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ABSTRACT:  We tested serum samples from 387 free-ranging wolves (Canis lupus) from 2007 to 2013 for
exposure to eight canid pathogens to establish baseline data on disease prevalence and spatial
distribution in Minnesota’s wolf population. We found high exposure to canine adenoviruses 1 and 2
(88% adults, 45% pups), canine parvovirus (82% adults, 24% pups), and Lyme disease (76% adults, 39%
pups). Sixty-six percent of adults and 36% of pups exhibited exposure to the protozoan parasite
Neospora caninum. Exposure to arboviruses was confirmed, including West Nile virus (37% adults, 18%
pups) and eastern equine encephalitis (3% adults). Exposure rates were lower for canine distemper
(19% adults, 5% pups) and heartworm (7% adults, 3% pups). Significant spatial trends were observed in
wolves exposed to canine parvovirus and Lyme disease. Serologic data do not confirm clinical disease,
but better understanding of disease ecology of wolves can provide valuable insight into wildlife
population dynamics and improve management of these species.

Key words: Antibody titer, canine distemper, canine parvovirus, Canis lupus, eastern equine
encephalitis, Lyme disease, Neospora caninum.

INTRODUCTION flexibility in addressing wolf depredation. A
primary component of monitoring the wolf
population is to understand the diseases and
parasites that impact the species.

Several diseases and parasites can have
population-level effects on wolves. Most
notably, relatively high prevalence of canine

parvovirus (CPV) may reduce pup survival

Wolf (Canis lupus) management in Minne-
sota, US has repeatedly changed since the
wolf population was estimated at 750 animals
in the 1950s. Protected under the 1973
Endangered Species Act, Minnesota wolves
soon reached the federal delisting goal of

1,250-1,400 wolves and were reclassified as
threatened in 1978. Although legal battles
delayed wolf delisting, wolf range in Minne-
sota expanded to approximately 95,000 km?
and the population rose to 3,020 wolves by
2003 (Erb and Sampson 2013). In preparation
for delisting, the Minnesota Department of
Natural Resources (MNDNR) developed a
plan for managing wolves under state control
(MNDNR 2001). This plan was designed to
protect wolves and monitor the population,
while giving owners of domestic animals more

and limit population growth (Mech et al.
2008). Other diseases, including canine dis-
temper virus (CDV), canine adenovirus
(CAV), and parasites may kill infected wolves
and impact population performance (Ste-
phenson et al. 1982; Gese et al. 1997; Almberg
et al. 2009). Some parasites of wolves, such as
Neospora caninum, can cause high abortion
rates in cattle (Gondim 2006). Understanding
the prevalence and distribution of this disease
may impr()ve wolf management strategies at
the wildlife-livestock interface. Our objective
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was to estimate seroprevalence and spatial
distribution of eight important canid diseases
in Minnesota’s wolves, including CPV, CDV,
CAV, neosporosis (NEO), Lyme disease
(LYM), West Nile virus (WNYV), eastern
equine encephalitis (EEE), and heartworm.
Serosurveys can provide useful baseline data
on disease exposure rates and improve un-
derstanding of disease ecology. Further,
improved understanding of temporal and
spatial patterns of disease can provide valu-
able insight into changes in population size or
structure related to epizootic disease out-

breaks.

MATERIALS AND METHODS
Study area

The range of wolves in Minnesota encompasses
approximately 95,000 km? of the northern portion
of the state (Fig. 1). During our study, from 2007—
13, the state’s wolf population was estimated in
2008 (n=2,921 wolves) and 2013 (n=2,211 wolves)
where average pack and territory size was 4.9
wolves and 142 km?, and 4.3 wolves and 161 km?,
respectively (Erb and Sampson 2013). Wolves
were federally protected during the first 5 yr of
this study, then they were delisted in 2012, after
which 413 and 238 wolves were harvested in 2012
and 2013, respectively (Stark and Erb 2013,
2014). Approximately 200 depredating wolves
were removed annually by federal agents. Long-
term studies of wolves, which included their
capture and release, were conducted by state,
federal, and tribal agencies throughout the wolf
range in Minnesota.

