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Identification of an orthologous clade of peroxidases
that respond to feeding by greenbugs (Schizaphis graminum)
in C4 grasses
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Abstract. Knowledge of specific peroxidases that respond to aphid herbivory is limited in C4 grasses, but could provide
targets for improving defence against these pests. A sorghum (Sorghum bicolor (L.) Moench) peroxidase (SbPrx-1;
Sobic.002G416700) has been previously linked to biotic stress responses, andwas the starting point for this study. Genomic
analyses indicated that SbPrx-1 was part of a clade of five closely related peroxidase genes occurring within a ~30 kb region
on chromosome 2 of the sorghum genome. Comparison of this ~30-kb region to syntenic regions in switchgrass (Panicum
virgatum L.) and foxtail millet (Setaria italica L.) identified similar related clusters of peroxidases. Infestation of a
susceptible sorghum cultivar with greenbugs (Shizaphis graminum Rondani) induced three of the five peroxidases.
Greenbug infestation of switchgrass and foxtail millet plants showed similar inductions of peroxidases. SbPrx-1 was
also induced in response to aphid herbivory in a greenbug-resistant sorghum line, Cargill 607E. These data indicate that this
genomic region of C4 grasses could be valuable as a marker to assess potential insect resistance in C4 grasses.

Additional keywords: defense, defence, foxtail millet, greenbugs, plant resistance, sorghum, switchgrass, synteny.
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Introduction

Plants have developed elaborate defence systems to protect
against aphid herbivory and other biotic stresses (Carmona and
Fornoni 2013). One component of this aphid-defence system
includes changes in the levels of stress-related proteins that can be
directly or indirectly related to the cellular responses stimulated
by insect feeding (Louis andShah2013).Therefore, documenting
the induction of stress-related genes and proteins upon exposure
to aphids can provide important information on the extent and
severity of the plant stress response, as well as the ability of the
plant to tolerate or overcome the negative effects of aphid
herbivory.

Changes in cellular redox state and the accompanying
increased production of reactive oxygen species (ROS) are
often direct consequences of insect feeding (Moloi and van der
Westhuizen 2008; Kerchev et al. 2012;Mai et al. 2013;Wu et al.

2013). How plants respond to elevated levels of ROS and
oxidative stress may drive plant resistance and tolerance
mechanisms to hemipteran pests (Gutsche et al. 2009a). In
plant cells, increased activity of antioxidant enzymes, such as
catalases, peroxidases and superoxide dismutases, generally
accompanies insect feeding (Heng-Moss et al. 2004; Dowd
and Lagrimini 2006; Franzen et al. 2007; Gulsen et al. 2010;
Mai et al. 2013). These enzymes presumably act to restore redox
balance and protect cells from oxidative damage while
maintaining adequate levels of ROS that can interfere with
insect feeding. This delicate balancing act could readily reach
a tipping point, if insect pressure becomes insurmountable or if
plants are unable to sustain the defensive responses against
ROS to prevent cellular damage (Gutsche et al. 2009b).
Among the key components of plant cellular defenses are the
class III peroxidases. These heme-containing enzymes can both
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produce and consume hydrogen peroxide (H2O2), and are
strongly upregulated in plants exposed to biotic and abiotic
stress. The genomes of most plants contain in excess of 100
class III peroxidases that can be classified into several different
subgroups (Passardi et al. 2005; Saathoff et al. 2013). Individual
genes belonging to distinct subgroups can be differentially
regulated in response to stress and other environmental cues
(Passardi et al. 2004a). Several studies (Dowd et al. 2006;
Barbehenn et al. 2010; Suzuki et al. 2012) have demonstrated
that plants engineered to overexpress peroxidases are more
tolerant to specific insects, indicating a causal relationship
between higher peroxidase activity and resistance and/or
tolerance to insect herbivores. The identification of specific
plant peroxidases involved in responding to insect herbivory,
however, is lacking in many species.

The availability of multiple annotated grass genomes has
permitted the identification of syntenic and microsyntenic
regions across species (Massa et al. 2011; Schnable et al.
2012; Schnable 2015). Genes present in syntenic regions are
often orthologous and may perform similar functions across
species (Schnable 2015). Although a direct correspondence for
the function and control of genes involved in primary metabolic
pathways is often observed across species, the samemay not hold
true for other classes of genes. In expansive gene families
comprised of large numbers of duplicated genes, it is possible
that even the nearest orthologs in different species might not
function in the same manner as neofunctionalisation,
subfunctionalisation and other evolutionary changes are
common after gene duplication events (Distelfeld et al. 2012).
However, syntenic relationships may be useful for predicting
functional outcomes, developing markers for resistance to
biotic stresses and deciphering the regulatory circuits that
control defence-related gene expression in the face of insect
herbivory.

In a previous study, a single sorghum (Sorghum bicolor (L.)
Moench) peroxidase (Sobic.002G146700, referred to as
SbPrx-1) responded strongly after challenge with the pathogen
Colletotrichum, the causative agent of anthracnose (Pratt et al.
2005; Zamora et al. 2009), and was part of a resistance response.
In many plants, exposure to either pathogens or insects can
elicit induction of the same defensive genes, although other
aspects and outcomes of the defensive response can vary
(Thaler et al. 2012; Lei et al. 2014). Peroxidases are also
integral to the resistance/tolerance response in plants infested
with piercing-sucking insects (Ni et al. 2001; Heng-Moss
et al. 2004; Passardi et al. 2005; Gutsche et al. 2009a; Gulsen
et al. 2010; Marchi-Werle et al. 2014). Sorghum–greenbug
interactions have been well studied (Michels and Burd 2007)
and aphid-resistant sorghum lines have been previously reported
(Dogramaci et al. 2007). However, the identification of
peroxidases functionally linked to defence responses in
sorghum as well as orthologous peroxidases that respond to
biotic stresses in multiple species of grasses have not been
investigated. In this study, the role of a syntenic region
containing orthologous groups of peroxidases in response to
aphid feeding was investigated in the genomes of three closely
related C4 grass species, sorghum, switchgrass (Panicum
virgatum L.) and foxtail millet (Setaria italica L.).

Materials and methods
Insects

Schizaphis graminum (greenbug; Biotype I) used for sorghum,
switchgrass and foxtail millet infestations were maintained on
BCK60 sorghum plants in a growth chamber at 25� 1�C,
40� 10% RH and a 1410 hours (L:D) photoperiod by the
Department of Entomology at the University of Nebraska-
Lincoln as described previously (Koch et al. 2014).

