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Abstract

Phosphorous deficiency in soil limits crop growth and productivity in the major-

ity of arable lands worldwide and may moderate the growth enhancement effect

of rising atmospheric carbon dioxide (CO2) concentration. To evaluate the inter-

active effect of these two factors on cotton (Gossypium hirsutum) growth and

physiology, plants were grown in controlled environment growth chambers with

three levels of phosphate (Pi) supply (0.20, 0.05 and 0.01 mM) under ambient

and elevated (400 and 800 lmol mol�1, respectively) CO2. Phosphate stress

caused stunted growth and resulted in early leaf senescence with severely

decreased leaf area and photosynthesis. Phosphate stress led to over 77 % reduc-

tion in total biomass across CO2 levels. There was a below-ground (roots) shift in

biomass partitioning under Pi deficiency. While tissue phosphorus (P) decreased,

tissue nitrogen (N) content tended to increase under Pi deficiency. The

CO2 9 Pi interactions were significant on leaf area, photosynthesis and biomass

accumulation. The stimulatory effect of elevated CO2 on growth and photosyn-

thesis was reduced or highly depressed suggesting an increased sensitivity of cot-

ton to Pi deficiency under elevated CO2. Although, tissue P and stomatal

conductance were lower at elevated CO2, these did not appear to be the main

causes of cotton unresponsiveness to elevated CO2 under severe Pi-stress. The

alteration in the uptake and utilization of N was suggested due to a consistent

reduction (18–21 %) in the cotton plant tissue N content under elevated CO2.

Introduction

Phosphate (Pi) deficiency in soil is a limiting growth factor

in over 30 % of crop lands, and a major production con-

straint in acidic soils comprising up to 70 % of arable lands

worldwide (Vance et al. 2003, Cordell et al. 2009, Lenka

and Lal 2012). Phosphate is a component of nucleic acids

and cellular membranes, and essential for metabolic pro-

cesses (Raghothama 1999, Vance et al. 2003). Phosphate

deficiency decreases plant growth and photosynthesis and

thus biomass accumulation and yield. The crop demand

for nutrients such as Pi has increased due to the introduc-

tion of high yielding cultivars, and this requirement may be

even higher due to increased plant growth under rising

atmospheric carbon dioxide concentrations (CO2) (Rogers

et al. 1993, Lewis et al. 1994, Lenka and Lal 2012). The cur-

rent atmospheric CO2 concentration of approximately

394 lmol mol�1 is projected to be doubled by the end of

21st century (IPCC 2007). In general, elevated CO2

enhances plant growth, photosynthesis and yield. However,

soil nutrients such as Pi exert major control over plant

response to elevated CO2 (Lewis et al. 1994, Campbell and

Sage 2006, Lenka and Lal 2012). Studies evaluating the

effect of Pi deficiency on cotton growth and physiological

processes under current and projected atmospheric CO2

conditions are limited. Because phosphate deficiency and

elevated CO2 may co-exist under natural environments,

which have an opposite effect on plant growth and produc-

tivity, it is imperative to evaluate the crop responses to the

interaction between these two factors.

Cotton (Gossypium hirsutum) is an important fibre

crop grown worldwide (FAO 2010). Cotton growth,

Published 2013. This article is a U.S. Government work and is in the public domain in the USA. 1

J Agro Crop Sci (2013) ISSN 0931-2250



photosynthesis and lint yield respond positively to elevated

CO2 and availability of nutrients including Pi (Sawan 1986,

Kimball and Mauney 1993, Rogers et al. 1993, Singh et al.