Sample collection

The MNDNR contracted with the US Depart-
ment of Agriculture-Animal and Plant Health
Inspection Service-Wildlife Services to collect
biological samples from depredating wolves.
Researchers within the MNDNR, the US Geo-
logical Survey, Voyageurs National Park, Minne-
sota National Guard—Camp Ripley Training
Center and 1854 Treaty Authority obtained
samples from wolves that were live-captured,
radiocollared, and released. Conservation officers
and MNDNR wildlife staff collected samples
from other wolves found dead (e.g., vehicle kills)
to improve our spatial coverage. We recorded
date and method of collection, geographic loca-
tion (Universal Transverse Mercator coordinates),
age (adult [>1 yr] or pup [<1 yr], based on
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morphological characteristics and date of collec-
tion), and gender for all samples.

Field personnel collected blood from a jugular,
cephalic, or saphenous vein. For euthanized
wolves, blood was collected from the site of a
bullet wound, heart puncture, or from the chest
cavity immediately after death. Whole blood was
centrifuged and serum decanted into cryovials
and stored at —20 C.

Serological screening

Serum was submitted for antibody screening
for eight diseases to the Veterinary Diagnostic
Laboratory at the University of Minnesota (St.
Paul, Minnesota, USA) and then outsourced as
needed. Titers were expressed as the reciprocal of
the final dilution. Canine parvovirus was con-
firmed via a hemagglutination inhibition test;
titers >256 were considered positive (Colorado
State University, Fort Collins, Colorado, USA;
Carmichael et al. 1980, 1983). Exposure to canine
adenovirus type-1 (CAV-1) and type-2 (CAV-2)
was confirmed via a serum neutralization test;
titers >8 were considered positive (Cornell
University, Ithaca, New York, USA; Carmichael
et al. 1963). Canine distemper virus was also
detected via a serum neutralization test; titers >25
were considered positive (Colorado State Univer-
sity; Carbrey et al. 1971). A plaque reduction
neutralization test was used to confirm exposure
to EEE and WNV, and titers >10 were consid-
ered positive (National Veterinary Services Lab-
oratory, Ames, Iowa, USA; Ostlund 2004).
Heartworm, Dirofilaria immitis, was detected by
a Dirochek heartworm antigen test (Synbiotics©;
Veterinary Diagnostic Laboratory at the Univer-
sity of Minnesota). An immunofluorescence assay
was used for LYM (Borrelia burgdorferi); titers
>160 were considered positive (Veterinary Diag-
nostic Laboratory at the University of Minnesota;
Artsob et al. 1993). Neospora caninum was
detected with the use of immunofluorescence
assay from slides and reagents provided by
Veterinary Medical Research and Development
(Pullman, Washington, USA); titers >50 were
considered positive (Veterinary Diagnostic Labo-
ratory, University of Minnesota). Antibody titers
were categorically grouped as “low”, “medium”,
and “high” based on the percentile distribution of
the observed positive titer values using quantiles
of 0.33 and 0.66 as cut-off values to create three
bins.

Wolf serum was also sent to the US Depart-
ment of Agriculture-Agriculture Research Service
(Beltsville, Maryland, USA) for a collaborative
research project on Neospora caninum and
Toxoplasma gondii. Serum was screened for
NEO via a Neospora agglutination test and for
T. gondii via a modified agglutination test; titers
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Wolf serological samples
O Adult (n=314)
A Pup (n=73)
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Ficure 1. Spatial distribution of serum samples taken from wolves (Canis lupus) in northern Minnesota,
USA, 2007-13, for evidence of exposure to infectious diseases. Gray lines denote spatial clusters of points based
on Euclidian distance and the function ‘pam’ in the R package ‘cluster’ (Maechler et al. 2015).
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>25 were considered positive. Results for toxo-
plasmosis infection in wolves were published
elsewhere (Dubey et al. 2013a).

