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Abstract
This article extends nonparametric measures of efficiency to accom-

modate the concept of marketing efficiency, which measures

changes in net revenues brought about by firms’ use of marketing

channels other than spot markets. The measure is appropriate for

firmsoperating under atomistic competitionwith imperfect informa-

tion. The proposed measure displays two important features: (a) it

uses the alternative of a spot price-based counterfactual to distin-

guish marketing from allocative efficiency, and (b) it allows for the

fact that firms operate in different spot markets and have access

to diverse sets of prices. We illustrate this approach with a unique

dataset from ethanol plants in the U.S. Corn Belt. [EconLit citations:

C61, D2, L2].

1 INTRODUCTION

Many firms in differentmarkets typically use a combination ofmarketing strategies (i.e., contracts and spotmarkets) to

sell their outputs and procure their inputs. Decisions regarding the combination of thesemarketing strategies have the

potential to significantly affect firms’ economic performance and yet measurement of marketing efficiency (ME) has

not been considered in conventional efficiency measurement techniques. Previous studies have addressed the issue

of producers’ marketing performance in different industries (e.g., Anderson & Brorsen, 2005; Cabrini, Irwin, & Good,

2007; Hagedon, Irwin, Good, & Colino, 2005; Cunningham, Brorsen, & Anderson, 2007; Dietz, Aulerich, Irwin, & Good,

2009). Although these studies provide relevant insights, they do not recognize that changes in prices associated with

alternative marketing strategies may lead to reallocations of inputs and outputs along a technological frontier. There-

fore, formally linking frontiermeasures of performancewith pricing effects of alternativemarketing techniques seems

a promising avenue tomeasuremarketing performance.

Weextend conventional nonparametricmeasures of firmeconomic efficiency to capture a newcomponentwe refer

to as ME. Our analysis focuses on the ability of firms to contract favorable prices of inputs and outputs, relative to

(exogenous) spot market prices. As such, the method is particularly suitable for industries in which: (a) firms operate

in atomistic markets but high-price volatility causes deviations between spot and contract prices, and (b) firms have

imperfect information on input and output prices that exist in alternative locations, channels, and future time periods,

so they can benefit from marketing efforts. Our proposed measure creates a counterfactual benchmark using spot
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prices around a firm's location. The net revenue under this counterfactual is used as a baseline against which the net

revenue obtained with the firm's chosenmarketing channels is compared.

This concept is illustrated with an efficiency decomposition of a sample of corn ethanol plants. The corn ethanol

industry provides a particularly fertile ground for application of this technique as the plants in this sample used a com-

binationof bilateral contractual arrangements and spotmarket operations to sell ethanol andprocure corn.Our sample

covers a time period (2006–2008) in which prices were particularly volatile and firm struggled to find an appropriate

balance between contracting and operating in open spot markets, and between in-house and subcontracted market-

ing. Ethanol sales amounted to about 80%of total revenue among surveyedplants and corn amounted to70%of plants’

operating costs. Therefore, changes in prices of ethanol and corn associated with alternative marketing strategies are

bound to have a high impact on overall's plant economic performance. Plants in this survey provided information on

input and output prices obtainedwithmarketing techniques they employed, while spotmarket prices in regionswhere

plants operate were obtained from other sources.

Application of the technique developed here can shed light into a number of questions regarding firms’ market-

ing performance. First, the proposed measure reveals whether the use of alternative marketing strategies improves

firms’ marketing performance relative to simply trading in spot markets. Second, deviations in marketing performance

associated with the use of multiple marketing channels (relative to performance under exclusive use of spot markets)

can reflect mismanagement, but could also be explained by risk aversion, or issues related to the process by which

price expectations are formed. Therefore, we econometrically examine whether, and to what extent, efficiency scores

attained by surveyed ethanol plants during the sample periodwere correlatedwith experience and scale of production.

2 MEASUREMENT AND DECOMPOSITION OF ECONOMIC EFFICIENCY

Differential performance across firms may be explained by managerial ability but also by constraints faced by those

firms. Evaluating firms’ performance subject to constraints requires modeling and quantification of these constraints.

Frontier methods developed in production economics (Coelli, Prasada Rao, O'Donnell, & Battese, 2005) provide the

tools to quantify technological constraints. Technological frontiers may be calculated from a sample of firms either

parametrically or nonparametrically. The latter is especially suitable for small samples without outliers. Based on this

frontier conventionalmeasures of economic efficiency typically decompose overall efficiency into technical and alloca-

tive sources. Technical efficiency represents the ability ofmanagers to achieve an engineering optimum.Allocative effi-

ciencymeasures performance based on the alignment of the input–output allocation relative to exogenous prices.

2.1 Characterization of technology from firm data

Firms sampled are assumed to share a technology that transforms a vector of N inputs into a vector of M outputs.

Observed combinations of inputs used and outputs produced are taken to be representative points from the fea-

sible production technology. In this article, we use data envelopment analysis (DEA) to identify the boundaries of

the feasible technology set from the observed points. Following the notation in Färe, Grosskopf, and Lovell (1994),

we represent the production technology by a graph denoting the collection of all feasible input and output vectors;

GR = {(x, u) ∈ ℝN+M
+ : x ∈ L(u)}, where L(u) is the input correspondence, which is defined as the collection of all input

vectors x ∈ ℝN
+ that yield at least output vector u ∈ ℝM

+ .

