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Terrestrial gross primary productivity (GPP) varies greatly over time and
space. A better understanding of this variability is necessary for more
accurate predictions of the future climate–carbon cycle feedback. Recent
studies have suggested that variability in GPP is driven by a broad range
of biotic and abiotic factors operating mainly through changes in veg-
etation phenology and physiological processes. However, it is still un-
clear how plant phenology and physiology can be integrated to explain
the spatiotemporal variability of terrestrial GPP. Based on analyses of
eddy–covariance and satellite-derived data, we decomposed annual ter-
restrial GPP into the length of the CO2 uptake period (CUP) and the sea-
sonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and
GPPmax explained >90% of the temporal GPP variability in most areas
of NorthAmerica during 2000–2010 and the spatial GPP variation among
globally distributed eddy flux tower sites. It also explained GPP response
to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after
a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the
eddy–covariance flux data shows that the interbiome variation in annual
GPP is better explained by that in GPPmax than CUP. These findings in-
dicate that terrestrial GPP is jointly controlled by ecosystem-level plant
phenology and photosynthetic capacity, and greater understanding of
GPPmax and CUP responses to environmental and biological variations
will, thus, improve predictions of GPP over time and space.

ecosystem carbon uptake | growing season length | photosynthetic
capacity | spatiotemporal variability | climate extreme

Large variability exists among estimates of terrestrial carbon
sequestration, resulting in substantial uncertainty in modeled

dynamics of atmospheric CO2 concentration and predicted future

climate change (1). The variability in carbon sequestration is par-
tially caused by variation in terrestrial gross primary productivity
(GPP) (2), which is the cumulative rate over time of gross plant
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photosynthesis at the ecosystem level. Plant photosynthesis has been
successfully modeled at the biochemical level (3, 4). When leaf-level
biochemical models of photosynthesis are scaled up to estimate
annual GPP over a region and the globe, however, great uncertainty
arises from both vegetation properties, such as biome-dependent
leaf parameters (5, 6), and environmental factors, such as climate
variability (7–9) and episodic disturbances (10–12). As a conse-
quence, estimated present day global GPP varies from 105 to 177
Pg C y−1 in the fifth phase of the Coupled Model Intercomparison
Project (13). Additionally, spatiotemporal patterns of GPP (2, 14),
their responses to extreme climate events (12) and disturbances
(10), and the underlying mechanisms are still not well-understood.
Previous studies have indicated that vegetation properties and
environmental factors shape annual GPP of an ecosystem directly
or indirectly through affecting plant physiological activities (15)
and/or phenology (16–21). Thus, integrating plant physiological
and phenological properties may provide a unified approach to
explain the variability of GPP over time and space and in response
to disturbance.
In this study, we show that annual GPP in grams Cmeter−2 year−1,

the rate at which terrestrial ecosystems take up CO2 from the at-
mosphere in a given year, can be quantitatively decomposed into

GPP= α ·CUP ·GPPmax; [1]

where the carbon dioxide uptake period (CUP; number of days per
year) is a phenological indicator of the duration of ecosystem CO2
assimilation within a given year. GPPmax (grams C meter−2 day−1) is

the maximal daily rate of gross photosynthesis during the CUP
and represents a property of plant canopy physiology. The ratio
between annual GPP and the product of CUP and GPPmax is
represented by α. We estimated α, CUP, and GPPmax for 213
globally distributed terrestrial sites with daily GPP from the
global network of micrometeorological tower sites (FLUXNET;
La Thuile Database) (22) (SI Appendix, section S1.1.1 and
Table S1) and all 0.1° × 0.1° land grid cells in North America
during 2000–2010 with an 8-d GPP product from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) onboard
the National Aeronautics and Space Administration Terra satel-
lite (23) (Materials and Methods). Here, we show how CUP and
GPPmax jointly control the spatiotemporal variability of GPP and
its response to and recovery from disturbances in different
terrestrial ecosystems.

Results and Discussion
Using regression analysis, we first evaluated to what extent the
product of CUP and GPPmax (CUP × GPPmax) explained the var-
iability of satellite-derived GPP over broad temporal and spatial
scales. CUP × GPPmax explained 94.9% of the interannual vari-
ability of the averaged MODIS GPP across North America from
2000 to 2010, with the minimum annual GPP (678 g C m−2 y−1) in
2000 and the maximum (748 g C m−2 y−1) in 2010 (Fig. 1A). The
joint control of CUP and GPPmax on the interannual variability of
GPP was robust in most MODIS grid cells across North America
but weak in tropical and Mediterranean climates, such as the

Fig. 1. Joint control of the temporal variability of satellite-derived annual GPP and the spatial variability of FLUXNET annual GPP by CUP and GPPmax. (A) The
temporal variability of GPP in North America from 2000 to 2010 can be better understood by splitting annual GPP into GPPmax and CUP. The flat color interpolated
surface reflects a good relationship between annual GPP and GPPmax × CUP (R2 = 0.95, P < 0.001). Vertical lines were added to improve readability. (B) Con-
tribution of GPPmax × CUP to GPP temporal variability over 2000–2010. The contribution in each grid cell was derived from the R2 in the linear regression analysis
between GPP and GPPmax × CUP. C and D show relationships between GPP and GPPmax × CUP across FLUXNET sites in forest and nonforest biomes, respectively.
Each data point in C and D represents one flux site with average data over different years. CROP, cropland; DBF, deciduous broadleaf forest; EBF, evergreen
broadleaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF, mixed forest; SAV, savanna; SHRUB, shrubland; WET, wetland.
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Caribbean region and California (Fig. 1B). Spatially, across all
FLUXNET sites, although there was no relationship between
CUP and GPPmax (SI Appendix, Fig. S1), CUP ×GPPmax explained
>95% of the spatial variation of annual observed GPP in all biomes
(all P < 0.001) (Fig. 1 C and D).
The product of CUP and GPPmax also explains the impact of

a climate extreme on ecosystem CO2 uptake. Linear regression
analysis showed that the GPP reduction caused by the European
heatwave in 2003 (12) across FLUXNET sites was well-explained
by CUP × GPPmax (R

2 = 0.90, P < 0.001) (Fig. 2A, Inset). How-
ever, CUP and GPPmax played different roles in heatwave-induced
GPP reduction among sites. For example, the reduction in annual
GPP mainly resulted from a decrease of GPPmax (−37%) for
a beech forest in Sarrebourg, France but a shortening of CUP
(−11%) for a spruce site in Tharandt, Germany (Fig. 2A).
We also analyzed the dynamics of satellite-derived annual

GPP, CUP, and GPPmax during recovery from a wildfire that
occurred on August 24, 2000 in the Black Hills National Forest
in South Dakota (24) (SI Appendix, Fig. S2). Although GPPmax
and CUP followed contrasting postfire trajectories, the recovery
trajectory of annual GPP was well-captured by the product of
CUP and GPPmax (R

2 = 0.88, P < 0.001) (Fig. 2B). Immediately
after the fire, GPP was sharply reduced by 27% in 2001
(624 g C m−2 y−1) and 26% in 2002 (636 g C m−2 y−1) relative to
GPP before the disturbance in 2000 (858 g C m−2 y−1). There-
after, annual GPP gradually recovered to 816 g C m−2 y−1 in 2010
(Fig. 2B). The dynamics of GPPmax after the fire paralleled those
of annual GPP, with 40% and 36% reduction in 2001 and 2002,
respectively, and then gradual recovery to 89% of prefire levels
in 2010. In contrast, the CUP was extended by 30 to 60 days from
2000 (219 d) and then gradually shortened and returned to
predisturbance values (Fig. 2B). The rapid extension of the CUP
may have resulted from the return of grass in spring after fire
disturbance (25).

Not only did the product of CUP and GPPmax capture the
variability in annual GPP over space and time and after dis-
turbances, but the ratio α between annual GPP and CUP ×
GPPmax also converged across a broad range of vegetation types
and environmental conditions (Fig. 3). The most frequent value
of α was 0.62, with 90% of α-values falling within a range from
0.61 to 0.76 (Fig. 3A) based on an analysis of 213 FLUXNET
sites. Those sites with α > 0.76 were mainly located in tropical
and subtropical climate zones (Fig. 3A and SI Appendix, Fig. S3).
The analysis of the MODIS product showed a similar convergence
of α over North America (Fig. 3B), with the most frequent value of
0.62 and a 90% range from 0.61 to 0.83. To explore the spatial
distribution of α, we mapped the mean annual GPP, CUP, GPPmax,
and α over 2000–2010. Although annual GPP, CUP, and GPPmax
showed great spatial variability (SI Appendix, Fig. S4), α was rela-
tively constant around 0.62 in most areas at a latitude of 37° N
northward and gradually approached 1.0 toward the tropical regions
of North America (Fig. 3C). Across North America, the temporal
linear correlation between CUP ×GPPmax and annual GPP was the
highest in regions with α around 0.62 and gradually reduced with
the ratio α approaching 1.0 (Fig. 3D).
High α-values were mainly distributed in tropical evergreen

forest and regions with multiple growing seasons, where GPPmax
and CUP exert weak controls over GPP variability (Fig. 3A, Inset).
Values of α were high in tropical evergreen ecosystems, because
GPP seasonality and amplitude were minimal, with plants assim-
ilating CO2 all year round. For example, daily GPP varied mini-
mally across seasons in a tropical rain forest in Brazil (SI Appendix,
Fig. S1.3.1), with α ranging between 0.77 and 0.80 from 2001 to
2003. The nontropical regions with high α-values usually have two
or more peaks of daily GPP within a single year. For example, the
Le Bray site in France, which is comprised of a maritime pine
forest, had two separate GPP peaks in late May and September of
2005 (SI Appendix, Fig. S5). This phenomenon may also occur in
Mediterranean regions with hot and dry summers (26) or double/
triple cropping systems, where two or more crops are grown within
a single year, such as winter wheat during winter and maize during
summer in the North China Plain (27). Seasonally water-limited
regions where two growing season peaks are present are widely
distributed in the southern part of North America, leading to an
abrupt increase in α at latitudes lower than about 30° N (Fig. 3C).
The decomposition of annual GPP into GPPmax and CUP

allowed us to investigate the relative importance of GPPmax and
CUP individually in regulating annual GPP variability among/
within biomes (Fig. 4A). The linear correlation analysis across eight
noncrop biomes showed that the biome-level GPP variability was
significantly correlated to the variations in both GPPmax (r