Analytical methods

We used a simple binomial estimator to
compute overall prevalence rates p=k/n, where
k=number of positive events and n=number of
independent Bernoulli trials (wolves with sero-
logical results). We computed separate estimates
for adults and pups but pooled data over gender
and year for overall prevalence estimates. We
used the score interval (Agresti and Coull 1998) to
compute approximate confidence intervals (CI)
for p’s, except where k=0 (no positive events). In
the latter case we used the “rule of three”
(Jovanovic and Levy 1997) to compute an upper
95% CI for plk=0. We did not adjust seropreva-
lence for test sensitivity or specificity because this
information is lacking for wolves and the validity
of applying estimates from tests on dogs (Canis
lupus familiaris) is questionable. Thus, overall
seroprevalence served as an index of exposure of
adults and pups to the eight pathogens during
2007-13. We also used overall prevalence to
identify which pathogens to investigate more
closely for spatiotemporal variation and gender
differences in exposure rates. We used min(k,
n—k)>30 and a degrees-of-freedom (df) spending
approach (Harrell 2001; Giudice et al. 2012) to
determine which pathogen data sets had sufficient
information to warrant fitting binary logistic
models to investigate demographic, spatial, and
temporal patterns of pathogen exposure. General
guidelines for avoiding model overfitting recom-
mend limiting the df associated with predictors
(including complex terms such as interactions and
nonlinear terms) to m/10 or m/20, where m is the
limiting sample size (Harrell 2001). In the case of
a binary response variable, m=min(k, n—k). The
limiting sample size m in our seroprevalence data
sets ranged from 0 to 95 (median=23.5). We used
m>30 as a cutoff because at a minimum we
wanted to include categorical predictors for
gender and year, which would require at least 4
df. We did not consider models that included both
adults and pups because sample sizes were highly
unbalanced (314 vs. 73) and these models would
require 1-4 additional df for the categorical
predictor age and potential interactions involving
age and year. Likewise, we did not consider a
gender:year interaction in our df-spending ap-
proach because it was not biologically intuitive.
Based on this criterion, we fit models to adult
serological data for CPV (m=45), CDV (m=47),
NEO (m=56), WNV (m=95), CAV-1 (m=32), and
LYM (m=62).

Before fitting any models, we considered data
limitations associated with the opportunistic
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sampling design, which resulted in clustered
samples, unbalanced data, and potential con-
founding across space, time (years), and gender.
Almberg et al. (2009) used pack affiliation as a
random effect to account for their clustered
sampling design, but we lacked pack-affiliation
data. Therefore, we used function ‘pam’ in the R
package ‘cluster’ (Maechler et al. 2015; R Core
Team 2016) and a Euclidean distance matrix
based on UTM coordinates to construct spatial
clusters of data without viewing the relationship to
seroprevalence, age, gender, or year. We used
average silhouette width (Maechler et al. 2015)
over 2-20 clusters to determine the optimal
number of clusters. We constructed 13 clusters
(Fig. 1) to account for the clustered sampling
design and investigate spatial variation in expo-
sure rates after accounting for gender and year
differences. We also used the R package ‘ape’
version 3.4 (Paradis et al. 2004; R Core Team
2016) to compute Moran’s I statistic for each
pathogen, providing a measure of global spatial
correlation for the binary response variable
(—1=perfect dispersion, O=random, l=perfect
correlation or clustering).

We investigated modeling spatial autocorrela-
tion and first-order spatial trends directly via
geostatistical models (Berke 1999; Christensen
and Ribeiro 2002; Dormann et al. 2007), but the
data were insufficient to fit such models (e.g.,
estimated effects were imprecise and inconsistent
in direction and magnitude). Therefore, we chose
to use a simpler approach, by modeling spatial
autocorrelation and first-order spatial trends of
pathogen exposure among wolves in Minnesota
during 2010-13. This approach is described in the
Supplementary Materials.

RESULTS

We collected serum from 387 wolves: 247
depredation animals (2010-13), 118 live-
caught animals (2007-13), 17 animals found
dead (2010-12), three road-kills (2010-11),
and two with unrecorded collection method
(2010-11). Our final sample consisted of 314
adult wolves (48% females, 52% males) and 73
wolf pups (39% females, 61% males), as
shown in Figure 2. Seventy-nine percent of
pup samples were collected during August—
September (range: July-December). Thus,
most wolf pups were at least 5 mo old. Adult
wolves were sampled year-round, although
most (94%) were collected during May—
October each year.
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Ficure 2. Wolf (Canis lupus) serum samples
taken from northern Minnesota, USA for evidence of
exposure to infectious diseases, arranged by gender,
age class, and year, 2007-13 (does not include three
adults and one pup with missing gender data).