2006, Girma et al. 2007). However, the positive response of

elevated CO2 is often reduced when cotton is grown in

combination with low supply of nutrients such as nitrogen

(Rogers et al. 1993), potassium (Reddy and Zhao 2005)

and phosphorus (Rogers et al. 1993, Barrett and Gifford

1995). Nutrient deprivation caused imbalance in hydraulic

conductance, decreased cell expansion and decreased

biosynthesis of photosynthetic pigments and metabolic

enzymes, which may inhibit the stimulatory effect of

elevated CO2 on plant growth (Radin and Eidenbock 1984,

Rogers and Humphries 2000). Under field conditions,

crops are routinely exposed to multiple stress factors;

therefore, understanding of the interaction between

environmental factors such as CO2 and Pi nutrition is

critical for nutrient management.

The CO2 enrichment and deficiency of nutrients includ-

ing Pi have also been reported to affect biomass partition-

ing and nutrient allocation to plant organs (leaves, stems

and roots) (Prior et al. 1998, Reddy and Zhao 2005, Fleish-

er et al. 2012). Moreover, the composition of other nutri-

ents such as nitrogen (N) in plant tissues may be altered

due to changes in nutrient uptake and utilization under

Pi-stress as well as elevated CO2 leading to more complex

interactions between these two factors (Prior et al. 1998,

Fleisher et al. 2012, 2013, Lenka and Lal 2012). Therefore,

nutrient availability will play a vital role in determining the

magnitude and direction of plant growth and physiological

response to CO2 enriched environment.

Phosphorus deficiency inhibits cotton growth and devel-

opment by decreasing photosynthetic capacity (Longstreth

and Nobel 1980, Radin and Eidenbock 1986, Barrett and

Gifford 1995), leaf expansion (Radin and Eidenbock 1984),

biomass accumulation (Radin and Eidenbock 1984, Ahmad

et al. 2001) and yield (Singh et al. 2006). Rogers et al.

(1993) suggested that the critical concentration of Pi

required for maximum crop productivity may increase in a

CO2 enriched environment. Thus, plants currently not lim-

ited by Pi may become limited due to projected increases

in atmospheric CO2 (Lewis et al. 1994, Lenka and Lal

2012). Studies evaluating cotton growth and physiology

under varying levels of Pi supply and CO2 are limited (Gif-

ford et al. 2000). Most of the prior studies investigating

crop responses under varying nutrient supply have focused

on nutrients other than Pi and few have considered major

row crops including cotton and their interaction with CO2

concentrations (Jacob and Lawlor 1991, Reddy and Zhao

2005, Campbell and Sage 2006, Bown et al. 2009, Jin et al.

2011). We hypothesize that severe Pi deficiency may limit/

offset the positive effects of elevated CO2 on cotton growth

and physiological processes due to increased sensitivity.

The objectives of this study were to determine the interac-

tive effects of CO2 and Pi supply on cotton growth and

physiological processes and quantify the allocation of bio-

mass and nutrients in plant organs.

Materials and Methods

Growth conditions

The study consisted of two experiments in 2011, hereafter

referred to as Exp. I and Exp. II, which were conducted at

USDA-ARS Henry A. Wallace Agricultural Research Center

in Beltsville, MD USA. Both experiments used the same six

controlled environment growth chambers (EGC Corp.,

Chagrin Falls, OH, USA) but at different dates and were

completed in 112 (Exp. I) and 91 days (Exp. II) from the

day after planting (DAP). In addition, these experiments

differed from one another with respect to the number and

size of pots used, initiation of CO2 treatments and

frequency and timing of the measurements.

In Exp. I, cotton (cv. Deltapine 555) seeds were planted

in 12 pots (volume, 16-l) filled with fine sand and vermicu-

lite (3 : 1 volume ratio) in each of the six growth cham-

bers. Two levels (400 and 800 lmol mol�1) of CO2

treatments were initiated each in three chambers from the

beginning, and plants were watered with full strength Hoa-

gland’s nutrient solution (Hewitt 1952) from the emer-

gence to 34 days after planting (DAP). Thereafter,

phosphate treatments (for simplicity referred as Pi) were

initiated with the modified Hoagland’s nutrient solution by

three levels of Pi treatments, 0.20, 0.05 and 0.01 mM each

at two levels of CO2. The Pi treatments were selected based

on the previous studies with Pi nutrition in cotton reflect-

ing a range in Pi-stress from 0 % up to 33 % compared

with the full nutrient supply (Radin and Eidenbock 1984,

1986, Barrett and Gifford 1995). The selected treatments

correspond to the full nutrient (0.20 mM) and Pi-stresses

of 25 % (0.05 mM) and 5 % (0.01 mM) of the full. A range

in the tissue P content was obtained using the current Pi

treatments.