2 = 0.79,
P = 0.003) (Fig. 4B) and CUP (r2 = 0.64, P = 0.017) (Fig. 4C). The
partial correlation analysis across noncrop biomes revealed a larger
contribution of GPPmax (partial r

2 = 0.78, P = 0.004) than CUP
(partial r2 = 0.21, P < 0.001) to GPP variability. A more important
role of GPPmax than CUP in explaining the spatial variability of
FLUXNET GPP was found within most biome types, including
grassland (partial r2 = 0.70, P = 0.005), shrubland (partial r2 = 0.52,
P = 0.005), savanna (partial r2 = 0.89, P = 0.001), wetland (partial
r2 = 0.91, P < 0.001), and all forest types (partial r2 = 0.79–0.87, all
P < 0.01) (SI Appendix, Fig. S6 and Table S2). A recent analysis has
found that temperature and precipitation changes impact the net
primary productivity of woody plant ecosystems mainly through
their effects on growing season length, standing biomass, and stand
age (28). Thus, standing biomass and stand age might be very im-
portant determinants of GPPmax in forest ecosystems.
The joint control of GPPmax and CUP on GPP variability

indicates that environmental changes influence annual GPP by
simultaneously affecting vegetation phenology and photosyn-
thetic capacity. For example, climate warming leads to greater
ecosystem CO2 uptake by extending CUP in most cold regions
(7, 17, 29) but could reduce ecosystem CO2 uptake when

Fig. 2. Applications of the convergence of α (the ratio between annual GPP
and GPPmax × CUP) to explain GPP response to and recovery from disturbances.
(A) Determination of the annual GPP reduction during the European heatwave
in 2003 (12) by GPPmax and CUP. The dashed hyperbolic curves represent constant
values (shown near the curves) of GPPmax × CUP (kilograms C meter−2 year−1),
and the darker background blue color means a larger GPPmax × CUP. Inset shows
the dependences of the relative changes in annual GPP (ΔGPP; percentage) in
2003 from those in 2002 on the relative changes in GPPmax × CUP [Δ(GPPmax ×
CUP); percentage; black circles). The ten sites are: BE-Vie (Vielsalm, Belgium),
DE-Hai (Hainich, Germany), DE-Tha (Tharandt, Germany), Fi-Hyy (Hyytiala, Finland),
FR-Hes (Hesse Forest- Sarrebourg, France), FR-Pue (Puechabon, France), IT-Cpz
(Castelporziano, Italy), IT-Ro1 and IT-Ro2 (Roccarespampani, Italy), IT-Sro (San
Rossore, Italy). Detailed information about each FLUXNET site can be found in SI
Appendix, Fig. S9 and Table S1. (B) Contrasting dynamics of GPPmax and CUP
after an extensive wildfire in the Black Hills National Forest in South Dakota. The
data were extracted from a burned 0.1° × 0.1° grid cell (43.85° N, 103.95° W)
(original data are plotted in SI Appendix, Fig. S2). The ratio α was close to 0.62
during the 11-y span (SI Appendix, Fig. S10).
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the GPPmax is suppressed by the reduced snow melt water in
spring (30, 31). Similarly, a recent analysis showed that warming-
induced earlier springs reduced summer peak productivity dur-
ing 1982–2008 in the North American boreal forests (32), which
may have contributed to the declining trend of vegetation pro-
ductivity associated with the climatic warming at northern high
latitudes in the past few decades (33).
Given that simulated global GPP and its sensitivity to environ-

mental factors vary substantially among current terrestrial bio-
sphere models (13, 34), the findings in this study suggest that such
uncertainty could largely stem from the different representations of
vegetation phenology and photosynthetic capacity in the models.
For example, although numerous vegetation phenology models
have been developed for different biomes over the past few decades
(35, 36), some existing terrestrial biosphere models poorly represent
vegetation phenology in North America (8). Moreover, in those
models, vegetation photosynthetic capacity may be unrealistically
limited by the fixed parameterization of maximum rate of carbox-
ylation (37), with observations indicating substantial temporal and
spatial variations in maximum carboxylation (38, 39). Broadly col-
lected vegetation phenology data derived from observations (40,
41), remote sensing (42, 43), and digital repeat photography (44,
45) as well as additional mechanistic understanding of canopy
photosynthetic capacity (39, 46–48) could be useful to diagnose or
benchmark model performances of simulating GPP (49).
Because the GPPmax and CUP estimates were derived from

existing data, our approach cannot be used for GPP prediction

unless GPPmax and CUP can be inferred from other indicators.
We first examined whether GPPmax derived from MODIS GPP
data was comparable with that measured by the flux towers in
North America. We found that, although the two datasets had
different spatial and temporal scales, the GPPmax estimates from
MODIS data were close to those from FLUXNET data at most
sites with low GPPmax (SI Appendix, Fig. S7). The FLUXNET
data had much higher GPPmax than MODIS data, mainly in the
cropland sites with high GPPmax (SI Appendix, Fig. S7). In ad-
dition to FLUXNET data, the maximum monthly sun-induced
chlorophyll fluorescence data could be useful to estimate GPPmax
globally (50). We also examined whether the MODIS-derived CUP
can be inferred from other types of satellite-derived datasets, such as
the daily record of freeze/thaw status across North America (SI
Appendix, section 1.8). We found that the MODIS-derived CUP is
strongly correlated with the photosynthetically active period esti-
mated from the freeze/thaw status data at most latitudes (SI Ap-
pendix, Fig. S8). The freeze/thaw status data can only provide
information where the soil actually freezes in winter, partially leading
to the disagreement between the two datasets in tropical regions (SI
Appendix, Fig. S8). Thus, Eq. 1 could be useful for estimating and
predicting annual GPP if both CUP and GPPmax can be inferred
from biotic and abiotic drivers measured at a global scale, the topic
of a substantial body of ongoing research (15, 51).
In summary, we found a simple proximate cause to explain

variation in annual GPP (i.e., Eq. 1) over space and time, in re-
sponse to a climate extreme, and during recovery after disturbance.

Fig. 3. The relationship between annual GPP and the product of CUP and GPPmax (i.e., α) from FLUXNET and satellite-derived data. The relationship between
annual GPP and CUP × GPPmax is shown across (A) all FLUXNET site-years and (B) all 0.1° × 0.1° land grids in North America. C shows spatial distributions of
satellite-derived α, and D shows the relationship between α and the explanation of GPPmax × CUP on temporal variability of annual GPP (R2) (Fig. 1B) in North
America. A, Inset and B, Inset show the relative frequency distribution of estimated α from all FLUXNET site-years and MODIS GPP data, respectively. The
white bars are data from tropical and subtropical climate (including Mediterranean) zones and site-years with multiple GPP peaks, whereas the black bars are
data from the rest of the site-years. C, Inset shows the latitudinal pattern of α with a 0.1° interval. CROP, cropland; DBF, deciduous broadleaf forest; EBF,
evergreen broadleaf forest; GRA, grassland; NF, needleleaf forest; MF, mixed forest; SAV, savanna; SHRUB, shrubland; WET, wetland.
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The representation of interannual and spatial variations in GPP
by the product of CUP and GPPmax was strong in those ecosys-
tems with α-values close to 0.62 but weaker toward the tropics or
in seasonally water-limited regions, where α-values approached
1.0. The strong correlation of annual GPP with the product of
CUP and GPPmax in several different ecosystem types may be
useful in detecting shifts in vegetation state and for monitoring
short- and long-term response of GPP to extreme climate con-
ditions and disturbances. Given that GPPmax better explains GPP
variability than CUP, future studies need to emphasize the reg-
ulatory mechanisms for the dynamics of ecosystem photosynthetic
capacity in terrestrial ecosystems.

Materials and Methods
GPP estimates (positive GPP means CO2 uptake) from 213 FLUXNET sites from
the La Thuile Database (www.fluxdata.org/default.aspx) (SI Appendix, Table
S1) and the MODIS aboard National Aeronautics and Space Administration
Terra satellites (MOD17A2 GPP) (23) were used in the analyses (SI Appendix,
section S1.1). For FLUXNET sites, only those site-years with >300 daily esti-
mates were chosen from the database. Because the MODIS GPP product was
well-evaluated in North America (52), we only performed our analysis on
MODIS GPP in this region from 2000 to 2010.

The determinations of CUP and GPPmax were from the method introduced
by Gu et al. (53, 54) (SI Appendix, section S1.2). The CUP, GPPmax, and the
ratio between annual GPP and CUP × GPPmax (i.e., α) were estimated for each
selected FLUXNET site and each 0.1° × 0.1° land grid cell of the MODIS
product by the following steps (SI Appendix, section S1.3). (i) We judged if
the site-year or grid cell is evergreen or not by counting the number of days
with larger daily GPP than a given value (a site or land grid cell was defined
as evergreen if there were more than 360 d with daily GPP > 1 g C m−2 d−1

within 1 y). (ii) The number of seasons in the nonevergreen site-years or land
grid cells was determined by a model function (SI Appendix, section S1.3 and
Eq. S6) suggested by the TIMESAT software (55). For those site-years and grid
cells with one season, we fitted a five-parameter Weibull function to the
data from that year. For those site-years or land grid cells with more than
one season, we fitted the Weibull function to each season.

The nonlinear data fitting was performed with the function nls in R (www.
r-project.org/) (SI Appendix, section S1.4). The robustness of the method was
carefully validated by various approaches, including an evaluation with the data
from all long-term FLUXNET sites (SI Appendix, section S1.5), a parameter
sensitivity analysis of the Weibull function (SI Appendix, section S1.6), and a

random resampling test of the Weibull function (SI Appendix, section S1.7).
Linear regression analysis was used to examine the contribution of CUP ×
GPPmax to the temporal and spatial variations of annual GPP. The global daily
record of landscape freeze/thaw data from January 1, 2000 to December 31,
2010 was analyzed for an additional indicator of CUP (SI Appendix, section S1.8).