2.2 Conventional decomposition of economic efficiency

A given decision-making unit (DMU) is deemed economically efficient whenever it chooses a feasible input–output

combination that maximizes net operating revenues (NORs) given prices. In this section, we proceed to calculate and

decompose economic efficiency assuming that prices are exogenous so there is no marketing strategy that affects

prices at which outputs are sold and inputs are purchased.
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Iso-NOR

F IGURE 1 Iso-NOR and sets

Assuming variable returns to scale and strong disposability of inputs and outputs,1 we denote the graph represent-

ing the feasible technology by:

GR(V, S) =

{
(x, u) : u ≤ z′M, x ≥ z′N,

J∑
j=1

zj = 1

}
, (1)

whereGR(V, S) denotes the graph of a technology displaying variable returns to scale and strong disposability of inputs
andoutputs, z′ depicts a rowvector of J intensity variables,M is the JxMmatrix of observedoutputs,N is the JxNmatrix

of observed inputs, and (x, u) are vectors of inputs and outputs.
We define the set of all combinations of inputs and outputs resulting in higher NOR than that actually achieved by

the jthDMUas:

(
xjg , u

j
g

)
=
{(

xj
′
, u j

′)
: rju j

′
− p jxj

′
> rjuj − p jxj

}
, (2)

where p j is the 1xN vector of input prices paid and rj the 1xM vector of output prices received by the jthDMU and the

subscript g denotes greater than observed NOR.

To illustrate the set definedby (2) let us define an Iso-NOR line in a bidimensional input–output space corresponding

to the jthDMU as those combinations of input and output that result in the same level of NOR given rj and p j. Figure 1

depicts this set graphically. The set (xjg , u
j
g) consists of all the points above the Iso-NOR line as indicated by the arrows

with direction northwest.

In Figure 1, the feasible technology set is represented by a graph displaying variable returns to scale and strong

disposability of inputs and outputs as indicated by the arrowsmoving from the frontier (u = f(x)) with direction south-
east. As clearly seen in Figure 1, the set (xjg , u

j
g) includes combinations outside the graph and hence not attainable by

DMUs in the sample. The subset of observations in (xjg , u
j
g) that belong to the graph and are hence attainable by DMUs

is depicted by the intersection of both sets delimited by the bold lines in Figure 1. The jthDMU could choose any alter-

native production plan within the area denoted by the bold lines achieving a feasible increase in NOR.

We apply in this article a hyperbolic graph efficiency measure, defined as the equiproportional reduction in inputs

andexpansionof outputs that theDMUcould have achieved. Input-basedor output-basedmeasures of efficiency focus

on either input contraction or output augmentation. The former is more aligned with a focus on cost minimization,

whereas the latter is more appropriate with revenuemaximization.More consistent withmaximization of net revenue

1 When variable returns to scale are allowed for, the calculated frontier is the boundary of the convex hull of the set of observations in input/output space.
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F IGURE 2 Technical efficiency

(which is the behavioral premise in our study) are techniques that seek a projection to an efficient input–output bundle.

The hyperbolic distance is a well-established measure that seeks both contraction of inputs and expansion of outputs

simultaneously (Ray, 2004).2

Therefore, the technically efficient projection of a given observation to the boundary of the technology set follows a

hyperbolic path defined by these equiproportional changes. The value of the proportionate change necessary to reach

the boundary, TEj, is defined as the technical efficiency of plant j:

TEjv(x
j, u j|V, S) = min

{
𝜆 : (𝜆x j, 𝜆−1uj) ∈ GR(V, S)

}
, (3)

where 𝜆 is a scalar defining the proportionate changes and the rest is as defined before.

Technical efficiency defined in Equation (3) is illustrated in Figure2by thedistance from (xj, u j) to pointA,which cor-

responds to the technically efficient allocation in input–output space. This distance is denoted by a curved line because

we are using a hyperbolic measure of efficiency. Note, however, that point A does not correspond to themaximum fea-

sible NOR level because it does not coincide with the point of tangency between the Iso-NOR and the graph (point B.)

For a given set of prices achieved by firm j, the allocation that achieves themaximum level of NOR subject to the graph

is called the overall economic efficient allocation for firm j.

Technically, we define this maximum feasible level of NOR as:

𝜋j∗ = maxx,u
{
𝜋j = rju − p jx, s.t.(x, u) ∈ GR(V, S)

}
, (4)

where 𝜋
j
∗ denotes maximum NOR attainable by j subject to the graph and achieved prices and the rest is as defined

before.

Overall economic efficiency under variable returns to scale, Ejv , is measured by the hyperbolic distance between a

given observation j and the Iso-NOR line corresponding to 𝜋 j
∗. The hyperbolic distance is computed through calculation

of the equiproportional reduction of observed inputs and expansion of observed outputs such that the NOR corre-

sponding to 𝜋
j
∗ is reached. This is illustrated by Figure 3 where overall economic efficiency is the distance between

(xj, u j) and point C.

2 The hyperbolic distance is nonlinear in its arguments. A linear alternative to our approach is a directional distance function. This approach would not affect

the estimated frontier, but the overall efficiency measure and its decomposition would differ because the projection to the frontier might occur at a different

point.
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F IGURE 3 Conventional decomposition of overall economic efficiency

As the movement from (xj, u j) to C is a hyperbolic one, the measure of overall economic efficiency, Ejv , is related to

maximumNOR in the followingmanner:

𝜋j∗ = Ej−1v rju j − Ejvp
jxj j = 1,2,… , J. (5)

We can decompose Ejv into technical efficiency TE
j
v (graphically, the distance between (xj, u j) and A); and allocative

efficiency AEjv (the distance between A and C):

Ejv = AEjvTE
j
v. (6)

Therefore, we can define allocative inefficiency residually as:

AEjv =
Ejv

TEjv
. (7)

Based on the solution to the problem described in Equation (4), we calculate overall economic efficiency by solving

the implicit Equation (5) for each observation.

2.3 A new efficiency component:ME

This study defines ME of a plant as the percentage change in revenue and cost associated with the use of marketing

channels other than spot markets. Conventional decomposition of economic efficiency assumes prices are exogenous

(an exception is Cherchye, Kuosmanen, & Post (2002), which considers noncompetitivemarket settings) andmeasures

performance based on the alignment of the chosen input–output combination to exogenous prices. It ignores the pos-

sibility that with imperfect information, some plants might improve operatingmargins throughmarketing efforts.

