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MILITARY MEDICINE, 00, 0/0:1, 2018

A Rapid, Handheld Device to Assess Respiratory Resistance:
Clinical and Normative Evidence

LTC Aaron B. Holley, MD*; CDR Wesley D. Boose, MD†; Michael Perkins, MD‡;
Ms Karen L. Sheikh, MS§; Nancy P. Solomon, PhD║; Angela M. Dietsch, PhD¶;
Jafar Vossoughi, PhD**; Arthur T. Johnson, PhD††; LTC Jacob F. Collen, MD║

ABSTRACT Introduction: Following reports of respiratory symptoms among service members returning from deploy-
ment to South West Asia (SWA), an expert panel recommended pre-deployment spirometry be used to assess disease bur-
den. Unfortunately, testing with spirometry is high cost and time-consuming. The airflow perturbation device (APD) is a
handheld monitor that rapidly measures respiratory resistance (APD-Rr) and has promising but limited clinical data. Its
speed and portability make it ideally suited for large volume pre-deployment screening. We conducted a pilot study to
assess APD performance characteristics and develop normative values. Materials and Methods: We prospectively enrolled
subjects and derived reference equations for the APD from those without respiratory symptoms, pulmonary disease, or
tobacco exposure. APD testing was conducted by medical technicians who received a 10-min in-service on its use. A sub-
set of subjects performed spirometry and impulse oscillometry (iOS), administered by trained respiratory therapists. APD
measures were compared with spirometry and iOS. Results: The total study population included 199 subjects (55.8%
males, body mass index 27.7 ± 6.0 kg/m2, age 49.9 ± 18.7 yr). Across the three APD trials, mean inspiratory (APD-Ri),
expiratory (APD-Re), and average (APD-Ravg) resistances were 3.30 ± 1.0, 3.69 ± 1.2, and 3.50 ± 1.1 cm H2O/L/s.
Reference equations were derived from 142 clinically normal volunteers. Height, weight, and body mass index were inde-
pendently associated with APD-Ri, APD-Re, and APD-Ravg and were combined with age and gender in linear regression
models. APD-Ri, APD-Re, and APD-Ravg were significantly inversely correlated with FEV1 (r = −0.39 to −0.42), FVC
(r = −0.37 to −0.40), and FEF25–75 (r = −0.31 to −0.35) and positively correlated with R5 (r = 0.61–0.62), R20 (r =
0.50–0.52), X5 (r = −0.57 to −0.59), and FRES (r = 0.42–0.43). Bland–Altman plots showed that the APD-Rr closely
approximates iOS when resistance is normal. Conclusion: Rapid testing was achieved with minimal training required, and
reference equations were constructed. APD-Rr correlated moderately with iOS and weakly with spirometry. More testing is
required to determine whether the APD has value for pre- and post-deployment respiratory assessment.

INTRODUCTION
In response to reports of respiratory disease following duty in
South West Asia (SWA) – Iraq, Afghanistan, and Kuwait – a
working group convened and recommended screening spirome-
try before deployment for all service members.1 Cost estimates
put the total price for screening all who deploy in the tens of
millions of dollars.2 The majority of this spending is devoted to
hiring and training respiratory therapists to administer testing.

Spirometry requires trained professionals to coach subjects to
perform the necessary maneuvers that make the testing valid.
Cost estimates do not factor in productivity loss from extending
pre-deployment processing to include spirometry.

Screening with other existing tests, such as impulse oscillo-
metry (iOS) or body plethysmography, also has limitations.
Both require large, fixed equipment and trained personnel and
take 20–30min to complete the requisite repeated trials.3,4

Ideally, any lung function test employed to screen large num-
bers of personnel should be portable, low cost, and efficient.

The airflow perturbation device (APD) is an investigational,
handheld monitor that uses airflow perturbation, similar in
physical design to an airflow-interrupter technique,5–7 to mea-
sure respiratory resistance (Rr).

