], working in the context of Google’s CI processes, investigate

approaches for avoiding executing test cases that are unlikely to fail, and for helping

developers avoid actions leading to test case failures. Like our work, this work relies

on test selection and attempts to reduce resources in testing; however, the work

only relies on the result of test suite, not considering transitions between test suites.

Gligoric el al. [19] provide a novel approach focusing on improvement of regression

test selection, but this technique is based on file dependencies. Öqvist el al. [38]

consider regression test selection under CI environments, but this work is based on

static analysis.

In prior work Elbaum et al. [15], worked on Google datasets and applied their

improved RTS and TCP techniques by using time windows to track the test suites’

failure history and execution history to the CI development environment. However
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in this thesis, we change the time windows (window sizes in terms of time) to count

windows (windows sizes in terms of numbers of test suites) and consider “pass to

malfunction” transitions as a factor for selection prediction. As objects of analysis,

we utilize a Rails dataset [33] in addition to the Google datasets [14, 33].

2.2 Continuous Integration

Conceptually, in CI environments, each developer commits code to a version control

repository. The CI server on the integration build machine monitors this repository

to determine whether changes have occurred. On detecting a change, the CI server

retrieves a copy of the changed code from the repository and executes the build

and test processes related to it. When these processes are complete, the CI server

generates a report about the result and informs the developer. The CI server continues

to poll for changes in the repository, and repeats the previous steps.

There are several popular open source CI servers including Travis CI [51], GoCD [20],

Jenkins [27], Buildbot [5], and Integrity [26]. Many software development companies

are also developing their own [16, 36, 44, 49]. In this paper we utilize data gath-

ered from a CI testing e↵ort at Google, and a project managed under Travis CI, and

the next two sections provide an overview of these CI processes. Section 2.2.1, 2.2.2

and 2.2.3 provides a more quantitative description of the data analyzed under these

processes.

2.2.1 Continuous Integration at Google

The Google dataset we rely on in this work was assembled by Elbaum et al. [15] and

used in a study of RTS and TCP techniques; the dataset is publicly available [14].

Elbaum et al. describe the process by which Google had been performing CI, and
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under which the dataset had been created. We summarize relevant parts of that

process here; for further details see Reference [36].

Google utilizes both pre-commit and post-commit testing phases. When a devel-

oper completes his or her coding activities on a module M , the developer presents

M for pre-commit testing. In this phase, the developer provides a change list that

indicates modules that they believe are directly relevant to building or testing M .

Pre-submit testing requests are queued for processing and the test infrastructure per-

forms them as resources become available, using all test suites relevant to all of the

modules listed in the change list. The commit testing outcome is then communicated

to the developer.

Typically, when pre-commit testing succeeds for M , a developer submits M to

source code control; this causes M to be considered for post-commit testing. At this

point, algorithms are used to determine the modules that are globally relevant to

M , using a coarse but su�ciently fast process. This includes modules on which M

depends as well as modules that depend on M . All of the test suites relevant to these

modules are queued for processing.

2.2.2 Continuous Integration in Travis CI

Travis CI is a platform for building and testing software projects hosted at GitHub.

When Travis CI is connected with a GitHub repository, whenever a new commit

is pushed to that repository, Travis CI is notified by GitHub. Using a specialized

configuration file developers can cause builds to be triggered and test suites to be

executed for every change that is made to the code. When the process is complete,

Travis sends notifications of the results to the developer(s) by email or by posting



14

a message on an IRC channel. In the case of pull requests,1 each pull request is

annotated with the outcome of the build and test e↵orts and a link to the build log.

Rails is a prominent open source project written in Ruby, that relies on continuous

integration in Travis CI. As of this writing, Rails has undergone more than 50,000

builds on Travis CI. Rails consists of eight main components with their own build

scripts and corresponding test suites: Action Mailer (am), Action Pack (ap), Action

View (av), Active Job (aj), Active Model (amo), Active Record (ar), Active Support

(as) and Railties. The eight Rails components are executed for di↵erent rvm imple-

mentations, which includes Ruby MRI v 2.2.1, Ruby-head, Rbx-2, and JRuby-head.

Each pair of components and rvms is executed in a di↵erent job. When a commit is

pushed to a branch, the commit contains multiple jobs, and within a job, there are

multiple test suites for testing.

2.2.3 The Google and Rails Datasets

2.2.3.1 The Google Dataset

The Google Shared Dataset of Test Suite Results (GSDTSR) contains information on

a sample of over 3.5 million test suite executions, gathered over a period of 30 days,

applied to a sample of Google products. The dataset includes information such as

anonymized test suite identifiers, change requests (commits), outcome statuses of test

suite executions, launch times, and times required to execute test suites. The data

pertains to both pre-commit and post-commit testing phases, and we refer to the two

data subsets and phases as “GooglePre” and “GooglePost”, respectively. We used the

first 15 days of data because we found discontinuities in the later days. At Google,

1The fork & pull collaborative development model used in Travis CI allows people to fork an
existing repository and push commits to their own fork. Changes can be merged into the repository
by the project maintainer. This model reduces friction for new contributors and it allows independent
work without up-front coordination.
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test suites with extremely large execution times are marked by developers for parallel

execution. When executed in parallel, each process is called a shard. For test suites

that had the same test suite name and launch times but di↵erent shard numbers,

we merged the shards into a single test suite execution. After this adjustment, there

were 2,506,926 test suite execution records. More information about this dataset can

be found in the Google Dataset archive [14] and the clean Google Dataset archive

[33].

2.2.3.2 The Rails Dataset

Rails is a prominent open source project written in Ruby [40]. As the time in which we

harvested its data, Rails had undergone more than 35,000 builds on Travis CI. Rails

consists of eight main components with their own build scripts and test suites. Rails

has a global Travis build script that is executed when a new commit is submitted to

any branch or pull request. (Pull requests are not part of the source code until they

are successfully merged into a branch, but Travis still needs to test them.) For each

commit, the eight Rails components are tested under di↵erent Ruby Version Manager

(rvm) implementations. Each pair of components and rvms is executed in a di↵erent

job.

When collecting data for Rails, we sought to gather a number of test suite ex-

ecutions similar to those found in GSDTSR. Because each Rails’ commit executes

around 1200 test suites on average, we collected 3000 consecutive commits occurring

over a period of five months (from March 2016 to August 2016). From that pool of

commits, we removed 196 that were canceled before the test suites were executed.

We ended up with a sample of 3,588,324 test suite executions, gathered from 2,804

builds of Rails on Travis CI.

To retrieve data from Rails on Travis CI, we wrote two Ruby scripts using methods
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provided by the Travis CI API [52]: one downloads raw data from Travis CI and the

other transforms the data into a required format. This last step required the parsing

of the test suite execution reports for Rails by reverse engineering their format. The

resulting dataset includes information such as test suite identifiers, test suite execution

time, job and build identifiers, start times, finish times and outcome statuses (fail or

pass). More information about this dataset can be found at https://github.com/

elbaum/CI-Datasets.git.

2.2.3.3 Relevant Data on the Datasets

In the Google datasets, each test suite execution record has a status field that contains

only two types of statuses: “pass” and “fail”. In the Google dataset, a “failing test

suite” is any test suite with a “fail” status. But in the Rails dataset, there is no such

field for each test suite execution record. Instead, each test suite execution record

contains the number of passing test cases, failing test cases, and error test cases.

Thus, there are 4 possible combinations: (1) test suites that contain only passing test

cases; (2) test suites that contain at least 1 failing test case and 0 error test cases

(may contain passing test cases); (3) test suites that contain at least 1 error test case

and 0 failing test cases (may contain passing test cases); (4) test suites that contain

at least 1 failing test case and at least 1 error test case (may contain passing test

cases).

Normally, if a test suite contains at least 1 failing test case and 0 error test cases

(combination 2), this test suite is defined as “fail”. However, each test suite is assigned

a boolean parameter “allow failure”, and if “allow failure” is set to be true, even the

test suite is failing, it does not make the commit fail (a commit is considered to fail

when at least one of its associated test suites fails).

Therefore, for the commit level prioritization technique, we filter the Rails dataset
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Table 2.1: Relevant Data on Objects of Analysis on Commit Level
Dataset

Google Pre Google Post Rails

# of Total Commits 1,638 4,421 2,804
# of Failing Commits 267 1,022 574
Commit Arrival Rate (# / hour) 5 13 1
Avg Commit Duration (secs) 1,159.00 948.38 1,505.17
Avg Commit Queue Size 401.3 1,522.1 0.4
# of Distinct Test Suites 5,555 5,536 2,072
# of Distinct Failing Test Suites 199 154 203
Avg # of Test Suites per Commit 638 331 1280
# of Total Test Suite Executions 1,045,623 1,461,303 3,588,324
# of Failing Test Suite Executions 1,579 4,926 2,259
Test Suite Execution Time (secs) 1,898,445 4,192,794 4,220,482

Table 2.2: Relevant Data on Objects of Analysis on Test Suite Level
Dataset

Google Pre Google Post Rails

# of Distinct Test Suites 5,555 5,536 2,072
# of Distinct Failing Test Suites 199 154 191
# of Distinct Error Test Suites N/A N/A 262
# of Distinct FailError Test Suites N/A N/A 100
# of Total Test Suite Executions 1,045,623 1,461,303 3,592,266
# of Failing Test Suite Executions 1,579 4,926 4460
# of Error Test Suite Executions N/A N/A 5940
# of FailError Test Suite Executions N/A N/A 2424
Test Suite Execution Time (secs) 1,898,445 4,192,794 4,562,222

as follows. First, we assign “pass” to combination 1 test suites. Second, we ignore the

combination 3 test suites, since we don’t consider the error problems for the commits.

Third, we consider the 2nd and 4th combinations in the same way: as test suites that

contain at least 1 failing test case. And if the test suite’s “allow failure” is true, we

assign “pass” to the test suite; otherwise, we assign “fail” to it.

For the test suite selection technique, however, we filter the Rails dataset as fol-

lows. First, we assign “pass” to combination 1 test suites. Second, we assign “fail” to

combination 2 test suites (we consider the status on the test suite level instead of the

e↵ect on a commit). Third, we assign “error” to combination 3 test suites. Finally,

we assign “failerror” to combination 4 test suites.

Tables 2.1 and 2.2 characterize the datasets we used in the TCP and RTS tech-
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nique studies, and help provide context and explain our findings.

Table 2.1 is a summary of the datasets used for our new TCP technique, and

includes information on commits, test suites, and test suite executions. For commits,

we include data on the total number of commits, the total number of failing commits

(a commit is considered to fail when at least one of its associated test suites fails), the

commit arrival rate measured in commits per second, the average commit duration

measured from the time the commit begins to be tested until its testing is completed,

and the average commit queue size computed by accumulating the commit queue size

every time a new commit arrives and dividing it by the total number of commits.

Within the test suite information, we provide the number of distinct test suites that

were executed at least once under a commit, the number of distinct test suites that

failed at least once, and the average number of test suites triggered by a commit.

Regarding test suite executions, we include the total number of test suite executions,

the total number of failing test suite executions, and the total time spent executing

test suites measured in seconds.

Table 2.2 is a summary of the datasets used for our new RTS techniques, which

includes information on test suites, and test suite executions. We provide the number

of distinct test suites that were executed at least once, the number of distinct test

suites that failed (contain at least one failing test case and no error test case ) at least

once, the number of distinct test suites that errored (contain at least one errored test

case and no failing test case) at least once, and the number of distinct test suites

that failerrored (contains at least one errored test case and one failing test case)

at least once. Regarding test suite executions, we include the total number of test

suite executions, the total number of failing test suite executions, the total number

of errored test suite executions, the total number of failerrored test suite executions,

and the total time spent executing test suites measured in seconds. Because Google
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Pre and Google Post do not have “error” or “failerror” test suites, there are “N/A”

values in the corresponding cells.
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Chapter 3

Commit Level Prioritization for CI

As we noted in Chapter 1, current techniques for prioritizing test cases in CI envi-

ronments have operated at the level of test suites, and the associated prioritization

techniques are intra-commit test suite prioritization and inter-commit test suite prior-

itization. However, these techniques raises potential problems involving dependency

problems and build costs. Therefore, we consider prioritization at the level of com-

mits instead of test suites. In this chapter, we provide our new algorithm and the

results and analysis of an empirical study of the approach.

3.1 Motivation

There are two key motivations for this work. First, existing prioritization techniques,

that prioritize at the level of test suites yield little improvement in the rate of fault

detection. Second, as commits queue up to be tested, they can be prioritized more

e↵ectively.