Phylogenetic and syntenic studies

To identify other sorghum peroxidase genes on chromosome 2
that may also respond to aphid feeding, BLASTP searches were
performed using SbPrx-1 as a query. In all, a total of 25 related
sequences classified as class III peroxidases were obtained and
used for further phylogenetic analyses to determine their
evolutionary relationships. Peroxidase amino acid sequences
were aligned using ClustalW and neighbour-joining trees were
constructed using Mega 5.0 (Kumar et al. 2008) using the
following parameters: 1000 bootstrap pseudoreplicates, the
JTT +G evolutionary model, homogeneous evolutionary rates
among lineages, and gaps were treated as pairwise deletions.
An approximate likelihood ratio (aLRT) test (Anisimova and
Gascuel 2006) was used to assess the probability of the branching
topology on the bootstrap consensus trees using the program
PAML (Yang 2007). Further, to determine whether the clade of
peroxidases (Clade 3) that was most closely related to SbPrx-1
shared a common evolutionary ancestry, a cladogram was
generated using all of the sorghum peroxidases belonging to
theSbPrx-1 clade and the putative ancestral rice (Oryza sativaL.),
sorghum and liverwort (Marchantia polymorpha L.) sequences.
The rice and liverwort sequences had been identified earlier
(Passardi et al. 2004a) and the predicted sorghum orthologue
of the ancestral rice and liverwort sequence was identified using
reciprocal BLASTP searches.

Expression levels of Clade 3 sorghum peroxidases
in response to aphid feeding

To determine whether the Clade 3 peroxidases responded to
aphid feeding in sorghum, RT-qPCR was performed on
infested and uninfested sorghum plants 10 days after aphid
infestation (DAI). A single time point was selected for two
reasons: (1) previous physiological studies on other species
have indicated that induction of peroxidases was time
dependent, with maximal enzyme activity detected between 7
and15DAI (Ni et al. 2001;Heng-Moss et al. 2004); and (2) visual
observations during the routine maintenance of greenbugs on
sorghum (BCK60) plants indicated intermediate damage such as
yellowing and loss of vigour to plants around 10 DAI (Koch
et al. 2014), suggesting that plant defence responses were likely
well induced at this time point. However, it is possible that
specific peroxidase encoding genes could have different
expression profiles, and one harvest time would not provide
this data. Nevertheless, other studies that have assayed for
peroxidase activity or expression have detected elevated
peroxidase activity anywhere from 6 to 21 days in plants
infested with shoot fly (Atherigona soccata) (Padmaja et al.
2014), Russian wheat aphid (Diuraphis noxia) (Gutsche et al.
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2009a) and greenbugs (Chaman et al. 2001), suggesting that
peroxidases that responded to aphid feeding could be readily
detected at 10 DAI. However, future experiments, based on
results presented here, can be designed to evaluate peroxidase
and other plant defensive gene expression at both early and later
stages using plants with well defined (resistant or susceptible)
responses to greenbugs.

Plants were grown in ‘SC 10 Super Cell’ Single Cell cone-
tainers to the three-leaf stage. Plants were infested with
~10 nymphs of S. graminum biotype I by placing them on the
leaves using a fine eye brush as described previously (Koch et al.
2014). Infested and uninfested plants were caged individually
and arranged in a randomised complete block design.

Leaves were collected at 10 DAI for RNA isolation. After
removal of aphids with a camel hair brush, leaves were flash
frozen with liquid nitrogen and stored at�80�C. Total RNA was
extracted using TRIzol reagent (Invitrogen), purified using the
RNeasy MinElute Cleanup Kit (Qiagen Inc.) and validated
essentially as described by Scully et al. (2016). The total RNA
samples were DNase treated and used for cDNA synthesis as
previously described (Palmer et al. 2014) using SuperScript III
reverse transcriptase (Invitrogen) and random primers
according to the manufacturer’s protocol. Relative expression
levels of the Clade 3 peroxidase genes in were measured using
qPCR with Bio-Rad SsoAdvanced SYBR Green supermix (Bio-
Rad Laboratories) following the manufacturer’s protocols:
20mL qPCR reactions were performed in triplicate on each
cDNA sample with 0.6mM forward primer, 0.6mM reverse
primer (see Table S1, available as Supplementary Material to
this paper), 1mL 1 : 5 diluted cDNA and 10mL SsoAdvanced
SYBR Green Supermix (Bio-Rad) using the 7500 Fast Realtime
PCR System (Applied Biosystems). Thermal cycling parameters
were as follows: initial denaturation for 30 s at 95�C, 40 cycles
of denaturation at 95�C for 5 s and annealing at 62�C for 10 s.
Primer specificities were confirmed by dissociation curve
analysis, consisting of denaturation at 95�C for 5 s, cooling to
65�C for 15 s and gradual heating at 0.2�C s–1 to a final
temperature of 95�C. Relative expression was computed using
the DDCt method using the sorghum ubiquitin-conjugating
enzyme (UCE) as a control (Table S1). No-template and no-
RT controls were also analysed to verify the absence of DNA
contamination. Relative expression values were statistically
analysed using ANOVA followed by Tukey’s honestly
significant difference (HSD) post hoc analysis to determine
which peroxidases were induced by aphid feeding in
comparison to uninfested control plants. Primer sequences
used for the peroxidase and control genes are shown in
Table S1. Four biological replicates were analysed in triplicate.

Identification of orthologous Clade 3 peroxidases
in switchgrass and foxtail millet

To determine whether the genomes of other C4 grasses (e.g.
switchgrass and foxtail millet) also harboured orthologs to the
sorghum Clade 3 peroxidases, orthology searches were
performed using Phytozome ver. 10.2 (Goodstein et al. 2012),
which uses InParanoid to compute orthologue groups (Ostlund
et al. 2010). Putative switchgrass, sorghum and foxtail millet
orthologs of the sorghum Clade 3 peroxidases were subjected to

maximum-likelihood based phylogenetic analysis using Garli
(Zwicki 2006). WAG+ I +G was chosen as the optimal
evolutionary model based on AIC criteria using ProtTest
(Abascal et al. 2005) and evolution was simulated for 500 000
generations or until likelihood scores reached convergence: 500
bootstrap pseudoreplications were performed. Synteny was
assessed by comparing the order of the flanking genes in the
genomes of the three plant species and assessing their orthology
by recipricol BLASTP searches.