Marketing alternatives available to plants involve marketing and procurement negotiations directly with suppliers

and customers or through intermediaries. They also involve different combinations of contracts, futures markets, and

spot markets. To identify changes in NORs due to use of marketing channels other than spot markets, we exploit dif-

ferences between prices actually achieved (those that result from the chosen combination ofmarketing channels) with

spot prices available to the plant. Our proposed technique uses spot prices around a plant's location to construct an

allocative efficient counterfactual allocation. The net revenue under this counterfactual is used as a baseline against

which the actually obtained net revenue (emerging from contracted prices and chosen input/output allocation) is

compared.
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F IGURE 4 Decomposition of overall economic efficiency withmarketing efficiency

Differences between achieved and spot prices may be influenced by managers’ ability to negotiate better prices in

marketing contracts. Itmay also be influencedby themanagers’ bargaining power thatmay, in turn, be affectedby time-

varying plant characteristics (e.g., scale of production, experience). Finally, marketing successmay also be explained by

the degree of risk aversion of plants’ managers and/or by differences in accuracy of managers’ price expectations. We

take the difference between spot prices and prices achieved by plants through theirmarketing choices to represent the

result of managers′ marketing decisions, whatever their motivation. A second-stage regression can reveal systematic

correlations betweenME and hypothesized influencing factors.

Using achieved and spot prices, we implement the concept of ME in the context of nonparametric hyper-

bolic efficiency analysis. We measure ME as the equiproportional increase in revenue and reduction in oper-

ating cost resulting from the difference between prices achieved by managers and spot market prices. ME

scores exceeding 1.0 indicate that plant's marketing decisions increased NOR relative to NOR with spot prices,

whereas scores less than 1.0 indicate that plant's marketing decisions reduced NOR relative to NOR with spot

prices.

One alternative counterfactual against which ME can be measured is the most favorable set of prices observed in

the sample. However, many agricultural markets including the corn-ethanol vertical supply chain examined here are

characterized by persistent geographical price dispersion, suggesting limited spatial arbitrage (Graubner, Balmann, &

Sexton, 2011). In such tradingenvironments,measuringMEagainst themost favorable setof prices in the samplewould

incorrectly assume that the most favorable set of prices are feasible to all firms in the sample regardless of their loca-

tion. Therefore, we use local spot market prices to ensure that efficiency is measured relative to a feasible counterfac-

tual. Nevertheless, the most favorable prices would constitute an adequate counterfactual if firms operate in markets

with strong spatial arbitrage.

The concept ofME is illustrated in Figure 4. Under achieved prices, the jthDMUwould find combination B to be the

NOR maximizing allocation. The conventional overall economic efficiency (i.e., without ME) is measured as the hyper-

bolic distance between the observed point (xj, u j) and point C, wheremaximumNOR (NOR1
B) is attained.

Letus assume that spotprices in this quarterwereactuallymore favorable thanachievedprices, yieldingan Iso-NOR

line such as Iso-NORS. Under this set of prices, the jthDMUwould have found allocation D to be the NOR-maximizing

allocation. Allocation D is a counterfactual allocation that yields NORS, a higher level of NOR than allocation B under

achieved prices (recall that the height of the intercept of an Iso-NOR line reflectsNORexpressed in units of output). To

translate forgoneNOR (due tomarketing decisions that resulted in prices less favorable than spotmarket prices) into a

measure of hyperbolic efficiency, we need to find the equiproportional expansion of outputs and contraction of inputs

starting from allocation C that would yield the counterfactual outcomeNORS under achieved prices. The Iso-NOR line

corresponding to the level of NORs denoted by NORS at achieved rather than spot prices is depicted by Iso-NOR2
B in
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Figure 4.3 Therefore, measuring marketing (in)efficiency amounts to calculating the hyperbolic distance from point C

on Iso-NOR1
B to point E on the counterfactual Iso-NOR2

B. We note that point E is the hyperbolic equivalent of point

D, the maximumNORwith spot market prices. This distance represents forgone NOR associated with prices attained

through the use of marketing channels other than spot markets4 and can be analytically expressed as:

𝜋
j
S
=
(
rju j∗)(MEj)−1 −

(
p jxj

∗)
MEj j = 1,2,… , J, (8)

where 𝜋 j
S
is the NOR, DMU jwould have obtained had it operated in the spot market only and chosen the correspond-

ingNORmaximizing input/output combination (u j
S
, x j

S
) (i.e., 𝜋 j

S
= r j

S
u j
S
− p j

S
x j
S
),5 MEj isMEofDMU j, (u j∗, x j

∗
) is theNOR

maximizing input–output combination under prices attained with the chosen marketing channels, (r ju j∗) is the max-

imum revenue obtained by DMU j at attained prices, and (p jxj
∗
) is the minimum cost incurred by DMU j at achieved

prices.

Equation (8) can be solved numerically or analytically. To solve it analytically note that, after multiplying both sides

of (8) byMEj, one can rewrite (8) as an implicit quadratic equation. An application of the quadratic formula reveals that

MEj =
−𝜋 j

S
+∕−

√
𝜋
j
S

2
+4(p jxj∗)(rju j∗)

2(p jxj∗)
. As the first term in the numerator is negative, the negative root results in negativeME

scores. Therefore, the positive root will always be chosen.