Figure 3.1 plots Google post-commit data supporting the first of these claims.

The horizontal axis represents the passage of time, in terms of the percentage of the
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Figure 3.1: Intra-commit prioritization on Google post-commit.

total testing time needed to execute a stream of almost 1.5 million test suites. The

vertical axis denotes the percentage of test suites that have failed thus far relative to

the number of test suites that fail over the entire testing session.

The figure plots two lines. One line, denoted by triangles, represents the “Original”

test suite order. This depicts the rate at which failing test suites are executed over

time, when they (and the commits that contain them) are executed in the original

order in which they arrived for testing in the time-line captured by the Google dataset,

with no attempt made to prioritize them.1 The second line, denoted by diamonds

that are smaller than the triangles, represents an “Optimal Intra-commit” order. In

this order, commits continue to be executed in the order in which they originally

arrived, but within each commit, test suites are placed in an order that causes failing

test suites to all be executed first. (Such an optimal order cannot be achieved by

1The “gaps” between points at around the 58% time are caused by a pair of commits that
contained large numbers of test suites that failed.
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Figure 3.2: Google post-commit arrival queue size over time for five levels of comput-
ing resources

TCP techniques, because such techniques do not know a priori which test suites fail,

but given test suites for which failure information is known it can be produced a

posteriori to illustrate the best case scenario in comparisons such as this.)

In graphs such as that depicted in Figure 3.1, a test suite order that detects faults

faster would be represented by a line with a greater slope than others. In the figure,

however, the two lines are nearly identical. The gains in rate of fault detection that

could be achieved by prioritizing test suites within commits in this case are negligible.

The actual overall rates of fault detection using the APFD

C

metric for assessing such

rates (discussed in Section 4.3.2.2), also shown in the figure, are 48.2072% for the

original order, versus 48.2366% for the optimal order; this too indicates negligible

benefit.

Next, consider the notion of prioritizing commits rather than individual test suites.
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Figure 3.2 shows the sizes of several queues of commits over time, for the Google post-

commit dataset, assuming that commits are executed one at a time (not the case at

Google but useful to illustrate trends), and are queued when they arrive if no computer

processors (cp) are available for their execution. Because the execution of test suites

for commits depends on the number of computing resources across which they can be

parallelized, the figure shows the queue sizes that result under five such numbers: 1,

2, 3, 4 and 8. With one computing resource, commits queue up quickly; then they are

gradually processed until all have been handled. As the number of resources increases

up to four, di↵erent peaks and valleys occur. Increasing the number to eight causes

minimal queuing of commits.

What Figure 3.2 shows is that if su�cient resources are not available, commits

do queue up, and this renders the process of prioritizing commits potentially useful.

Clearly, additional computing resources could be added to reduce the queuing of

commits, and for companies like Google and services like Travis, farms of machines

are available. The cost of duplicating resources, however, does become prohibitive

at some point. In the case of Travis, for example, the price for resources increases

by 87% when moving from one to two concurrent jobs. And even for companies like

Google this is an ongoing challenge [36].

The reasons for considering inter-commit prioritization can be illustrated further

by an example. (We use a theoretical example here for simplicity.) Table 3.1 shows a

set of five commits (Rows 1–5), each containing up to ten test suites (Columns with

headers 1–13), with “F” indicating instances in which test suites fail, “P” indicating

instances in which test suites pass, and “-” indicating instances in which test suites

are not used. Suppose the five commits depicted in Table 3.1 all arrive in a short

period of time and are all queued up for execution, in order from top (“Commit 1”) to

bottom (“Commit 5”). Figure 3.3 plots the fault detection behavior of the test suites
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Table 3.1: Commits, Test Suites, Failures Detected
Test Suite (P: pass, F: fail, -: not executed)

Commit 1 2 3 4 5 6 7 8 9 10 11 12 13

1 P - F P P P P - F P - P P

2 P P - P P P - P P - P P P

3 F - P F F P P F - F - P P

4 P P - P P P - P P P P - P

5 P P P - F P F - F P P P -

associated with the commits under three prioritization scenarios, denoted by three

di↵erent line types. The solid line depicts the results when commits are executed

in the order in which they are queued up (from first to last), and the test suites

associated with each commit are executed in their original order (from left to right).

As the test suites are executed, they gradually expose faults until, when 100% of the

test suites have been executed, 100% of the faults have been detected. The dotted line

depicts the results when test suites within each commit are placed in optimal order

(where fault detection is concerned), but commits are kept in their original, intra-

commit order. (In other words, in Commit 1, test suites 3 and 9 are executed first,

then the others follow.) The dashed line depicts the results when test suites within

each commit retain their original order, but commits are ordered optimally (inter-

commit) where fault detection is concerned. (In other words, commits are scheduled

in order 3–5–1–2–4.)

The lines in Figure 3.3 illustrate why an inter-commit order can outperform an

intra-commit order. The fault detection rate increases gained by an intra-commit

order are limited to those that relate to reordering the comparatively small set of test

suites (relative to all test suites executed under CI) contained within the commits,

whereas the increases gained by an inter-commit order can potentially shift all fault

detection to the first few commits. This theoretical example, however, involves opti-

mal orders. To understand whether this example corresponds to what we may see in

practice we need to study actual datasets, and orders that can be obtained by TCP
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Figure 3.3: E↵ectiveness of commit prioritization.

heuristics.

3.2 Approach

To prioritize testing e↵orts for CI we have created a new prioritization technique,

CCBP, (Continuous, Commit-Based Prioritization), which has four distinctive char-

acteristics:

• Commit-focused: the scale at which CI operates makes prioritization at the test

case or test suite level irrelevant for accelerating faulty commit discovery.

• Fast: the speed at which CI operates requires prioritization schemes to be

lightweight yet e↵ective.

• Continuous: streaming commits result in streaming results which o↵er the op-

portunity to re-prioritize commits that are already queued for execution.

• Resource-aware: CI computing resources vary over time and prioritization must

accommodate that variation.
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CCBP is driven by two events associated with commits: the arrival of a commit for

testing and the completion of the execution of the test suites associated with a commit.

When a commit arrives, it is added to a commit queue and, if computing resources are

available, the queue is prioritized and the highest priority commit begins executing.

When a commit’s processing is complete, a computing resource and new testing-

related information from that commit become available, so any queued commits are

re-prioritized and the highest ranked commit is scheduled for execution.

Note that by this approach, prioritization is likely to occur multiple times on

the same queued commits, as new commits arrive or new information about the

results of a commit become available. For this to be possible, prioritization needs

to be fast enough so that the gains of choosing the right commit are greater than

the time required to execute the prioritization algorithm. As discussed previously,

techniques that require code instrumentation or detailed change analysis do not meet

this criterion when applied continuously, and when used sporadically they tend to

provide data that is no longer relevant. Instead, as in other work [15, 58], we rely

on failure and execution history data to create a prioritization technique that can be

applied continuously.

3.2.1 Detailed Description of CCBP

Algorithm 1 provides a more detailed description of CCBP. The two driving commit

events (commit arrival and commit completion) invoke procedures onCommitArrival

and onCommitTestEnding, respectively. Procedure prioritize performs the actual

prioritization task, and procedure updateCommitInformation performs bookkeeping

related to commits.

CCBP relies on three data structures. The first data structure concerns commits
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Algorithm 1: CCBP: Prioritizing Commits

1 parameter failWindowSize
2 parameter exeWindowSize
3 resources
4 queue commitQ

5 Procedure onCommitArrival(commit)

6 commitQ.add(commit)
7 if resources.available() then

8 commitQ.prioritize()
9 end

10 Procedure onCommitTestEnding()

11 resources.release()
12 if commitQ.notEmpty() then

13 commitQ.prioritize()
14 end

15 Procedure commitQ.prioritize()

16 for all commiti in commitQ do

17 commiti.updateCommitInformation()
18 end

19 commitQ.sortBy(failRatio, exeRatio)
20 commit = commitQ.remove()
21 resources.allocate(commit)

22 Procedure commit.updateCommitInformation(commit)

23 failCounter = exeCounter = numTests = 0
24 for all testi in commit do

25 numTests.increment();
26 if commitsSinceLastFailure(testi)  failWindowSize then

27 failCounter.increment()
28 end

29 if commitsSinceLastExecution(testi) > exeWindowSize then

30 exeCounter.increment()
31 end

32 end

33 commit.failRatio = failCounter / numTests
34 commit.exeRatio = exeCounter / numTests

themselves. We assume that each commit has an arrival time and a set of test

suites associated with it. We add a set of attributes including the commit’s expected

failure ratio (the probability that the commit’s test suites will fail based on their

failure history) and execution ratio (the probability that the commit’s test suites

have not been executed recently), which are used for prioritization. Second, we keep
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a single queue of commits that are pending execution (commitQ). Arriving commits

are added to commitQ and commits that are placed in execution are removed from

commitQ, and whenever resources become available commitQ is prioritized. The third

data structure concerns computing resources. In the algorithm, we abstract these so

that when a commit is allocated, the number of resources is reduced, and when a

commit finishes, the resources are released. There are parameters corresponding to the

size of the failure window (failWindowSize) and execution window (exeWindowSize),

measured in terms of numbers of commits, that are important to the prioritization

scheme. In this work we set these parameters to specific constant values, but in

practice they could be adjusted based on changing conditions (e.g., when releasing

a new version for which failures are more likely). We assume there is also a set of

resources available.

Both onCommitArrival (Lines 5–9) and onCommitTestEnding (Lines 10–14), in-

voke prioritize (Lines 15–21). Procedure prioritize updates information about the

commits in the queue (Lines 16-18), and then sorts them (Line 19). This sort func-

tion can be instantiated in many ways. In our implementation, we sort commits in

terms of decreasing order of failRatio values and break ties with exeRatio values, but

other alternatives are possible and we expect this to be an area of active research. The

commit with the highest score is removed from the queue (Line 20) and launched for

execution on the allocated resource (Line 21). Procedure updateCommitInformation

(Lines 22–34) updates a commit’s failRatio and exeRatio. It does this by analyzing

the history of each test suite in the commit. If a test suite has failed within the last

failWindowSize commits, its failure counter is incremented (Lines 26-27). If a test

suite has not been executed within the last exeWindowSize, its execution counter is

incremented (Lines 29-30). These numbers are normalized by the numbers of test

suites in the commits to generate new ratios (Lines 33-34). Intuitively, CCBP favors
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commits containing a larger percentage of test suites that have failed recently, and in

the absence of failures, it favors commits with test suites that have not been recently

executed.

As presented, for simplicity, CCBP assumes that commits are independent and

need not be executed in specified orders. The empirical studies presented in this paper

also operate under this assumption, as we have discovered no such dependencies

in the systems that we study. Dependencies among commits could, however, be

accommodated by allowing developers to specify them, and then requiring CCBP to

treat dependent commits as singletons in which commit orders cannot be altered. We

leave investigation of such approaches for future work.

Another issue is the potential for a commit to “starve”, as might happen if it has

never been observed to fail and if the pace at which new commits arrive causes the

queue to remain full. This possibility is reduced by the fact that a commit’s execution

counter continues to be incremented, increasing the chance that it will eventually be

scheduled; we return to this issue later in this paper.

For clarity, our presentation of CCBP simplifies some implementation details. For

example, we do not prioritize unless we have multiple items in the commitQ and we

keep a separate data structure for test suites to avoid recomputing test data across

queued commits. Furthermore, to support the simulation of various settings we have

included mechanisms by which to manipulate certain variables, such as the number

of resources available and the frequency of commit arrivals. We discuss these aspects

of the approach more extensively in Section 4.3.3.
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T1,T2 T2 T1,T3,T4

T1,T3,T4

T2,T3

I Commit	 I	Arrives

Commit	Execution

Commit	Queued

Commit	Test	Ends

Commit	tests

A B C

D

E

• onCommitTestEnds as	commit	C	is	processed
• commitQ.prioritize {D,E,F}
• E is	selected	due	to	higher	failRatio as	per	recent	failing	T2

T1,		T5
F

• onCommitTestEnds as	commit	E	is	processed
• commitQ.prioritize {D,F}
• F is	selected	due	to	higher	exeRatio as	T5	has	not	

been	recently	executed
T2

G

• onCommitTestEnds as	commit	F is	
processed

• commitQ.prioritize {D,G}
• D	is	selected	due	to	higher	failRatio as	per	

recent	failing	T1

Figure 3.4: CCBP example.