To further identify the relative contribution of GPPmax and CUP to GPP
variability, we first linearized Eq. 1 by replacing all variables with their
logarithms (base 10) as

logðGPPÞ= logðαÞ+ logðCUPÞ+ logðGPPmaxÞ: [2]

Then, we applied the partial correlation analysis to examine the relative
contributions of CUP and GPPmax to FLUXNET GPP variability among and
within biomes.
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Fig. 4. (A) Dynamic of daily GPP in different biomes based on the FLUXNET dataset. The curves are obtained by averaging daily GPP over all site-years of each
biome type, with the shaded areas representing SEs on GPP. B and C show dependence of annual FLUXNET GPP variability on GPPmax and CUP, respectively,
among biomes. Note that cropland was excluded in the correlation analyses. Note that there were, in total, 12 EBF sites in this analysis, and 7 of them were
distributed in the temperate zone according to the MODIS IGBP (International Geosphere-Biosphere Programme) land cover classification (glcf.umd.edu/data/lc/)
(SI Appendix, Table S1). CROP, cropland; DBF, deciduous broadleaf forest; EBF, evergreen broadleaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF,
mixed forest; SAV, savanna; SHRUB, shrubland; WET, wetland.
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 84 

S1  Materials and Methods 85 

S1.1 Data 86 

S1.1.1 The FLUXNET La Thuile Database 87 

The ecosystem-level GPP were estimated by the eddy covariance technique, a key method to 88 

measure the net ecosystem-atmosphere exchange of CO2(1). The eddy covariance technique 89 

provides a useful tool to study the seasonal dynamics of plant-community level 90 

photosynthesis(2).  We used data of gross primary productivity (GPP; positive GPP means 91 

CO2 uptake) from 213 FLUXNET sites from the La Thuile Database (www.fluxdata.org, 92 

Table S1) in our analyses. The database was a combination of measurements from the 93 

networks Ameriflux, CarboEurope and Fluxnet-Canada, and covers the time period of 1993‒94 

2006. Data of each site-year in the database was filtered according to the methods and criteria 95 

in Reichstein et al.(3) and Papale et al.(4). Since the GPP data are not directly measured, they 96 

include some inevitable uncertainties. The sources of those uncertainties have been widely 97 

mailto:jxia@ou.edu
mailto:yluo@ou.edu
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discussed by Beer et al.(5), Moncrieff et al.(6), Papale et al.(4),  Moffat et al.(7) and Desai et 98 

al.(8).  Since there is no phenological information in diurnal variations of CO2 fixation, we 99 

used daily GPP in this study. There are some negative values for daily GPP in some site 100 

years. Only site years with more than 300 daily estimates were chosen from the database.  101 

 102 

S1.1.2 MODIS GPP 103 

We used the data of gross primary productivity (GPP) from the Moderate Resolution Imaging 104 

Spectroradiometer (MODIS) aboard NASA's Terra satellites (MOD17A2 GPP(9)) for North 105 

America (7.05‒79.95°N, 58.55‒98.85°W) during 2000-2010 in our analyses. The data set 106 

was generated by the Numerical Terradynamic Simulation Group (NTSG)/University of 107 

Montana’s (UMT) as Version-55 and available from the LP DAAC(10, 11). The algorithm of 108 

MODIS GPP is described in Running et al.(12) and Zhao et al.(10). This product has 109 

considered the cloud-contamination issue while the NASA’s MOD17 products (i.e., Version-110 

5 GPP) did not. Thus, this product can avoid the underestimation in the MOD17A2-V5 111 

products (13). The accuracy of this product has been assessed by using independent 112 

measurements made in a systematic and statistically robust way and feasible for the 113 

application of scientific community. We downloaded the data and mosaicked and re-114 

projected the data by using the MODIS Reprojection Tool. The mosaicked images were 115 

resampled into 0.1° × 0.1° by using the nearest neighbor algorithm.  116 

 117 

S1.2  Characteristics of annual GPP curve: definitions 118 
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In most terrestrial ecosystems, the daily GPP throughout the whole year follows a bell-119 

shaped curve, which can be represented by the idealized solid black line in the following 120 

figure: 121 

 122 

Supplementary Fig. S1.2.1. Ideal curve of seasonal GPP in terrestrial ecosystem. 123 

The shape of the above unimodal curve (Fig. S1.2.1) is determined by five consecutive 124 

phases, which are described by Gu et al.(14): 125 

Phase 1. Transition stage from non-growing to growing season, with a slowly increasing 126 

GPP. 127 

Phase 2. Recover stage with rapidly increasing GPP. 128 

Phase 3. Stable stage in the middle of the growing season, during which the plant community 129 

keeps its maximal GPP relatively stable. 130 

Phase 4. Senescence stage with rapidly declining GPP. 131 
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Phase 5. Transition stage from growing no non-growing season, with a slowly declining 132 

GPP. 133 

The above phases of seasonal cycle of GPP include a combination of characteristics in 134 

sequence as follows: 135 

1.  CUPstart. The start day of CO2 uptake period during a year.  136 

2.  Peak recovery rate of GPP. In non-evergreen ecosystems, when plant community starts 137 

CO2 fixation from the atmosphere in spring (or in newly started crops), the daily GPP rate 138 

recovers from 0 and gradually approaches its peak. The peak recovery rate of GPP can be 139 

obtained from the slope of the recovery line in Fig. S1.2.1. 140 

3.  GPPmax. The maximal daily GPP during the growing season. 141 

4.  Stable phase of GPPmax. The stable phase in which plant community keeps maximal GPP. 142 

5.  Peak senescence rate of GPP. It represents the peak rate of GPP reduction during late 143 

growing season in non-evergreen ecosystems, and can be obtained from the slope of the 144 

senescence line in Fig. S1.2.1. 145 

6.  CUPend. The end day of CO2 uptake period during a year. 146 

We define the CUP (carbon uptake period) as the number of days per year with GPP > 0.  147 

As a consequence, the CUP of an ecosystem can be calculated from CUPstart and CUPend. 148 

CUP represents the duration of vegetation photosynthetic phenology, which is one of the 149 

functional aspects of plant phenology(14).  150 

 151 

S1.3  Representation of the seasonal cycle of GPP 152 
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The seasonal cycle of daily GPP varies over time and across ecosystems and regions. In 153 

general, GPP seasonality in terrestrial ecosystems can be categorized into four types, 154 

including (1) one-peak during the summer-autumn growing seasons, (2) one-peak during the 155 

winter-spring seasons, (3) multiple peaks during the whole year, and (4) low seasonality such 156 

as the tropical ecosystems. Since no single function can describe the diverse GPP dynamics 157 

across the globe, we use different strategies to obtain the characteristics of annual GPP 158 

dynamics (S1.2) for each of four types of GPP seasonality above. First, we judged whether 159 

the site-year or grid cell is evergreen or not, by counting the number of days with larger daily 160 

GPP than a given value.  In a second step, the number of seasons in the rest site-years or land 161 

grid cells was determined by a model function (equation 6). For those site-years and grid 162 

cells with one season, we fitted a 5-parameter Weibull function to the data from that year. For 163 

those site-years or land grid cells with more than one season, we fitted the Weibull function 164 

to each season. More details for the analyses and determinations of CUP and GPPmax are 165 

provided as follows: 166 

S1.3.1. Low seasonality such as the tropical ecosystems 167 

In some ecosystems, especially in tropical regions, the seasonality is low, and their CUP 168 

usually approaches 365 days (or 366 days in leap years). For example, as shown in Fig. 169 

S1.3.1, the dynamic of daily GPP in the sites of BR-Sa1, US-SP3 and BR-Cax does not 170 

include obvious recovery or senescence stages in a single year. 171 
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 172 

Supplementary Fig. S1.3.1. Examples of evergreen site-year with low seasonality of 173 

daily GPP . The details of the sites BR-Sa1, US-SP3 and BR-Cax can be found in Table S1. 174 

 175 

In this study, we first judge if the site-year or grid cell is evergreen or not, by counting the 176 

number of days with larger daily GPP than a given value.  Here, if there are more than 360 177 

days with daily GPP > 1 g C m-2 day-1 in a site-year, the site-year is defined as evergreen with 178 

CUP = 365 (366 for leap years). For the MODIS GPP with the 8-day interval, we obtained 179 

daily GPP for the whole year through the linear trend between each two adjacent 180 

observations: 181 

𝐺𝑃𝑃(𝑖) = 𝐺𝑃𝑃(𝑖) + (𝑖 − 1)
𝐺𝑃𝑃(𝑖 + 1) − 𝐺𝑃𝑃(𝑖)

8
                    (1) 182 
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where i is the ith day of a given year.   183 

To get the GPPmax in the whole year, we first smoothed the GPP time series using a 184 

simple moving average method, which replaces the GPP in ith day of a given year (GPPi, i = 185 

1, 2, ..., N) by a linear combination of nearby values in a window(15): 186 

∑ 𝑐𝑗𝐺𝑃𝑃𝑖+𝑗

𝑛

𝑗=−𝑛

                                                                        (2) 187 

where cj represents the weighted factor and equals 1/(2n+1). The data of GPPi is replaced 188 

by the values in the window calculated by the equation (2). In this study, we choose n = 3 to 189 

smooth the observed daily GPP. Then the maximal daily GPP was chosen as the GPPmax in 190 

that year. 191 

 192 

S1.3.2. Multiple peaks during the whole year 193 
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Supplementary Fig. S1.3.2. Observed daily GPP from 2003 to 2006 in the flux site of 195 

US-Arm (please see its details in Table S1). This figure shows there are mainly two peaks 196 

in this ecosystem, with one around April and the other in October. Note that the negative 197 

values from the database have been replaced by 0, and the observations after 324th day in 198 