Response of Clade 3 peroxidase orthologs to aphid
feeding in switchgrass and foxtail millet

Switchgrass (cv. Summer) and foxtail millet plants (SI-7 forage
variety) were grown under the same conditions described for
sorghum. Plants were grown to the three leaf stage and 2–3
aphid adults were transferred to plants using a fine hair paint
brush. RNA was isolated from infested and uninfested control
plants at 10 DAI and qPCR was performed using the same
protocol described for sorghum. The actin2 (Act2) and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes
were used for normalisation in foxtail millet and switchgrass
respectively. Primer sequences are listed in Table S1, and qPCR
was performed on four biological replicates in triplicate and
expression levels were computed using the DDCt method with
the respective control genes. Peroxidaseswhose expression levels
were significantly impacted by aphid feeding compared with
uninfested control plants were detected using ANOVA followed
by Tukey’s HSD post-hoc analysis.

Identification of cis-regulatory elements in the promoters
of peroxidases responsive to aphid feeding

The 50 putative promoter regions 2000 bp upstream from the
ATG start codon of the Clade 3 peroxidases identified in
sorghum, switchgrass and foxtail millet were retrieved from
Phytozome and analysed for cis-acting regulatory DNA
elements via a signal scan comparison to the PLACE database
(http://www.dna.affrc.go.jp/PLACE/ accessed 15 November
2015) (Higo et al. 1999). NMDS analysis was conducted
using the vegan library (Dixon 2003) in the R statistical
environment (ver. 3.0 for Linux) to determine whether there
were similar cis regulatory elements among the promoters of
the aphid-responsive genes. The program DREME (Bailey
2011) was used to scan for novel motifs of 5–8 nucleotides in
length enriched in the promoters of the aphid-responsive
peroxidases relative to non-responsive peroxidase promoters.

Predictive structural modelling
I-Tas.SER (Iterative Threading ASSEmbly Refinement) (Zhang
2008) was used to perform predictive structural modelling
of these proteins to attempt to gain structural insight and to
determine whether there were any significant structural
similarities of the peroxidases that responded to aphid feeding.
The I-Tas.SER server uses an integrated set of programs for
protein structure prediction. This modelling system typically
works best when there is high sequence similarity between the
proteins of interest and an experimentally determined structure or
set of structures that already exists in the Protein Data Bank
(PDB, found at www.rcsb.org, accessed 27 April 2015) (Berman
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et al. 2003). Model reliability was assessed primarily using two
structural measurements, the confidence score (C-score) and the
TM-score (Zhang 2008). The C-score is based on threading
template alignment quality and a set of structural assembly
simulation convergence parameters. The TM-score is
analogous to the RMSD measurement and is a measure of the
structural similarity between two structures (Roy et al. 2010).
Each of the amino acid sequences were uploaded to the I-Tas.
SER server at http://zhanglab.ccmb.med.umich.edu/I-Tas.SER/,
accessed 6 May 2015) for predictive modelling. All structure
analysis and molecular image generation was performed using
the UCSF Chimera package (Pettersen et al. 2004). Chimera is
developed by the Resource for Biocomputing, Visualisation
and Informatics at the University of California, San Francisco
(supported by NIGMS P41-GM103311).

Identification of Clade 3 peroxidase homologues
in maize, rice and Brachypodium
To determine whether Clade 3 peroxidase orthologs were also
present in the genomesof otherC4grasses (Zeamays (maize)) and
C3 grasses (Brachypodiumdistachyon (Brachypodium) and rice),
we used InParanoid to identify putative orthologous sequences
in the genomes of these three plants. Maximum likelihood based
phylogenies and assessments of synteny were performed as
described above.

Identification of peroxidases that respond to aphid-
feeding in a resistant sorghum cultivar (Cargill 607E
and Garst 5715)

To determine whether any of these peroxidases could potentially
be linked to greenbug resistant responses in sorghum, a resistant
commercial sorghum hybrid Cargill 607E and another
susceptible sorghum hybrid Garst 5715 were infested with
aphids as described above and peroxidase activities were
measured. Treatments were arranged in a 2� 2� 3 factorial
design consisting of two sorghum cultivars, two treatments
(infested and non-infested plants) and three sampling dates
(4, 8 and 12 DAI). Aphid numbers were counted and
chlorophyll content of the first leaf was determined at each
sampling date as described by Porra et al. (1989). Peroxidases
were extracted from control and infested plants at 4, 10 and 12
DAI and analysed for activity and by gel electrophoresis at 12
DAI as described earlier (Heng-Moss et al. 2004).

A peroxidase band that was apparently constitutively
expressed in both the uninfested resistant and susceptible
plants (see ‘Results’), but apparently upregulated in infested
resistant plants was partially purified and identified as follows:
soluble proteins were extracted by grinding ~7 g of tissue from
Cargill 607E or Garst 5715 sorghum plants with dry ice followed
by homogenisation with 20mL of 20mM HEPES (pH 7.2)
containing 20mL proteinase inhibitor cocktail and 1% (w/v)
polyvinylpolypyrrolidone. The homogenate was passed
through four layers of cheesecloth and centrifuged at 10 000g
for 20min at 4�C. Proteins in the supernatant were precipitated
using ammonium sulfate (80% saturation). Precipitated
proteins were redissolved in 2mL of desalting buffer (25mM
Tris buffer, 1mMMgCl2, 1mM CaCl2 and 1mMMnCl2 pH 7.5

and 50mL proteinase inhibitor cocktail) and centrifuged at
14 000g for 10min at 4�C to pellet insolubles. The supernatant
was desalted, equilibrated and eluted over a PD-10 desalting
column (GE Healthcare Life Sciences) with desalting buffer.
Approximately 2.5mL of the desalted extract was passed over a
Concanavalin A-Sepharose column (Con-A, Sigma) equilibrated
with desalting buffer containing 0.5M NaCl (wash buffer). The
column was sequentially washed with 10mL of wash buffer,
followed by 10mL wash buffer containing 0.5M a-methyl
mannopyranoside to elute bound proteins. Both the Con-A
elutate and wash fractions were concentrated using YM-10
centricon filters as suggested by the manufacturer (Millipore
Corp.). Concentrated protein samples were collected and
20mL of sample was mixed with 5mL loading buffer and
separated by non-denaturing gel electrophoresis on 7.5%
polyacrylamide gels (Heng-Moss et al. 2004). Zones of
peroxidase activities were detected by soaking gels in 20mL
of 50mM sodium acetate buffer (pH 5.0) containing 12mg
4-hydroxy-3-methoxy phenyllacetic acid (dissolved in 0.5mL
of methanol) and 20mL of 30% hydrogen peroxide for 10min in
37�C water bath. Florescent bands of peroxidase activity were
detected using a UV light source and one band specifically
enriched in samples from 607E plants was excised using a
razor blade. Excised gel slices were then subjected to
automated trypsin digestion followed by mass spectrometry
sequencing at the Mass Spectrometry Core Facility at the
University of Nebraska-Lincoln (Kayser et al. 2006).
Following sequencing, the identified peptide sequence was
searched against standard databases. One peptide that matched
exactly and mapped uniquely to SbPrx-1 was identified (Pratt
et al. 2005).