3.2.2 Example

Figure 3.4 provides an example to illustrate Algorithm 1. For simplicity, we set pa-

rameters failWindowSize and exeWindowSize to two, and the number of computing

resources to one. Commits are designated by uppercase letters and depicted by dia-

monds; they arrive at times indicated by left-to-right placement. When a commit is

queued it is pushed down a line. Bulleted text in rectangles indicates steps in CCBP

that occur at specific points of time.

The example begins with the arrival of commit A, with test suites T1 and T2. A is

executed immediately because the resource is available. After A has been processed,

commit B arrives, with test suite T2, and T2 fails. After B completes, commit C

arrives, with test suites T1, T3, and T4. While C is being processed, commits D, E,

and F arrive but since resources are not available they are added to commitQ. After
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C completes, since commitQ contains multiple commits, it is prioritized. In this case,

commit E is placed first because its failRatio is higher than those for D and F (E is

associated with test suite T2, which failed within the last two commits). After E has

been processed, commitQ is prioritized again, and F is selected for execution because

its test suite, T5, has not been executed within the execution window. While F is

executing, its test suite T1 fails; also, commit G arrives and is added to commitQ.

When F finishes, commitQ is prioritized again. This time, D is placed first for

execution because of the recent failure of its test suite, T1.

Two aspects of this example are worth noting. First, queued commits are prior-

itized continuously based on the most recent information about test suite execution

results. Second, although test failure history is the main driver for prioritization,

in practice, failing commits are less common than passing commits; this renders the

execution window relevant, and useful for reducing the chance that a commit will

remain in the queue for an unduly long time.

3.3 Empirical Study

We conducted a study with the goal of investigating the following research question.

RQ: Does CCBP improve the rate of fault detection when applied within a continuous

integration setting?

3.3.1 Objects of Analysis

As objects of analysis we utilize the CI data sets mentioned in Section 2.2: two from

the Google Dataset and one from Rails, a project managed under Travis CI.

Jingjing Liang

update from section 2 to section 2.2
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3.3.2 Variables and Measures

3.3.2.1 Independent Variables

We consider one primary independent variable: prioritization technique. As prior-

itization techniques we utilize CCBP, as presented in Section 3.2, and a baseline

technique in which test suites are executed in the original order in which they ar-

rive. We also include data on an optimal order – an order that can be calculated

a-posteriori when we know which test suites fail, and that provides a theoretical

upper-bound on results. In our extended analysis, we also explore some secondary

variables such as available computing resources, the use of continuous prioritization,

and failure window size.

3.3.2.2 Dependent Variables

CCBP attempts to improve the rate of fault detection as commits are submitted.

Rate of fault detection has traditionally been measured using a metric known as

APFD [13]. The original APFD metric, however, considers all test suites to have

the same cost (the same running time). Our test suites and commits di↵er greatly

in terms of running time, and using APFD on them will misrepresent results. Thus,

we turn to a version of a metric known as “cost-cognizant APFD” (or APFD

C

).

APFD

C

, originally presented by Elbaum et al. [12], assesses rate of fault detection

in the case in which test case costs do di↵er.2

The original APFD

C

metric is defined with respect to test suites and the test

cases they contain. Removing the portion of the original formula that accounts for

fault severities, the formula is as follows. Let T be a test suite containing n test

cases with costs t1, t2, . . . , tn. Let F be a set of m failures revealed by T . Let TF
i

be

2
APFDC also accounts for cases in which fault severities di↵er, but in this work we ignore this

component of the metric.
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the first test case in an ordering T

0 of T that reveals failure i. The (cost-cognizant)

weighted average percentage of failures detected during the execution of test suite T 0

is given by:

APFD

C

=

P
m

i=1(
P

n

j=TFi
t

j

� 1
2tTFi)P

n

j=1 tj ⇥m

(3.1)

In this work, we do not measure failure detection at the level of test cases; rather,

we measure it at the level of commits. In terms of the foregoing formula, this means

that T is a commit, and each t

i

is a test suite associated with that commit. At an

“intuitive” level, APFD

C

represents the area under the curve in a graph plotting

failure detection against testing time, such as shown in Figure 3.3.

3.3.3 Study Operation

On the GSDTSR and Rails datasets, we simulated a CI environment. We imple-

mented CCBP as described in Section 3.2, using approximately 600 lines of Java.

Our simulation walks through the datasets, prioritizes commits, simulates their ex-

ecution, and records when failures would be detected, providing data for computing

APFD

C

.

CCBP utilizes failure and execution window sizes (parameters failWindowSize and

exeWindowSize in Algorithm 1); here we refer to these as W
f

and W

e

, respectively.

For this study, we chose the value 500 for both W

f

and W

e

, because in preliminary

work we found that di↵ering values (we tried 10, 50, 100, 200, 500 and 1000 for each)

did not make substantial di↵erences.

Our simulation requires us to identify commits and their duration in the two

datasets. In the Google dataset, each distinct “Change Request” is a commit id;

thus, all test suite execution records with the same Change Request are considered
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to be in the same commit. In the Rails dataset, each test suite execution record has

its own “Build Number”; thus, all test suite execution records with the same Build

Number are considered to be in the same commit. In the Google dataset, each test

suite execution record has a “Launch Time” and an “Execution Time”, from which we

can calculate the test suite’s “End Time”. We then order the test suites in a commit

in terms of Launch Times, end-to-end, using their End Times as Launch Times for

subsequent test suites. In the Rails dataset, each test suite execution record has a

“Build Start Time”, a “Build Finish Time”, and a “Build Duration Time”. Where

possible, as the duration of each commit, we used Build Duration Time. In cases in

which a build was stopped and restarted at a later point, we calculated the commit

duration as Build Finish Time minus Build Start Time.

We usually assume that a single computing resource is available. An exception

occurs in the second subsection of Section 3.4, where we explicitly explore tradeo↵s

that occur when the number of computing resources increases.

As a final note, in practice, we expect that CCBP could be granted a “warmup”

period in which it monitors commit failure and execution information, allowing it

to make more e↵ective predictions when it begins operating. In this work, we did

not utilize a warmup period. As a result, when prioritizing commits in the early

stages of processing datasets, CCBP may not do as well as it would in the presence of

warmup data. Our results may thus understate the potential e↵ectiveness of CCBP

in practice.

3.3.4 Threats to Validity

Where external validity is concerned, we have applied CCBP to three extensive

datasets; two of these are drawn from one large industrial setting (Google) and the

third from an open-source setting (Rails). The datasets have large amounts and high
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rates of code churn, and reflect extensive testing processes, so our findings may not

extend to systems that evolve more slowly. We have compared CCBP to a baseline

approach in which no TCP technique is used, but we have not considered other alter-

native TCP techniques (primarily because these would require substantial changes to

work under the CI settings we are operating in). While we have provided an initial

view of the e↵ect that variance in the numbers of computing resources available for

use in testing can have, most of our results are based on a simulation involving a

single computing resource. These threats must be addressed through further studies.

Where internal validity is concerned, faults in the tools used to simulate CCBP on

the datasets could cause problems in our results. To guard against these, we carefully

tested our tools against small portions of the datasets, on which results could be

verified. Further, we have not considered possible variations in testing results that

may occur when test results are inconsistent (as might happen in the presence of

“flaky test suites”); such variations, if present in large numbers, could potentially

alter our results.

Where construct validity is concerned, we have measured e↵ectiveness in terms of

the rate of fault detection of test suites, using APFD

C

. Other factors, such as whether

the failure is new, costs in engineer time, and costs of delaying fault detection are not

considered, and may be relevant. In addition, APFD

C

itself has some limitations

in this context, because it is designed to measure rate of fault detection over a fixed

interval of time (e.g., the time taken to regression test a system release); in that

context, ultimately, any test case ordering detects all faults that could be detected

by the test suite that is being utilized. In the CI context, testing does not occur in a

fixed interval; rather, it continues on potentially “forever”, and the notion of all test

case orderings eventually converging on detection of 100% of the faults that could be

detected at a certain time does not apply. Finally, our cost numbers (test execution
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Figure 3.5: APFD

C

on GooglePre

times) are gathered on only one specific machine.

3.4 Results and Analysis

Figures 3.5, 3.6, and 3.7 summarize the results of applying CCBP to each dataset. In

each figure, the x-axis represents the percentage of testing time, the y-axis represents

the percentage of failing commits detected, and the three plotted lines correspond to

the original commit ordering, the inter-commit ordering produced by CCBP, and the

optimal commit ordering, respectively.

The figures reveal two distinct patterns. On the one hand, for GooglePre and

GooglePost, the space available for optimizing the commit order to improve the rate

of failure detection is clearly noticeable. The di↵erences between the original and

optimal orders are 20% and 25% for GooglePre and GooglePost, respectively. In

both cases CCBP, although still far from optimal, is able to provide gains on that
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Figure 3.6: APFD

C

on GooglePost
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space over the original ordering, of 9% and 12%, respectively.

The space available for optimization in Rails, on the other hand, is almost non-

existent. The optimal and original orders overlap and their APFD

C

values do not

di↵er until the second decimal place. We conjecture that in this case the commit

arrival rate is low enough (Table 2.1, row 3), for the resources available, that commits

do not queue in large enough numbers to benefit from prioritization.

We explored this conjecture further by compressing the five months of Rails data

into one month (by changing all the months in all the date-type fields to March)

to cause artificial queuing of commits, and then applying CCBP. Figure 3.8 shows

the results (hereafter referred to as “Rails Compressed” data), and they support our

conjecture. Having compressed commit arrivals, there is now space for improving

the rate of failure detection and CCBP does provide gains of 6% over the original

order. This figure also illustrates an interesting situation: within the first 25% of the

testing time, the inter-commit order created by CCBP underperforms the original

order. This occurs because early in the process, CCBP does not have enough failure

history data to make informed prioritization decisions. This points to the previously

mentioned need for a “warm-up” period to collect enough history before applying

CCBP.

3.4.1 The “Continuous” in CCBP Matters

To better understand CCBP’s e↵ectiveness gains we performed a follow up exper-

iment. We designed an inter-commit prioritization technique that uses the same

heuristics as CCBP but prioritizes queued commits only once. The technique em-

ploys two queues: one for arriving commits and one for prioritized commits. When a

resource becomes available, the highest priority commit from the prioritized queue is
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Figure 3.8: APFD

C

on Rails-Compressed

chosen or, if that queue is empty, the arriving queue is prioritized and moved to the

prioritized queue.

Table 3.2 compares the APFD

C

results of this one-time per commit prioritization

scheme to CCBP. Across the three datasets on which CCBP produced improvements

in the rate of fault detection (GooglePre, GooglePost, Rails Compressed), continuous

prioritization provided at least half of the increases in APFD

C

. For example, for

Rails-Compressed, the APDF

C

under original was 48.84%, when prioritized only one

time it increased to 51.22%, and when prioritized with CCBP it increased to 54.7%.

We also note that CCBP prioritization was triggered 3265 times for GooglePre, 8840

for GooglePost, 3703 for Rails, and 5599 for Rails Compressed, an average of 1.8

times higher than with the “One Time” technique. Prioritizing only once means that

we miss the latest failure information generated while the commits are waiting in the

queue – information that is key for e↵ective prioritization. This is an important dis-

covery, because all previous prioritization approaches that we are aware of prioritize

queued items just once. Clearly, as new failure information emerges there are oppor-
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tunities to benefit from operating continuously to better match CI environments.

3.4.2 Trading Computing Resources and Prioritization

If a su�cient number of computing resources are available, commits do not queue up,

rendering prioritization unnecessary. As discussed previously, however, computing re-

sources are costly and not always readily available. We briefly explore this relationship

by simulating what would occur with the APFD

C

values of GooglePost if the exist-

ing computing resources were repeatedly doubled. Table 3.3 summarizes the results.

As expected, increasing the computing resources increases APFD

C

values because

more commits can be processed in parallel. For the dataset we consider, the gains

saturate around APFD

C

= 85.5, when the resources are multiplied by eight. Also

as expected, the opportunities for prioritization to be most e↵ective are greater when

computing resources are most scarce (the most noticeable gains achieved by CCBP

compared to the original orders occur when there are just one or two resources).

In this context, however, it is most interesting to focus on the tradeo↵s across

these dimensions. For example, if we could prioritize optimally, we could obtain larger

APFD

C

gains compared to the original ordering with a single computing resource

than if we had duplicated the resources without using any prioritization scheme.