In Exp. II, cotton seeds from the same cultivar were

planted outdoor in 120 pots on 27 July 2011 (volume 7.6-

l), containing rooting medium similar to the Exp. I. Plants

were watered with full strength Hoagland’s nutrient solu-

tion from emergence to 34 DAP. Thereafter, plants were

transferred and randomly assigned to the six growth cham-

bers (20 pots each), and the treatments (two levels of CO2

and three levels of Pi) were initiated same as in Exp. I. At

this stage, there were no statistical differences between

chambers (P > 0.975) for plant height, leaf area and

number of leaves plant�1.

For both experiments, the daytime temperature and

light regime were initiated at 6:00 h. The light as
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photosynthetically active radiation (PAR) of 800 lmol

m�2 s�1 at plant canopy was supplied during day period

using a combination of metal halide and high pressure

sodium lamps. A 30/22 °C day/night (14-h day and 10-h

night) temperature was maintained in the growth chambers

during experiments. Injection of either CO2- or CO2-free

air was determined using a TC-2 controller that monitored

CO2 measured from an absolute infrared gas analyser

(WMA-2 PP-systems, Haverhill, MA, USA). Relative

humidity varied between 50 and 70 % during the

experiment among the chambers.

Growth measurements

For each experiment, plant height (PH) and leaf length on

each main stem nodes were measured weekly in six (Exp. I)

and eight plants (Exp. II) from 50 (Exp. I) and 34 (Exp. II)

DAP to the end of experiments. The leaf lengths were sub-

sequently converted to main stem leaf area (MSLA) using

a quadratic equation y = 0.9569x2 � 2.0162x + 0.8811,

(r2 = 0.96, n = 253, y = area in cm2 and x = leaf length in

cm) established by developing a relationship between the

lengths of different leaves and leaf area, measured using a

LICOR-3100 leaf area metre (LICOR, Inc., Lincoln, NE,

USA) at the time of destructive harvests. Plants were har-

vested at 85 and 112 DAP (six pots each) in Exp. I, and 67,

81 and 93 DAP (six, six and eight pots, respectively) in

Exp. II. Plants were separated into stems, leaves, fruits

(includes flowers, squares and bolls) and roots, and plant

height (PH), number of main stem nodes (MSN), total leaf

area (TLA) and total biomass (TBM) were measured. Roots

were washed in clean water. The dry weight of plant mate-

rials were determined after drying in an oven at 70 °C until

constant weight was obtained.

Gas exchange measurements

In both experiments, leaf photosynthetic rate (Pnet) and

stomatal conductance (gs) were measured on the upper

most fully expanded leaves between 9:00 and 13:00 h using

a portable LICOR 6400 Photosynthesis system (LICOR

Inc.). This photosynthesis system used blue (475 nm) and

red light-emitting diodes (LED) (630 nm) as a light source

mounted onto a two cm2 leaf chamber. The gas exchange

measurements were recorded when a steady-state (around

3–6 min) was obtained, at 1500 lmol photon m�2 s�1

photosynthetically active radiation (PAR). The leaf cuvette

temperature was set to 30 °C. The CO2 entering in the cuv-

ette was maintained at the treatment CO2 concentration

level of either 400 or 800 lmol mol�1 and relative humid-

ity varied between 45 and 60 %. The photosynthetic rate,

gs, and intercellular (Ci) to external (Ca) CO2 concentration

ratio (Ci/Ca) were automatically computed from instru-

ments software (details are available in LI-6400 Instruction

Manual, version 5, Li-Cor Inc., Lincoln, Nebraska, USA).