Adult wolves had higher pathogen exposure
than pups (Table 1). Pathogens CAV-1, CAV-
2, CPV, and LYM seroprevalence rates
exceeded 75% in adults (Table 1). The highest
seroprevalence in pups was for CAV-2 (45%)
and CAV-1 (44%). Exposure to EEE and
heartworm was low (<7%) in both adults and
pups. High antibody titers for CAV-1 and CPV
were observed for 30% and 25% of seropos-
itive adult wolves, respectively (Table 2).
Thirty-four percent of adults and 67% of pups
seropositive for CDV had high antibody titers
for this pathogen (Table 2).

Gender and year did not explain significant
variation in the exposure of adult wolves to
CDV, CAV-1, or NEO (Supplementary Ma-
terial Table S1). We found no evidence of
spatial variation or correlation in CAV-1 or
NEO exposure rates, whereas CDV exposure
was slightly clustered in space (Moran’s I
statistic=0.138, SD=0.047) and the predicted
probability of exposure varied among sam-
pling clusters (range: 9-37%; lowest in central
part of range). However, overall seropreva-
lence (Table 1) was our best estimate of
population-level exposure rates for CDV,
CAV-1, and NEO.

Exposure to CPV varied by gender, year,
and cluster (Fig. 3A and Supplementary
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Material Table S1). Exposure was twofold
higher for males than females, and exposure
in 2010 and 2012 was approximately threefold
higher than in 2011 and 2013. The random
cluster effect for CPV was significant (esti-
mated SD=0.998, 95% CI: 0.326 to 2.18) and
Moran’s I statistic indicated a weak spatial
clustering of CPV exposures (Moran’s
1=0.107, SD=0.048). Positive random effects
(increasing log odds of exposure) were gener-
ally associated with clusters from western and
northern portions of Minnesota’s wolf range.
Likewise, all 15 CPV-positive results for wolf
pups occurred in the northwest and central
portion of the range.

We found no evidence of spatial variation
(cluster effect) in WNV (Supplementary
Material Table S1), although Moran’s I
statistic (0.120, SD=0.047) indicated a weak
clustering of WNV exposures. We found
stronger evidence of temporal variation in
WNV exposure rates (Fig. 3B). Most notably,
exposure was fivefold higher in 2011 than
2010. Gender was not an important predictor
of variation in WNV exposure (,B’i).167, 95%
CI: —0.381 to 0.717; also see Fig. 3B).

Lastly, we found spatial and temporal
variation in LYM exposure (Supplementary
Material Table S1). The average predicted
exposure declined from 90% in 2010 to 64%
in 2013 (Fig. 3C). Predicted exposure also
varied by cluster (Fig. 3C) and LYM cases
were weakly clustered in space (Moran’s I
statistic=0.240, SD=0.047). The log odds of
LYM exposure were lower in clusters from the
northern part of Minnesota’s wolf range.
Gender was not an important predictor of
variation in LYM exposure rates (ff:0.036,
95% CI: —0.752 to 0.668; Fig. 3C).

DISCUSSION

Serosurveys are useful to determine appar-
ent disease prevalence and improve under-
standing of disease ecology. There are
important caveats to consider, however, in-
cluding 1) only “survivors” are available for
sampling, 2) a positive antibody titer only
indicates exposure and not clinical disease,
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TaBLE 1.
as the reciprocal of the final dilution.
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Overall seroprevalence of nine pathogens among wolves in Minnesota, USA, 2007-13. Titers are given