2004 were missing in the original database. 199 

 200 

In some ecosystems, e.g., the Mediterranean-climate regions(16), some regions in the Great 201 

Plains in the US(17) and multiple yield cropping systems(18), there are more than one 202 

vegetation peak during one year. As shown in Fig. S1.3.2, there are two peaks of daily GPP 203 

in each year in the flux site of US-Arm, with one peak occurring around April and the other 204 

in October.  The multiple GPP cycles were analyzed separately with the Weibull function 205 

(see S1.3.3 and the equation 7) and their results were weighted to describe the CUP and 206 

GPPmax in the whole year.  207 

 208 
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Supplementary Fig. S1.3.3. Idealized curve of GPP dynamic and its characteristics in 209 

sites with two peaks in a single year. The blue and red curve respectively represent the first 210 

and second cycle of GPP in this year. 211 

 212 

Since sometime the two GPP cycles overlap (as shown by Fig. S1.3.3), the weighted 213 

integration of CUP from the two GPP cycles within one year was conducted as: 214 

𝐶𝑈𝑃 = {
𝐶𝑈𝑃1 + 𝐶𝑈𝑃2                𝑖𝑓 𝑛𝑜 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝐺𝑃𝑃 𝑐𝑦𝑐𝑙𝑒𝑠      

𝐶𝑈𝑃𝑒𝑛𝑑2 − 𝐶𝑈𝑃𝑠𝑡𝑎𝑟𝑡1      𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝐺𝑃𝑃 𝑐𝑦𝑐𝑙𝑒𝑠
     (3) 215 

where CUP1 and CUP2 are the CO2 uptake period in the first and second GPP cycle, 216 

respectively. CUPsrart1 is the initiation day of CUP for the first GPP cycle, and CUPend2 is the 217 

termination day of CUP for the second GPP cycle. The weighted integration of GPPmax is 218 

more complex because it depends on not only whether but also when the two GPP cycles 219 

overlap. In this study, if there is no overlap between the two GPP cycles, the yearly GPPmax is 220 

weighted as: 221 

𝐺𝑃𝑃𝑚𝑎𝑥 = (𝐺𝑃𝑃𝑚𝑎𝑥1𝐶𝑈𝑃1 + 𝐺𝑃𝑃𝑚𝑎𝑥2𝐶𝑈𝑃2)/(𝐶𝑈𝑃1 + 𝐶𝑈𝑃2)                  (4) 222 

If there is overlap between the two GPP cycles, then the yearly GPPmax cannot be directly 223 

weighted as in equation 7. For these sites, we first find out the linking day (Dlink) between the 224 

two GPP cycles (see the black circle in Fig. S1.3.3). Then, the weighted GPPmax was 225 

calculated as:  226 

𝐺𝑃𝑃𝑚𝑎𝑥 =
𝐺𝑃𝑃𝑚𝑎𝑥1(𝐷𝑙𝑖𝑛𝑘−𝐶𝑈𝑃𝑠𝑡𝑎𝑟𝑡1)+𝐺𝑃𝑃𝑚𝑎𝑥2(𝐶𝑈𝑃𝑒𝑛𝑑2−𝐷𝑙𝑖𝑛𝑘)

𝐶𝑈𝑃1+𝐶𝑈𝑃2
                           (5) 227 

The same strategy as the above equations has been used if there are more than two growing 228 

seasons. Thus, one of the key steps in analyzing the GPP data in sites with multiple peaks in a 229 

single year is to determine the number of seasons. However, the GPP observations often have 230 
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high-level noise (as shown by Fig. S1.3.2, S1.3.4 and S1.3.5), making it difficult to determine 231 

the number of seasons with only one year of data(19). In this study, we reduced the risk for 232 

erroneous determination of season number by triplicating the yearly GPP dynamic (see the 233 

gray circles in Fig. S1.3.5). Then, we followed the method that is used in the TIMESAT 234 

software(19), by fitting the daily GPP data (ti, GPPi), i = 1, 2, ..., n for all 3 years (as shown 235 

in Fig. S1.3.5) to the following function: 236 

𝑓(𝑡) = 𝑐1 + 𝑐2 sin(𝜔𝑡) + 𝑐3 cos(𝜔𝑡) + 𝑐4 sin(2𝜔𝑡) + 𝑐4 cos(2𝜔𝑡)              (6) 237 

where ω = 6π/n. C1 determines the base level, while 𝑐2 sin(𝜔𝑡) + 𝑐3 cos(𝜔𝑡) and 238 

𝑐4 sin(2𝜔𝑡) + 𝑐4 cos(2𝜔𝑡) determine the number of seasons as one and two, respectively. 239 

During the fitting, a primary maximum is always found and a secondary maximum may be 240 

found. As suggested by TIMESAT(19), the amplitude ratio between the secondary maximum 241 

and the primary maximum can be used as an index to determine the number of vegetation 242 

seasons. That is, if the ratio is below a given threshold, the ecosystem has one season during 243 

the year. In this study, we set the ratio between the secondary maximum and the primary 244 

maximum as 0.25. For example, as shown in Fig. S1.3.5, the fitted secondary and primary 245 

maximum in 2000 in the grid of N37.75o, W101.05o are 1.69 and 2.68 g C m-2 d-1, 246 

respectively, and the ratio between them is 0.63. It means there are two vegetation seasons in 247 

this grid cell in 2000 (Fig. S1.3.5). 248 
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  249 

 250 

Supplementary Fig. S1.3.4. MODIS daily GPP from 2000 to 2010 in the grid cell of 251 

N37.75o, W101.05o. The data in the original database were in 8-day interval. 252 
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 253 

Supplementary Fig. S1.3.5. Triplicate of MODIS GPP in 2000 in the grid cell of N37.75o, 254 

W101.05o . The gray circles are the 8-day interval GPP values from the original database. 255 

The red line is the fitted GPP dynamic with the equation (6). 256 

 257 

S1.3.3. One-peak during the summer-autumn growing seasons  258 

In many terrestrial ecosystems, vegetation season peaks around the middle of growing 259 

season, and the seasonal cycles of daily GPP can be represented by the idealized curve in Fig. 260 

S1.2.1. In order to obtain all the characteristics (see S1.2) from both FLUXNET and MODIS-261 

based GPP, we fitted a 5-parameter Weibull function to the data from each year. The Weibull 262 

function is given as: 263 
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𝑃(𝑡) =

{
 
 

 
 

𝑦0 + 𝑎 (
𝑐 − 1

𝑐
)

1−𝑐
𝑐
(|
𝑡 − 𝑥0

𝑏
+ (

𝑐 − 1

𝑐
)

1
𝑐
|

𝑐−1

𝑒
(−|
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𝑏

+(
𝑐−1
𝑐
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𝑐
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𝑐
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𝑐
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     𝑖𝑓  𝑡 ≤ 𝑥0 − 𝑏
𝑐 − 1

𝑐
 

  𝑦0                                                        𝑖𝑓 𝑡 >  𝑥0 − 𝑏
𝑐 − 1

𝑐
                                                                      

     (7) 264 

where t represents the number of days in each year, and P(t) is the corresponding daily mean 265 

GPP (g C m-2 day-1); x0, y0, a, b, and c are empirical parameters to be estimated. As shown 266 

below, this function is flexible and fits one-peak seasonal GPP well in contrasting biomes and 267 

years. Similar Weibull functions have been successfully applied to fit seasonal dynamics of 268 

plant community photosynthesis. For example, Gu et al.(2) used a Weibull function to fit the 269 

seasonal cycle of plant community photosynthesis separately by dividing the growing season 270 

in its middle peak. Recently, Gu et al.(14) developed a new 9-parameter Weibull function 271 

capable of capturing both recovery and senescence parts of the growing season. The Weibull 272 

function used in this study captures both recovery and senescence parts of GPP dynamics, 273 

and consists of fewer empirical parameters (equation 7; 5 parameters). It has been used as a 274 

default function to fit one-peak time-series data in the Sigmaplot (Systat Software, Inc, San 275 

Jose, CA, USA).  276 

The fitting of data to the equation 7 was conducted in the R software (version 2.13.0; 277 

http://www.R-project.org). The details of the model fitting with nonlinear regression can be 278 

found in the section S1.4. After the curve fitting, we can obtain the fitted daily GPP in a 279 

given year. The maximal daily GPP (GPPmax) is obtained as: 280 

𝐺𝑃𝑃𝑚𝑎𝑥 = max  {𝑃(𝑡)}                                                       (8) 281 

where P(t)  (t = 1, 2, ... , n) is the daily GPP in the tth day, and n is 365 for regular years and 282 

366 for leap years. The CO2 uptake period (CUP) is determined by the initiation (CUPstart) 283 

and termination (CUPend) days of CUP as: 284 

𝐶𝑈𝑃 = 𝐶𝑈𝑃𝑒𝑛𝑑 − 𝐶𝑈𝑃𝑠𝑡𝑎𝑟𝑡                                                           (9) 285 
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Since plant community photosynthesis usually fluctuates at the start and end of CUP (as 286 

shown in the Fig. S1.3.6), it is difficult to determine the days in which the ecosystem starts or 287 

stops the CO2 uptake. In this study, we calculated the CUPstart as the intersection between the 288 

recovery line (see the left red dashed line in Fig. S1.3.6) and the time (day of year) axis. 289 

Similarly, the CUPend was obtained by the intersection between the senescence line (see the 290 

right red dashed line in Fig. S1.3.6) and the time axis. Previous studies (2, 14) have found 291 

this approximation can capture the initiation and termination days of plant community 292 

photosynthesis in most terrestrial ecosystems. Thus, in order to calculate the CUPstart and 293 