Measurement of tissue constituents

Total chlorophyll concentration, tissue phosphorus (for

simplicity and to distinguish from phosphate treatments,

referred as P), carbon (C) and nitrogen (N) contents were

determined from the upper most fully expanded leaves that

were used for gas exchange measurements, and in plant

organs (leaves, stems and roots) after each harvest. The

individual leaf area and dry weight were also recorded for

uppermost fully expanded leaves to determine specific leaf

weight (SLW, mg dry weight cm�2 leaf area). The tissue P,

C and N contents in uppermost fully expanded leaves were

expressed either based on leaf dry mass (mass-based, mg

g�1) or leaf area (area-based, mg cm�2). Whole plant tissue

P and N contents were estimated as the product of dry

mass of plant organs (leaves, stems and roots) and their

nutrient concentration (mg g�1). Chlorophyll was

extracted by placing two 0.95 cm2 leaf discs for each leaf in

a vial containing 5 ml of dimethyl sulfoxide and incubating

in the dark for 24 h. Thereafter, the absorbance of the

supernatant was measured at 664 and 648 nm using a UV-

2101-PC spectrophotometer (Shimadzu Corp., Columbia,

MD, USA). The total chlorophyll was estimated using the

equation of Lichtenthaler (1987) and expressed on leaf area

basis (lg cm�2). The dry tissues were ground using a Wiley

Mill (Wiley� Mill, Thomas Scientific, NJ, USA) to pass

through 1-mm screen. The tissue P content was quantified

in the Soil Testing and Plant Analysis Laboratory, Exten-

sion Service, Mississippi State University, MS. The tissue

carbon and N contents were determined by combustion

using a CHN-2000 (Carbon Hydrogen Nitrogen-2000:

LECO Corporation, St. Joseph, MI, USA).

Data analysis

All statistical analyses were performed using SAS proce-

dures (SAS Enterprise Guide, 4.2, SAS Institute Inc., NC,

USA). Proc Mixed procedure of SAS was used for regres-

sion analysis, to calculate the coefficients and to test for

common slope and intercepts. Days after planting were

treated as the continuous variable, and CO2 and Pi treat-

ments as qualitative factors. Proc Mixed was also used to

test the treatment differences among the measured vari-

ables using individual pots as pseudoreplicates between two

levels of CO2 and three levels of Pi, and chamber as a ran-

dom effect. The treatment comparisons were conducted by

least square means (LSMEANS) procedure with letter

grouping obtained using the pdmix800 macro (Saxton

1998). In both experiments, the data were analysed sepa-

rately for each harvest. Because there were no significant
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differences for leaf level measurements between the two

experiments, the data measured on uppermost fully

expanded leaves were combined.

Results

Plant growth

In both the experiments regardless of the harvest dates, low

Pi treatments (0.05 and 0.01 mM) significantly (P < 0.05)

decreased almost all the growth parameters, whereas ele-

vated CO2 caused significant (P < 0.05) increases in

growth, mostly in high Pi-treated plants (Table 1). Plant

height, MSN and MSLA followed asymptotically linear

growth patterns during crop development, which were

more obvious in the plants grown at 0.20 mM Pi (Fig.

1a–f). However, under Pi-stress treatments, MSLA started

to decline 75 DAP in both experiments due to leaf senes-

cence (Fig. 1b,e). At the final harvest, compared with the

0.20 mM Pi treatment, Pi-stress treatments (averaged 0.05

and 0.01 mM) caused approximately 52, 25 and 85 %

decline in PH, MSN and TLA, respectively, across experi-

ments, whereas TBM decreased by 89.4 % (Exp. I) and

77.7 % (Exp. II). Averaged across Pi treatments, cotton

grown at elevated CO2 had significantly (P < 0.05) taller

plants (18.5–23.0 %), higher TLA (10–28 %) and TBM

(31–33 %) at the final harvest across experiments

(Table 1). The CO2 treatment did not affect MSN of cotton

plants. The averaged specific leaf weight (calculated using

all leaves) tended to be slightly higher under Pi-stress and

at elevated CO2.