Age class

95%
Confidence interval

No. of No. of No. of Titer range for
Pathogen® years wolves positive samples PP Lower Upper positive tests
Adults
CAV-1 6 259 227 0.88 0.83 0.91 12-12,288
CAV-2 5 197 174 0.88 0.83 0.92 8-6,144
CpPV 6 253 208 0.82 0.77 0.87 256-16,354
CDV 5 255 47 0.19 0.14 0.24 324,096
LYM 6 260 198 0.76 0.71 0.81 160-1,280
NEO 5 232 154 0.66 0.60 0.72 50-51,200°
WNV 5 257 95 0.37 0.31 0.43 10-100
EEE 5 256 8 0.03 0.02 0.06 10-10
HWM 6 261 18 0.07 0.04 0.11 —°
Pups
CAV-1 5 57 25 0.44 0.31 0.57 8-12,288
CAV-2 5 40 18 0.45 0.30 0.61 128-2,048
CpV 5 62 15 0.24 0.15 0.37 256-16,384
CDV 5 62 3 0.05 0.01 0.14 1,024-4,096
LYM 5 62 24 0.39 0.27 0.52 160-1,280
NEO 4 53 19 0.36 0.24 0.50 50-1,6007
WNV 5 62 11 0.18 0.10 0.30 10-100
EEE 5 62 0 0.00 0.00 0.05 —
HWM 5 62 2 0.03 <0.01 0.12 —

* CAV-1 and CAV-2 = canine adenovirus type-1 and type-2; CPV = canine parvovirus; CDV = canine distemper virus; LYM = Lyme
disease; NEO = Neospora caninum; WNV = West Nile virus; EEE = equine encephalitis virus; HWM = heartworm.

b ]3 = apparent prevalenca

¢ Titer range for immunofluorescence assay test. Titer range for positive Neospora agglutination test was 25-1,600.

4 Titer range for immunofluorescence assay test. Titer range for positive Neospora agglutination test was 25-200.

¢ — =not applicable.

and 3) antibodies to certain pathogens can
persist at a maintenance level, so the titer
magnitude can reflect historic/past exposure,
recent initial exposure, re-exposure, current
infection, or clinical disease; thus, it may not
be possible to discern health impacts.

We obtained serological data on nearly 400
wolves across their range in Minnesota from
2007 to 2013; however, nearly 70% of samples
were collected during 2010-11. Gender of adult
wolves was nearly equal, but males were favored
in the pup cohort. Our sample may be biased by
the collection method, as approximately two
thirds of wolves were euthanized for depreda-
tion. Spatial distribution of these wolves may not
be random; as depredating wolves dispropor-
tionately occurred near high proportions of
pasture (an index of cattle [Bos taurus] abun-

dance) and high white-tailed deer (Odocoileus
virginianus) densities (Treves et al. 2004).
Adenoviruses may cause significant mortal-
ity during periods of increased stress, such as
food scarcity, high density, or parasitism; pups
<4 mo old are most vulnerable (Trainer and
Knowlton 1968). Adenoviruses are transmit-
ted through urine and are very resistant to
chemical and physical degradation, allowing
for high exposure in canid populations (Ste-
phenson et al. 1982). The high prevalence of
CAV-1 and 2 in our adult wolves (88%) and
pups (45%), was similar to adult wolves in
Yellowstone National Park (91-96%, Almberg
et al. 2009) and Alaska (81-84%, Zarnke et al.
1987, 2004; 95%, Stephenson et al. 1982). Our
results showing high exposure supports the
hypothesis that these adenoviruses are en-
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TasLE 2. The magnitude of antibody titers and the seroprevalence of eight pathogens in wolves (Canis lupus)
sampled in Minnesota, USA (2007-13) pathogens. Antibody titers were categorically grouped as “low,”
“medium,” and “high,” based on the percentile distribution of the observed positive titer values using quantiles

of 0.33 and 0.66 as cut-off values to create three bins.

Low titer samples

Medium titer samples High titer samples

No.
Pathogen® positive % Range % Range % Range
CAV-1
Adult 227 8 8-256 62 384-3,072 30 4,096-12,288
Pup 25 60 32 8
CAV-2
Adult 174 12 8-256 83 384-3,072 5 4,096-12,288
Pup 18 11 89 0
CPV
Adult 208 21 256-512 54 1,084-4,096 25 8,192-16,384
Pup 15 27 60 13
CDhV
Adult 47 32 32-128 34 256-1,024 34 2,048-4,096
Pup 3 0 33 67
LYM
Adult 198 12 160 25 320-640 63 1,280
Pup 24 21 54 25
NEOP
Adult 154 77 25400 18 800-3,200 5 6,400-51,200
Pup 19 84 16
WNV
Adult 95 54 10 46 100 0 —
Pup 11 64 36 0
EEE
Adult 8 100 10 0 — 0 —
Pup 0 0 0 0