CUPend, we need to first get the recovery and senescence lines. 294 

 295 

Supplementary Fig. S1.3.6. An example of fitting the equation 7 to GPP observations 296 

from US-Ha1 in 2000. The black solid line is the fitted curve. The red dashed lines represent 297 

recovery, stable phase of GPPmax, and senescence line in sequence. 298 
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The recovery and senescence lines represent the maximum and minimum in the growth 300 

rate of daily GPP, respectively. Here, we use a moving linear regression approach to seek the 301 

day in which the growth rate of daily GPP reaches maximum and minimum.  The linear 302 

model used in estimating the growth rate of daily GPP is: 303 

𝑃(𝑡) = 𝛽𝑡 + 𝛽0                                                               (10) 304 

where β is the theoretical slope representing the growth rate of daily GPP, and β0 is the 305 

theoretical y-intercept. We conducted the linear regression analysis for day t by using the data 306 

from day t - 3 to t + 3 (3 < t < m-3; m is 365 in regular years and 366 in leap years). The slope 307 

β in each day can be estimated by: 308 

�̂�(𝑡) =
7∑ 𝑖𝑃(𝑖) − ∑ 𝑖 ∑ 𝑃(𝑖)𝑡+3

𝑖=𝑡−3
𝑡+3
𝑖=𝑡−3

𝑡+3
𝑖=𝑡−3

7∑ 𝑖2𝑡+3
𝑖=𝑡−3 − (∑ 𝑖𝑡+3

𝑖=𝑡−3 )
2

                             (11) 309 

The maximal (Rmax) and minimal (Rmin) change rate of daily GPP are obtained by: 310 

𝑅𝑚𝑎𝑥 = max  {�̂�(𝑡)}                                                       (12) 311 

𝑅𝑚𝑖𝑛 = min  {�̂�(𝑡)}                                                       (13) 312 

The associated t with  Rmax and Rmin are the days (tmax and tmin) in which maximal and 313 

minimal change rate of daily GPP occurred, respectively. Note that the value of Rmax is 314 

positive and Rmin is negative. Thus, the CUPstart and CUPend can be calculated as: 315 

𝐶𝑈𝑃𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑚𝑎𝑥 −
𝑃(𝑡𝑚𝑎𝑥)

𝑅𝑚𝑎𝑥
                        (14) 316 

𝐶𝑈𝑃𝑒𝑛𝑑 = 𝑡𝑚𝑖𝑛 −
𝑃(𝑡𝑚𝑖𝑛)

𝑅𝑚𝑖𝑛
                        (15) 317 

Similarly, the stable phase of GPPmax (SPgppmax) can be calculated as: 318 

𝑆𝑃𝑔𝑝𝑝𝑚𝑎𝑥 = 𝑆𝑃𝑔𝑝𝑝𝑚𝑎𝑥_𝑒𝑛𝑑 − 𝑆𝑃𝑔𝑝𝑝𝑚𝑎𝑥_𝑠𝑡𝑎𝑟𝑡                           (16) 319 
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where SPgppmax_start and SPgppmax_end are the start and end days of SPgppmax, and can be solved 320 

by: 321 

𝑆𝑃𝑔𝑝𝑝𝑚𝑎𝑥_𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑚𝑎𝑥 +
𝐺𝑃𝑃𝑚𝑎𝑥 − 𝑃(𝑡𝑚𝑎𝑥)

𝑅𝑚𝑎𝑥
                        (17) 322 

𝑆𝑃𝑔𝑝𝑝𝑚𝑎𝑥_𝑒𝑛𝑑 = 𝑡𝑚𝑖𝑛 +
𝐺𝑃𝑃𝑚𝑎𝑥 − 𝑃(𝑡𝑚𝑖𝑛)

𝑅𝑚𝑖𝑛
                        (18) 323 

 324 

The main aim of this study is to examine the dependence of annual GPP on CUP and GPPmax. 325 

Such dependence can be represented by the ratio (α) between annual GPP and the product of 326 

CUP and GPPmax as: 327 

𝛼 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝐺𝑃𝑃

𝐶𝑈𝑃 × 𝐺𝑃𝑃𝑚𝑎𝑥
                           (19) 328 

where the annual GPP is the sum of daily GPP from the original observed data. 329 

  330 

S1.3.4. One-peak during the winter-spring seasons 331 

In some ecosystems, the peak of daily GPP does not occur during summer-autumn 332 

seasons, but in winter or spring. For example, in some (semi-) arid regions with the 333 

Mediterranean climate, plant photosynthesis is high in mild/wet winter and spring and is low 334 

in hot/dry summer(20). As shown by Fig. S1.3.7, the daily GPP recovers in autumn, peaks in 335 

spring, and senesces in summer in the Yatir forest (IL-Yat; 31°20'N, 35°03'E), which is 336 

located between three distinct landscapes, including Hebron mountains, Beersheba 337 

plateau/Negev desert, and the Judean Desert and the Dead Sea Valley(21). For these sites and 338 

grids, a direct application of the equation 7 cannot capture the CUP. In the IL-Yat case, the 339 
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CUP will be underestimated because the CO2 uptake period during September-December is 340 

ignored (Fig. S1.3.7).  341 

For those sites and grids whose daily GPP peaks during spring or winter seasons, we 342 

obtained the entire growing season by duplicating the GPP dynamics (as shown by Fig. 343 

S1.3.8). As shown in Fig. S1.3.8, with the duplicate of daily GPP in 2001, an adjusted GPP 344 

dynamic can be obtained from August to July (as shown in red circles in Fig. S1.3.8). A key 345 

issue in this method is to determine the start and end day of the adjusted GPP dynamic. Since 346 

the FLUXNET GPP data are usually fluctuating with time, we determined the start and end 347 

day of the adjusted GPP dynamic by two steps: 348 

(1) We first smooth the observed data by using a moving average method as equation 2 with 349 

n=3.  350 

(2) Based on the smoothed curve in the step (1), we determined the start point of the adjusted 351 

GPP dynamic as the day (Dstart) with the minimum GPP throughout the year, and the end day 352 

(Dend) according to the number of days in that year. 353 

   In the MODIS GPP product, the GPP dynamic with 8-day intervals is comparably 354 

smoother, so we only applied step (2) to get the adjusted GPP dynamic. The above adjusted 355 

GPP dynamic was then used for the analysis of CUP and GPPmax as the regular one-peak 356 

GPP curve in the Fig. S1.3.6. Although this method with adjusted GPP dynamic may 357 

generate some errors, it can provide a good estimation of CUP and GPPmax for those regions 358 

in where the single peak of daily GPP occurs in winter or spring seasons. 359 
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  360 

Supplementary Fig. S1.3.7. Observed daily GPP from 2001 to 2006 at the flux site of IL-361 

Yat (please see its details in Table S1). Note that the negative values from the database has 362 

been replaced by 0, and the observations in Oct-Dec, 2004 were missing in the original 363 

database. 364 
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 365 

Supplementary Fig. S1.3.8. The figure shows how GPP data from those sites with 366 

winter-spring peaks were adjusted and analyzed in this study. The open circles on the left 367 

side of the blue dashed line are observed daily GPP in 2001 in IL-Yat site, and those on the 368 

right side of the blue dashed line are duplicated from the observed data in 2001. Then the red 369 

open circles represent the adjusted GPP dynamic and are used in the analysis of CUP and 370 

GPPmax in 2001 for IL-Yat.  Note that the negative values from the database have been 371 

replaced by 0. 372 

 373 

S1.4  Non-linear regression with R 374 

As shown in both the equations 6 and 7, there are 5 unknown parameters determining the 375 

GPP dynamic against time in a given year. In this study, we used the general normal 376 
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nonlinear regression model to fit the equations 6 and 7 to the observations. In general, the 377 

nonlinear regression model can be written as: 378 

y𝑖 = 𝑓(𝑋𝑖, 𝛽) + 𝜀𝑖                                                   (21) 379 

where yi is the observed GPP in each year, f is the expectation function, and Xi is a vector of 380 

time (days in a single year). β is a vector including the 5 parameters in the equations 6 and 7, 381 

and ɛi is the error term for observation i. The error ɛi varies from year to year, and the errors 382 

are assumed to be normally distributed with mean 0 and constant variance: ɛi ~ N (0, σ2). 383 

The best estimates of the parameters (β) represent the best fit of the f function to the 384 

observations yi. They can be obtained by minimization of the sum of squared residuals (S) 385 

with respect to β: 386 

𝑆(𝛽) =∑(𝑦𝑖 − 𝑓(𝑋𝑖, 𝛽))
2

𝑛

𝑖=1

                                                                      (22) 387 

In each step, the Gauss-Newton method is used to determine the new parameters values based 388 

on the data, with the purpose to make the S(β) as small as possible. More information about 389 

the nonlinear regression can be found in Bates and Watts (22) and Fox(23). 390 

In this study, the non-linear regressions were performed with the model fitting function 391 

nls, which is located in the standard nls library in R. The parameter estimates are obtained 392 

from the non-linear model fitting, and then used for the analyses of GPP properties in S1.3. 393 

 394 

S1.5 The performance of the Weibull function in capturing GPP dynamics 395 

in terrestrial ecosystem 396 
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Since GPP dynamics in many terrestrial ecosystems follow the single-peak curve like Fig. 397 

S1.3.6, it is important to make sure that equation 7 can capture GPP properties in contrasting 398 

biomes. Before we applied the equation 7 to all flux sites and grid cells, we first examined its 399 

performance in the years with contrasting climate conditions at long-term flux sites.  The 400 

results show that the equation can well capture all years of GPP dynamics from those long-401 

term sites. As shown by Fig. S1.5.1, the simulated GPP curve fits observations from years 402 

with highest, normal, and lowest values in each site well. It indicates the Weibull function 403 

used in this study has the ability to capture GPP dynamics and the associated properties in 404 

contrasting biomes and climate conditions.  405 

 406 
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Supplementary Fig. S1.5.1. Performance of the Weibull function in fitting the GPP 407 

dynamics with lowest (black circles and lines), median (blue circles and lines) and 408 

highest (red circles and lines) annual GPP in those long-term flux sites. The dashed 409 

vertical lines represent the start and end days of CUP. 410 

 411 

S1.6  Parameter sensitivity analysis of the Weibull function 412 

In order to test if the convergence of α is a mathematical certainty of the Weibull function, 413 

we performed a sensitivity analysis to evaluate impact of each parameter (x0, y0, a, b, and c) 414 

on the estimates of CUP, GPPmax, CUP × GPPmax, and α.  The mathematical derivation of the 415 

sensitivity analysis can be found as follows: 416 

We first assume 𝑣 = |
𝑡−𝑥0

𝑏
+ (

𝑐−1

𝑐
)