Similarly, although not as appealing, CCBP can provide almost half of the gains

(12%) that would be achievable by duplicating the computing resources from one to

two on the original ordering (25%). Last, since CCBP allows for the incorporation

Table 3.2: APFD

C

for Continuous vs. One-Time Prioritization
CCBP

Original One Time Continuous Optimal

GooglePre 46.74 47.97 55.35 66.60

GooglePost 50.48 55.27 62.06 76.31

Rails 55.45 55.45 55.45 55.46

Rails Comp. 48.83 51.22 54.70 66.06
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Table 3.3: APFD

C

on GooglePost across Computing Resources
CP Original CCBP Optimal

1 50.4780 62.0566 76.3059

2 75.2413 79.8735 84.3087

4 84.4399 85.0662 85.4634

8 85.4918 85.4993 85.5071

16 85.5074 85.5075 85.5079

of resources on the fly, one could let CCBP request additional computing power

when the size of the commit queue reaches a threshold, and release resources when

prioritization su�ces.

3.4.3 On the Speed of Prioritization

We have argued that for prioritization to operate in CI environments it needs to be

fast. Quantifying what fast means depends on how fast the CI environment operates.

For our datasets, as shown in Table 2.1, the average commit duration (measured

from the time the commit’s first test suite begins executing until the last test suite

completes execution) is 1159 seconds for GooglePre, 948 seconds for GooglePost, and

1505 seconds for Rails.

When run on a Macbook Pro, to provide a prioritized order of commits, CCBP’s

execution time averaged 0.04 seconds for GooglePost, 0.01 seconds for GooglePre, and

0.0005 seconds for Rails. The di↵erences in prioritization times were due primarily

to commit queue sizes – longer queues required more time to update and prioritize

(via the commit.updateCommitInformation procedure in Algorithm 1). Even if we

run the prioritization algorithm twice per commit (this is the worse case: once for

each commit arrival and once for each commit completion), the overhead per commit

is less than 0.008% for all datasets. With such performance, we estimate that CCBP

could easily be incorporated into the workflow of CI.
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3.4.4 On the E↵ect of W
f

Selection

a key parameter in Algorithm 1. Previous studies have explored the impact of dif-

ferent window sizes defined in terms of “time since the last observed failure” [15]

and reasoned that if the selected W

f

is too small, prioritization may not be sensitive

enough to relevant failures. Previous work also showed that if this window is too

large, too many test cases would have failed within the window, diluting the value of

the most recent failures and reducing the opportunities for e↵ective prioritization.

Given this potential range of e↵ects and the fact that we are operating at the

commit level, we decided to again explore a range of failure window sizes in terms

of the number of commits. To our surprise, we found that at the commit level the

approach was more robust to the choice of W

f

. More precisely, failure windows

between 10 and 500 commits achieved similar results.

Despite this finding, the reason for choosing large enough windows still holds.

We observe that when test suites fail, they tend to do so in spurts. Windows of

commits large enough to contain those spurts are e↵ective. Figure 3.9 illustrates

this for GooglePost. In the figure, the x-axis corresponds to commits ids, the y-axis

corresponds to test suite ids, and the circles indicate when a test suite failed. As

noted earlier, a small percentage of test suites fail, but in the figure we can also see

that, for the original commit ordering, failures on a given test suite usually occur in

small clusters (sequences of points for a given test suite across commits). As long as

W

f

is as large as most of those clusters (W
f

� 10), then the prioritization scheme

functions e↵ectively. Less intuitive is the notion that having much larger windows (of

up to 500 commits) does not negate the benefits of the approach. We believe this is

due to the small portion of test suites that exhibit failures (10% to 20% across the

datasets). With such a failure rate, larger windows do not result in a major influx
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Figure 3.9: Test suite failures over commits for GooglePost

of failure information. This means that, at least for this level of failure rates, the

approach based on test suite failure history information may be more resilient than

anticipated to dilution e↵ects.

3.4.5 Prioritizing Test Suites Within Commits has Limited

Impact

Traditionally, prioritization e↵ectiveness has been measured in terms of how soon

test cases or test suites detect faults. In this work, because we focus on how soon a

failing commit is detected, we measure cost-e↵ectiveness in terms of how soon failing

commits are detected. In this context, just one failing test suite was required to

consider a commit to have failed. Under that reference measure, CCBP does not

attempt to improve test suite ordering within a commit; instead it simply modifies

the order of queued commits.

If we were to focus again on how soon test suites detect failures, then CCBP

might be enhanced by further prioritizing test suites within each commit. We ex-

plored such an enhancement with both the GooglePre and the GooglePost datasets,
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measuring APFD

C

over the percentage of test suites executed. We prioritized with

three techniques: (1) CCBP as defined, (2) CCBP with intra-commit prioritization of

test suites, and (3) the original order with intra-commit prioritization of test suites.

For the GooglePre dataset, we found that neither technique 2 nor technique 3 pro-

vided much improvement over CCBP in terms of e↵ectiveness. We attribute this to

the large proportion of distinct failing test suites in this dataset, which makes failure

prediction at the test suite level ine↵ective (even though when failures are aggregated

at the commit level they provide noticeable gains). For the GooglePost dataset the

APFD

C

for CCBP was 17% greater than for technique 3, and technique 2 provided

only a 0.5% gain, rendering the contribution of intra-commit prioritization marginal.

3.4.6 Delays in Detecting Failing Commits

Although the APFD

C

metric measures the rate of fault detection, it can be useful

and more intuitive to compare techniques’ cost-e↵ectiveness in terms of the reduc-

tion in delays to detect failing commits under the di↵erent orderings. It is these

reductions in delays that allow prioritization to provide potential advantages to de-

velopers. To capture the notion of delays, we accumulated failing commit time di↵er-

ences between CCBP and the original commit order. More specifically, we compute

P
n

f=1(commit

f

.startT ime+commit

f

.duration/2) (this last term assumes an average

time for a commit to fail) over all the failing commits f under CCBP and the original

order, and normalize that by the number of failing commits in each artifact (267, 1022,

and 574 failing commits for GooglePre, GooglePost, and Rails respectively as per Ta-

ble 2.1, row 2). The findings are consistent with those reported earlier. On average,

CCBP reduces the delays in detecting failing commits by 46 hours for GooglePre, 135

hours for GooglePost, and 69 hours for Rails Compressed, while achieving no reduc-
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tions for Rails. These delay reductions, although significant, are in computing hours,

and as such, can be reduced by using multiple computing resources as described pre-

viously. Still, as we argued earlier, computing resources come with a cost and CCBP

reduces feedback time without incurring additional costs. Since our dataset does not

provide information on resource availability we leave further assessment of the impact

of delays on developer’s time for future work.

3.5 Summary

We have presented a novel algorithm, CCBP, for increasing the rate of fault detection

in CI environments via prioritization. Unlike prior algorithms, CCBP prioritizes at

the level of commits, not test cases, and it does so continuously as commits arrive

or complete. CCBP is lightweight and operates quickly, allowing it to be su�ciently

responsive in CI environments. Our empirical study shows that after prioritization,

our technique can e↵ectively detect failing commits earlier.

Jingjing Liang
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Chapter 4

Test Suite Level Selection for CI

As we noted in Chapter 1, most existing RTS techniques utilize instrumentation to

track the code executed by test cases, and then analyze code changes and relate

them to these test executions. Those techniques cannot be cost-e↵ectively applied

in CI environments. Alternatively, we could utilize the test suites’ execution history

information for prediction. In this chapter, we provide our new algorithms that do

this, and the results and analysis of our empirical study of those algorithms.

4.1 Motivation

There are two key motivations for this work. First, the RTS approach for CI presented

by Elbaum et al. [15] was promising, but the windows that that technique relies on

are measured in terms of time, which is limited when the rate of test suite arrival

varies. Second, existing RTS techniques for CI only utilize test suites’ execution

status history to do selection, but fail to consider information about “pass to fail”

transitions.

As noted in Chapter 1, a wide range of RTS techniques have been developed and
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studied, and could potentially be applied in the CI context. In practice, however,

existing techniques will not su�ce. Codebases that are under continous integra-

tion undergo frequent changes; the Google codebase, for example, undergoes tens of

changes per minute [21]. Most existing RTS techniques utilize instrumentation to

track the code executed by test cases, and then analyze code changes and relate them

to these test executions. The rate of code churn in the Google codebase, however,

is quite large, and this can cause code instrumentation results to quickly become

inaccurate. In such situations, keeping coverage data up to date is not feasible [11].

Elbaum et al. [15] provided a lightweight RTS technique for CI which utilizes two

windows based on time (we refer this as the TB technique) to track how recently test

suites have been executed and revealed failures, and use this information to select a

subset of test suites for execution. This technique is based on the conjecture that

an RTS approach that selects test suites based on some “failure window” might be

cost-e↵ective in continuous testing. This is because it has long been suggested, in

the testing literature, that some test cases (or test suites) are inherently better than

others at revealing failures [29]. In an evolving system, test suites that have failed on

a recent version are in some ways “proxies” for code change – they target code that is

churning. This technique defines an Execution Window (W
e

) and a Failure Window

(W
f

) based on time. Essentially, if W
e

is defined to be t
e

hours, and W

f

is defined to

be t

f

hours, then when considering test suite T , if T has failed within t

f

hours, or if

T has not been executed within t

e

hours, T will be selected. New test suites are also

necessarily selected.

Table 4.1 provides an example that illustrates how TB works. Because TB con-

siders a given test suite in isolation from others, the table provides data on just a

single test suite t1, with each row providing data on arrivals of that test suite into the

testing queue, in turn, from top to bottom. Column 3 (“Status”) indicates whether

Jingjing Liang
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the test would pass or fail in a given execution if it were executed, i.e., if a retest-all

approach were being used. Column 4 (“Launch Time”) indicates the time at which

the test suite arrives in the queue. Column 5 (“TB Decision”) indicates what would

happen to the test suite given the use of the TB algorithm, with “p” representing the

case in which the test suite would be “executed and pass”, “s” representing the case

in which the test suite would be “skipped”, and “f” representing the case in which

the test suite would be “executed and fail”.

Table 4.1: TB Selection Process

TS ID Status Launch Time TB Decision

1 t1 pass 00:00 p
2 t1 fail 00:05 s
3 t1 pass 02:10 p
4 t1 fail 03:15 s
5 t1 fail 05:20 f
6 t1 fail 05:50 f
7 t1 pass 06:30 p
8 t1 pass 07:35 s

Suppose that W

e

= 2 hours and W

f

= 1 hour. When t1 first arrives it is new,

so the algorithm initializes its execution-related data (data related to prior execution

times and pass/fail status) and causes it to execute. When t1 arrives again, 5 seconds

later, it has executed within the execution window, and has not failed within the

failure window, so the algorithm skips it. When t1 next arrives, at time 02:10, it has

had no failures within the failure window but its most recent execution is outside

the execution window, so it is executed again, and passes. On its fourth arrival at

03:15, t1 has no failures within the failure window and its most recent execution is

within the execution window so it is skipped. On its fifth arrival at 05:20, t1’s most

recent execution is outside the execution window, so it is executed and fails. On its

sixth arrival at 05:50, t1 has failed within the failure window so it is again executed
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Figure 4.1: Flow of incoming test suites for Rails over seven days

and again fails. On its seventh arrival at 06:30, t1 has again failed within the failure

window so it is executed again, and passes. Finally, on its last arrival at 07:35, t1 has

not failed within the failure window, and has executed within the execution window,

so it is skipped.

This TB technique, however, does not consider the rate of test suite arrival, and

this can matter. For example, consider the graph of test suite arrivals for Rails

shown in Figure 4.1. Figure 4.1 presents data on test suites executed during Rails

testing over a one week period. The horizontal axis depicts daily time periods (labels

correspond to UTC), and the vertical axis depicts the number of test suite executions

occurring. As the figure shows, there are many periods of multiple hours in which no

test suites arrive at all. In such cases, failure window sizes that are shorter than these

periods of time will cease to contain failing test suites, even though some test suites

that failed in their most recent runs should perhaps be re-run. Moreover, execution

window sizes that are shorter than these periods of time will cause all test suites that

arrive to be selected for execution.

To address this problem, an alternative is to use window sizes that are based on

numbers of test suite executions rather than time windows, which we call the Count-

Based technique (CB) in this thesis. We present such a technique in Section 4.2.1.

As a second issue, the TB and CB RTS technique are based on the history ex-
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ecution result (pass or fail status) of test suites’ executions. An advantage of these

result-based techniques is that, for any test suite, if a failure is detected only once, it

would be selected for execution again and again, and more failures could be detected.

Obviously, these result-based techniques could improve the detection of transitions

from “fail” to “fail”. However, these techniques do not consider that it can be much

more di�cult to detect an initial failure, which in another word, represents a “pass

to fail” transition.