* CAV-1 and CAV-2 = canine adenovirus type-1 and type-2; CPV = canine parvovirus; CDV = canine distemper virus; LYM = Lyme
disease; NEO = Neospora caninum; WNV = West Nile virus; EEE = equine encephalitis virus.

b Titer range for immunofluorescence assay and Neospora agglutinaﬁon tests combined.

¢ — =no data.

demic. Most adult wolves in our study had
medium (62%, 384-3,072) or high (30%,
4,096-12,288) titers to CAV-1, which further
indicates the pathogen was well established
and opportunity for re-exposure was readily
available.

The earliest evidence of CPV infection in
wild canids came from serum of live-captured
wolves from northeastern Minnesota in 1973
(Mech and Goyal 1995). Mortality of wolves
from CPV has been confirmed (Mech et al.
1997) and CPV was implicated as impacting
wild populations through high pup mortality
(Wydeven et al. 1995; Gese et al. 1997; Mech
et al. 2008). These authors correlated CPV

prevalence in adults with increased mortality
in 2-4-mo-old pups, when maternal antibod-
ies are waning and pups become the most
vulnerable to the virus (Barker and Parrish
2001). Limitations in the ability to monitor
neonate survival made it difficult to confirm
CPV as cause of death in wolves <5 mo old,
but correlations between CPV exposure in
adults and pup survival estimates were highly
suggestive (Mech et al. 2008). Recently, Mech
and Goyal (2011) concluded that the disease
became endemic after 1994, and the popula-
tion has since developed enough immunity to
withstand infections. Our high CPV preva-
lence in adults supports the hypothesis that



the disease is endemic across Minnesota’s
wolf range. We found males were twofold
more likely than females to be exposed to
CPV. Previous studies failed to find an effect
of gender on CPV prevalence (Johnson et al.
1994; Mech et al. 2008), except Nelson et al.
(2012) reported more males than females
exposed in the Canadian Rockies.

The CPV titers we report are much higher
than in previous studies. Gese et al. (1997)
suggested a CPV titer >1,280 indicated
recent infection, and this would decline with
age; Arjo et al. (2003) reported a titer of
>1,600 was indicative of recent exposure.
Johnson et al. (1994) concluded that adult
pack members with CPV titers >1,600
experienced pup mortalities in that year’s
litter. Mech et al. (2008) found <1% of their
wolves positive at the highest titer (8,192). In
our study, 63% of adult and 47% of pups had
antibody titers >1,600. In fact, 25% and 13%
of our adults and pups, respectively, had CPV
titers between 8,192 and 16,384. These high
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Ficure 3. The probabilities that wolves (Canis
lupus) in northern Minnesota, USA were exposed to
infectious diseases, 2007-13. (A) Boxplots of predicted
probabilities of exposure of adult wolves (F=females,
M=males) to canine parvovirus (CPV), northeast
Minnesota, 2010-13; based on a logistic mixed model
with year and gender as additive fixed effects and
location (spatial cluster) as a random effect. Predicted
probabilities describe year and gender effects and the
variation reflects uncertainty about the distribution of
wolves among clusters. The arithmetic mean (black
triangle) of the distribution of predicted probabilities
denotes our best estimate of population-level preva-
lence given the sample distribution of wolves among
clusters. (B) Model-based estimates of probability of
exposure of adult wolves to West Nile virus (WNV),
northern Minnesota, 2010-13. Error bars denote 95%
confidence intervals. (C) Boxplots of predicted prob-
abilities of exposure of adult wolves (F=females,
M=males) to Lyme disease (LYM), northern Minne-
sota, 2010-13, based on a logistic mixed model with
year and gender as additive fixed effects and location
(spatial cluster) as a random effect. Predicted proba-
bilities describe year and gender effects and the
variation reflects uncertainty about the distribution of
wolves among clusters. The arithmetic mean (black
triangle) of the distribution of predicted probabilities