Biomass partitioning

At final harvest in both experiments, Pi treatment had sig-

nificant (P < 0.001) effect on dry matter partitioning

between plant organs (leaves, stems, fruits and roots), and

when averaged across CO2 levels, Pi-stress treatments

(averaged 0.05 and 0.01 mM Pi) exhibited >80 % decreases

in biomass accumulation in each of the components as

compared with 0.20 mM Pi treatment (Table 2). The

CO2 9 Pi interactions were significant (P < 0.01) for

leaves and stems in both experiments. Averaged across Pi

treatments, elevated CO2 significantly (P < 0.01) increased

leaf and stem biomass; however, this increment was not

significant (P > 0.05) for fruit and root biomass. The

Table 1 Effect of CO2 levels (lmol mol�1) and phosphate (Pi, mM) supply on plant height (PH, cm), number of main stem nodes (MSN plant�1), total

leaf area (TLA, cm2 plant�1), total biomass (TBM, g plant�1) and specific leaf weight (SLW, mg cm�2 of whole plant leaves) of cotton, in Exp. I (84

and 112 days after planting, DAP) and Exp. II (67 and 91 DAP). Analysis of variance (ANOVA) between Pi and CO2 is given. The data are the mean of

six-eight individual plants

CO2 Pi PH MSN TLA TBM SLW PH MSN TLA TBM SLW

Experiment I

84 DAP 112 DAP

400 0.20 47.51b 21.5b 1993b 61.98b 10.71b 57.67b 27a 3177b 115.66b 9.40c

0.05 23.43d 18.0cd 368cd 10.02d 11.33b 31.17d 21bc 985c 29.38c 12.15ab

0.01 20.00de 16.6de 244cd 8.38d 12.14ab 23.42e 21bc 92e 5.63d 9.23c

800 0.20 64.66a 24.6a 3714a 88.08a 10.75b 73.00a 29a 4112a 173.42a 11.71abc

0.05 36.00c 19.0bc 503c 21.94c 13.50a 39.28c 23b 516d 22.95c 12.25a

0.01 24.00e 16.0e 89d 7.63d 12.40ab 25.70e 19c 67e 3.34d 9.55bc

ANOVA CO2 *** ns *** *** ns *** ns * *** ns

Pi *** *** *** *** * *** *** *** *** *

CO2 9 Pi *** * *** *** ns *** ns *** *** ns

67 DAP 91 DAP

Experiment II

400 0.20 35.40a 15.6a 971b 16.49b 6.64c 60.65b 21a 2286b 62.45b 7.82d

0.05 25.13bc 14.1b 400c 10.12c 9.39ab 30.84d 16b 444c 15.41c 9.20 cd

0.01 21.90c 12.4c 274c 7.86c 9.67ab 28.59d 16b 435c 14.73c 9.67bc

800 0.20 39.42a 16.3a 1208a 24.21a 8.46bc 72.03a 23a 3203a 85.16a 8.76 cd

0.05 28.66b 14.0b 388c 10.86c 10.78a 38.95c 18b 444c 19.13c 11.20a

0.01 23.65c 12.1c 221c 6.60c 11.31a 31.36d 16b 416c 17.41c 10.67ab

ANOVA CO2 * ns ns * * *** * * ** **

Pi *** *** *** *** *** *** *** *** *** ***

CO2 9 Pi ns ns ns * ns ns ns * * ns

Significant at *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; and ns, non-significant (P > 0.05). Within columns for each experiment, means followed by same

letters are not significantly different at a = 0.05.
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fraction of leaf, stem and fruit biomass to the total biomass

tended to be lower under Pi-stress treatments (0.05 and

0.01 mM Pi), whereas fraction of root biomass to the total

biomass increased up to threefold consistently across exper-

iments (Table 2). Elevated CO2 significantly (P < 0.01)

increased the fraction of stem biomass to the total biomass

in both experiments.