The TB technique example in Table 4.1 helps motivate a technique that focuses

on “pass to fail” transitions. From this execution process, we can see that it is much

harder to detect a “pass to fail” transition (the 2nd and 4th test arrival) than a “fail to

fail” transition (the 6th arrival). If the test suite has detected a failure, then this test

suite will be executed again and again to check whether the problem leading to the

failure has been resolved. However, a new failure (from a “pass” to “fail” transition)

is detected based on W

e

. And if a new failure has been detected, the following failures

will be detected more easily.

In addition, as suggested earlier in Chapter 1, “pass to fail” transitions could

provide engineers with more information than just “pass to pass”,“fail to pass” or

“fail to fail” transitions.

Figure 4.2 shows “transition graphs” for Google Pre. In Figure 4.2, there are three

statuses, “new”, “pass” and “fail”, representing three test suite execution statuses

respectively. The directed edges represent the transitions from one status to another.

The numbers on the directed edges represent the percentages of certain transitions.

For example, the directed edge from “pass” to “fail” and the number 0.079 on the

edge indicates that in the Google Pre dataset, 0.079% of all transitions are “pass to

fail” transitions. By comparing the transition percentages, we can see that 99.246%

of transitions are “pass to pass” transitions, and 0.072% of transitions are “fail to

Jingjing Liang
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Pass99.246 Fail
0.079
0.079

0.072

New

0.523 0.001

Figure 4.2: Test suites transitions on Google Pre

fail” transitions, which is even slightly lower than “pass to fail” transitions (0.079%).

As Figure 4.2 shows, for Google Pre, most transitions are “pass to pass” transi-

tions (99.246%), and such transitions tell us only that the testing is successful. RTS

techniques, however, aim to detect more malfunctions with less tests; therefore, we

want to select as few of these transitions as possible. The “fail to fail” transitions

could indicate that the same problem still exists, or that some other new problems

have occurred. Doing the actual testing process, developers will definitely look for

such problems and re-execute the program to check whether these problems are fixed

when a failure occurs, so these transitions are less important to select. The “fail to

pass” transitions could tell us that a problem has been fixed and there is no need

to select a test again for execution. In contrast to all of these, the “pass to fail”

transitions signal that a new problem has occurred, and if the test suite repetitively

has “pass to fail” transitions, it could provide us with more information about code

changes, and we could assume that code related to the test is churning.

We conjecture that if we are able to detect more “pass to fail” transitions, then

we are able to detect more “fail to fail” transitions, and as a result, we could predict

failures more precisely. Therefore, we provide a Transition-Based RTS technique (we

refer this as the TrB technique), which keeps track of the percentage of each test suites’

“pass to fail” transitions in addition to just utilizing two windows. For example, when

Jingjing Liang
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deciding whether to execute a given test suite T that is being considered for execution,

the technique considers whether T has failed within the past W
f

test suite executions,

whether T has not been executed at all during the pastW
e

test executions, or whether

T ’s percentage of “pass to fail” transitions is higher than a random number R, and

bases its selection on that. We present this technique in Section 4.2.2.

4.2 Approach

We now present our Count-Based technique (CB) and Transition-Based technique

(TrB) algorithms.

4.2.1 Count-Based RTS Approach

As mentioned in Section 4.1, windows based on numbers of test suite executions

could address the issues that arise when the rate of test suite arrival varies. The

CB approach utilizes the same method as the TB technique provided by Elbaum

et al. [15]. The only di↵erence is that the selection windows of the TB technique

are based on time, whereas the selection windows of the CB technique are based on

numbers of test suite executions.

Algorithm 2 presents the CB algorithm. In this case, instead of taking a test suite

T

i

and two time window sizes as parameters, the algorithm takes a test suite T

i

and

two integer parameters, exeWindowSize and failWindowSize, corresponding to the

sizes of the execution window and failure window, and measured in terms of numbers

of test suites. In this work, we set the parameters to specific constant values, but in

practice they could be adjusted based on changing conditions.

Lines 5-8 initialize data for new test suites. Whenever a new test suite arrives

(a new test suite suite is a distinct test suite that hasn’t been executed before),
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Algorithm 2: CB: Selecting Test Suites

1 parameter failWindowSize
2 parameter exeWindowSize
3 parameter Ti

4 Algorithm selection()

5 if Ti is new then

6 Ti.numSinceLastExe  0 ;
7 Ti.numSinceLastFail  1 ;

8 end

9 if Ti is new

10 or Ti.numSinceLastExe > exeWindowSize

11 or Ti.numSinceLastFail  failWindowSize

12 then

13 execute(Ti) ;

14 else

15 skip(Ti);

16 end

17 Procedure execute(Ti)

18 Ti.execute() ;
19 Ti.numSinceLastExe 0 ;
20 if Ti.state.equals(failed) then
21 Ti.numSinceLastFail  0 ;
22 else

23 Ti.numSinceLastFail  Ti.numSinceLastFail + 1;
24 end

25 Procedure skip(Ti)

26 Ti.numSinceLastExe  Ti.numSinceLastExe + 1 ;
27 Ti.numSinceLastFail  Ti.numSinceLastFail + 1;

it will be assigned two variables: T

i

.numSinceLastExe and T

i

.numSinceLastFail.

T

i

.numSinceLastExe records the number of times that T
i

has arrived but has been

skipped since its last execution, and is initially set to 0. T
i

.numSinceLastFail records

the number of times that T
i

has arrived but has been skipped or has not failed since

its last failure, and is initially set to 1.

The selection process has three conditions: (1) if the T

i

is new; (2) if T

i

has

been skipped more than exeWindowSize times; and (3) if T

i

has been executed

and observed to fail within failWindowSize times. If any of the three conditions

is satisfied, then T

i

should be executed, so Execute(T
i

) (Lines 17-24) is invoked. If

none of the three conditions are satisfied, then T

i

should be skipped, so Skip(T
i

)
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(Lines 25-27) is invoked. If Execute(T
i

) is invoked, then T

i

is executed, and the

corresponding parameter T

i

.numSinceLastExe is reset to 0. If T
i

fails, then T

i

’s

parameter T

i

.numSinceLastFail is reset to 0; otherwise, T
i

.numSinceLastFail is

incremented by 1. If Skip(T
i

) is invoked, then both T

i

.numSinceLastExe and

T

i

.numSinceLastFail are incremented by 1.

Table 4.2 provides an example that illustrates how the CB algorithm works. The

table is similar to Table 4.1, and illustrates the same pattern of test executions, with

the exception that the column “Launch Time” is no longer needed.

Table 4.2: CB Selection Process

TS ID Status CB Decision

1 t1 pass p
2 t1 pass s
3 t1 pass s
4 t1 fail f
5 t1 fail f
6 t1 pass p
7 t1 pass s
8 t1 pass s

Suppose that exeWindowSize = 2 and failWindowSize = 1. When t1 first

arrives it is new, so the algorithm initializes its execution-related data (data related

to the numbers of executions that have occurred since t1 was last executed, and the

number of executions since its last failure) and causes it to execute. Because t1 does

not fail, its next two arrivals are skipped. On its fourth arrival, exeWindowSize is

exceeded, so t1 is executed and the result is “fail”. Because failWindowSize = 1, on

its fifth arrival t1 must be executed; it fails again and thus on its sixth arrival must

be executed again. In this case t1 passes, so on its last two arrivals it is skipped.

For datasets like Google Pre and Google Post, that only contain “pass” and “fail”

execution statuses, we only need two window sizes: exeWindowSize (W
e

) and fail-
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WindowSize (W
f

) (as in Algorithm 2).

For datasets that contain more than just “pass” and “fail” execution statuses,

we need more parameters. As mentioned in Section 2.2.3.3, in addition to “pass”

and “fail”, the Rails dataset contains two more test suite result statuses: “error”

and “failerror”. In order to detect “error” and “failerror” statuses, we use exactly

the same method as to detect “fail” status. We add two more integer parameters,

errorWindowSize (W
err

) and failerrorWindowSize (W
failerr

), corresponding to the

sizes of the error window and failerror window, and measured in terms of numbers of

test suites. Whenever a new test suite arrives, it will be assigned two more variables:

T

i

.numSinceLastError and T

i

.numSinceLastFailError. T

i

.numSinceLastError

records the number of times that T

i

has arrived but has been skipped or has not

encountered an “error” status since its last “error” status, and is initially set to 1.

T

i

.numSinceLastFailError records the number of times that T
i

has arrived but has

been skipped or has not encountered an “failerror” status since its last “failerror”

status, and is initially set to 1.

The selection process also has two more conditions: (1) if T
i

has been executed

and observed to encounter an “error” status within errorWindowSize times; and (2) if

T

i

has been executed and observed to encounter a “failerror” status within failerror-

WindowSize times. If any of the five conditions (these two additional conditions plus

the previous three) is satisfied, then T

i

should be executed, so Execute(T
i

) (Lines 17-

24) is invoked. If none of the five conditions are satisfied, then T

i

should be skipped,

so Skip(T
i

) (Lines 25-27) is invoked. In the Execute(T
i

) and Skip(T
i

) processes,

we also need to update T

i

.numSinceLastError and T

i

.numSinceLastFailError.

If Execute(T
i

) is invoked, then T

i

is executed, and the corresponding parameter

T

i

.numSinceLastExe is reset to 0. If T
i

fails, then T

i

’s parameter T
i

.numSinceLastFail

is reset to 0, but T

i

.numSinceLastError and T

i

.numSinceLastError are incre-
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mented by 1; if T
i

occurs an “error” status, then T

i

.numSinceLastError is reset

to 0, but T
i

.numSinceLastFail and T

i

.numSinceLastFailError are incremented by

1; if T
i

occurs a “failerror” status, then T

i

.numSinceLastFailError is reset to 0, but

T

i

.numSinceLastFail and T

i

.numSinceLastError are incremented by 1; otherwise,

T

i

.numSinceLastFail, T
i

.numSinceLastError and T

i

.numSinceLastFailError are

incremented by 1. If Skip(T
i

) is invoked, then T

i

.numSinceLastExe, T
i

.numSinceLastFail,

T

i

.numSinceLastError and T

i

.numSinceLastFailError are incremented by 1.

To simplify the combinations of W
e

, W
f

, W
err

and W

failerr

, we assign the same

values to W

f

, W
err

and W

failerr

, which means that the three types of malfunctions

have the same window sizes.

4.2.2 Transition-Based RTS Approach

As noted in Section 4.1, a new “failure” (transition from “pass to fail”) could provide

more information about new changes in the codebase. If we are able to detect more

“pass to fail” transitions in test suites, we are able to provide more precise predictions

of transitions both from “pass to fail” and “fail” to “fail”. To address this issue, we

improve the CB technique by adding one more condition: whether the test suite’s

“pass to fail” transition ratio is greater than a random number.

Algorithm 3 presents the TrB algorithm. In this algorithm, there are four param-

eters: a test suite T

i

, two integer parameter (exeWindowSize and failWindowSize),

and a threshold (randomNumber), which is a randomly generated number and ranges

from 0 to 100. The first three parameters are the same as those in the CB algorithm

(Algorithm 2). The exeWindowSize and failWindowSize parameters correspond to

the sizes of the execution and failure windows, and are measured in terms of numbers

of test suites.
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Algorithm 3: TrB: Selecting Test Suites

1 parameter failWindowSize
2 parameter exeWindowSize
3 parameter Ti

4 parameter threshold

5 Algorithm selection()

6 if Ti is new then

7 Ti.numSinceLastExe  0 ;
8 Ti.numSinceLastFail  1 ;
9 Ti.totalTransitions  0;

10 Ti.pfTransitions  0;
11 Ti.pfPercentage  0;

12 end

13 if Ti is new

14 or Ti.numSinceLastExe > exeWindowSize

15 or Ti.numSinceLastFail  failWindowSize

16 or Ti.pfPercentage � threshold

17 then

18 execute(Ti) ;

19 else

20 skip(Ti);

21 end

22 Procedure execute(Ti)

23 Ti.execute() ;
24 Ti.totalTransitions  Ti.totalTransitions + 1;
25 Ti.numSinceLastExe  0 ;
26 if Ti.state.equals(failed) then
27 Ti.numSinceLastFail  0;
28 if Ti.preStatus.equals(passed) then
29 Ti.pfTransitions  Ti.pfTransitions + 1;
30 end

31 else

32 Ti.numSinceLastFail  Ti.numSinceLastFail + 1;
33 end

34 Ti.pfPercentage  (Ti.pfTransitions * 100) / Ti.totalTransitions;

35 Procedure skip(Ti)

36 Ti.numSinceLastExe  Ti.numSinceLastExe + 1;
37 Ti.numSinceLastFail  Ti.numSinceLastFail + 1;

Lines 6-11 initialize data for new test suites. Whenever a new test suite ar-

rives (a new test suite suite is a distinct test suite that hasn’t been executed be-

fore), it is assigned five variables: T

i

.numSinceLastExe, T

i

.numSinceLastFail,

T

i

.totalT ransitions, T
i

.pfTransitions, and T

i

.pfPercentage. T
i

.numSinceLastExe

records the number of times that T

i

has arrived but has been skipped since its last
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execution, and is initially set to 0. T
i

.numSinceLastFail records the number of times

that T

i

has arrived but has been skipped or not failed since its last failure, and is

initially set to 1 . T

i

.totalT ransitions records the total transitions taken by T

i

.