8–10 However, unlike the inter-
rupter technique, there is no time lag between perturbed and
unperturbed breathing states. The APD is small and portable,
and each trial takes only 1 min to complete.11 Measurements
are made during tidal breathing, so little coaching is required
and no specific training is needed to administer the test. The
APD self-calibrates each time it is turned on and has proven to
provide reproducible results with low variation.12 These fea-
tures make the APD ideal for assessing large numbers of sub-
jects onsite, at low cost.

Animal data and studies with small sample size show that
the APD appropriately measures artificial respiratory loads13–15
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and correlates with iOS16 and esophageal manometry.13

Populations tested in larger studies are poorly described
though,17,18 and little data exist on correlation with spirometry or
iOS in health or disease.19,20 Normal ranges for resistance mea-
sured using the APD (APD-Rr) have not been established.
Despite increasing interest in using the APD in research, occupa-
tional health, and clinical practice,21 more patient data are needed.

To aid clinical interpretation, we conducted a pilot study and
recruited subjects to perform three trials using the APD. All sub-
jects were carefully screened for the presence of respiratory
symptoms, respiratory disease, and tobacco exposure. APD-Rr

data from those free from symptoms, disease, or tobacco expo-
sure were used to construct regression equations to define nor-
mal ranges. A subset of those with and without symptoms,
disease, or tobacco exposure was studied with spirometry and
iOS. We compared the APD with established pulmonary func-
tion tests (spirometry and iOS) to identify which aspects of
respiratory physiology are captured using this device (APD). In
vitro and animal data suggest that the APD reflects resistance of
the entire respiratory system, to include the chest wall, but corre-
lations with measures of large and small airways, resistance,
and elastance in healthy patients and those with disease have
not yet been performed.

METHODS
All participants were prospectively enrolled at the Walter Reed
National Military Medical Center (WRNMMC) Pulmonary
Diseases Clinic (PDC) between April 2013 and August 2014.
All subjects were screened for respiratory disease, tobacco expo-
sure (past, present, or secondhand smoke), or symptoms (cough,
sputum production, or any dyspnea). This screening procedure
was modeled after the exclusion criteria for the NHANES III
data set.22 Those who screened negative in all three categories
and positive for at least one are labeled “normal” and “abnor-
mal,” respectively. Spirometry and iOS were encouraged but
not required. Data from normal subjects were used to derive ref-
erence equations, but the comparison of APD-Rr to spirometry
and iOS included normal and abnormal subjects. All participants
were ≥ 18 yr old and provided informed consent according to
the rules and regulations of the Department of Research
Programs and Institutional Review Board at WRNMMC
(Airway Perturbation Device (APD) for the evaluation
pulmonary and sleep disorders [study no.: 383145–7]).

APD Measurements
All subjects had APD testing performed by a medical techni-
cian (Navy Corpsman or Army Medic) before their appoint-
ment (patients) and/or additional lung function testing. The
staff administering the test had no formal respiratory training,
but they did receive an informal, 10-min instruction on using the
APD. Testing was performed using a rigid, oval mouthpiece
with the subject in the sitting position, wearing a nose clip and
using the hands to support the cheeks. Because the soft tissue of
the cheeks is compressible, lack of support could lead to pressure

dissipation proximal to the device and underestimation of Rr,
5

although differences between the APD and the interrupter tech-
nique make cheek compression less important for the APD.
Three trials were performed, each lasting 1 min. At the end
of each minute, the APD provides summary measurements
for average inspiratory (APD-Ri) and expiratory resistance
(APD-Re) during tidal breathing, along with resistance averaged
across both phases of respiration (APD-Ravg).

11,12 Average
APD-Ri, APD-Re, and APD-Ravg were recorded after each of
the three trials. Approximately, 1 min was allowed between
trials. The APD was turned off then on for re-calibration, before
being used on each subject.