Gas exchange measurements

The CO2 9 Pi interactions were significant (P < 0.05) for

Pnet and gs, when averaged over measurement dates

(Table 3). Plants grown under Pi-stress treatments (0.05

and 0.01 mM) consistently exhibited lower Pnet for all mea-

surement dates irrespective of CO2 treatments (Fig. 2a).

Averaged across measurement dates, the severe Pi-stress

treatment (0.01 mM) caused 68 and 77 % reduction in Pnet
at ambient and elevated CO2, respectively, as compared to

0.20 mM Pi treatment (Table 3). Elevated CO2 caused

>18 % higher Pnet at 0.20 and 0.05 mM Pi, relative to the

400 lmol mol�1 CO2 treatment, whereas Pnet was 17 %

lower under elevated CO2 in the 0.01 mM Pi-treated plants.

Averaged across Pi and CO2 treatments, gs decreased by

33 % at elevated CO2 and by 60 % under Pi-stress. There

was significant (P < 0.05) CO2 9 Pi interaction for Ci/Ca

leading to relatively lower Ci/Ca at 0.01 mM Pi only at ele-

vated CO2. The main effect of Pi was not significant

(P > 0.05) for Ci/Ca.

Tissue constituents

There was significant CO2 9 Pi interaction for chlorophyll

concentration (Table 3). Irrespective of CO2 levels, chloro-

phyll concentration decreased significantly (P < 0.001)

under Pi-stress treatments. The P, C and N contents in

uppermost fully expanded leaves were assessed on both leaf

mass (mg g�1) and leaf area basis (mg cm�2). The P con-

tent (mass-based) in uppermost fully expanded leaves

tended to be lower at most of the measurement dates in

plants grown at either elevated CO2 or under Pi-stress

treatments (Fig. 2b,c). When averaged across measurement

dates, leaf P content of uppermost fully expanded leaves

significantly (P < 0.05) decreased under Pi-stress treat-

ments irrespective of the calculation methods (leaf mass-

or leaf area-based) (Table 3). However, elevated CO2 sig-

nificantly (P < 0.05) decreased leaf mass-based P content

but not leaf area-based P content (Table 3). Elevated CO2

significantly (P < 0.05) affected N content leading to lower

tissue N, whereas effect of Pi was not significant

(P > 0.05). Irrespective of Pi treatments, C content (area

basis) and C:N ratio were significantly (P < 0.05) higher at

elevated CO2 in uppermost fully expanded leaves.

The overall nutrient composition in the cotton plant

organs (leaves i.e. total from main stem and branches,

stems and roots) for the final harvest in both experiments

is shown in Table 4. The CO2 9 Pi interactions for P con-

tents were not significant (P > 0.05) except for the stems in

Exp. I. Pi-stress significantly (P < 0.05) decreased P con-

tent in all plant organs, whereas the effect of CO2 was not

consistent. On average, tissue P and N tended to be either

slightly higher (leaf and stem) or lower (roots) in Exp. I vs.

Exp. II. Stems appeared to have the lowest P and N con-

tents in both experiments. The N content did not show sig-

nificant (P > 0.05) CO2 9 Pi interactions except in roots

(Table 4). In general, the tissue N tended to be higher

under Pi-stress and lower at elevated CO2 across plant

organs.