T

i

.pfTransitions records the total number of “pass to fail” transitions, and is ini-

tially set to 0. T
i

.pfPercentage calculates the percentage of “pass to fail” transitions

over the total transitions of T
i

. For example, if T
i

has been executed 5 times with exe-

cution status: “pass”, “fail”, “fail”, “pass”, “fail”, then T

i

.totalT ransitions will be 5,

corresponding to the transitions: “new to pass”, “pass to fail”, “fail to fail”, “fail to

pass” and “pass to fail”. It is also initially set to 0. T
i

.pfTransitions will be 2, since

there are 2 “pass to fail” transitions among the 5 transitions. T

i

.pfPercentage will

be 60% which is calculated by (T
i

.pfTransitions * 100)/T
i

.totalT ransitions, and is

initially set to 0.

The selection process has four conditions (Lines 13-21): (1) if T
i

is new; (2) if T
i

has been skipped more than exeWindowSize times; (3) if T
i

has been executed and

observed to fail within the previous failWindowSize times; and (4) if T
i

’s “pass to

fail” transitions’ percentage is greater than or equal to the threshold (a random num-

ber). If any of these conditions is satisfied, then T

i

will be executed, so Execute(T
i

)

(Lines 22-34) is invoked. If none of these conditions are satisfied, then T

i

will be

skipped, so Skip(T
i

) (Lines 35-37) is invoked. If Execute(T
i

) is invoked, then T

i

will

be executed, T
i

.totalT ransitions will be incremented by 1, and the corresponding

parameter T

i

.numSinceLastExe will be reset to 0. If T
i

fails, then T

i

’s parameter

T

i

.numSinceLastFail is reset to 0; otherwise, T
i

.numSinceLastFail is incremented

by 1. In addition, in the case in which T

i

’s current execution status is “fail” (Line

26) and its previous execution status was “pass” (Line 28), indicating a“pass to fail”

transition, T
i

.pfTransitions is incremented by 1. Finally, T
i

.pfPercentage is calcu-

lated by ( T
i

.pfTransitions * 100)/T
i

.totalT ransitions. If Skip(T
i

) is invoked, then
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both T

i

.numSinceLastExe and T

i

.numSinceLastFail are incremented by 1.

Table 4.3 provides an example that illustrates how the TrB algorithm works. The

table is similar to Table 4.1, and illustrates the same pattern of test executions, with

the exception that there are three more columns: “PF %”, “Random Number” and

“Previous Transitions”. “PF %” records t1’s current pfPercentage when it arrives.

“Random Number” records the generated random number as a percentage. “Previous

Transitions” records the transitions that test suite t1 has made; here, “n” represents

“new”, “p” represents “pass”, and “f” represents “fail”.

Table 4.3: TrB Selection Process

TS ID Status PF % Random Previous TrB
Number (%) Transitions Decision

1 t1 pass 0 40 N/A p
2 t1 pass 0 5 “n!p” s
3 t1 pass 0 31 “n!p” s
4 t1 fail 0 0 “n!p” f
5 t1 fail 50 21 “n!p”, “p!f” f
6 t1 pass 33.3 17 “n!p”, “p!f”, “f!f” p
7 t1 pass 25 92 “n!p”, “p!f”, “f!f”,“f!p” s
8 t1 pass 25 19 “n!p”, “p!f”, “f!f”,“f!p” p

Suppose that exeWindowSize = 5 and failWindowSize = 1. When t1 first

arrives it is new, so the algorithm initializes its execution-related data and causes it

to execute. Since this is the test suite’s first arrival, its PF% (t1.pfTransition) is set

to 0%. Because t1 does not fail, when t1 arrives for the second time, its PF % is 0%

(no “pass to fail” transitions), which is smaller than the random number 5, and is

still within exeWindowSize, so the second arrival is skipped. On t1’s third arrival,

as on its second arrival, it is skipped again. On t1’s fourth arrival, PF % is still 0%,

but the random number is also 0, which satisfies the condition “T
i

.pfPercentage �

randomNumber”, so t1 is executed and the result is “fail”. On t1’s fifth arrival,

because failWindowSize = 1, t
i

is selected for execution. In addition, PF% is 50%
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(currently, t1 has a “new to fail” and a“pass to fail” transition), and PF% is greater

than random number 21, so the fifth arrival satisfies two conditions. Test suite t1 fails

again and thus on its sixth arrival, it must be executed again because of its recently

failure. Since currently t1 has a “new to fail”, a“pass to fail”, and a “fail to fail”

transition, its PF% is updated to 33.3%. In this case t1 passes, and the PF% (25%)

is lower than random number 92%, so on its seventh arrival, it is skipped. On the

last arrival, t1 is executed because its PF% is 25, which is greater than the random

number 19%.

Similar to the Algorithm 2 for the CB technique, Algorithm 3 for the TrB tech-

nique provides a basic algorithm that only considers the case when the dataset

only contains “pass” and “fail” execution statuses. For the Rails dataset that con-

tains more malfunction types, we need more parameters. In order to detect “pass

to error” and “pass to failerror” transitions, we use exactly the same method as

to detect “pass to fail” transitions. We add two more integer parameters, error-

WindowSize (W
err

) and failerrorWindowSize (W
failerr

), corresponding to the sizes

of the error window and failerror window, and measured in terms of numbers of

test suites. Whenever a new test suite arrives, it will be assigned more variables:

T

i

.numSinceLastError, T
i

.peTransitions, and T

i

.pePercentage for the “error” sta-

tus, and T

i

.numSinceLastFailError, T
i

.pfeTransitions, and T

i

.pfePercentage for the

“failerror” status. The selection process also has more conditions: (1) if T
i

has been

executed and observed to encounter an “error” status within errorWindowSize times;

(2) if T
i

has been executed and observed to encounter a “failerror” status within fail-

errorWindowSize times; (3) if T
i

’s “pass to error” transitions’ percentage is greater

than or equal to a random number; and (4) if T
i

’s “pass to failerror” transitions’

percentage is greater than or equal to a random number. All the variables’ updating

process and initial settings are exactly the same as those for the “fail” status.
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To simplify the combinations of W
e

, W
f

, W
err

and W

failerr

, we assign the same

values to W

f

, W
err

and W

failerr

, which means that the three types of malfunctions

have the same window sizes.

4.3 Empirical Study

We wish to evaluate and compare the cost-e↵ectiveness of our two approaches, and

also to assess the e↵ects on cost-e↵ectiveness that result from the use of di↵erent

window sizes.

We conducted a study with the goal of investigating the following research ques-

tion:

RQ: How do our two RTS techniques perform in terms of malfunction detection

and “pass to malfunction” transition detection, and how do their malfunction de-

tection and transition detection vary with di↵erent settings of exeWindowSize (W
e

),

failWindowSize (W
f

), and where applicable, errorWindowSize (W
err

) and failerror-

WindowSize (W
failerr

) on the Rails dataset?

4.3.1 Objects of Analysis

As with our CCBP technique, the objects of analysis we utilize are the CI data sets

described in Section 2: two from the Google Dataset and one from Rails.

4.3.2 Variables and Measures

4.3.2.1 Independent Variables

Our independent variables involve the techniques and windows used. We use the two

techniques presented in Section 4.2: CB and TrB.
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For both the CB and TrB techniques, we utilize six values of failWindowSize (W
f

),

W

f

= {1, 2, 4, 5, 10, 100}.

To compare the performance of the two algorithms more fairly, we chose execution

window sizes that cause the CB and TrB algorithms to select approximately equal

percentages of test suites. This required us to select di↵erent exeWindowSize (W
e

)

values for the two algorithms. For the CB algorithm, the window sizes on Google

Post, Google Pre and Rails are W

e

= {1, 2, 4, 5, 10, 55}. For the TrB algorithm, the

window sizes on Google Post, Google Pre and Rails are W

e

= {1, 2, 4, 5, 10, 100}.

In addition to failWindowSize (W
f

) and exeWindowSize (W
e

), on the Rails dataset,

we also set errorWindowSize (W
err

) and failerrorWindowSize (W
failerr

) for “error”

and “failerror” test suites to W

err

= {1, 2, 4, 5, 10, 100} and W

failerr

= {1, 2, 4, 5,

10, 100}.

4.3.2.2 Dependent Variables

As dependent variables we measure the percentage of failures detected, and the per-

centages of “pass to fail” transitions detected by our techniques, on Google Post and

Google Pre.

For Rails, we also measure the percentages of failures, errors, and failerrors de-

tected, and the percentages of “pass to fail”, “pass to error”, and “pass to failerror”

transitions.

We do the forgoing for each combination of W
e

and W

f

on all three datasets. To

simplify the combinations of pairs, W
err

and W

failerror

use the same value as W

f

.

Details are provided in Section 4.2.1 and Section 4.2.2.
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4.3.3 Study Operation

On the GSDTSR and Rails datasets, we simulated a CI environment. We imple-

mented the CB and TrB techniques presented in Section 4.2, using approximately

400 lines of Java for each. Our simulation walks through the datasets, simulates their

execution, and records when malfunctions and transitions would be detected.

The CB technique utilizes failure and execution window sizes in terms of numbers

of test suites (parameters failWindowSize and exeWindowSize in Algorithm 2), and

reports the number of test suites selected, the number of failures/errors/failerrors

detected, and the transitions of “pass to fail” (“pass to fail”, “pass to error” and

“pass to failerror” on the Rails dataset) detected. It does this by reading each line

from the GSDTSR and Rails datasets, determining whether the test suite in the line

would be executed given the failure and execution windows, and updating the latest

failure and execution information for the test suite. If the test suite is to be executed,

then the implementation updates the test suite counter, the failure counter (if the test

suite resulted in a failure), the error counter and the failerror counter (if the dataset

is Rails and the test suite resulted in an error or a failerror). If the test suite’s

last execution status is “pass” and current execution status is “fail” (“error” and

“failerror” in Rails), then the implementation updates the corresponding transition

counter.

The same as the CB technique, the TrB technique utilizes failure and execution

window sizes in terms of numbers of test suites (parameters failWindowSize and ex-

eWindowSize in Algorithm 3) and the corresponding reporting process is also similar.

A key di↵erence is that the TrB technique utilizes one more parameter: a threshold

(a parameter threshold in Algorithm 3). In the simulation process, in addition to

the processes used for the CB technique, the TrB technique also records each test
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suite’s percentage of “pass to fail” transitions (“pass to error” and “pass to failError”

transitions in Rails). When determining whether the test suite would be executed, in

addition to the failure and execution windows, it also checks whether the percentage

of “pass to fail” transitions (“pass to error” or “pass to failerror” transitions in Rails)

is greater than the threshold. If the transition percentage is greater than the random

number, then the test suite would be executed.

4.3.4 Threats to Validity

Where external validity is concerned, we have applied the CB and TrB techniques

to three extensive datasets; two of these are drawn from one large industrial setting

(Google) and the third from an open-source setting (Rails). The datasets have large

amounts and high rates of code churn, and reflect extensive testing processes, so our

findings may not extend to systems that evolve more slowly. We have compared

the two techniques, but we have not considered other alternative RTS techniques

(primarily because these would require substantial changes to work under the CI

settings we are operating in such as the random selection). We have utilized various

window sizes, but have necessarily limited our choices to a finite set of possible sizes.

We have not considered factors related to the availability of computing infrastructure,

such as variance in numbers of platforms available for use in testing. These threats

must be addressed through further study.

Where internal validity is concerned, malfunctions in the tools used to simulate

our RTS techniques on the datasets could cause problems in our results. To guard

against these, we carefully tested our tools against small portions of the datasets on

which results could be verified. Further, we have not considered possible variations

in testing results that may occur when test results are inconsistent (as might happen

in the presence of “flaky test suites”); such variations, if present in large numbers,

Jingjing Liang




65

could potentially alter our results.