Statistical analysis of data

Statistical analyses were performed in SAS (SAS Inc.) PROC
MIXED ver. 9.2 or in Excel (Microsoft Corp.). Data analysis on
RT-qPCR gene expression studies were completed according
to manufacturer’s protocol (Applied Biosystems). Relative
expression values were statistically analysed using ANOVA
followed by Tukey’s honestly significant difference (HSD)
post-hoc analysis to determine which peroxidases were
induced by aphid feeding using P� 0.05 as a cutoff for
significance.

Results

A clade of closely related class III peroxidases is located
on chromosome 2 in sorghum

A BLASTP search of the sorghum genome using the
Sobic.002G416700 (SbPrx-1) protein sequence as the query
identified 25 additional sequences coding for other class III
peroxidases on chromosome 2 and over 100 peroxidase-like
sequences encoded throughout the rest of the sorghum genome
(data not shown). A phylogenetic analysis of the 25 peroxidase
sequences present on chromosome 2 indicated that there were
three major clades containing two or more closely related
peroxidases (Fig. 1a). The largest such clade (Clade 1)
contained 11 genes (Fig. 1a). In general, peroxidases located
in close proximity to one another on the chromosome were more
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Fig. 1. Phylogenetic analyses of sorghumperoxidases. (a)Neighbour-joining analysis of sorghumclass III/family 2 peroxidases
localised to chromosome 2. Support for branching topology was generated using aLRT analysis. Values on the nodes represent
the likelihood of each branch point. Scale bar represents number of substitutions per site. Based on this analysis, three clades of
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clade 3 peroxidases to the putative ancestral rice and sorghum peroxidases. Neighbour-joining analysis was conducted using
Mega 5. Bootstrap values on branches are shown as percentages.
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closely related to each other than theywere to peroxidases located
along other regions of the chromosome (Fig. 1a). SbPx-1 was
found in a clade of six peroxidases (Clade 3), of which five
were localised to a contiguous ~30 kb region of chromosome 2.
These five peroxidases all share a common ancestor. This
analysis indicated that Sobic.002G416900 was the most
divergent of the peroxidases and could have served as the
progenitor for the other peroxidases in this clade. In addition,
the arrangement of these peroxidases along the chromosome is
consistent with evolution via tandem duplication and/or gene
amplification events.

Previously, an evolutionary grouping system formulated
by Passardi et al. (2004a) was proposed with a selection of
rice class III peroxidases. Based on reciprocal BLASTP
searches, no rice orthologue to SbPx-1 could be conclusively
identified; however, SbPx-1 had a highest scoring BLASTP
alignment to OsPrx-83, which has been previously assigned to
group IV.2, a group of monocot specific peroxidases (Passardi
et al. 2004a) (Fig. 1b). Neighbour-joining analysis suggested
that SbPx-1 and all of the class III sorghum peroxidases present
in the ~30 kbp region on chromosome 2 belong to Group IV.2,
providing further evidence for common evolutionary origin and
potential functional similarities between these five sorghum
peroxidases.

Three sorghum Clade 3 peroxidases are upregulated
under aphid pressure

To investigate the responsiveness of the other Clade 3 sorghum
peroxidases to aphid feeding, RT-qPCR analysis of the five
peroxidases was conducted 10 DAI in the susceptible sorghum
cultivar BCK60 (Fig. 2a). This analysis revealed that three of
the five peroxidases were significantly induced (P� 0.05) upon
aphid feeding, including Sobic.002G416500, Sobic.002G41
6600 and Sobic.002G416700. Sobic.002G416500 and Sobic.
002G416700 (SbPx-1) were induced by 7.0- and 6.0-fold
relative to uninfested control plants at 10 DAI (P� 0.05). Sobic.
002G416600 was the most highly induced peroxidase in the
clade and was upregulated by over 45-fold (P� 0.05) compared
with uninfested control plants (Fig. 2a). In contrast, expression
levels of Sobic.002G416800 and Sobic.002G416900 were
similar in both the infested and uninfested plants (Fig. 2a).

Peroxidases are highly conserved within syntenic
genomic regions in C4 grasses

In general, the occurrence of clusters of phylogenetically related
peroxidases throughout the genome appears to be specific to
monocots as similar occurrences have not been observed in
dicotyledonous species (i.e. Arabidopsis, Populus) (Passardi
et al. 2004a). The recent release of the foxtail millet genome
(Bennetzen et al. 2012) and ver. 1.1 of the switchgrass genome
(www.phytozome.org, accessed 3 April 2015) permits a
comparison of the syntenic genomic regions of these grasses.
It also allows us to evaluate if peroxidases orthologous to
Sobic.002G416700 (SbPrx-1) and other sorghum Clade 3
peroxidases contribute to response mechanisms to aphid
feeding in other grasses.

Orthologous Clade 3 peroxidases were retrieved from the
foxtail millet and switchgrass genomes using the Phytozome

gene ancestry tool (Fig. 2b). The closest orthologs to SbPrx-1
were Si030597 and PviBa00168 in foxtail millet and switchgrass
respectively. In both cases, the orthologs to SbPx-1 in the foxtail
millet and switchgrass genomes occurred in regions of the
genome containing multiple copies of class III peroxidases
(see Fig. S1, available as Supplementary Material to this
paper). In switchgrass, Pavir.Ba00168 occurred in an ~13 kb
genomic region containing four peroxidases named Pavir.
Ba00165 through Pavir.Ba00168 localised to a genomic
scaffold assigned to chromosome 2a, whereas Si030597 was
localised to a genomic interval of ~29 kbassigned to chromosome
2 containing seven peroxidases, including the gene models
Si030426, Si030339, Si030593, Si030597, Si030562, Si0305
95 and Si030541. As in the cluster of peroxidases identified in
sorghum, the switchgrass and foxtailmillet peroxidases occurring
within these clusters tended to be more closely related to each
other than they were to other peroxidases occurring elsewhere
on the chromosome (Figs S2, S3). The two exceptions to this
observation were Si030541 (Fig. S2) and Pavir.Ba00165
(Fig. S3), which appeared to be more distantly related to the
other peroxidases and instead, formed strongly supported clades
with Si036729 and Pavir.Bb03620 respectively. Si036729
occurred as a singleton peroxidase on an unplaced genomic
scaffold (scaffold_9:46953962.46955528 reverse) (Fig. S2)
whereas Pavir.Bb03620 was located on a scaffold assigned to
chromosome 2b (Fig S3). Furthermore, in switchgrass, Pavir.
Ba00165, Pavir.Ba00166, Pavir.Ba00167 and Pavir.Ba00168
were paired with Pavir.Ba03620, Pavir.Bb03604, Pavir.
Bb03602 and Pavir.Bb03603 (Fig. S3), respectively, which
likely represent homeologs from the ‘B’ genome.