Impulse Oscillometry
Measurements of oscillatory impedance were obtained using
system software (CareFusion MasterScreen IOS; San Diego,
CA). All iOS was administered by trained, certified respiratory
therapists. Before testing, participants breathed quietly for at
least 30 s. For measurement of respiratory resistance, partici-
pants were asked to breathe quietly for 20–90 s using a rigid
oval mouthpiece (the same mouthpiece used for APD mea-
surements) while supporting both cheeks.23 Participants com-
pleted three to five replicate breathing trials in accordance with
published guidelines.3 Measurements of R5 (total respiratory
resistance), R20 (proximal resistance), X5 (distal capacitive
reactance), Fres (resonant frequency), and AX (reactance area)
were recorded. iOS reference ranges from previously published
data were used to calculate percent-predicted values for R5
and R20.24

Spirometry
Participants performed a baseline spirometry examination using
a VMax spirometer (CareFusion, Yorba Linda, CA). All spi-
rometry testing was administered by trained, certified respiratory
therapists. They underwent a standard forced expiratory maneu-
ver from maximal inhalation to maximal exhalation to record
the forced expiratory volume in 1 s (FEV1) and forced vital
capacity (FVC) in accordance with American Thoracic Society
standards for spirometry.25 We also included the forced expira-
tory volume in 3 s (FEV3)/FVC in our analysis. The FEV3/FVC
is a metric that is easily measured on standard spirometry and
can effectively identify early obstruction, particularly in patients
with otherwise normal spirometry.26,27 To calculate percent-
predicted values, reference equations from NHANES III22 and
previously published data28 were used for standard spirometry
and FEV3/FVC, respectively.

Statistics
Data are presented using mean and standard deviation or
median with intraquartile range for normally and non-normally
distributed variables, respectively. The intra-class coefficient
was calculated to demonstrate test–retest reliability. Correla-
tions were established using the Pearson correlation coefficient,
and agreement between APD and iOS resistance measure-
ments was assessed according to Bland–Altman plots.29
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The independent-samples t-test and analysis of variance were
used to detect differences in means between two or greater than
two variables, respectively. Bonferroni correction was used to
adjust for multiple comparisons.

Reference equations were established using linear regres-
sion. Variables were entered into the model based on signifi-
cant association with APD measurements (p < 0.05) or due to
association with lung function testing based on literature
review. Backward stepwise regression was used to develop the
model. Independent variables were dropped out until a parsi-
monious model was obtained.

RESULTS
A total of 249 subjects were approached for enrollment (Fig. 1).
Baseline demographics for all 199 participants, separated by
normal (n = 142) versus abnormal (n = 57), are listed in
Table I. The intra-class coefficient for APD-Ri (0.89; p <
0.001), APD-Re (0.87; p < 0.001), and APD-Ravg (0.89; p <
0.001) across the three trials showed excellent, statistically
significant reproducibility.

Among normal subjects, height, weight, and body mass
index (BMI) were independently associated with APD-Rr

measurements, whereas race, age, and sex were not. Despite
the absence of association, we chose to produce separate
equations for each sex to maintain consistency with the exist-
ing literature on respiratory function measurements.25,30,31

Reference equations with associated standard error of the esti-
mate (SEE) and square of the correlation coefficient (r2) values
are in Table II. For males, average APD-Ri, APD-Re, and

APD-Ravg were best predicted when age, BMI, and height were
included in the equation. Height and weight provided the best
model for females. When modeling the entire sample of clini-
cally normal volunteers (n = 142) using age, BMI, and height
as covariates, the r2 values (0.22–0.25) approximated those seen
for females.