Where construct validity is concerned, we have measured e↵ectiveness in terms

of the rate of malfunction detection, and the rate of pass to malfunction transitions

of test suites, when the percentages of test suite selection are the same. Other fac-

tors, such as whether a failure is new, costs in engineer time, and costs of delaying

malfunction detection are not considered, and may be relevant.

4.4 Results and Analysis

Figures 4.3 - 4.7 use scatterplots to summarize the malfunction detection results of

applying the CB and TrB techniques to each dataset. In each figure, the x-axis

represents the percentage of test suites selected, the y-axis represents the percentage

of malfunctions (including “fail”, “error”, “failerror”) detected, and the red diamonds

represent the CB technique’s results and the blue stars represent the TrB technique’s

results.

Figures 4.8 - 4.12 use scatterplots to summarize the “pass to malfunction” (“mal-

function” includes “fail” in the Google dataset, and “fail”, “error”, and “failerror” in

the Rails dataset) transition detection results of applying the CB and TrB techniques

to each dataset. In each figure, the x-axis represents the percentage of test suites

selected, the y-axis represents the percentage of “pass to malfunction” transitions

detected, the red diamonds represent the CB technique’s results and the blue stars

represent the TrB technique’s results.

Each of the “points” in the figures is generated by a combination of one W
e

value

and oneW
f

(W
err

orW
failerr

) value, and sinceW
e

andW

f

(W
err

orW
failerr

) each have

6 values, there are 36 points for each technique. In each graph, these data points fall

into six discernable “groupings”; each of these corresponds to one of the six choices
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Figure 4.3: Failure detection on Google-
Post
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Figure 4.4: Failure detection on
GooglePre
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Figure 4.5: Failure detection on Rails
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Figure 4.6: Error detection on Rails
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Figure 4.7: FailError detection on Rails
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Figure 4.8: “Pass to Fail” transition de-
tection on GooglePost
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Figure 4.9: “Pass to Fail” transition de-
tection on GooglePre
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Figure 4.10: “Pass to Fail” transition de-
tection on Rails
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Figure 4.11: “Pass to Error” transition
detection on Rails
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Figure 4.12: “Pass to FailError” transi-
tion detection on Rails

of W
e

values, from longer to shorter left-to-right. Within each “grouping”, each point

corresponds to one of the six choices of W
f

(W
err

or W
failerr

) values, from longer to

shorter top-to-bottom.

4.4.1 Malfunction Detection E↵ectiveness

Failure Detection on the Three Datasets. Figures 4.3 - 4.5 are failure detection

results of applying the CB and TrB techniques to each dataset.

These figures reveal that, as one would expect, with both algorithms, as the
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percentage of test suites selected increases, the percentage of failing test suites that

are executed increases. The primary reason for this is that larger test suites selected

for execution provide a higher possibility to detect failures, which results in a greater

failure detection rates than smaller test suites. The results show that both of the

techniques performed very well when selecting less than 52% of the test suites. In

particular, when test suite selection was around 50%, both of the techniques detected

more than 70% of the failures on the three datasets when W

e

= 1, and their best

performances (top points) were over 97% on the Google Post dataset when W

e

=

1 and W

f

= 100. Even when test suite selection was around 2%, our techniques

performed very well, detecting more than 55% of the failures in all three datasets

when W

f

= 100.

The di↵erences between the algorithms, however, vary across the three datasets.

On all three datasets, the TrB technique slightly perform better than the CB tech-

nique, especially when the percentage of test suites selected was lower. From the top

points for each algorithm in each figure, we can see that the two algorithms did not

di↵er substantially on Google Post and Google Pre. However, on the Rails dataset

(Figure 4.5), when test suite selection was about 2%, the TrB technique performed

much better than the CB technique, which improved malfunction detection from

10.6% to 22.7% when W

f

values were the same. (When W

f

= 2, the CB technique

detected 23.1% of the failing test suites, and the TrB technique detected 33.7% of

the failing test suites; when W

f

= 10, the CB technique detected 38.5% of the failing

test suites, and the TrB technique detected 61.2% of the failing test suites.)

Additional Malfunction Detection Results on the Rails Dataset. As already

noted, in addition to “fail”, Rails also has more types of malfunctions - “error” and

“failerror” - than Google Post and Google Pre. Figures 4.6 and 4.7 present the error
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and failerror detection results from applying the CB and TrB techniques on the Rails

dataset.

Similar to failure detection trends, with both algorithms, as the percentage of test

suites selected increases, the percentage of executed test suites that display “error”

and “failerror” statuses increases. The results show that both of the techniques

performed well when selecting less than 52% of the test suites. In particular, when

test suite selection was around 50%, both of the techniques (on the Rails dataset)

detected more than 58% of errors and 74% of failerrors. The best performances (top

points) of both techniques detected more than 97% of errors and 98% of failerrors.

Even when test suite selection was around 2%, the techniques performed very well,

detecting more than 67% of errors and 80% of failerrors when W

err

= W

failerr

= 100.

Where these results di↵er from the failure detection on Rails is that, for both

error detection and failerror detection, even though the TrB technique still performed

better overall than the CB technique, the improvement was not substantial. By

comparing each pair of the algorithms’ data points generated byW

e

andW

err

/W
failerr

combinations, most detection results from the TrB technique provided less than 8%

improvement over the CB technique.

In the failerror detection figure (Figure 4.7) when test suite selection was around

2%, the CB technique had several cases in which it performed better than the TrB

technique. One reason for this could be the di↵erence in W

e

value choices. In order

to select approximately equal percentages (2%) of the test suites, the W

e

value for

CB was 55, but the W

e

value for the TrB was 100. In this case, even though both

algorithms selected around 2% of the test suites, the results could be di↵erent. For

the CB technique with W

e

= 55, for each distinct test suite, if that test suite has

not yet detected a malfunction, it will be selected once for every other 55 arrivals.

However, for the TrB technique with W

e

= 100, for each distinct test suite, if that test

Jingjing Liang


added



70

suite has not yet detected a malfunction, it will be selected once for every other 100

arrivals. From this, we can see that the CB technique with a smaller W
e

could have

a higher possibility of detecting a malfunction. Since the TrB technique utilizes one

more condition to select test suites for execution (it checks whether the percentage of

malfunction transitions is greater than a random number), this increases the number

of test suites selected as well as the possibility of malfunction detection. This explains

why, when the percentage of test suites selected was extremely small (2%), the CB

technique performed better than the TrB technique in several cases.

Figures 4.13 and 4.14 use line plots to help compare the failure, error, and failerror

detection of each algorithm on the Rails dataset. These plots are distilled from the

scatterplots by selecting, for each algorithm and each of the six discernable groupings,

the point representing the best malfunction (including failure, error, and failerror)

detection (W
f

= W

err

= W

failerr

= 100) achieved among the six di↵erent W
e

values.

In these two figures, the x-axis represents the percentage of the test suites selected,

the y-axis represents the percentage of malfunctions detected, the blue star represents

the failure detection, the red diamond represents the error detection, and the yellow

circle represents the failerror detection.

These two figures show the top performances of the three malfunction detection

metrics in the CB and TrB techniques. The trend in failure detection and failerror

detection increases as the percentage of test suites selected increases. The primary

reason for this is that larger test suites selected for execution provide a higher possi-

bility to detect the first failures/failerrors, which result in a greater failure/failerror

detection rates than smaller test suites. The main trend in error detection also in-

creases as the percentage of test suites selected increases, but sometimes decreases a

bit. Among the three metrics, failerror detection performs best.

To investigate why failure detection, error detection, and failerror detection uti-



71

0 20 40 60 80 100

0
20

40
60

80
10

0

% of Test Suites Selected

%
 o

f F
ai

lin
g 

Te
st

 S
ui

te
s 

D
et

ec
te

d

●●
●●

●

●

●

Failure Detection
Error Detection
FailError Detection

Figure 4.13: CB technique’s best perfor-
mance in malfunction detection on Rails
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Figure 4.14: TrB technique’s best perfor-
mance in malfunction detection on Rails
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Figure 4.15: “Fail”,“Error” and “FailError” distribution on Rails
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lizing the same selection method and window sizes can perform slightly di↵erently,

we generated the distribution of all fail, error, and failerror test suites on the Rails

dataset. In Figure 4.15, the x-axis represents the test suite id, the y-axis represents

the percentage of testing time, the red triangle represents the fail execution status,

the green square represents the error execution status, and the blue diamond repre-

sents the failerror execution status. Many test suites can execute multiple times and

have di↵erent types of malfunctions along the whole testing time, therefore, some of

the test suite ids correspond to colorful lines.

From this figure, we can see several things. First, in most cases, if a test suite

id has a failerror status (blue diamonds), it must have other types of statuses, which

could be interpreted as: in most cases, if a test suite has a failerror execution record,

it must have at least one of the other two types of malfunctions. Second, most of

the failerror statuses (blue diamonds) occur later than fail statuses (red triangles).

According to our algorithms, if a test suite is executed and encountered a fail or error

then this test suite will be selected for execution within the next W
f

or W
err

window

sizes. This means that this test suite’s failerror status may have a higher possibility

of being detected. This could explain why failerror detection performs better than

the other two malfunction detection types. But for the error statuses (green squares),

some occur alone in some test suites, some occur later than fail statuses (red triangles)

or failerror statuses (blue diamonds), and some even occur first. In such cases, it could

be much more di�cult to detect errors than the other two. This also explains why

error detection does not perform better than the other two.
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4.4.2 Pass to Malfunction Transition Detection

E↵ectiveness

Pass to Fail Transition Detection on the Three Datasets. Figures 4.8 - 4.10

present the pass to fail transition detection results from applying the CB and TrB

techniques to each dataset.

These figures reveal that, with both algorithms, as the percentage of test suites

selected increases, the percentage of “pass to fail” transitions that are detected in-

creases. The primary reason for this is that larger test suites have a higher possibility

to detect the first “pass to fail” transitions, leading to repetitive selections of test

suites with higher “pass to fail” transition ratio, which result in a greater “pass to

fail” transition detection rates than smaller test suites. The results show that both

of the techniques performed very well when selecting less than 52% of test suites. In

particular, when test suite selection was around 50%, both techniques (on the three

datasets) detected more than 60% of the “pass to fail” transitions and their best per-

formances (top points) were over 94% on both the Google Post and Rails datasets.

Even when test suite selection was around 2%, our techniques performed very well,

detecting more than 49% of the failures in all three datasets when W

f

= 100.

The di↵erences between the algorithms, however, vary across the three datasets.

On all three datasets, the TrB technique slightly outperformed the CB technique,

especially when the percentage of test suites selected was lower. From the top points

for each algorithm in each figure, we can see that the two algorithms did not di↵er

substantially on Google Post and Google Pre. However, on the Rails dataset, when

test suite selection was about 2%, the TrB technique performed much better than the

CB technique, which improved the “pass to fail” transition detection from 11.9% to

27.9% when W

f

values were the same. (When W

f

= 1, the CB technique detected
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3.8% of the “pass to fail” transitions, and the TrB technique detected 15.7% of the

“pass to fail” transitions; when W

f

= 10, the CB technique detected 27.6% of the

“pass to fail” transitions, and the TrB technique detected 55.5% of the “pass to fail”

transitions.)

Additional Pass to Malfunction Transition Detection Results on Rails

Dataset. Figures 4.11 and 4.12 display the pass to error transition and pass to

failerror transition detection results from applying the CB and TrB techniques to the

Rails dataset.

Similar to the “pass to fail” transition trend, with both algorithms, as the per-

centage of test suites selected increases, the percentage of the “pass to error/failerror”

transitions that are detected increases. The results show that both of the techniques

performed well when selecting less than 52% of the test suites. In particular, when

test suite selection was around 50%, both of the techniques (on the Rails datasets)

detected more than 56% of the “pass to error” transitions and 64% of the “pass to

failerror” transitions. The best performances (top points) of both techniques detected

more than 97.5% of the “pass to error” transitions and 98.5% of the “pass to failer-

ror” transitions. Even when test suite selection was around 2%, the techniques also

performed well, detecting more than 69% of the “pass to error” transitions and 82%

of the “pass to failerror” transitions when W

err

= W

failerr

= 100.

Where these results di↵er from the “pass to fail” transition detection on Rails

is that, for both “pass to error” transition detection and “pass to failerror” tran-

sition detection, even though the TrB technique still performed better overall than

the CB technique, the improvement was not substantial. By comparing each pair

of algorithms’ data points generated by W

e

and W

err

/W
failerr

combinations, most

detection results from the TrB technique provided less than 9% improvement over
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the CB technique.