Based on values of 𝜋 j
S
, we calculate ME by solving the implicit Equation (8) for each observation. As NORwith spot

prices can be lower or higher than NORwith achieved prices,MEj will not be bounded between zero and one. In fact if

observedNOR 𝜋j is higher than 𝜋 j
S
, thenMEj >1.Measures of technical efficiency and allocative efficiency do not differ

from those conventionally used in the literature. Technical efficiency TEjv is represented graphically by the distance

between (xjc, u
j
DDGS

) and A in Figure 4. Allocative efficiency AEjv is represented graphically by the distance between A

and C in Figure 4 (inefficiency caused by the use of an input/output combination that does not maximize NOR under

attained prices). Overall efficiency withME, Ej
ME

v , is then defined by:

Ej
ME

v = TEjvAE
j
vMEj. (9)

We illustrate the above framework with a sample of surveyed dry-grind ethanol plants. We do so by calculating

conventional and expanded measures of economic efficiency and their decomposition for these plants. We first char-

acterize the data collected and the plants surveyed, and then calculate their economic efficiency.

3 ILLUSTRATION WITH A SAMPLE OF ETHANOL PLANTS

Little to no publicly available data on the economic and technical performance of the current generation of ethanol

plants are available. Previous studies have calculated input requirements and by-products’ yield per gallon of ethanol

produced by plants. Using engineering data, McAloon, Taylor, and Yee (2000) and Kwiatkowski, McAloon, Taylor, and

Johnson (2006) measured considerable improvement in plant technical efficiency between 2000 and 2006. Shapouri

and Gallagher (2005) reported input requirements and cost data based on a USDA sponsored survey of plants for the

year 2002.Wang,Wu, andHuo (2007) and Plevin andMueller (2008) reported results based on spreadsheetmodels of

the industry (GREET and BEACCON, respectively.) Pimentel and Patzek (2005) and Eidman (2007) reported average

performances of plants although they do not clearly indicate the sources of their estimates. Finally, Perrin, Fretes, and

3 As combination C is located on Iso-NOR1
B, a hyperbolic projection amounts to a movement to a parallel Iso-NOR line (such as Iso-NOR2

B) corresponding

to net operating revenues ofNORS .

4 The illustrated situation assumes spot prices aremore favorable than achievedprices andhence Iso-NOR2
B is positionedabove and to the left of Iso-NOR1

B.

If spot prices were less favorable than achieved prices, then Iso-NOR2
B would be located below and to the right of Iso-NOR1

B and the marketing efficiency

score would be higher than one.

5 This is also the level of NOR that the plantwould achieve under attained prices and a “marketing efficient” combination of inputs and outputs such as the one

represented by point E in Figure 4.
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Sesmero (2009) reported results on input requirements, operating costs, and operating revenues based on a survey of

seven dry-grind plants in theMidwest during 2006 and 2007.

With the exception of Shapouri and Gallagher (2005) and Perrin et al. (2009), all of these studies reported values

corresponding to the average plant (not individual plants), which prevents comparison of relative performances. In

addition, it is generally believed that the industry has become more efficient and technologically homogeneous since

2005. The data used in Shapouri and Gallagher (2005) were collected in 2002. Perrin et al. (2009) surveyed plants

in operation during 2006 and 2007 and employed more restrictive sampling criteria (discussed below), which yielded

a technologically homogenous sample of recent vintage plants. This sample is scattered across the full ranges of the

Corn Belt, providing contrasting environments particularly suited to the measurement of variations in marketing per-

formance.Moreover, the period of time covered in the survey is particularly useful for implementation of our proposed

ME measure, as it corresponds to a period of high-price volatility and use of diverse marketing channels by plants.

These are the data of choice in this study.

Weapplyourproposed technique toa small sampleof firmswith ahighly homogenous technology (i.e.,withoutobvi-

ousoutliers). Asoriginally demonstratedbyGongandSickles (1992) andextensivelydiscussedafterwards (Badunenko,

Henderson, & Kumbhakar, 2012), there is an increased risk of distorting efficiency measures with stochastic frontiers

due to misspecification (i.e., imposing an incorrect parametric form) as: (a) the sample reduces in size, and/or (b) the

number of periods in a panel shortens (largerN than T), and/or (c) the technology increases in complexity (as number of

parameters increase and cross-parameter constraints decrease). Monte Carlo analyses have revealed that determin-

istic nonparametric frontier methods can perform substantially better (reduce distortion in efficiency measurement)

than stochastic frontiers if any of the aforementioned problems is present. This is the case with our application, where

problems (a) and (b) are present, and very likely problem (c) is present as well. Therefore, the nonparametric frontier

approach is particularly suitable for this sample.

The data consist of 33 quarterly reports of input and output quantities and prices from a sample of seven ethanol

plants in seven different states in the Midwest that started production in or after 2005.6 We refer to each quarterly

observation as aDMU.DMUsare assumed to share a technology that transforms a vector of seven inputs (corn, natural

gas, electricity, labor, denaturant, chemicals, and “other processing costs”) into three outputs (ethanol, dried distiller's

grains with 10% moisture content [DDGS], and modified wet distiller's grains with 55% moisture content [MWDGS]).

Results of our survey contained expenditures in labor, denaturant, chemicals, and other processing costs and, as a

result, we calculated implicit quantities of these inputs dividing expenditures by their corresponding price indexes.

Not all plants reported data in all quarters resulting in an unbalanced panel dataset. Although the size of the dataset

imposes limitations, it does contain unique information on plant management decisions.

We implement the previously developed measure of ME to identify changes in NORs due to use of marketing

channels other than spot markets. Identification is achieved by contrasting NOR under prices reported by plants (i.e.,

achieved by plants) with NOR under spot prices available to the plant, measured here as the state-wide average quar-

terly spot price. Althoughwewould have preferred to employ spot prices at a local level, we use state-level spot prices

for ethanol and corn instead because the former are not available to us. Althoughmarketing decisions are also likely to

affect by-product prices, there are no readily available data on spot market prices of DDGS and MWDGS at the state

level. Therefore, for revenue and cost categories different from corn and ethanol, spot prices coincide with achieved

prices.