There were 113 (89 normal and 24 abnormal) and 40 (33
normal and 7 abnormal) subjects who had spirometry and iOS,
respectively, in addition to their APD testing. Table III shows
lung function testing results for normal and abnormal subjects.
Analysis of all 113 subjects with spirometry testing showed
that APD-Ri, APD-Re, and APD-Ravg were significantly,
inversely correlated with FEV1 (r = −0.39 to −0.42; p <
0.001), FVC (r = −0.37 to −0.40; p < 0.001), FEV3 (r =
−0.40 to −0.45; p < 0.001), and FEF25–75 (r = −0.31 to
−0.35; p < 0.001–0.001). Analysis of all 40 subjects with iOS
testing showed that APD values were correlated with R5 (r =
0.61–0.62; p < 0.001), R20 (r = 0.50–0.52; p = 0.001), X5
(r = −0.57 to −0.59; p < 0.001), and FRES (r = 0.42–0.43;
p = 0.001). APD values did not correlate with AX (r =
0.07–0.20; p = 0.69).

Bland–Altman plots comparing average APD-Ri, APD-Re,
and APD-Ravg to R5 (Fig. 2A–C) and R20 (Fig. 3A–C) showed
that all APD values underestimate R5 (−0.58 to −0.24 cm H20/
L/s). APD-Ri slightly underestimates R20 (−0.01 cm H20/L/s)
and APD-Re and APD-Ravg overestimate R20 by 0.16H20/L/s
and 0.34 H20/L/s, respectively. Visualization of plots shows
that APD and iOS values are closer at normal resistance ranges
(approximately 2.0–4.0 H20/L/s) than at abnormally high or
low resistance.

Assessed for eligibility (n = 249)

Excluded (n = 50)
¨ Declined to participate (n = 50)

Pulmonary referral patients (n = 57)
¨ APD (n = 57)
¨ Spirometry (n = 24)
¨ iOS (n = 7)

Clinically normal volunteers (n = 142)
¨ APD (n = 142)
¨ Spirometry (n = 89)
¨ iOS (n = 33)

Enrolled (n = 199)

FIGURE 1. CONSORT flow diagram.
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DISCUSSION
Any test used for pre- or post-deployment respiratory assess-
ment should ideally be portable, low cost, and efficient. The
APD would theoretically meet all criteria, given it is effort inde-
pendent, easy to administer, and requires approximately 5 min
for three trials. Because no special maneuvers are needed for
valid testing, those who administer the test do not need special
respiratory training. Clinical data are limited though, and our
goal is to aid interpretation of output by establishing normal
ranges and performance characteristics in a well-described popu-
lation. We developed reference equations for normal and further
defined its relationship with commonly used pulmonary tests.

The reference equations we developed include age,
height, weight, and BMI. All these variables are included in
equations used to model normal ranges for resistance determined

TABLE I. Demographic Data

Abnormal (n = 57) Normal (N = 142)

Age 52.4 ± 15.5 48.8 ± 9.7
Height (in.) 67.0 ± 3.4 67.7 ± 3.7
Weight (lb) 190.4 ± 45.7 176 ± 38.5
BMI (kg/m2) 29.9 ± 7.9 26.9 ± 5.0
Male 31 (54.4%) 79 (55.6%)
Race
Caucasian 28 (50.0%) 87 (61.3%)
African American 16 (28.6%) 43 (30.3%)
Other 13 (21.4%) 12 (9.4%)

Tobacco use 22 (42.3%) N/A
Symptoms
Dyspnea 10 (17.5%) N/A
Cough 24 (42.1%) N/A

BMI, body mass index; kg, kilograms; m, meters.

TABLE III. Lung Function Testing

Abnormal Normal p-Value*

Spirometry (L [percent predicted])a

FVC 3.7 ± 1.1 (95.2 ± 23.0%) 3.6 ± 1.2 (86.9 ± 18.8%) 0.83
FEV1 2.6 ± 0.9 (87.3 ± 23.8%) 2.6 ± 1.1 (86.6 ± 21.0%) 0.98
FEV1/FVC 72.6 ± 10.9% (92.4 ± 14.3%) 72.9 ± 11.7% (92.1 ± 14.2%) 0.91
FEF25–75% 2.2 ± 1.2 (79.2 ± 41.6%) 2.3 ± 1.3 (82.6 ± 45.3%) 0.79
FEV3/FVC 88.6 ± 7.2% (96.4 ± 7.8%) 89.5 ± 7.7% (97.0 ± 7.6%) 0.59