In the “pass to error” and “pass to failerror” transition detection figures (Figure

4.11 and Figure 4.12) when test suite selection was around 2%, the CB technique had

several cases in which it performed better than the TrB technique. The same as noted

in the Section 4.4.1, one reason for this could be the di↵erence in W

e

value choices:

the W

e

value for the CB technique was 55, but the W

e

value for the TrB was 100.

When the percentage of test suites selected was extremely small (2%), the smaller

W

e

provided a higher possibility of detecting the malfunctions as well as the “pass

to malfunction” transitions, leading to the result that the CB technique performed

better than the TrB technique in several cases.

Figures 4.16 and 4.17 use line plots to help compare the “pass to fail”, “pass to

error”, and “pass to failerror” transition detection of each algorithm on Rails. These

plots are distilled from the scatterplots by selecting, for each algorithm and each of

the six discernable groupings, the point representing the best “pass to malfunction”

transition detection (W
f

= W

err

= W

failerr

= 100) achieved among the six di↵erent

W

e

values. In these two figures, the x-axis represents the percentage of the test suites

selected, the y-axis represents the percentage of the “pass to malfunction” transition

detected, the blue star represents the “pass to fail” transition detection, the red

diamond represents the “pass to error” transition detection, and the yellow circle

represents the “pass to failerror” transition detection.

These two figures show the top performances of the three “pass to malfunction”

transition detection metrics for the CB and TrB techniques. The trend in the “pass

to fail” transition and “pass to failerror” transition detection is increasing as the per-

centage of test suites selected increases. The main trend in “pass to error” transition

detection is also increasing as the percentage of test suites selected increases, but

sometimes it decreases a bit. Among the three metrics, “pass to failerror” transition
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Figure 4.17: TrB technique’s best per-
formance of Pass to Malfunction transi-
tion detection on Rails (W

f

= W

err

=
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= 100)

detection performs best.

The reason “pass to fail” transition, “pass to error” transition and “pass to fail-

error” transition detection utilizing the same selection method and window sizes can

perform slightly di↵erently is similar to the three types of malfunction detection dif-

ferences (Section 4.4.1). Figure 4.15 shows some findings. First, in most cases, if a

test suite has a “failerror” execution record, it must have at least one of the other

two types of malfunctions. Second, most of the “failerror” execution records occur

later than the “fail” ones. According to our algorithms, if a test suite is executed

and encountered a “fail” or “error”, then this test suite will be selected for execution

within the next W
f

or W
err

window sizes. This means that this test suite’s “failerror”

status may have a higher possibility of being detected, which also indicates a higher

possibility of the “pass to failerror” transition detection. This could explain why

the “pass to failerror” transition detection performs better than the “pass to fail”

and “pass to error” transition detection types. But for the “error” statuses (green

squares), some occur alone in some test suites, some occur later than “fail” statuses
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(red triangles) or “failerror” statuses (blue diamonds), and some even occur first. In

such cases, it could be much more di�cult to detect the errors than the in other two.

This also explains why “pass to error” transition detection does not perform better

than the other two.

4.4.3 The E↵ect of W
e

and W

f

(W
err

/W
failerr

) Selection

Window sizes are the key parameters for both the CB and TrB algorithms.

Figures 4.18 and 4.19 use scatterplots to show the trends of the percentage of

test suite selection, the percentage of failure detection, and the percentage of “pass

to fail” transition detection when applying the TrB technique to the Google Post

dataset. In Figure 4.18 , the failWindowSize (W
f

) is fixed and assigned 100, and

W

e

={1, 2, 4, 5, 10, 100}. In Figure 4.19 , the exeWindowSize (W
e

) is fixed and assigned

1, and W

f

={1, 2, 4, 5, 10, 100}.

In the two figures, the x-axis represents the W

e

or W
f

size, the y-axis represents

the percentage of test suites selected (blue stars), failures detected (red diamonds)

and “pass to fail” transitions detected (yellow circles).

Because the e↵ect of W
f

, W
err

and W

failerr

are similar, and their values are the

same in our experiments, we only discuss the e↵ect of W
f

in detail. The e↵ect of W
e

and W

f

on the trends of the percentage of test suite selection, failure detection, and

“pass to fail” transition detection with the CB and TrB techniques are similar, as

well so we only use TrB’s results on Google Post as an example for illustration.

E↵ects on the Percentage of Test Suite Selection. The exeWindowSize (W
e

)

decides how often a test suite T
i

should be executed. LetW
e

be x, without considering

other conditions, then each distinct test suite T

i

will be selected for execution once

every other x times. Suppose T1 has in total 100 arrivals, and W

e

is 4, then T1 would
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Figure 4.19: TrB test suite selection on
Google Post (W

e

= 1)

be selected 20 times, and the percentage of the test suites selected is 20%; if W
e

is

1, then T1 would be selected 50 times, and the percentage of the test suites selected

is 50%. Therefore, as the W

e

value increases, the percentage of test suites selected

would decrease. As shown in Figure 4.18, when W

f

is fixed, as W

e

value increases,

the percentage of test suites selected (blue stars) decreases.

The failWindowSize (W
f

) checks whether a test suite T

i

has failed in its previous

W

f

executions and decides whether T
i

should be repetitively selected for execution.

LetW
f

be x, without considering other conditions, then if test suite T
i

is executed and

its execution status is “fail”, then T

i

’s next x arrivals must be executed. Therefore, as

W

f

increases, the percentage of test suites selected would also increase. As shown in

Figure 4.19, when W

e

is fixed, as W
f

increases, the percentage of test suites selected

(blue stars) increases (slightly).

The CB algorithm (Algorithm 2) has two main selection conditions utilizing W

e

and W

f

. Most of the distinct test suites do not have any failure history on all three

datasets (as shown in Table 2.1 in Section 2.2.3.3), and thus such test suites will

be only selected because of W
e

. Only test suites that have failure history could be
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selected because of W
f

, and only a small number of distinct test suites have failure

history (as shown in Table 2.1 in Section 2.2.3.3, for example, 199 out of 5,555 on

Google Pre, 154 out of 5,536 on Google Post, and 203 out of 2072 on Rails have

failure history). Thus, the e↵ect of W
f

on the percentage of test suites selected is

small . Therefore, for the CB technique, W
e

mainly decides the percentage of test

suites selected and W

f

slightly increases the percentage of test suites selected as W
f

increases.

For example, ifW
e

is set to 4, then after applying the CB technique, the percentage

of test suites selected would be around 20%. Since W

f

also selects some test suites

for execution repetitively if they have recently failed, as a result, the percentage of

test suite selection would be greater than 20% if W
e

is 4 and W

f

is greater than 1.

On the Google Post dataset, after applying the CB technique, when W

e

is 4, even

though W

f

value ranges from 1 to 100, the percentage of test suites selected does not

have significant changes; it ranges from 20.3% to 21.3%.

The TrB algorithm (Algorithm 3) has three main selection conditions utilizing

W

e

, W
f

and a random number. As with the CB technique, only a small number of

distinct test suites have failure history, and such test suites have the possibility of

being selected because of W
f

and a random number (TrB checks whether the “pass

to malfunction” transition is greater than a random number). Most of the distinct

test suites do not have any failure history on all three datasets (Table 2.1 in Section

2.2.3.3), so they will only be selected because ofW
e

. Therefore, for the TrB technique,

it is still W
e

that mainly determines the percentage of test suites selected. W

f

will

slightly increase the percentage of test suites selected as its value increases. The

random number will also slightly increase the percentage of test suites selected.

For example, after applying the TrB technique to the Google Post dataset, when

W

e

is set to 4, even when W

f

value ranges from 1 to 100, the percentage of test suites
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selected does not have significant changes; it ranges from 20.7% to 21.7%.

Compared with the CB technique, the TrB technique selects slightly more per-

centage of test suites when their W

e

and W

f

settings are the same. But when W

e

is large and the percentage of test suites selected is extremely small, then the dif-

ference matters. For example, on the Goole Post dataset, if W

e

= 100, and W

f

= {1, 2, 4, 5, 10, 100}, then CB’s percentage of test suites selected is {1.20%, 1.21%,

1.26%, 1.38%, 1.54%, 1.88%}. However, TrB’s percentage of test suites selected is

{2.03%, 2.07%, 2.19%, 2.26%, 2.28%, 2.74%}. To make the CB technique select an

approximately equal percentage of test suites as the TrB technique, we adjusted

W

e

to W

e

= {55} for CB; as a result, the corresponding selection percentage is

{2.04%, 2.05%, 2.12%, 2.25%, 2.36%, 2.78%}.

E↵ects on the Percentage of Malfunction Detection and Pass to Malfunc-

tion Transition Detection. As discussed in Sections 4.4.1 and 4.4.2, for both the

CB and TrB techniques, as the percentages of test suites selected increase, the corre-

sponding percentages of malfunction detection and “pass to malfunction” transition

detection also increase. The primary reason for this is that larger test suites tend to

have greater malfunction detection rates and “pass to malfunction” transition detec-

tion rates than smaller test suites. In addition, as in the previous section, we also

find that the percentage of test suites selected would decrease as W

e

increases, and

increase slightly as W
f

increases (on all three datasets).

From these two rules, we can see that as W
e

increases, the percentage of test suites

selected decreases, and thus the percentages of malfunction detection and “pass to

malfunction” transition detection also decrease. As W
f

increases, the percentage of

test suites selected increases, and thus the percentages of malfunction detection and

“pass to malfunction” transition detection also increase.

Jingjing Liang
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Figures 4.18 to 4.19 show examples of these trends. In Figure 4.18, W
f

is fixed,

and W

e

ranges from 1 to 100. As W
e

increases, the percentage of test suites selected

(blue stars) decreases, and the percentages of failure detection (red diamonds) and

“pass to fail” transition detection (yellow circles) also decrease. In Figure 4.19, W
e

is fixed, and W

f

ranges from 1 to 100. As W
f

value increases, the percentage of test

suites selected (blue stars) increases slightly, and the percentages of failure detection

(red diamonds) and “pass to fail” transition detection (yellow circles) increase rapidly

initially and level o↵ at around W

f

= 10.

The increasing rates of failure detection and “pass to fail” transition percentages

being higher than that of test suites selection percentage means that our W

f

(and

the random number in the TrB technique) contributes a lot to correctly predicting

the failures and “pass to fail” transitions.

4.5 Summary

We have presented two algorithms, the CB and TrB techniques, for improving the

cost-e↵ectiveness of RTS in CI environments. The CB technique utilizes two window

sizes in terms of numbers of test suites to select test suites based on failure and exe-

cution history. The TrB technique utilizes the test suites’ “pass to malfunction” tran-

sition history for selection in addition to the two windows used by the CB technique.

Compared with many prior techniques, both techniques use relatively lightweight

analysis, and do not require code instrumentation, rendering them appropriate for

CI environment testing. The empirical study results show that both algorithms can

detect malfunctions and “pass to malfunction” transitions cost-e↵ectively and on

comparison, the TrB technique performs slightly better for both of the metrics.
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Chapter 5

Conclusions and Future Work

System builds and testing in CI environments are stunningly frequent, making it

important to address the costs of CI. To increase the rate of fault detection and reduce

the delays of testing feedback in CI environments, in this thesis, we have presented

a new TCP algorithm (the CCBP algorithm), and two new RTS algorithms (the CB

and TrB algorithms). The CCBP technique continuously prioritizes commits (not

test suites) as commits arrive or complete and our empirical results show that after

prioritization, our technique can e↵ectively detect failing commits earlier. The CB

technique selects test suites by using two window sizes in terms of numbers of test

suites based on failure and execution history. The TrB technique selects test suites

by using “pass to malfunction” transition history as well as the two windows. Our

empirical results show that after selection, both algorithms can detect malfunctions

and “pass to malfunction” transitions cost-e↵ectively, and the TrB technique performs

better than the CB technique.

CCBP, CB and TrB are lightweight approaches and operate quickly, allowing them

to be su�ciently responsive in CI environments. For the TCP technique, in future

work, we intend to further explore the e↵ects of factors such as the rate of change,

Jingjing Liang
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commit dependencies, and available resources, on the cost-e↵ectiveness of CCBP.

Given that results of the algorithm can vary with di↵erent workloads, we would like

to be able to dynamically adapt it to be more cost-e↵ective as workloads change.

This could apply, for example, when the computing resources available for testing

increase or decrease, or when arrival rates or sizes (in terms of associated test suites)

of commits change. For the RTS technique, in future work, we intend to explore

mechanisms for adjusting window sizes dynamically so that we can consider more of

the potential performance factors we have identified. Similarly, we would also like

to explore the e↵ects of history on the selection prediction so that we could consider

applying a “warm-up” period and a “moving history window” for collecting enough

recent history.
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