State-level data on corn spot prices were obtained from USDA NASS Agricultural Prices. Ethanol spot prices were

obtained from Ethanol and Biodiesel News, 2006 and 2007 (now Ethanol and Biofuels News). Other factors than ME no

doubt contribute to the discrepancy between plant-achieved prices and state-level prices, but these data provide a

satisfactory empirical base for initial application of this technique.We later show thatME scores we obtain are signifi-

cantly correlatedwith plant characteristics, providing support for the hypothesis that thesemeasures of price discrep-

ancies are indeed related toME.

6 We have adjusted all prices to a base quarter (third quarter of 2006) using the Producer Price Index (PPI) as calculated by the Bureau of Labor Statistics.
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TABLE 1 Characteristics of the seven surveyed plantsa

States Represented Iowa,Michigan,Minnesota,Missouri, Nebraska, S. Dakota,Wisconsin

Production (MGY) Smallest 42.5

Average 53.1

Largest 88.1

Number of survey responses
by quarters

03_2006 5

04_2006 6

01_2007 7

02_2007 7

03_2007 7

04_2007 2

Percentage of by-product
sold as dry DGS

Smallest 0

Average 54

Largest 97

Corn Ethanol DDGS MWDGS

PrimaryMarket Technique Spot 0 0 1 2

Customer contract 7 2 2 2

Third party/agent 0 5 3 2

aData from Perrin et al. (2009).

3.1 Characteristics of surveyed plants

Table 1 presents some characteristics of the seven dry-grind ethanol plants surveyed. According to Table 1, the plants

produced an average rate equivalent to 53.1 million gallons of ethanol per year, with a range from 42.5 million gallons

per year to88.1million gallonsper year. Theperiod surveyed included the thirdquarter of 2006until the fourthquarter

of 2007 (six consecutive quarters). In addition, plants could be differentiated by how much by-product they sold as

DDGS (10%moisture) compared toMWDGS (55%moisture). Variation on this variable was significant, averaging 54%

of by-product sold as DDGS, but ranging from one plant that sold absolutely no by-product as DDGS to another plant

that sold nearly all by-product (97%) as DDGS.

Plant marketing strategies are also characterized in Table 1. In purchasing input feedstock, all plants used contracts

signed eitherwith elevators or farmers as theirmain procurement technique. In selling ethanol, five of the seven plants

used third parties or agents. Third parties aremarketers that, for a fee, conduct the commercialization (including trans-

portation and logistics) of ethanol. Although trading through intermediaries implies a surplus loss for ethanol plants

due to marketing fees, these intermediaries, by pooling volumes and exploiting their size, may be able to obtain bet-

ter prices than those the individual plant would have obtained. By-product marketing across plants displayed a higher

degree of variance. Marketing of MWDGS was split fairly evenly between all marketing options. On the other hand,

plants seem to havemarketed DDGSmainly through third parties.

Table 2 displays descriptive statistics of inputs used and outputs produced by the 33 DMUs in the sample. As men-

tioned before, in this article, a DMU corresponds to a plant in a given quarter; so two quarterly reports of the same

plant are considered as two different observations as are two plants in the same quarter.7 Table 2 reveals a significant

dispersion of DMUs in terms of size. The biggest DMUproduced 23million gallons of ethanol in a quarter, whereas the

smallest produced 10.6million gallons.

7 We use quarterly rather than individual firm observations because the survey provides this wealth of information allowing us to learn about potential

changes in plant behavior across time.



10 SESMERO ET AL.

TABLE 2 Descriptive statistics of DMUs: Inputs and outputsa

Average

Corn
(Million
Bushels)

Natural Gas
(Thousand
MMBTUs)

Ethanol
(Million Gallons
Per Quarter)

Corn Price
($/bushel)

Ethanol
Price
($/gallon)

Corn Price
Deviation
(Achieved/Spot)

Ethanol Price
Deviation
(Achieved/Spot)

Average 4.8 361 13.7 3.01 1.94 0.95 0.98

SD 0.9 61 2.8 0.68 0.23 0.14 0.12

Min 3.6 297 10.6 1.54 1.48 0.69 0.61

Max 8 569 22.9 4.05 2.71 1.51 1.14

aData from Perrin et al. (2009).

3.2 Price information

Table 2 reveals that corn and ethanol prices have varied widely within the sample. The last two columns of Table 2 also

show large differences between prices actually attained by firms and spot prices available in their region. These figures

reveal that by using different contracting arrangements plants, on average, were able to pay a price for corn 5% lower

than the spot price but also obtained aprice for their ethanol 2% lower than the spot price.However, values in this table

also reveal substantial variability across plants. Some plants paid significant premiums over spot prices for corn. And

some plants obtained, for their output, a price considerably higher than the spot price available in the area surrounding

the plant.

4 RESULTS: EFFICIENCY AND ITS DECOMPOSITION

Measures of economic efficiency anddecomposition into technical, allocative, andmarketing sources calculated for the

sampleof surveyeddry-grindethanol plants are reported inTable3.All codesemployed togenerate thesemeasures are

provided in the Supporting Information Appendix. Hyperbolic measures of efficiency introduce nonlinearities in con-

straints, sowe calculate TEjv usingMATLABFMINCONroutine for nonlinear programming problems.Wealso calculate

maximumNORs using programming routines inMATLAB. This table shows that the economic efficiency of the average

DMU is 0.89, so there seems to be, on average, potential for improvement in NORs. Results also show a substantial

part of overall inefficiency is explained by allocative sources. This means that althoughDMUs tend to be efficient in an

engineering sense, they are choosing bundles of inputs and outputs that are not consistent withmaximization of NORs

at achieved prices.