Impulse oscillometry (cm H20/L/s [percent predicted])
b

R5 4.9 ± 2.2 (149.0 ± 67.0) 3.4 ± 1.8 (123.1 ± 66.3) 0.06
R20 3.9 ± 1.5 (118.9 ± 52.8) 2.9 ± 1.6 (98.9 ± 61.2) 0.16
X5 −1.8 ± 1.0 −1.3 ± 0.8 0.12
AX 19.5 ± 8.3 13.5 ± 10.4 0.17

APD (cm H20/L/s)
c

APD-Ri 3.1 ± 1.1 3.2 ± 0.9 0.15
APD-Re 4.0 ± 1.4 3.6 ± 1.1 0.048
APD-Ravg 3.7 ± 1.2 3.4 ± 1.0 0.08

aPatients (n = 27), clinically normal volunteers (n = 89).
bPatients (n = 7), clinically normal volunteers (n = 33).
cPatients (n = 57), clinically normal volunteers (n = 142).
*p < 0.004 considered significant after correction for multiple comparisons.
FEF25–75%, forced expiratory flow between 25% and 75% of the FVC; FEV1, forced expiratory volume in 1 s; FEV1/FVC, ratio of the forced expiratory vol-
ume in 1 s to the forced vital capacity; FEV3/FVC, ratio of the forced expiratory volume in 3 s to the forced vital capacity; FVC, forced vital capacity; R5,
total (all airways and chest wall) airway resistance as measured by IO; R20, central airway resistance as measured by IO; X5, reactance; AX, resonant fre-
quency; APD-Ri, inspiratory resistance with APD; APD-Re, expiratory resistance with APD; APD-Ravg, average respiratory resistance with APD.

TABLE II. Reference Equations for APD Measurements

Males

Intercept a b c SEE r2

APD-Ri 7.38384 −0.091025 0.0071728 0.059582 0.899 0.15
APD-Re 7.059246 −0.085366 0.0064808 0.0708428 1.006 0.13
APD-Ravg 8.082214 −0.099417 0.007256 0.0624668 0.925 0.16

Females

Intercept a d SEE r2

APD-Ri 9.302704 −0.113718 0.010138 0.734 0.26
APD-Re 11.25908 −0.141253 0.0113148 0.891 0.25
APD-Ravg 10.61463 −0.133448 0.0110009 0.766 0.3

APD-Ri, inspiratory resistance with APD; APD-Re, expiratory resistance with APD; APD-Ravg, average respiratory resistance with APD.
a, height (in.); b, age (yr); c, BMI (kg/m2); d, weight (lb).
SEE, standard error of the estimate; r2, square of the correlation coefficient.
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via iOS.3,24,32,33 Although we factored age and sex into our
models, in contrast to prior APD and iOS studies, they did not
show a significant relationship with resistance and their inclu-
sion did not meaningfully affect our models.3,17,24,32,33 The
equations for females explained more of the variability in
APD-Rr than did those for males – 25–30% versus 13–16%.

Most reference equations for iOS do not provide r2 values, so
it is difficult to know whether our models are comparable in
performance.3,24

There are several caveats to note when comparing different
lung function tests. First, resistance measures are not expected
to correlate closely with FEV1, FEV3, FVC, FEV1/FVC, or