1

𝑐
| , so then the above equation can be rewritten as: 417 

𝑃(𝑡) = {
𝑦0 + 𝑎(

𝑐−1

𝑐
)
1−𝑐

𝑐 𝑣𝑐−1𝑒(−𝑣
𝑐+

𝑐−1

𝑐
)                        𝑖𝑓  𝑡 ≤ 𝑥0 − 𝑏

𝑐−1

𝑐
    

𝑦0                                                                     𝑖𝑓 𝑡 >  𝑥0 − 𝑏
𝑐−1

𝑐
                 

              (23) 418 

 419 

P(t) is a differentiable function whose derivative is: 420 

𝑃(𝑡)′ = {
𝑎(
𝑐 − 1

𝑐
)
1−𝑐
𝑐 𝑒

𝑐−1
𝑐  (𝑣(𝑡𝑐−1𝑒−𝑣

𝑐
)‘𝑣’                        𝑖𝑓  𝑥 ≤ 𝑥0 − 𝑏

𝑐 − 1

𝑐
     

0                                                           𝑖𝑓 𝑥 >  𝑥0 − 𝑏
𝑐 − 1

𝑐
                

 421 

=>  𝑃(𝑡)′ = {
𝑎(

𝑐−1

𝑐
)
1−𝑐

𝑐 𝑒
𝑐−1

𝑐  (𝑣𝑐−1𝑒−𝑣
𝑐
)‘𝑣’                        𝑖𝑓  𝑥 ≤ 𝑥0 − 𝑏

𝑐−1

𝑐
    

0                                                            𝑖𝑓 𝑥 >  𝑥0 − 𝑏
𝑐−1

𝑐
          

 422 

=>  𝑃(𝑡)′ = {
𝑎(

𝑐−1

𝑐
)
1−𝑐

𝑐 𝑒
𝑐−1

𝑐 [(𝑐 − 1)𝑣𝑐−2𝑒−𝑣
𝑐
− 𝑐𝑣2(𝑐−1)𝑒−𝑣

𝑐
] 𝑣’          𝑖𝑓  𝑥 ≤ 𝑥0 − 𝑏

𝑐−1

𝑐
     

0                                                                                𝑖𝑓 𝑥 >  𝑥0 − 𝑏
𝑐−1

𝑐
       

   (24) 423 

where 𝑣’ = {

1

𝑏
                𝑖𝑓  

𝑥−𝑥0

𝑏
+ (

𝑐−1

𝑐
)

1

𝑐
≥ 0    

−
1

𝑏
              𝑖𝑓  

𝑥−𝑥0

𝑏
+ (

𝑐−1

𝑐
)

1

𝑐
< 0       

                                         (25) 424 
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Similar to the equations (12) ‒ (13), the maximal (Rmax) and minimal (Rmin) change rate of 425 

daily GPP are obtained by: 426 

𝑅𝑚𝑎𝑥 = max  {𝑃(𝑡)
′}                                                       (26) 427 

𝑅𝑚𝑖𝑛 = min  {𝑃(𝑡)
′}                                                       (27) 428 

The CUPstart and CUPend can be calculated by the equations (14) and (15), respectively. The 429 

CUP can be calculated as CUPend minus CUPstart, and GPPmax as max{𝑃(𝑡)}. 430 

In the analysis, we first calculated the bootstrapping medians of all parameters from their 431 

estimations from the eddy-flux sites.  Then, we increased each parameter from -100% to 432 

100%, with an interval of 1%, of its calculated medians with other parameters kept at the 433 

estimated values from observations.  Finally, we calculated CUP, GPPmax, CUP × GPPmax and 434 

α with each combination of parameters and plotted their dependences on each parameter in 435 

Fig. S1.6.1. The sensitivity analysis showed that GPPmax is very sensitive to the parameter a 436 

(Fig. S1.6.1a) of the Weibull function, while CUP is mainly affected by the parameters b and 437 

c (Fig. S1.6.1b). The parameters a, b and c together control the variations of the product of 438 

GPPmax and CUP (Fig. S1.6.1c). The ratio between annual GPP and the product of GPPmax 439 

and CUP (α) can be affected by each of the parameters (a, b, c, x0, and y0; Fig. S1.6.1d). It 440 

suggests the convergence of α is not the mathematical certainty the of the Weibull function 441 

used in this study.  442 
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 443 

Supplementary Fig. S1.6.1. Sensitivity analyses of parameters. The results are obtained 444 

through the following steps: (1) calculate the bootstrapping median of the parameters from 445 

the global analyses on flux data; (2) change those parameters from -100% to +100% and 446 

calculate the values of GPPmax, CUP, GPPmax×CUP, and α (annual GPP/( GPPmax×CUP)) 447 

with equations (23) ‒ (25). 448 

 449 

S1.7  Random re-sampling test of the Weibull function 450 
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We further did a random re-sampling test for the performance of the Weibull funtion itself in 451 

affecting the ratio between annual GPP and the product of CUP and GPPmax (α). The test 452 

consisted of three steps: First, we set up the ranges of each parameter (a, b, c, x0, and y0) in 453 

equation 7, with 0 < a ≤ 30,  0 < b ≤ 500, 1 < c ≤ 5, 0 < x0 ≤ 300, 0 < y0 ≤ 2. For each 454 

parameter, the given range covered > 90% of the estimated values from all FLUXNET sites.  455 

Second, we equally separated the range of each parameter into 10000 samples from the 456 

lowest to largest value. For example, there were 1000 samples of parameter a including 457 

0.003, 0.006, ... , 30. In the third step, we randomly chose each parameter from its 10000 458 

samples to obtain the CUP, GPPmax, and annual GPP and thus the α. The random resampling 459 

of parameters was repeated by 2000 times, and the output was used for the further analyses. 460 

As shown by Fig. S1.7.1, annual GPP is positively related to the product of CUP and 461 

GPPmax. However, the ratio (α) between them diverges. By plotting the frequency distribution 462 

of α that ranges from 0 to 1, we found it follows the normal distribution (R2 = 0.85, P < 463 

0.001; Fig. S1.7.2). Since the ranges of parameters are chosen based on the estimates in the 464 

natural ecosystems, the highest frequency of α in random resampling test is close to that 465 

found in the original analysis (as shown in Fig. 1 of the main text). However the divergence 466 

of α suggests that the global convergence of α should be caused by ecological processes in 467 

the natural ecosystems, but not the Weibull function itself. 468 



Page 28 of 56 
 

 469 

Supplementary Fig. S1.7.1. Results of a random re-sampling test. The parameter ranges 470 

were defined according to their distributions in the FLUXNET sites. The red dashed line is 471 

the 1:1 line. 472 

 473 

Supplementary Fig. S1.7.2. Frequency of α in the output of the random re-sampling 474 

test. 475 
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S1.8  Freeze/Thaw Data 476 

Global daily records of landscape freeze/thaw data from 1st January 2000 to 31st December 477 

2010 were analyzed for an additional indicator of CUP. The data were obtained from the 478 

NSIDC (http://nsidc.org/data/nsidc-0477). More detailed information about the data were 479 

provided at: http://nsidc.org/data/docs/measures/nsidc-0477/index.html. We used the 480 

combined freeze/thaw data (specifically, AM and PM thawed ground-state) to estimate dates 481 

of spring thaw and autumn freeze with the approach introduced by some earlier studies (24-482 

26). The spring thaw data was defined as the date corresponding to the 8th day of the first 15 483 

day period in a year when 80% days (i.e., 12 days) is classified as non-frozen days. The 484 

similar 80% rule was applied for determine the date of autumn freeze (i.e., end of CUP) for 485 

each grid. The global distribution of obtained CUP from the Freeze/Thaw (F/T) data was 486 

shown in Fig. S10. 487 

 488 

S1.9  Distribution of FLUXNET Sites 489 

 490 

Supplementary Fig. S1.9.1. Distribution of FLUXNET sites that used in this study. Crop, 491 

cropland; DBF, deciduous broadleaf forest; EBF, evergreen broadleaf forest; ENF, evergreen 492 

needleleaf forest; MF, mixed forest; Gra, grassland, Sav, savanna; Shrub, shrubland; Wet, 493 

wetland. 494 
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As shown in Fig. S1.9.1, the eddy covariance sites are not homogeneously distributed over 496 

the global. More sites are distributed in North America, West Europe, and East Asia. 497 

Although the FLUXNET sites cannot fully represent the global heterogeneity in 498 

environmental conditions, they occupy almost all vegetation types and climate zones in 499 

terrestrial ecosystem (Please see more details in the Supporting Online Material of Beer et 500 

al.(5)). Our goal in this study is to test the control of phenological and physiological aspects 501 

on terrestrial annual GPP, so the broadly distributed FLUXNET sites are plenty to represent 502 

most vegetation and climate types in terrestrial ecosystems. 503 

 504 

S2. Supplementary Tables and Figures 505 

 506 

Table S1. Information of FLUXNET sites used in this study. 507 
 508 

Site Name PFT Lat Lon Year Ref. 