Based on computed values of 𝜋
j
S
(see explanation of Equation (8)), we calculate ME by solving the implicit

Equation (8) for each observation using the FZERO procedure in MATLAB. Technical and allocative efficiency are cal-

culated according to Equations (3) and (7). We observe a significant dispersion in ME across DMUs, as indicated by a

standard deviation of 0.09 and the broad range of the estimates (minimumof 0.79 andmaximumof 1.27). TheME index

average is 0.97. This average ME implies that in their choice of marketing strategies, plants gave up on average 3% of

NOR relative to the NOR they would have obtained had they operated at spot market prices. By including ME, the

overall average economic efficiency is reduced from0.89 to about 0.87.We report the effect ofMEon highermoments

of the distribution of overall efficiency scores in Figure 5. Comparing Figures 5a and 5b illustrates that including ME

increases the standard deviation (from 0.07 to 0.1) and negative skewness (i.e., fattens the tail of the distribution over

low scores) of the overall economic efficiency distribution.

Caution is recommendedwhen interpretingour proposedmeasureofmarketing inefficiency.Marketing inefficiency

as defined here depicts a measurable deviation from maximum feasible profits but this deviation is not necessarily

reflecting flawed managerial decisions. For instance, contracting prices in advance of production decreases uncer-

tainty. Reduced uncertainty is valuable because of risk aversion or because “price lock-ins” guarantee a given prof-

itability that can be used as collateral when raising capital. These are benefits of contracting that we have not explicitly
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TABLE 3 Economic efficiency decomposition

DMU
Technical
Efficiency (1)

Allocative
Efficiency (2)

Conventional
Overall Economic
Efficiency (3= 1*2)

Marketing
Efficiency (4)

Overall Economic
EfficiencyWith
Marketing Efficiency
(5= 3*4)

1 0.977 0.84 0.82 0.81 0.66

2 1 0.84 0.84 0.90 0.76

3 0.985 0.80 0.79 0.89 0.70

4 1 0.72 0.72 0.90 0.64

5 1 0.80 0.80 0.90 0.72

6 0.979 0.87 0.85 1.05 0.89

7 1 0.95 0.95 0.93 0.88

8 1 0.82 0.82 1.06 0.88

9 1 0.83 0.83 0.92 0.76

10 0.997 0.80 0.80 1.06 0.84

11 1 0.86 0.86 0.99 0.85

12 1 0.94 0.94 1.03 0.97

13 1 0.96 0.96 1.02 0.98

14 1 0.95 0.95 0.92 0.90

15 1 0.91 0.91 0.98 0.89

16 1 0.92 0.92 0.82 0.81

17 1 0.90 0.90 0.93 0.84

18 1 0.88 0.88 0.99 0.87

19 1 0.88 0.88 1.02 0.89

20 1 0.996 0.996 0.97 0.97

21 1 0.93 0.93 0.91 0.87

22 1 0.92 0.92 0.95 0.87

23 1 0.93 0.93 0.75 0.74

24 1 0.89 0.89 0.98 0.87

25 1 0.91 0.91 1.02 0.93

26 1 1 1 0.99 0.99

27 1 0.96 0.96 0.99 0.95

28 1 0.95 0.95 1.01 0.96

29 1 0.92 0.92 0.98 0.91

30 1 0.94 0.94 0.99 0.93

31 0.99 0.92 0.91 1.04 0.95

32 1 0.80 0.80 1.27 1.02

33 1 0.94 0.94 1.03 0.97

Average 0.998 0.89 0.89 0.97 0.86

SD 0.01 0.07 0.07 0.09 0.10

Min 0.98 0.72 0.72 0.79 0.64

Max 1 1 1 1.27 1.02

*Measures 1, 2, and 4 are calculated as described in Equations (3), (7), and (8), respectively.
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F IGURE 5 (a) Distribution of overall efficiency scores withmarketing efficiency. (b) Distribution of overall efficiency
scores without marketing efficiency

modeled. It may also be that the same marketing and procurement strategies would result in higher average ME in

some other period of time.

Given lack of information about these managers′ risk aversion, we cannot distinguish between lowME scores due

to risk aversion versus those due to unsuccessful pricing strategies. In the case that forgone NOR are completely
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TABLE 4 Efficiency of DMUs grouped by size

Allocative Efficiency

Average 0.893

Average—biga 0.922

Average—small 0.863

Big/small 1.068

aADMU is classified as big if it producesmore than the samplemedian (13million gallons). It is small otherwise.

TABLE 5 Efficiency scores grouped by plants and quarters

Plant 1 Plant 2 Plant 3

QUARTER AE ME AE ME AE ME

1 0.820 0.805 0.842 0.901 0.790 0.888

2 0.847 1.051 0.946 0.925 0.824 1.065

3 0.939 1.030 0.948 0.921 0.913 0.977

4 0.879 1.019 0.932 0.911 0.916 0.949

5 0.913 1.024 0.960 0.986 0.947 1.011

6 NA NA NA NA NA NA

Average 0.879 0.986 0.926 0.929 0.878 0.978

Ranking Fifth Third Second Sixth Sixth Fourth

Plant 4 Plant 5 Plant 6 Plant 7

QUARTER AE ME AE ME AE ME AE ME

1 0.716 0.897 0.800 0.903 NA NA NA NA

2 0.796 1.060 0.859 0.990 0.829 0.918 NA NA

3 0.902 0.935 0.881 0.988 0.925 0.818 0.961 1.023

4 NA NA 0.888 0.980 0.934 0.744 0.996 0.975

5 0.941 0.990 0.91 1.033 0.924 0.981 1.000 0.985

6 NA NA 0.941 1.031 NA NA NA NA

Average 0.839 0.970 0.880 0.988 0.903 0.865 0.986 0.994

Ranking Seventh Fifth Fourth Second Third Seventh First First

explained by risk aversion on the part of plant managers, our measure of ME provides an approximate measure of

“shadow” cost of risk aversion; that is, it tells us howmuchNOR plantmanagers sacrificed in order to reduce risk. If, on

the other hand, plant managers are risk neutral, lowME scores suggest mismanagement of marketing channels during

this period.