FIGURE 2. (A) The x-axis lists average of mean resistance value for inspiratory APD (APDi) plus R5 measured using impulse oscillometry (iOS). The
y-axis is the difference between APDi and R5 from iOS. Top horizontal line is mean difference between APDi and R5 + 1.96 * standard deviation (SD), or
upper limit of the 95% confidence interval (CI), middle horizontal line is mean difference between APDi and R5, and lower horizontal line is mean differ-
ence between APDi and R5 − 1.96 * SD, or lower limit of the 95% CI. Visual inspection shows that APDi systematically underestimates R5 (mean differ-
ence <0) and agreement between measures is better when resistance is close to normal (2.5–3.5 cm H20/L/s) than when it is high (>4.0 cm H20/L/s) or low
(<2.5 cm H20/L/s). Only one data point is outside the 95% CI. (B) The x-axis lists average of mean resistance value for expiratory APD (APDe) plus R5
measured using impulse oscillometry (iOS). The y-axis is the difference between APDe and R5 from iOS. Top horizontal line is mean difference between
APDe and R5 + 1.96 * standard deviation (SD), or upper limit of the 95% confidence interval (CI), middle horizontal line is mean difference between APDe
and R5, and lower horizontal line is mean difference between APDe and R5 − 1.96 * SD, or lower limit of the 95% CI. Visual inspection shows that APDe
systematically underestimates R5 (mean difference <0) and agreement between measures is slightly better when resistance is close to normal (2.0–4.0 cm
H20/L/s) than when it is high (>4.0 cm H20/L/s) or low (<2.0 cm H20/L/s). Only two data points lie outside the 95% CI. (C) The x-axis lists average of
mean resistance value for average APD (APDavg) plus R5 measured using impulse oscillometry (iOS). The y-axis is the difference between APDavg and
R5 from iOS. Top horizontal line is mean difference between APDavg and R5 + 1.96 * standard deviation (SD), or upper limit of the 95% confidence interval
(CI), middle horizontal line is mean difference between APDavg and R5, and lower horizontal line is mean difference between APDavg and R5 − 1.96 * SD, or
lower limit of the 95% CI. Visual inspection shows that APDavg systematically underestimates R5 (mean difference <0) and agreement between measures is
slightly better when resistance is close to normal (2.0–4.0 cm H20/L/s) than when it is high (>4.0 cm H20/L/s) or low (<2.0 cm H20/L/s). Only two data points
lie outside the 95% CI.
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FEV3/FVC because spirometry reflects airway resistance indi-
rectly via flow and volume.18,34 Second, resistance estimates
vary by measurement technique.5,10,21,35 The APD uses a per-
turbation method to estimate resistance during inspiration
and expiration and then provides an average. iOS infers
resistance at specific points within the respiratory system,
in phase with the respiratory cycle, using sound waves at
varying frequencies.3,36 Therefore, we did not expect

perfect correlation or agreement between APD-Rr and iOS
or spirometry.

Our goal was to define the relationship between APD-Rr,
iOS, and spirometry to provide a frame of reference for inter-
pretation. Our data show that APD-Rr underestimates R5 by
0.24–0.58 (Fig. 2A–C) cmH20/L/s and APD-Ri closely approx-
imates R20 (Fig. 3A). On average, APD-Rr correlates well with
R5 and R20 when resistance is normal (roughly 2.0–4.0 cm