Relationship of tissue P with other parameters

Regressions analysis revealed significant relationships

between tissue P contents and all other parameters

(a) (d)

(b) (e)

(c) (f)

Fig. 1 Changes in plant height, number of main stem node (plant�1)

and main stem leaf area (MSLA) for different phosphate-(Pi) treated cot-

ton plants grown at either ambient (filled symbols, 400 lmol mol�1) or

elevated (unfilled symbols, 800 lmol mol�1) CO2 for Experiments I (a–

c) and II (d–f). Treatments were initiated at zero (CO2) and 34 (Pi, arrow)

days after planting (DAP) in Exp. I, and both treatments were initiated

at 34 DAP in Exp. II.
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(P < 0.05) (Figs 3–6), except tissue N content of the

uppermost fully expanded leaves (Fig. 6b). The slope of the

linear regression between CO2 levels differed significantly

(P < 0.05) for whole plant tissue P content vs. TBM mea-

sured at the final harvest across experiments (Fig. 3a). Ele-

vated CO2 exhibited more biomass accumulation and the

differences between elevated vs. ambient CO2 tended to

increase with increase in tissue P content. The relationship

between whole plant tissue P content and root:shoot ratio

was nonlinear and did not differ significantly (P > 0.05)

between CO2 treatments (Fig. 3b). The root:shoot ratio

increased with decrease in tissue P content. A curvilinear

Table 2 Effect of CO2 levels (lmol mol�1) and phosphate (Pi, mM) supply on biomass partitioning of cotton plants at final harvests of Exp. I (112

DAP) and Exp. II (91 DAP). Analysis of variance (ANOVA) between Pi and CO2 is given. The data are the mean of six-eight individual plants

CO2 Pi

Tissue biomass (g plant�1) Fraction of total biomass (%)

Leaves Stems Fruits Roots Leaves Stems Fruits Roots

Experiment I

400 0.20 29.83b 29.46b 34.30a 22.07b 26.02bc 25.64bc 29.22a 19.12d

0.05 12.06c 7.29c 1.07b 8.95c 41.70a 24.59c 3.38b 30.33c

0.01 0.91e 1.40d 0.28b 3.31de 15.25d 24.30c 0.27b 60.19a

800 0.20 47.81a 55.86a 41.27a 28.48a 27.77b 32.33ab 23.50a 16.41d

0.05 6.36d 5.39cd 5.91b 5.28d 28.81b 23.61c 24.84a 22.75d

0.01 0.81e 1.07d 0.06b 1.47e 18.38cd 35.70a 0.12b 45.92b

ANOVA CO2 *** *** ns ns ns ** ns ***

Pi *** *** *** *** *** ns *** ***

CO2 9 Pi *** *** ns *** * ns *** ns

Experiment II

400 0.20 17.75b 19.60b 15.26a 9.84a 27.77b 30.54bc 24.12a 15.15d

0.05 4.08c 4.08c 2.64b 4.61b 25.94bc 26.47cd 16.63b 30.96bc

0.01 3.29c 3.75c 3.02b 4.67b 22.38c 25.42d 15.46b 36.74ab

800 0.20 28.02a 30.88a 14.26a 12.01a 32.98a 36.39a 16.53b 14.10d

0.05 4.99c 5.37c 3.80b 4.98b 24.65bc 28.48bcd 19.81ab 27.06c

0.01 4.27c 5.83c 1.17b 6.13b 22.97c 31.41b 3.47c 42.15a

ANOVA CO2 ** *** ns ns ns *** ** ns

Pi *** *** *** *** *** *** *** ***

CO2 9 Pi ** ** ns ns ns ns ** ns

Significant at *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; and ns = non-significant (P > 0.05). Within columns for each experiment, means followed by

same letters are not significantly different at a = 0.05.