The results in this section show that both marketing and allocative efficiency are important components of overall

economic efficiency among these ethanol plants. The only DMU that achieved allocative efficiency is DMU 26, which

corresponds to plant 7 in the fifth quarter. This plant also achieves high scores in other quarters (DMUs13and20). This

plant had the largest production volume in the sample, with DMU 26 representing its largest quarterly output. One

would expect large plants to be more profitable when the ratio of output price to input price is favorable. That ratio

was high, by historical standards, during the period of this survey. A high-price ratio is represented by a flat Iso-NOR

line such as Iso-NORS inFigure4. Thiswould, in turn, pushplants’NORmaximizing combinations toward ahigh-volume

allocation such as point D in Figure 4, where NOR is higher. Table 4 confirms this by showing that larger DMUs (those

producingmore than 13million gallons, which is themedian of the sample) achieved, on average, higher allocative effi-

ciency than their smaller counterparts. Plant 7 also performs best in terms of ME (see Table 5). As reported in Table 5,

the averageME of this plant is 0.994 followed by plants 5 (0.988) and 1 (0.986).
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F IGURE 6 Distribution of marketing efficiency scores

The evolution in time of marketing efficiencies for each plant in our sample (Table 5) results in an average increase

of 0.025 units of efficiency per quarter (i.e., 1% per year). This reveals that plants seem to achieve higher ME through

time perhaps due to factors such as accumulated experience. We now turn our attention to this and other questions

regarding potential factors associated withME among these firms.

The measure proposed succeeds in providing information about the forgone profits associated with a departure

from the maximum feasible NOR. It is also successful in providing information about the importance of ME relative to

otherpotential sourcesof inefficiencies like technical andallocative, in explainingdifferences in economicperformance

amongplants. This approach though, as all other inefficiencymeasures of this type, does not provide information on the

reasons whymarketing inefficiency happens. The natural next step is to shed light on the reasons.

5 FACTORS INFLUENCING ME

Many factors can influenceME scores ofDMUs. Somemaydisplay considerable variation of over time (e.g., experience,

production volumes), whereas others may not (ownership structures, degree of outsourcing of marketing activities).

We now examine the link between these factors andmarketing performance.

5.1 Potential factors

Results in Table 3 reveal significant dispersion of ME across DMUs. Figure 6 displays a histogram of the unconditional

distribution of ME scores.8 We use an extreme value minimum (EVM) density function to smooth out the distribution

and we superimpose it on the histogram in Figure 6. The EVM achieves the best fit to the unconditional distribution

of ME scores as indicated by the Akaike and Bayesian Information Criteria. This function accurately approximates the

moments of the data as indicated by the comparative columns at the right of the figure. ThemeanME score is 0.96. The

8 One observation is omitted from the histogram as an outlier. This DMU reported an observed ethanol price of $2.5 per gallon in a time where the spot price

was$1.60. This put itsmarketing efficiency at 1.27ormore than three standarddeviations (0.09) away from the average (0.97). Explanations of possible causes

of this anomaly were not provided by the plant.
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distribution is negatively skewed with about 70% of probability mass accumulated below one. However, a significant

fraction of plants achieved aME score close to one. The histogram also reveals a significant degree of variability inME

scores across DMUs that, in turn, seems to increase dispersion in overall economic efficiency scores.

Although the distribution of unconditionalME scores is of interest, quantifying the influence of plant characteristics

on the conditional expectation of these scores would also be informative. Such quantification would reveal the extent

towhichME is correlatedwith systematic factors, as opposed to random (good or bad fortune). There are several char-

acteristics thatmay affect a plant'smarketing performance in a given quarter. First, the size of aDMUmaybepositively

linked to marketing performance because of increased bargaining power, ability to hire marketing staff members, and

reductions in transportation cost per unit due to logistical efficiencies9 (Kotrba, 2006; Schmidgall, Tudor, Spaulding,

&Winter, 2010). Second, ethanol plants may improve performance as they gain experience in the market (Schmidgall

et al., 2010). Perfecting coordination and logistics, and building marketing and information networks, are among the

reasonswhyaplantmayenhanceperformancewith experience.Other characteristics thatmay affectME include time-

constant factors such as ownership structure, the degree of vertical integration, and multiplant status (i.e., whether a

plant is owned by a firm that owns other plants or not).

5.2 Empirical evidence

Based on evidence provided by previous studies, as well as anecdotal knowledge of the industry, we model ME as a

function of plant characteristics:

MEit = 𝛼i + 𝛽1Sizeit + 𝛽2Sizeit
2 + 𝛽3Experit + eit. (10)

Equation (10) posits that theME score of plant i in quarter t is associated with a plant-specific fixed effect 𝛼i (which

collects the effect of unobservables such as managerial ability and risk aversion, as well as the effect of observables

such as ownership, integration, and multiplant status), the size (defined as million gallons of ethanol produced in quar-

ter t) and size squared of plant i at time t, experience of plant i at time t (defined as the number of quarters in operation

prior to quarter of observation), and random noise represented by eit .
10

Unobservable time-constant factors are likely to correlate with time-varying factors in our context,11 so we use

fixed effects to consistently estimate 𝛽1, 𝛽2, and 𝛽3. Our estimation then captures within-plant effects, which is consis-

tent with the plant-specific counterfactual based onwhichME is defined.