CPV titers may indicate an epizootic had
recently occurred across Minnesota’s wolf
range. Canine parvovirus prevalence in
adults in this study consistently exceeded
the 76% threshold, which Mech and Goyal
(1995) predicted would result in wolf popu-
lation declines. We did not assess overall
health of euthanized or live-captured wolves,
and some may have had clinical CPV
infection. Alternatively, given the high CPV
prevalence in adults and year-long persis-
tence of the virus in feces (Muneer et al.
1988), wolves may be re-exposed often
enough to increase maintenance antibody
titers. We also found a significant spatial
effect with CPV, with prevalences higher in
the north and west portions of the wolf range,
similar to the spatial effect found by Mech et
al. (2008).

Unlike CAV and CPV, CDV is highly
contagious and thought to spread quickly,
but infected individuals shed virus for only a

=
denotes our best estimate of population-level preva-
lence given the sample distribution of wolves among
clusters.
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short time, and the virus degrades rapidly
(Almberg et al. 2009). Therefore, although
we found a CDV prevalence of 19% in adult
wolves and 5% in pups, an epizootic may
have occurred outside our sampling frame.
Our results are similar to the 7-12% CDV
prevalence in coyotes (Canis latrans) in
Utah, where the virus was presumed inactive
over several years (Arjo et al. 2003). Gese et
al. (1997) found CDV prevalence in coyotes
in Yellowstone declined from 100% to 33%
over 4 yr, and older animals had higher
exposure.

Our CDV titers were higher than in
previous studies. One third of our infected
adult wolves and two of three infected pups
had titers of 2,048-4,096, nearly sixfold higher
than the 32-356 range described by Arjo et al.
(2003). Johnson et al. (1994) suggested pup
mortality increased in packs with adult wolves
having CDV titers >1,250. Stephenson et al.
(1982) reported that two collared adult wolves
died of CDV in Alaska and Stronen et al.
(2011) reported that one adult wolf died in
Manitoba, but pups remain the highest risk
cohort (Almberg et al. 2009).

Scant evidence exists about the occurrence
and potential clinical effect of LYM in wild
wolves. A captive wolf inoculated with B.
burgdorferi produced a peak titer of 512;
however, lymphadenopathy was the only
observed clinical sign of disease (Kazmierczak
et al. 1988). Wild wolves from Wisconsin and
Minnesota from 1972-89 showed only 3%
seroprevalence for LYM (Kazmierczak et al.
1988; Thieking et al. 1992). Johnson et al.
(1994) failed to detect LYM disease in wild
wolves in Montana from 1985-90; however,
three of four wolves sampled on Isle Royale
during 1988-94 were positive, as were 33 of
69 (48%) wolves in Wisconsin from 1991-96
(Peterson et al. 1998; Beheler-Amass et al.
1999).

We found 76% of adult wolves and 39% of
pups had been exposed to LYM. Antibody
levels were >1,280 in 63% and 25% of
exposed adults and pups, respectively. Titers
>1,024 were considered indicative of active
infection (Kazmierczak et al. 1988), suggesting
that most adult wolves in our study were
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actively infected. Transplacental transmission
of LYM has been confirmed in coyotes in
Texas (Burgess and Windberg 1989), so it is
possible that wolves also developed antibodies
to LYM in utero, contributing to our high
prevalence and persistently high antibody
levels. Our data suggest LYM is endemic in
Minnesota’s wolves; adverse effects on the
population are unknown.

Lyme infection in wolves occurred less
frequently in the northern portion of Minne-
sota’s wolf range. Similarly, most cases in
humans and dogs occurred in the north-
central counties, and they were absent in
extreme north and western Minnesota (Com-
panion Animal Parasite Council 2015; Min-
nesota Department of Health 2015).