Subsets of orthologous Clade 3 peroxidases
are upregulated in switchgrass and foxtail millet
under aphid pressure

Of the four switchgrass peroxidases, one gene, namely Pavir.
Ba00167, was expressed at significantly higher (13-fold;
P� 0.05) levels in aphid-infested plants 10 DAI as compared
with non-infested control plants (Fig. 3a). Expression levels for
Pavir.Ba00165, Pavir.Ba00166 and Pavir.Ba00168 were
indistinguishable between the two treatments (Fig. 3a).
Notably, although Pavir.Ba00168 is the putative switchgrass
orthologue of SbPx-1, it was not significantly induced in
aphid-infested plants. However, Pavir.Ba00167 is orthologous
to Sobic.002G416600, which was highly induced in greenbug
infested sorghum signifying that these orthologs could have
similar functions in defence in both sorghum and switchgrass.

Of the seven foxtail millet peroxidases, four peroxidases were
significantly upregulated in greenbug-infested plants. Most
notable were the three peroxidases Si030339, Si030562 and
Si030595, which had average fold change values above 15
(P� 0.05) (Fig. 3b). The predicted orthologue of SbPx-1 (Si03
0597) did not respond to aphid feeding at 10 DAI, indicating
that, like the switchgrass orthologue (Pavir.Ba00168), it may
occupy a different physiological niche in foxtail millet or its
expression was not induced upon aphid feeding in this variety
of foxtail millet (Fig. 3b). Notably, Si030339, which is the
orthologue of aphid responsive genes Sobic.002G416600 and
Pavir.Ba00168, was highly induced 10 DAI (21-fold; P� 0.05)
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potentially signalling that this orthologue group likely evolved to
serve roles in plant defenses.

Predicted three-dimensional structures of C4 grass Clade 3
peroxidases are indistinguishable

In a previous analysis, SbPrx-1 was induced in sorghum
upon exposure to fungal pathogens (Zamora et al. 2009).
Eight amino acid residues, including four residues occurring in
the E helix domain adjacent to the active site, were identified as
being under positive selective pressure (Zamora et al. 2009).
These residues, QxxxSLxS, were found in positions 164–171 in
SbPx-1 and were hypothesised to impact the catalytic activity of
the enzyme as well as the ability to bind calcium cofactors. In
order to ascertain whether these residues were also present in the
E-helix regions of the aphid-responsive peroxidases, the protein
structures for the Clade 3 peroxidases were generated via I-Tas.
SER. The structure of SbPx-1 is shown in dark blue and six of
the positively selected residues are labelled (Fig. 4a). The
backbone ribbons of all of the other models are superimposed
and show very little predicted structural difference with respect
to SbPx-1 (Fig. 4a). All of the peroxidases contained the
E helix except for the aphid responsive gene Pavir.Ba00167.
Themodel for this gene is shown inFig. 4b superimposedwith the
model for SbPx-1 with a red box denoting the position of the E
helix. In all peroxidases containing the E helix, the helix was
highly variable in terms of amino acid composition, including
those that were not responsive to aphid feeding (Fig. 4c). The
QxxSLxS motif was unique to Sobic.002G416700 and was
not found in any other peroxidases; moreover, this amino acid
sequence in these positions did not seem to impact the structure
of the E helix nor did it substantially modify the properties of
the amino acid residues that comprise this motif (Fig. 4c).
Furthermore, the amino acid sequences of the E helix region
had no major impacts on the overall protein structure and did not
appear to impact the catalytic residues or active site. The amino
acid sequences in this region could not be conclusively linked
to peroxidase responsiveness to aphid feeding and instead,
correlated with phylogenetic relatedness of the peroxidases
(Fig. 4c). For example, though Si030597 had similar amino
acids in the E helix region compared with the aphid responsive
genes Si03593, Si030395 and Sobic.002G416700, it did not
respond to aphid feeding. Similarly, the sequences of the
E-helix regions were identical in the aphid responsive gene
Sobic.002G416500 and the non-responsive gene Si030426
(ANLTAAF) (Fig. 4c). Finally, the E helix was completely
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Fig. 3. Expression analysis of Clade III peroxidases in switchgrass and
foxtail millet plants 10 days after aphid infestation (DAI). (a) RT-qPCR
analysis of four peroxidase genes in switchgrass in response to greenbug
feeding at 10 DAI. GAPDH was used as an endogenous control. Values are
the means� s.e. (n= 4). Significance of aphid infested plants relative to
gene expression of the control uninfested samples is indicated: *, P< 0.05.
(b) Analysis of seven peroxidase genes in foxtail millet in response to
greenbug feeding at 10 DAI. Act2 was used as an endogenous control.
Values are the means� s.e. (n= 4). Significance of aphid infested plants
relative to gene expression of the control uninfested samples at day 10 is
indicated: *, P< 0.05.

Fig. 2. Expression analysis of clade 3 sorghum peroxidases at 10 days after aphid infestation (DAI) and phylogentic relationships to similar peroxidases in
other C4 grasses. (a) RT-qPCR results of sorghum Clade 3 sorghum peroxidases at 10 DAI. To determine whether any of the other sorghum peroxidases
occurring in close proximity to SbPx-1were also induced upon aphid feeding, RT-qPCR analysis was performed on aphid infested and control plants at 10DAI.
The UCE gene was used as an endogenous control. Values are the means� s.e. (n= 3). Significance of aphid infested plants relative to gene expression of the
control uninfested samples is indicated: *, P< 0.05. (b) Maximum likelihood (ML) analysis of syntenic peroxidases in sorghum, switchgrass, and foxtail millet.
The genomes of switchgrass and foxtail millet were searched for homologues of sorghum cluster 3 peroxidases using the Phytozome gene ancestry tool. Seven
peroxidases were identified in foxtail millet and four were identified in switchgrass. These sequences were subjected to ML-based phylogenetic analysis to
determine their relationships with the sorghumClade 3 peroxidases. Numbers on the nodes represent bootstrap support values (n= 500) and scale bar represents
the number of substitutions per site. Sorghum (Sobic) sequences shaded in green are those that were induced in response to aphid feeding at 10 DAI. Sequences
in brown were non-responsive.
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absent in the aphid-responsive gene Pavir.Ba00167. Future
improvements to the switchgrass genome assembly will allow
us to determine whether or not the missing E helix region in this
gene is due to a possible misassembly in this region or if this
aphid-responsive gene is truly missing the E helix domain.