AT-Neu Grassland 47.1 11.3 2002-2006 (27) 

BE-Bra MF 51.3 4.5 

1997-1998,2000-
2002,2004-2006 

(28) 

BE-Lon Cropland 50.6 4.7 2004-2006 (29) 

BE-Vie MF 50.3 6.0 1997-2006 (30) 

BR-Sa1 EBF -2.85 -54.97 2001-2003 (31) 

BR-Sa3 EBF -3.02 -54.97 2001-2003 (32) 

BR-Sp1 Savanna -21.6 -47.7 2001 (33) 

CA-Ca1 ENF 49.9 -125.3 1998-2005 (34) 

CA-Ca2 ENF 49.9 -125.3 2001-2005 (34) 

CA-Ca3 ENF 49.5 -124.9 2002-2005 (34) 

CA-Gro MF 48.2 -82.2 2004 (35) 

CA-Let Grassland 49.7 -112.9 1999-2005 (36) 

CA-Man ENF 55.9 -98.5 1995,1998-2000 (37) 

CA-Mer ENF 45.4 -75.5 1999-2005 (38) 

CA-NS1 ENF 55.9 -98.5 2003-2005 (39) 

CA-NS2 ENF 55.9 -98.5 2002-2005 (39) 

CA-NS3 ENF 55.9 -98.4 2002-2005 (39) 

CA-NS4 ENF 55.9 -98.4 2003-2004 (39) 

CA-NS5 ENF 55.9 -98.5 2002-2005 (39) 

CA-NS6 ENF 55.9 -99.0 2002-2005 (39) 

CA-NS7 Shrubland 56.6 -99.9 2003-2005 (39) 
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CA-Oas DBF 53.6 -106.2 1997-2005 (40) 

CA-Ojp DBF 53.9 -104.7 2000-2003,2005 (41) 

CA-Qcu DBF 49.3 -74.0 2002-2006 (42) 

CA-Qfo DBF 49.7 -74.3 2004-2006 (43) 

CA-SF1 ENF 54.5 -105.8 2004 (44) 

CA-SF2 ENF 54.3 -105.9 2003-2004 (44) 

CA-SF3 Shrubland 54.1 -106.0 2003-2005 (44) 

CA-SJ1 ENF 53.9 -104.7 2001-2005 (45) 

CA-SJ2 ENF 53.9 -104.6 2003-2005 (45) 

CA-SJ3 ENF 53.9 -104.6 2004-2005 (45) 

CA-TP1 ENF 42.7 -80.6 2004-2005 (46) 

CA-TP2 ENF 42.8 -80.5 2004-2005 (46) 

CA-TP3 ENF 42.7 -80.3 2005 (46) 

CA-TP4 ENF 42.7 -80.4 2004-2005 (47) 

CA-WP1 Wetland 55.0 -112.5 2004-2005 (48) 

CA-WP2 Wetland 55.5 -112.3 2004 (49) 

CA-WP3 Wetland 54.5 -113.3 2004 (49) 

CH-Oe1 Grassland 47.3 7.7 2002-2006 (50) 

CH-Oe2 Cropland 47.3 7.7 2005 (51) 

CN-Anh DBF 33.0 117.0 2005-2006 (52) 

CN-Bed EBF 39.5 116.3 2005 (52) 

CN-Cha MF 42.4 128.1 2003 (53) 

CN-Do1 Wetland 31.5 122.0 2005 (54) 

CN-Do2 Wetland 31.6 121.9 2005 (54) 

CN-Do3 Wetland 31.5 122.0 2005 (54) 

CN-Du1. Cropland 42.0 116.7 2005-2006 (55) 

CN-Du2 Grassland 42.0 116.3 2006 (55) 

CN-HaM Grassland 37.4 101.2 2002-2003 (56) 

CN-Hny DBF 29.3 112.5 2005-2006 ‒ 

CN-Ku1 EBF 40.5 108.7 2006 (57) 

CN-Xfs Grassland 44.1 116.3 2004-205 ‒ 

CZ-BK1 ENF 49.5 18.5 2001,2004-2006 ‒ 

CZ-BK2 Grassland 49.5 18.5 2005-2006 ‒ 

CZ-wet Grassland 49.0 14.8 2006 (58) 

DE-Bay ENF 50.1 11.9 1997-1999 (59) 

DE-Geb Cropland 51.1 10.9 2004-2006 (60) 

DE-Gri Cropland 50.9 13.5 2005-2006 (16) 

DE-Hai DBF 51.1 10.5 2000-2006 (61) 

DE-Har DBF 51.1 10.5 2005-2006 (62) 

DE-Kli Cropland 50.9 13.5 2005-2006 ‒ 

DE-Meh Grassland 51.3 10.7 2004-2006 (63) 

DE-Tha ENF 51.0 13.6 1997-2006 (64) 

DE-Wet ENF 50.5 11.5 2002-2006 (65) 

DK-Fou Cropland 56.5 9.6 2005 ‒ 

DK-Lva Grassland 55.7 12.1 2005-2006 (16) 
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DK-Ris Cropland 55.5 12.1 2004-2005 (66) 

DK-Sor DBF 55.5 11.6 1996-2006 (66) 

ES-ES1 ENF 39.3 -0.3 1999-2002,2004-2006 (3) 

ES-ES2 Cropland 39.3 -0.3 2004-2006 ‒ 

ES-LMa Savanna 39.9 -5.8 2004-2006 (67) 

ES-VDA Grassland 42.2 1.4 2004-2005 (61) 

FI-Hyy ENF 61.8 24.3 1997-2006 (68) 

FI-Kaa Wetland 69.1 27.3 2000-2006 (69) 

FI-Sii ENF 61.8 24.2 2004-2005 (70) 

FI-Sod ENF 67.4 26.6 2000-2006 (71) 

FR-Aur Cropland 43.5 1.1 2005 ‒ 

FR-Fon DBF 48.5 2.8 2005-2006 ‒ 

FR-Gri Cropland 48.8 2.0 2005-2006 (72) 

FR-Hes DBF 48.7 7.1 1997-2006 (73) 

FR-Lam Cropland 43.5 1.2 2005 ‒ 

FR-LBr ENF 44.7 -0.8 

1997-1998,2000,2004-
2006 

(74) 

FR-Lq1 Grassland 45.6 2.7 2004-2006 (16) 

FR-Lq2 Grassland 45.6 2.7 2004-2006 (16) 

FR-Pue EBF 43.7 3.6 2001-2006 (75) 

GF-Guy EBF 5.3 -52.9 2005-2006 (76) 

HU-Bug Grassland 46.7 19.6 2003-2006 (77) 

HU-Mat Grassland 47.8 19.7 2004-2006 (78) 

ID-Pag EBF 2.3 114.0 2002-2003 (79) 

IE-Ca1 Grassland 52.9 -6.9 2004-2006 ‒ 

IE-Dri Grassland 52.0 -8.8 2003-2004 (80) 

IL-Yat ENF 31.3 35.1 2001-2006 (21) 

IS-Gun DBF 63.8 -20.2 1997-1998 (81) 

IT-Amp Grassland 41.9 13.6 2003-2006 (16) 

IT-BCi Cropland 40.5 15.0 2004-2006 (82) 

IT-Bon ENF 39.5 16.5 2006 ‒ 

IT-Col DBF 41.8 13.6 1997-2005 (83) 

IT-Cpz EBF 41.7 12.4 1997,2001,2003-2006 (84) 

IT-Lav ENF 39.5 16.5 2001-2002,2004,2006 (85) 

IT-Lec EBF 43.3 11.3 2006 ‒ 

IT-LMa Grassland 45.6 7.2 2003-2005 ‒ 

IT-Mal Grassland 46.1 11.7 2003 ‒ 

IT-MBo Grassland 46.0 11.0 2003-2006 (86) 

IT-Non DBF 44.7 11.1 2001-2003,2006 ‒ 

IT-Pia Shrubland 42.6 10.1 2002-2005 (87) 

IT-PT1 DBF 45.2 9.1 2002-2004 (88) 

IT-Ren EBF 46.6 11.4 1999,2001-2006 (89) 

IT-Ro1 DBF 42.4 11.9 2001-2006 (90) 

IT-Ro2 DBF 42.4 11.9 2002-2006 (91) 

IT-SRo ENF 39.5 16.5 1999-2006 (92) 
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IT-Vig DBF 45.3 8.9 2005 ‒ 

JP-Mas Cropland 36.1 140.0 2002-2003 (93) 

JP-Tak DBF 36.1 137.4 1999-2004 (94) 

JP-Tef ENF 45.1 142.1 2002,2004-2005 (95) 

JP-Tom MF 42.7 141.5 2001-2003 (96) 

KR-Hnm DBF 34.6 126.6 2004-2006 (97) 

KR-Kw1 ENF 37.7 127.2 2005-2006 (98) 

NL-Ca1 Grassland 52.0 4.9 2003-2006 (99) 

NL-Hor Grassland 52.0 5.1 2005-2006 (99) 

NL-Lan Cropland 52.0 4.9 2005 (99) 

NL-Loo ENF 52.2 5.7 1997-2006 (100) 

NL-Lut Cropland 53.4 6.4 2006 (101) 

NL-Mol Cropland 51.7 4.6 2005 (101) 

PL-wet Wetland 52.8 16.3 2004-2005 (102) 

PT-Esp EBF 38.6 -8.6 2002-2004,2006 (103) 

PT-Mi1 EBF 38.5 -8.0 2003-2005 (104) 

PT-Mi2 Grassland 38.5 -8.0 2006 (104) 

RU-Che MF 68.6 161.3 2003-2004 (105) 

RU-Cok Shrubland 70.6 147.9 2003 (106) 

RU-Fyo ENF 56.5 32.9 1998-2006 (107) 

RU-Ha1 Grassland 54.7 90.0 2003-2004 (108) 

RU-Ha3 Grassland 54.7 89.1 2004 (108) 

RU-Zot ENF 56.5 32.9 2002-2004 ‒ 

SE-Abi ENF 68.4 18.8 2005 ‒ 

SE-Deg Wetland 64.2 19.6 2001-2005 (109) 

SE-Faj ENF 56.3 13.6 2006 (110) 

SE-Fla ENF 64.1 19.5 1997-1998 (111) 

SE-Fla ENF 64.1 19.5 2001-2002 (111) 

SE-Nor EBF 60.1 17.5 1996-1999,2003 (112) 

SE-Sk1 ENF 60.1 17.9 2005 ‒ 

SE-Sk2 ENF 60.1 17.8 2004-2005 ‒ 

UK-AMo Wetland 55.8 -3.2 2005 (113) 

UK-EBu Grassland 55.9 -3.2 2004-2006 (114) 