Recently, the gray wolf was confirmed as a
definitive host for N. caninum (Dubey et al.
2011, 2014). The sylvatic life cycle of this
parasite includes definitive canid hosts
(wolves, coyotes, or dogs) where sexual
reproduction occurs, and intermediate hosts
such as white-tailed deer (Dubey et al. 2009,
2013b). In northern Minnesota, approximately
80% of deer are infected with this parasite
(Dubey et al. 2013b), and as the primary prey
for wolves, deer provide continued opportu-
nity for wolf re-exposure. Infected canids shed
N. caninum oocysts in feces and, if ingested,
NEO can cause abortion in cattle. Transpla-
cental infection is common in cattle, and this
vertical transmission can perpetuate the
disease within a herd in the absence of a
canid source (Trees and Williams 2005).

Our prevalence rates for NEO in adult
wolves (66%) and pups (36%) suggest this
parasite is endemic throughout wolf range;
there was no spatial clustering of infected
individuals. Most of our adult wolves and pups
had low antibody titers to NEO. Almberg et
al. (2009) reported 33% prevalence in adult
wolves and 4% in pups in Yellowstone, and
because N. caninum does not induce long-
term immunity, these infections were pre-
sumed to be recent or active (Bjorkman and
Uggla 1999). Gondim et al. (2004) found N.
caninum antibodies in 64 (39%) of 164 wolves
from Minnesota.
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Eastern equine encephalitis outbreaks have
been found primarily in the southeastern US,
but EEE-infected horses have also occurred
in Minnesota, Michigan, and Wisconsin, with
mortality rates of 70-90% in Minnesota
(Minnesota Department of Health 2016).
Mosquitoes, particularly Culiseta melanura,
are thought to be the primary source of
exposure (Kinsley et al. 2016) in Minnesota.
Little is known about EEE infection in
wolves; however, the disease has been docu-
mented in domestic dogs (Farrar et al. 2005).
Clinical signs in dogs were pyrexia, depres-
sion, nystagmus, and lateral recumbency.
Farrar et al. (2005) concluded that young
dogs are the most susceptible. To our
knowledge, this is the first report of exposure
to EEE in Minnesota wolves; it is unclear
what effect it has on wolf survival.

West Nile virus is an avian virus that can be
fatal in some species of mammals, reptiles,
and birds. It is not clear what effect WNV has
on the 37% of adult wolves and 18% of pups
we found to be exposed to the disease, but
neurological signs have been reported from
rare clinical cases in dogs and wolves. A
captive 4-mo-old Arctic wolf pup (C. lupus
arctos; Lanthier et al. 2004) and a 3-mo-old
wolf pup (Lichtensteiger et al. 2003) infected
with WNV exhibited vomiting, anorexia, and
ataxia prior to death, which occurred 24-48 h
after the onset of neurological signs. Our
prevalence rates are similar to a recent
serosurvey of coyotes in Nebraska, where
48% were exposed to WNV (Bischof and
Rogers 2005).

We found only 7% and 3% of adult wolves
and pups, respectively, were exposed to
canine heartworm (Dirofilaria immitis), which
was documented in Minnesota wolves previ-
ously (Mech and Fritts 1987). Transmitted by
mosquitos, this parasite is a significant path-
ogen in dogs and has been reported in other
canids including coyotes, red fox (Vulpes
vulpes), gray fox (Urocyon cinereoargenteus),
and red wolf (Canis rufus) in the US
(Anderson 2001). A single wolf in Wisconsin
tested positive for heartworm in 1991 (Beh-
eler-Amass et al. 1999). High infection rates
(66%) were reported for coyotes in Arkansas,
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with 15-30 worms found in each of 50 hearts
(King and Bohning 1984). This parasite could
be a mortality factor in Minnesota wolves,
especially during times of high stress.

Limitations in the temporal span of this
study make it difficult to determine annual
differences in exposure rates. Long-term data
are needed to distinguish between epidemic
and endemic patterns as well as effects of age
of individuals. Although we elucidated several
spatial trends in disease prevalence for CPV
and LYM that appeared supported by previ-
ous study and current disease trends, our
collection methods were biased toward dep-
redating wolves, clustered in space and time,
and may not be representative of wolves in
Minnesota. We advise caution in interpreta-
tion of our results beyond our sampling {rame.
Future efforts to assess disease prevalence in
Minnesota wolves should focus on interior
areas within their range, which would provide
a useful comparison to the results we reported
in this study.
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