Promoter analysis to identify cis-regulatory elements
in aphid responsive peroxidases

On average, over 100 putative types of regulatory elements were
identified in the promoter regions ~2000 bp upstream of the
start codon in aphid-responsive peroxidases by comparison to
the PLACE database. Pavir.Ba00166 occurred on a scaffold
boundary and, therefore, the promoter region could not be
analysed for this gene. The compositions of cis-regulatory

elements in the promoters of aphid responsive genes were not
substantially different than the uninduced peroxidase genes via
NMDS analysis (Fig. 4d; Table S2). Furthermore, no enriched
motifs (5–8 bp) were identified in the promoters of the aphid
responsive genes compared with the promoter regions of
genes that did not respond to aphids using the program
DREME. Because the orthologue group containing Sobic.002G
416600, Pavir.Ba00167 and Si030339 was strongly induced 10
DAI in all three C4 grass species and the promoter compositions
of Si030339 and Pavir.Ba00167 were similar via NMDS
analysis, the promoter regions of these three genes were also
scanned for enrichedmotifs using DREME.Although no enriched
motifs (5–8 bp) were identified in these three promoters, they
all contained large numbers of CURECORECR (GTAC) and
MYB2CONSENSUSAT (YAACKG) motifs, compared with
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Fig. 4. Predicted structural models of aphid responsive peroxidases, amino acid sequence alignment of E helices, and NDMS analysis of cis-regulatory motifs
in putative promoter regions of individual peroxidases. (a) Predicted structural models of aphid responsive peroxidases in sorghum, switchgrass, and foxtail
millet. i-Tas.SER was used to generate structural predictions of peroxidases responsive to aphids using peanut peroxidase (PDB 1D:1SCH) as a template. The
predicted three dimensional models for each of the 10 peroxidases were overlaid on one another using Chimera. The different coloured ribbons represent each
individual peroxidase. Residues implicated as being under positive evolutionary selection in a previous study are labelled. TheE helix region is highlightedwith a
red box. (b) Predicted structural model of Pavir.Ba00167. i-Tas.SER was used to generate structural predictions of Pavir.Ba00167 (yellow ribbon), which is
overlaid over peanut peroxidase (PDB ID:1SCH) (blue ribbon). The E-helix region (highlighted by a red box) is missing in Pavir.Ba00167. (c)Multiple sequence
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similar, cis-regulatory motifs were identified using a signal scan comparison to the PLACE database and the number of occurrences of each motif was obtained.
NMDS analysis was performed using the ‘vegan’ library of the R statistical package. Aphid responsive genes are indicated by green circles. Brown circles
indicate genes that did not respond to aphid feeding.
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promoter elements from the majority of the other peroxidases
(Table S2). Notably, the abundances of these elements were
lower in promoters from peroxidases that did not respond to
aphid feedingwith the exception of Si030426 (14CURCORECR
motifs) and Pavir.Ba00165 (4 MYBCONSENSUSAT motifs).

Syntenic and phylogenetic comparisons supports
common ancestry for Clade 3 peroxidases in C4 grasses

To further investigate the relatedness of these peroxidases to class
III peroxidases found in other grasses, a maximum likelihood
based phylogenetic analysis of homologues of SbPrx-1 found
in sorghum, foxtail millet, switchgrass, Brachypodium, rice and
maize was constructed (Fig. 5). The homologues of SbPx-1
peroxidases were also found in genomic regions containing
multiple peroxidases arranged in tandem arrays in maize
(three peroxidases), rice (six peroxidases) and Brachypodium
(five peroxidases). Notably, an orthologue of the potential
progenitor peroxidase was detected in the genomes of all grass

species examined (Clade 3a), suggesting it appeared before the
divergence of C3 and C4 plants (Fig. 5). Notably, 1 : 1 : 1 : 1 : 1
orthologous sequences in the clade containing the aphid
responsive genes Pavir.Ba00167 and Si030339 and
Sobic.002G416600 (Clade 3f) were detected in maize, rice and
Brachypodium indicating that this particular gene was also
present before the divergence of C3 and C4 grass species
(Fig. 5). The remainder of the peroxidases in the rice and
Brachypodium genomes were present in either species specific
clades (Clade 3d) or C3 grass-specific clades (Clade 3e),
indicating that they either appeared in the genome after the
divergence of C3 and C4 grasses or that they have diversified
so significantly from their C3 or C4 grass orthologs that their
phylogenetic signatures have been lost (Fig. 5). Further, a clade
of peroxidase specific to C4 grasses that included a single
switchgrass peroxidase (Pavir.Ba00168), three foxtail millet
peroxidases (Si030593, Si030595 and Si030597), and a single
sorghum peroxidase (SbPx-1) was also apparent. Three of the
five peroxidases that were associated with this clade responded
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to aphid feeding; however, Si030597 and Pavir.Ba00168, which
are the nearest foxtail millet and switchgrass orthologs to
SbPx-1, were not induced 10 DAI (Fig. 2b). The presence of
three foxtail millet peroxidases in this clade suggests that
lineage-specific expansions occurred in the foxtail millet
genome. In addition, the nearest switchgrass and foxtail millet
orthologs to SbPrx-1 were not induced in response to aphid
feeding indicating that these genes may serve other roles in
plant physiology.

In addition, an in-depth assessment of the gene order in this
region revealed that the gene order in the flanking regions are
also highly conserved in C4 and C3 grasses, providing further
evidence that these peroxidases share common evolutionary
origins (Fig. S4). In both sorghum and foxtail millet, the array
of peroxidases is flanked by orthologous genes and the order is
largely conserved in both the 50 and 30 regions. In switchgrass,
the 50 and 30 flanking regions also contain the same orthologs,
but these genes are separated from the peroxidase cluster by ~30
genes (~650 kb) on the 50 end (Fig. S4). On the 30 end, two of the
five conserved orthologs can be found two genes downstream of
the peroxidase array (~36.8 kb) while the other three orthologs
were found 51 genes (~532 kb) downstream of the peroxidase
array (Fig. S4).Orthologswere readily identified in the 50 flanking
region in Brachypodium and the 30 flanking regions in rice
(Fig. S5a) and maize (Fig. S5b).