We transformEquation (10) by subtractingmeanvalues through time fromall variables (e.g.,MEit −
1

T−s+1
∑T

t=s MEit ,

where s and T are the first and the last time period for which plant i reported data). Consequently, we express our

estimating equation in terms of time de-meaned variables and error term:

ME′it = 𝛽1Size
′
it + 𝛽2

(
Sizeit

2
)′

+ 𝛽3Exper
′
it + e′it . (11)

As previously discussed, experience and size are expected to increase ME. This means that we expect 𝛽3 > 0 and

𝛽1 + 𝛽2
∗Size′

it
> 0. At the mean, Size′

it
= 0, so the latter condition simplifies to 𝛽1 > 0. Simar andWilson (1998) warned

that second-stage regressions, as the one in (11),may be subject to upward bias in small samples due to the presence of

serial correlation across computed values of the dependent variable. They suggest a bootstrapping method to correct

for that bias.We implement a simpler version of the algorithm proposed by Simar andWilson (2007). Our procedure is

9 Most plants in this sample market ethanol through third parties (i.e., marketers). Higher production volumes may enhance a plant's ability to bargain more

favorable conditions withmarketers becausemarketers may better exploit logistical and transportation infrastructure at higher volumes.

10 Ourmain results are highly robust to inclusion of other time-varying observables such as time dummies, so we present here themost parsimonious specifi-

cation.

11 Evidence suggests that size may be related to ownership (privately owned firms tend be bigger than farmers-owned coops) and integration (bigger plants

may bemore likely to integrate vertically), and experiencemay be positively correlated with vertical integration (Schmidgall et al., 2010).
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made simpler by the fact that our measure ofME is not truncated. Estimation of Equation (11), implemented as shown

in the Supporting Information Appendix, results in the following expression:

ME′
it
= 0.17∗Size′

it
− 4.84e − 09∗

(
Sizeit

2
)′ + 0.019∗Exper′

it
+ e′

it
,

(0.06) (1.83e − 09) (0.006)
(12)

where bootstrapped standard deviations (after 1,000 iterations) are reported in parentheses. The combination of coef-

ficients and bootstrapped standard deviations indicate that the effects of size and experience on ME are statistically

significant at 1%.

Multicollinearity, heteroskedasticity, and autocorrelation can all invalidate inference in the context of an unbal-

anced panel like ours (Wooldridge, 2002). The test for multicollinearity failed to reject the null hypothesis of no multi-

collinearity (the variance inflation factor was 1.04). In addition, an Engel test of residual heteroskedasticity results in

failure to reject the null hypothesis of homoskedasticity (the test statistic was 1.99, which is significantly lower than

the critical value of 3.84 at a 10% level of significance). Finally, the Durbin–Watson statistic suggests that there is no

autocorrelation in the error structure (the Durbin–Watson statistic was 2.55 with a p-value of 0.19). In the context of

this survey,we have no reason to believe there is a self-selection problem inmissing observations, which are associated

with the timing in the collection of the survey data. These features of our data lend credence to our results, which we

now proceed to discuss.

As suggested by Equation (12), an increase in production by 1 million gallons per quarter is associated with an

increase in ME by 0.17 (at the plant's mean). This result is consistent with the hypothesis that plants may be able to

increase NORs by exploiting bargaining and logistical advantages associated with increased size. Caution in the inter-

pretation of this result is suggested as increasing production may entail costs or face capacity constraints, none of

which is captured in this analysis. According to Equation (12), accumulation of experience tends to increase ME by

0.019 units per quarter in operation. This result seems to confirm that experience is partially responsible for gains in

ME through time shown in Table 5.

Goodor bad fortunemay still play an important role inME, asmay risk aversion andother factors such asmanagerial

ability. We avoid omitted variable bias associated with these unobservables that vary little (or not at all) over time by

including fixed effects in the second-stagemodel. Moreover, while our omission of key variables explainingME calls for

cautious interpretation of results from the second-stage regression, it does not invalidate theMEmeasure itself.

6 CONCLUSIONS

This article has developed a formalmeasure of firms’marketing performance based on changes inNORs brought about

by firms’ use of marketing channels other than spot markets. This measure is based on the construction of a spot-price

counterfactual againstwhich theactual outcome is compared. Thismeasure canbeapplied to awide rangeof industries

characterized by atomistic competition (firms are price takers in all markets) with imperfect information—firms do not

know prices that exist in all locations, all channels, and all future time periods. In this case, firms may benefit from

efforts that seek to discover which marketing strategies will result in the best prices. As an illustration of the potential

usefulness of this measure, the concept was applied to a sample of ethanol plants that provided unique but somewhat

limited data on quantities and prices of inputs and outputs.

The empirical illustrationwith corn ethanol plants reveals that, over the period of time covered by the survey, there

was considerable dispersion inME scores among the plants in our dataset. This lead tomore heterogeneous economic

efficiency than detected by traditional DEA efficiency measurement. Moreover, ME seem to constitute an important

component in overall economic efficiency. These results suggest that our measure of ME holds relevant informational

content. The unconditional mean of ME scores was 0.96 and most decision units (70%) would have obtained the same

or higherNORduring this period if they had simply tradedon the spotmarkets.Wewere, however, limited in our ability

tomeasure spot market conditions for ethanol in close proximity to the plants.
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Marketing inefficiency detected in our application may capture a marginal reduction in NOR that plants are will-

ing to accept in exchange for reduction in price uncertainty provided by contracts relative to spot markets. But our

analysis does find a systematic link between ME, experience, and size. Due to data limitations, we could not identify

whether marketing efficiencies related to size were due to bargaining power, to logistical efficiencies, or to more effi-

cient marketing departments (i.e., managers that are better able to identify successful hedging strategies). Therefore,

it is not possible to determine whether the positive but weak association between size andME creates any incentives

for horizontal consolidation, which is a concern of regulators (2010 Report by the Federal Trade Commission). Further

research addressing these issues may be of interest to both industry stakeholders and policymakers.
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