FIGURE 3. (A) The x-axis lists average of mean resistance value for average APD (APDi) plus R20 measured using impulse oscillometry (iOS). The
y-axis is the difference between APDi and R20 from iOS. Top horizontal line is mean difference between APDi and R20 + 1.96 * standard deviation (SD),
or upper limit of the 95% confidence interval (CI), middle horizontal line is mean difference between APDi and R20, and lower horizontal line is mean dif-
ference between APDi and R5 − 1.96 * SD, or lower limit of the 95% CI. Only two data points lie outside the 95% CI. (B) The x-axis lists average of mean
resistance value for expiratory APD (APDe) plus R20 measured using impulse oscillometry (iOS). The y-axis is the difference between APDe and R20 from
iOS. Top horizontal line is mean difference between APDe and R20 + 1.96 * standard deviation (SD), or upper limit of the 95% confidence interval (CI),
middle horizontal line is mean difference between APDe and R20, and lower horizontal line is mean difference between APDe and R20 − 1.96 * SD, or
lower limit of the 95% CI. Visual inspection shows that APDe systematically overestimates R20 (mean difference >0). Only two data points lie outside the
95% CI. (C) The x-axis lists average of mean resistance value for average APD (APDavg) plus R20 measured using impulse oscillometry (iOS). The y-axis
is the difference between APDavg and R20 from iOS. Top horizontal line is mean difference between APDavg and R20 + 1.96 * standard deviation (SD),
or upper limit of the 95% confidence interval (CI), middle horizontal line is mean difference between APDavg and R20, and lower horizontal line is mean
difference between APDavg and R20 − 1.96 * SD, or lower limit of the 95% CI. Visual inspection shows that APDavg systematically overestimates R20
(mean difference >0) and agreement between measures is slightly better when resistance is close to normal (2.0–4.0 cm H20/L/s) than when it is high
(>4.0 cm H20/L/s) or low (<2.0 cm H20/L/s). Only two data points lie outside the 95% CI.
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H20/L/s) but tends to underestimate iOS when it is elevated
(Figs 2A–C and 3A–C). The iOS technique does not separate
respiratory resistance by breathing phase. Among the 113 sub-
jects who had spirometry, APD-Rr correlated best with FEV3.
FEV3 identifies late expiratory obstruction and is used as a sur-
rogate for small airway disease or reduced elasticity.28,37

Service members deployed to South West Asia frequently
report respiratory complaints during or after their tour,1,38–41

and some may be exposed to elevated levels of particulate
matter.42 The Department of Defense is currently investigating
the nature and burden of respiratory disease.43 The APD could
theoretically be used to objectively assess respiratory function
in all service members, both pre- and post-deployment. The
cost in time, training, and workload would be less than with
conventional testing. Our data show that the device provides
physiologically relevant values when testing is administered
by minimally trained staff (Hospital Corpsmen and Army
Medics). Further research could determine feasibility and clini-
cal relevance in the pre- and post-deployment setting.

Our study has several limitations. First, our analysis would
have benefited from a larger population.44 Despite this, our
equations identify close to 30% of the variability in APD-Rr and
such limitations are common to other reference sets.3,4,30,45

Using the APD in a previous study involving repeated measure-
ments on 50 subjects has shown that there is a natural variation
of respiratory resistance values of 10–12% of the mean that
occurs among measurements on any particular person.46 Second,
we compared APD-Rr with lung function measurements, not
clinical outcomes or disease. Although iOS and spirometry are
commonly used to assess lung function, their ability to predict
respiratory symptoms or disease is limited. This is particu-
larly true for iOS.34,47,48 Preliminary data show that the APD
identifies upper airway disorders,19,20 but more studies will be
needed to assess whether APD-Rr correlates with specific respi-
ratory processes. Lastly, we do not know the underlying disease
process that drove referral to the pulmonary clinic for the sub-
jects in our study. Although this should not impact the validity
of our comparisons or the derivation of reference equations for
normal, it further limits our ability to extrapolate findings to spe-
cific disease processes. We are unable to make definitive com-
ments on race and its effect on APD measures, but such
limitations apply to reference values for spirometry and other
lung tests as well.49 Nevertheless, separation of resistance values
by breathing phase should be a help to specific disease
diagnosis.

In summary, we found that a small, handheld device called
the APD provides a reproducible measure of inspiratory, expi-
ratory, and average respiratory resistance. Testing was success-
fully administered by minimally trained staff, which obviates
much of the cost associated with large-scale lung function
screening. Reference equations that explain up to 30% of the
variability in APD-Rr were derived. Correlation and agreement
with iOS, an accepted technique for measuring respiratory
resistance is moderate. Agreement is best within normal
ranges. Future research is needed to assess APD performance

in larger patient populations with common pulmonary diseases
to define clinical relevance.
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