Sobic.002G416700 (SbPrx-1) is highly induced
in a resistant sorghum cultivar (Cargill 607E)

Higher numbers of aphids and higher losses of chlorophyll
were observed on the greenbug susceptible Garst 5715 plants
versus the resistant Cargill 607E plants (Fig. 6a, b). Among the
other changes, there were differences in peroxidase activities
between these sorghum hybrids as a response to aphid feeding.
Greenbug-infested Cargill 607E plants consistently had higher
peroxidase levels. These activities were significantly enhanced
(P� 0.05) at 8 and 12 DAI in infested Cargill 607E plants as
compared with activities present in uninfested control plants
(Fig. 6c). No significant differences in peroxidase activities
were observed at any harvest dates between the infested and
control plants from the susceptible Garst 5715 genotype. Native
gel electrophoresis of ~20mg total protein from different plant
extracts indicated that at least one isozyme was significantly
upregulated upon infestation in Cargill 607E plants as compared
with the susceptible Garst 5715 plants at 12 DAI (Fig. 6d). This
isozyme also was detected in uninfested plants, albeit at
lower levels (Fig. 6d). De novo peptide sequencing identified
a peptide that matched exactly to a sorghum peroxidase encoded
by Sobic.002G416700 (SbPx-1). The peptide identified by
mass spectrometry is shown (shaded) on the protein sequence
(Fig. 6e).

Discussion

Class III peroxidases have been implicated in many different
aspects of plant defence, including the deposition of defence
lignin and protection of the cell membrane against damage from
ROS (Passardi et al. 2005; Saathoff et al. 2013) and the
involvement of specific peroxidases in response to biotic
stresses have been documented in several plant species (Dowd

andLagrimini 2006;Zamora et al. 2009;Suzuki et al. 2012).Over
100 peroxidase genes are encoded in the genomes of most
grasses; however, readily distinguishing defence-related
peroxidases from those involved in other metabolic pathways
such as the biosynthesis of lignin or the detoxification of H2O2

from chloroplasts or mitochondria, is not possible based simply
on nucleotide or amino acid sequences. Orthologous peroxidases
occurring in syntenic regions in multiple grass genomes may
contain genes that perform similar physiological roles.

The findings of this study demonstrate that synteny and
orthology analyses can be used to facilitate the identification
of genomic intervals containing genes involved in defence
responses. For example, the genomic regions containing the
Clade 3 sorghum peroxidases and their switchgrass and foxtail
millet orthologs represent a genomic hot spot for peroxidases that
respond to biotic stresses as several were upregulated in response
to aphid feeding in these three plants. Further, the identification
of a single orthologue group that includes 1 : 1 : 1 orthologous
peroxidases in switchgrass (Pavir.Ba00167), foxtail millet
(Si030339) and sorghum (Sobic.002G416600) that respond to
aphid feeding at 10 DAI indicates that, in some cases, orthology
can be an indicator of common biological function, even within
multi-gene families whose evolution was largely shaped by gene
amplification events. Furthermore, the rice orthologue (Os07
g48010) from this clade was induced upon exposure to the
rice blast fungus Magnaporthe oryzae and has been linked to
resistant responses to fungal pathogens in a previous study (Gupta
et al. 2012). This observation, along with the strong induction of
switchgrass, sorghum and foxtail millet orthologs after exposure
to aphids, strongly suggests that this peroxidase appeared in the
least common ancestor of C3 andC4 plants and likely evolved as a
defence mechanism against biotic stresses.

Although this genomic interval contains large numbers of
peroxidase genes induced in response to greenbug feeding at 10
DAI and at least one orthologue group that conclusively responds
to biotic stresses in at least four grass species, orthology was not
always indicative of responsiveness to aphid feeding. For
example, a C4 grass-specific clade (Clade 3c) that contained
three aphid-responsive peroxidases was identified. This clade
contained SbPx-1, its switchgrass orthologue (Pavir.Ba00168),
its foxtail millet orthologue (Si030597), its maize orthologue
(pmPOX3–2) and two other foxtail millet peroxidases (Si030595
and Si030593) that are directly adjacent to Si030597 on foxtail
millet chromosome 2. Three of the six genes in this clade were
induced via aphid feeding, and the maize gene was previously
shown to respond to pathogen elicitors (Mika et al. 2010),
suggesting that this orthologue group predominantly contains
genes that respond to biotic stressors. However, the foxtail millet
and switchgrass orthologs (Si030597 and Pavir.Ba00168) of
SbPx-1 did not respond to aphid feeding at 10 DAI even
though the two other foxtail millet peroxidases assigned to this
clade were induced 10 DAI. In the case of foxtail millet, the
induction of other co-orthologous peroxidases (Si030593 and
Si030595) in this clade indicate that lineage specific expansions
of this orthologue group occurred in the genome of foxtail millet
and that several of these co-orthologs have the ability to respond
to biotic stresses in foxtail millet. In the case of switchgrass, it is
possible that the ‘B’ genome homeolog of Pavir.Ba00168 (Pavir.
Bb03602) could respond to aphid feeding. This observation
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indicates that the identification of syntenic regions in multiple
grass species can facilitate the identification of genomic intervals
with the ability to respond to aphid feeding and other biotic
stresses, but that additional functional characterisation may be
required to identify specific genes in these intervals that respond
to biotic stress.

Further, genes occurring within this genomic interval are
linked with resistant responses in sorghum. For example, at
least one specific peroxidase isozyme (SbPrx-1) accumulated

to high levels in tissues collected from resistant Cargill 607E
plants in comparison to susceptible Garst 5715 lines at 12 DAI,
coincident with increased peroxidase activities observed in plant
extracts. However, the actual contribution of SbPrx-1 to these
increases in activities remains to be established. Elevated
peroxidase levels in resistant plants could play a role in the
detoxification of excess H2O2 produced in response to aphid
injury (Mai et al. 2013) and/or contribute to cellular defenses for
strengthening cell walls through lignification (Passardi et al.