UK-ESa Cropland 55.9 -2.9 2004-2005 ‒ 

UK-Gri ENF 56.6 -3.8 

1997-1998,2000-
2001,2005-2006 

(115) 

UK-Ham DBF 34.6 126.6 2004-2005 (116) 

UK-PL3 DBF 51.5 -1.3 2005 ‒ 

UK-Tad Grassland 51.2 -2.8 2001 (117) 

US-ARb Grassland 35.5 -98.0 2005-2006 ‒ 

US-ARc Grassland 35.5 -98.0 2005-2006 ‒ 

US-ARM Cropland 36.6 -97.5 2003-2006 (17) 

US-Atq Wetland 70.5 -157.4 2001,2003,2005-2006 (118) 

US-Aud Grassland 31.6 -110.5 2002,2005-2006 ‒ 

US-Bar DBF 44.1 -71.3 2004-2005 (119) 
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US-Bkg Grassland 44.3 -96.8 2005-2006 (120) 

US-Blo ENF 38.9 -120.6 2000-2006 (121) 

US-Bn1 ENF 63.9 -145.4 2003 (122) 

US-Bn2 ENF 63.9 -145.4 2003 (122) 

US-Bn3 ENF 63.9 -145.7 2003 (122) 

US-Bo1 Cropland 40.0 -88.3 1997-2006 (123) 

US-Bo2 Cropland 40.0 -88.3 2004-2006 (123) 

US-Brw Wetland 71.3 -156.6 19,982,001 (124) 

US-CaV Grassland 39.1 -79.4 2004 ‒ 

US-Dk1 Grassland 36.0 -79.1 2002-2005 (125) 

US-Dk2 DBF 36.0 -79.1 2003-2005 (125) 

US-Dk3 ENF 36.0 -79.1 2001-2005 (125) 

US-FPe Grassland 48.3 -105.1 2000-2006 ‒ 

US-FR2 Savanna 29.9 -98.0 2004-2006 (126) 

US-Goo Grassland 34.3 -89.9 2002-2006 ‒ 

US-Ha1 DBF 42.5 -72.2 1992-2006 (127) 

US-Ho1 ENF 45.2 -68.7 1996-2004 (128) 

US-Ho2 ENF 45.2 -68.7 1999-2004 (128) 

US-IB1 Cropland 41.9 -88.2 2006-2007 (129) 

US-IB2 Grassland 41.8 -88.2 2006-2007 (129) 

US-Ivo Wetland 68.5 -155.8 2004-2006 ‒ 

US-KS2 Shrubland 28.6 -80.7 2001-2002,2004-2006 (130) 

US-Los Shrubland 46.1 -90.0 2001-2003,2005 ‒ 

US-LPH DBF 42.5 -72.2 2003-2004 (131) 

US-Me2 ENF 44.5 -121.6 2003-2005 (132) 

US-Me3 ENF 44.3 -121.6 2004-2005 (132) 

US-Me4 ENF 44.5 -121.6 1996-1997,2000 (132) 

US-MMS DBF 39.3 -86.4 1999-2005 (133) 

US-NC1 Shrubland 35.8 -76.7 2005-2006 (134) 

US-NC2 ENF 35.8 -76.7 2005-2006 (135) 

US-Ne1 Cropland 41.2 -96.5 2001-2004 (136) 

US-Ne2 Cropland 41.2 -96.5 2003-2004 (136) 

US-Ne3 Cropland 41.2 -96.4 2001-2004 (136) 

US-NR1 ENF 40.0 -105.5 1999-2000,2002-2003 (137) 

US-Oho DBF 41.6 -83.8 2004-2005 (138) 

US-PFa MF 45.9 -90.3 1997-2000,2003 (139) 

US-SO2 Shrubland 33.4 -116.6 2004-2006 (140) 

US-SO3 Shrubland 33.4 -116.6 20,012,005 (140) 

US-SO4 Shrubland 33.4 -116.6 2005-2006 ‒ 

US-SP1 ENF 29.7 -82.2 2005 (141) 

US-SP2 ENF 29.8 -82.2 1999-2004 (142) 

US-SP3 ENF 29.8 -82.2 1999,2001-2004 (142) 

US-SRM Savanna 31.8 -110.9 2004-2006 (143) 

US-Syv MF 46.2 -89.3 2002-2006 (144) 

US-Ton Savanna 38.4 -121.0 2002-2006 (145) 
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US-UMB DBF 45.6 -84.7 1999-2003 (146) 

US-WBW DBF 36.0 -84.3 1995-1999 (147) 

US-WCr DBF 45.8 -90.1 1999-2006 (148) 

US-Wi0 ENF 46.6 -91.1 2002 (149) 

US-Wi1 DBF 46.7 -91.2 2003 (150) 

US-Wi2 ENF 46.7 -91.2 2003 (150) 

US-Wi4 ENF 46.7 -91.2 2002-2005 (150) 

US-Wi5 ENF 46.7 -91.1 2004 (150) 

US-Wi6 Shrubland 46.6 -91.3 2002 (150) 

US-Wi7 Shrubland 46.6 -91.1 2005 (150) 

US-Wi8 DBF 46.7 -91.3 2002 (150) 

US-Wkg Grassland 31.7 -109.9 2005-2006 (151) 

US-Wrc ENF 45.8 -122.0 1999-2002,2004,2006 (152) 

VU-Coc EBF -15.4 167.2 2002 (153) 

509 
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Table S2. Results of partial correlation analyses for FLUXNET GPP. The dependent variable 510 
is annual GPP and independent variables are GPPmax and CUP. 511 
 512 

  

Variable 

entered 

Parameter 

estimate 

Patial 

r2 Probability 

All GPPmax 0.98 0.72 <0.001 

 CUP 0.96 0.26 <0.001 

ENF GPPmax 1.00 0.83 <0.001 

 CUP 0.99 0.16 <0.001 

DBF GPPmax 1.00 0.87 <0.001 

 CUP 0.99 0.11 <0.001 

EBF GPPmax 0.95 0.80 <0.001 

 CUP 1.13 0.18 <0.001 

MF GPPmax 0.96 0.79 0.0014 

 CUP 1.01 0.21 <0.001 

GRA GPPmax 1.00 0.70 0.005 

 CUP 0.90 0.28 <0.001 

SHRUB GPPmax 0.90 0.52 0.0053 

 CUP 1.06 0.43 <0.001 

SAV GPPmax 1.23 0.89 0.0014 

 CUP 0.80 0.08 0.020 

WET GPPmax 1.02 0.91 <0.001 

 CUP 0.82 0.08 0.002 

CROP CUP 0.88 0.58 0.0012 

  GPPmax 0.86 0.37 <0.001 

  513 
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Figure S1. Relationship between GPPmax and CUP across all FLUXNET site-years in this 514 
study.  515 
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Figure S2. Dynamics of annual GPP, GPPmax and CUP from 2000 to 2010 in the Black Hills 519 

National Forest, South Dakota, USA. The results were obtained from the MODIS GPP 520 

observations in a 0.1 × 0.1o grid pixel (43.85oN, 103.95oW) which is located in the burned 521 

area in the Black Hills National Forest. More information about the fire disturbance and the 522 

following recovery of vegetation greenness can be found in Xiao et al.(154) . The linear 523 

regressions of annual GPP, GPPmax and CUP against year are all significant (all P < 0.05). 524 
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Figure S3. The relative frequency distribution of estimated α from all (a) non-tropical and (b) 527 

tropical and subtropical (including Mediterranean climate) FLUXNET site-years. 528 

 529 
 530 

 531 
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Figure S4. Spatial distributions of mean (a) annual GPP, (b) GPPmax, and (c) CUP in 534 

North America. Data in each 0.1°×0.1° grid was averaged over 11 years from 2000 to 2010. 535 

 536 

 537 
  538 
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Figure S5. Examples of flux site-year with multiple peaks of daily GPP. Numbers and the 539 

associated arrows show the different GPP peaks. The detailed information for each flux site 540 

can be found in Table S1. 541 
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 Figure S6. Dependence of annual FLUXNET GPP variability on (a) CUP and (b) GPPmax 544 

(the linear correlation was tested at the significance level of P = 0.05). 545 

 546 
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Figure S7. Relationship between MODIS- and FLUXNET-derived GPPmax in North 549 

America. The MODIS GPPmax (0.1° by 0.1° degree) from the latitude-longitude grid cell 550 

where the flux-tower site located was used for the analysis.  551 
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Figure S8. (a) Global distribution of averaged CUP over 2000-2010 derived from the daily 554 
records of landscape freeze/thaw (F/T) data with the spatial resolution of 25km by 25km. (b) 555 
Comparison between the MODIS- and F/T-derived CUP in North America. More details of 556 
the data and method are provided in S1.9. The F/T data were firstly re-gridded into 0.1° by 557 
0.1°, and then both the MODIS- and F/T-derived were averaged along latitude with a 0.5° 558 
interval. 559 
 560 

 561 
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Figure S9. GPP dynamics in 2002 and 2003 at 10 FLUXNET sites in Europe. The year 2003 562 

was extremely hot and dry, with July temperature up to 6 °C above and annual precipitation 563 

about 50% below the long-term averages(155).  The selection of sites is based on the ref 564 

(149), which analyzed the impacts of the 2003 heatwave on European primary productivity. 565 

According to that study, GPP in 2002 (black triangle) was chosen as a reference and the 566 

impact of 2003 heatwave was calculated as the relative changes in 2003 (red circle) from 567 

those in 2002. The site information can be found in Table S1. 568 
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Figure S10. Relationship between annual GPP and the product of CUP and GPPmax in the 571 

Black Hills National Forest, South Dakota, USA. Each circle represents a year from 2000 to 572 

2010. The results were obtained from the MODIS GPP observations in a 0.1 × 0.1o grid pixel 573 

(43.85oN, 103.95oW) which located in the burned area in the Black Hills National Forest. 574 

More information about the fire disturbance and the following recovery of vegetation 575 

greenness can be found in Xiao et al.(154) . 576 
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