0

10

20

30

40

50

60

70

80

90

100

Day 12

P
er

ce
nt

 c
hl

or
op

hy
ll 

lo
ss

 in
 fi

rs
t l

ea
f 

re
la

tiv
e 

to
 u

in
ife

st
ed

 c
on

tr
ol

s 

Days after infestation

*

* *

0

50

100

150

200

250

(a)

(c)

(b)

(e)

(d)

Day 12Day 8Day 4 Day 8Day 4

A
ve

ra
ge

 a
ph

id
 n

um
be

rs
 p

er
 p

la
nt

Days after infestation

**

0

0.05

0.10

0.15

0.20

0.25

Garst 5715 C Garst 5715 I Cargill 607E C Cargill 607E I

P
er

ox
id

as
e 

sp
ec

ifi
c 

ac
tiv

ity
 

(µ
m

ol
–1

 m
in

–1
 m

g 
pr

ot
ei

n–1
)

Sorghum genotype

4 Days 8 Days 12 days

*

*

60
7E

 C

60
7E

 I

57
15

 C

57
15

 I

MAASASCLA FLVAAAVASV ASAQLSSTFY DTSCPNALST IKSGVDAAVM QEARTGASLLR      61
MHFHDCFVH GCDGSVLLND TSGEQSSPPN KGSLRRFDVI DSIKAQVEAV CPGVVSCADIL   121 
AVAARDSVV ALGGPSWTVL LGRRDSTASF PSETTDLPAP TSSLQQLLSL FSNKNLDATDM   181
VALSGAHTI GQAQCSNFND HIYNDTNIDA AFATSLQANC PASGSTSLAP LDTMTPTTFDN      241
DYYTNLMSQ KGLLHSDQEL FNNGSTDSTV SNFASSASAF TSAFTAAMVK MGNLSPLTGTD
GEIRLACGI VNSS

1

301

Fig. 6. Greenbug aphid numbers, leaf chlorophyll content, peroxidase activities, and identification of SbPx-1 by gel electrophoresis and mass spectrometry.
(a) Aphid numbers and (b) leaf chlorophyll content in greenbug susceptible Garst 5715 (grey bars) and greenbug resistant Cargill 607E (black bars) sorghum
plants at 4, 8 and 12 days after aphid infestation (DAI). In (b) chlorophyll loss is expressed as a function of leaf chlorophyll content in uninfested control plants.
(c) Peroxidase specific activities in control (C) and infested (I) plants. Significant differences between infested and control plants are indicated: *. P� 0.05.
(d) Native gel stained for peroxidase activity at 12 DAI. (e) Amino acid sequence of SbPx-1 (Sobic.002G416700). The peptide identified by mass spectrometry
is shaded. Significant differences between infested and control plants are indicated: *, P� 0.05.
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2004b; Saathoff et al. 2013). Increased lignification in cell walls
may help prevent the loss of nutrients from within the cell or
protect the cell from digestive enzymes produced by insect
herbivores (Furch et al. 2015), and the prolonged ability to
detoxify H2O2 may enable resistant plants to sustain elevated
ROS levels for extended periods of time without incurring major
damage to cellular components. In many cases, responses to
pathogens and insect herbivory share overlapping mechanisms,
such as an upregulation of genes responsive tomethyl jasmonate,
ethylene and ROS (Gutsche et al. 2009a; Lazebnik et al. 2014).
Supporting this hypothesis, SbPrx-1 was associated with
resistance to Colletotrichum sublineolum, the causal agent of
anthracnose (Pratt et al. 2005) and was determined to be under
positive selective pressure (Zamora et al. 2009) and pmPOX3–2,
themaize orthologue ofSbPrx-1, is inducedbymethyl jasmonate,
salicylic acid and pathogen elicitors (Mika et al. 2010),
suggesting it could also serve roles in plant defenses.
Although SbPrx-1 is associated with resistant responses to
aphids and fungal pathogens in sorghum, more research is
needed to determine whether other peroxidases in this interval
or elsewhere in the genome could also be linked to resistant
responses to biotic stresses in sorghum and other grasses. In
addition, the expression of some of these peroxidases could be
under circadian control, and low expression values for specific
genes under aphid infestation could be reflective of the harvest
time. Further study is needed to determine if any of these
peroxidases are under circadian control and if they also could
be linked to responses to biotic stresses.

Although several genes occurring in this genomic interval
respond similarly to aphid pressure in sorghum, switchgrass
and foxtail millet, their mechanism of induction and the
identification of cellular cues that trigger their responses to
biotic stresses are not currently known. NMDS analysis failed
to conclusively separate the promoters of the aphid responsive
genes from those that did not respond to herbivory, indicating
that the compositions of the promoter elements are similar.
Further, no novel enriched motifs were detected in the aphid
responsive genes using DREME and no motifs that were
exclusively associated with the aphid-induced peroxidases
could be identified; however, MYB2CONSENSUSAT and
CURECORECR motifs were highly abundant in the promoters
of the orthologue group of aphid responsive genes
Sobic.002G416600, Pavir.Ba00167 and Si030339 and may be
linked to their activation under periods of biotic stress. Several
myb transcription factors induce gene expression under periods
of biotic stress in grasses and activate networks of defence-
related pathways (Ibraheem et al. 2015; Zhang et al. 2015)
and CURECORECR motifs are responsive to changes in
oxygen levels and may be triggered by changes in ROS levels
that often accompany insect feeding. Other regulatory elements
that might induce the expression of all or a subset of the
peroxidases in this interval include long range promoters or
enhancers (Sanyal et al. 2012). Another possibility is that
transcription and regulatory factors responsible for activating
these genes bind to highly degenerate motifs, which would not
be detected in this analysis (Bailey et al. 2006). The improvement
of the switchgrass genome assembly and the future release of
other C3 and C4 grass genomes will enable us to assess whether

or not these genes are conserved and respond similarly to biotic
pressure in all grasses.

Conclusions

This research has identified a syntenic region present in the
genomes of all sequenced C3 and C4 grasses that contains
several orthologous peroxidases, several of which are
upregulated in sorghum, switchgrass and foxtail millet plants
in response to greenbug feeding. Additionally, some of the rice
and maize peroxidases occurring in this interval have been
previously shown to respond to pathogens, suggesting that this
region is a hotspot for peroxidases that respond to biotic stresses.
Further, at least one C4 grass-specific peroxidase was highly
induced in the resistant sorghum cultivar Cargill 607E indicating
that this region could be linked to resistant responses in sorghum
and other grasses. Despite the apparent lack of common cis-
elements in the peroxidase genes, the universal responsiveness of
these orthologous genes to aphid feeding across several grass
species indicates that common mechanisms of defence response
may exist inC4grasses and that several of these defence responses
may even be common to both C3 and C4 grasses. These genes can
serve as markers for improving aphid tolerance in the three C4

grasses examined and they can be explored as resistance markers
in other C3 and C4 grasses species.
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