Table 3 Effect of CO2 levels (lmol mol�1) and phosphate (Pi, mM) supply on the rate of photosynthesis (Pnet, lmol m�2 s�1), stomatal conductance

(gs, mol H2O m�2 s�1), internal (Ci) to external (Ca) CO2 ratio (Ci/Ca), specific leaf weight (SLW, mg cm�2 of single leaf), total chlorophyll concentra-

tion (Chl, lg cm�2), carbon (C) and nitrogen (N) ratio (C/N), tissue phosphorus (P), C, and N contents based on leaf mass (mg g�1 dry weight) and

area (mg cm�2 area) of upper most fully expanded leaves of cotton. Analysis of variance (ANOVA) between Pi and CO2 is given. The data are mean of

13-day measurements between 57 and 112 days after planting across two experiments

CO2 Pi Pnet gs Ci/Ca SLW Chl C/N

mg g�1 leaf dry weight mg cm�2 leaf area

P C N P C N

400 0.20 23.35b 0.35a 0.63c 9.79c 25.7a 13.4c 1.19a 428a 33.2a 0.0114a 4.17d 0.324abc

0.05 11.07d 0.16c 0.64bc 10.29bc 10.0c 13.7c 0.61c 438a 32.4a 0.0063b 4.51d 0.334ab

0.01 7.73e 0.14c 0.69ab 10.65b 8.6c 13.8c 0.54cd 433a 32.0a 0.0057b 4.64cd 0.340a

800 0.20 28.3a 0.25b 0.69ab 12.18a 29.5b 17.8b 0.92b 422a 24.2bc 0.0111a 5.19b 0.297bc

0.05 13.12c 0.14c 0.72a 11.97a 12.9cd 16.7b 0.51cd 424a 26.0b 0.0061b 5.06bc 0.307abc

0.01 6.37e 0.04d 0.67abc 12.48a 7.2d 20.1a 0.49d 442a 22.3c 0.006b 5.71a 0.287c

ANOVA CO2 *** *** * *** *** *** *** ns *** ns *** *

Pi *** *** ns ns *** ** *** ns ns *** * ns

CO2 9 Pi *** * * ns * * * ns ns ns ns ns

Significant at *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; and ns = non-significant (P > 0.05). Within columns, means followed by same letters are not

significantly different at a = 0.05.
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(polynomial second order) relationship was observed

between mass- and area-based tissue P content in upper-

most fully expanded leaves (Fig. 4). The linear term

between CO2 levels differed (P < 0.05) for mass- vs. area-

based P curve. For the two levels of CO2 treatments, the

slope of the regression between tissue P content (both

mass- and area-based) and Pnet of uppermost fully

expanded leaves differed significantly (P < 0.05) (Fig. 5a,

b). The gs response to leaf P content between CO2 levels

differed only when tissue P content was expressed on leaf

area basis (Fig. 5c,d). Chlorophyll concentration also

increased with leaf P content (mg g�1) and did not differ

significantly (P > 0.05) between CO2 treatments (Fig. 6a).

A significant relationship between leaf P and N contents

was not established; however, N tended to be higher at

ambient vs. elevated CO2 at a given leaf P content

(Fig. 6b).

Discussion

Growth and development

The patterns of cotton growth responses to the treatments

(Pi and CO2) were similar in both experiments. However,

they differed in magnitude possibly due to the differences

in initiation of CO2 treatment and time of harvests between

Exp. I and Exp. II. Despite some interaction between treat-

ments mostly in Exp. I, the growth and development

responses to Pi supply were similar across both CO2 levels.

The observed stunted plants with fewer main stem nodes

and decreased leaf area under Pi-stress treatments were

consistent with the observations made in other nutrient

studies (Reddy and Zhao 2005, Fleisher et al. 2012). Smal-

ler plant stature under Pi-stress resulted in over 77 % lower

biomass accumulation across CO2 treatments. Radin and

Eidenbock (1984) reported that phosphate deficiency lim-

ited cell expansion by reducing hydraulic conductance

inside plants, which may lead to reduced plant size and leaf

area expansion. This was supported by severely decreased

leaf area under Pi-stress treatments in the current study. In

fact, main stem leaf area began to decline under Pi-stress

roughly 75 DAP in both experiments due to leaf senes-

cence. Phosphate deficiency-induced early leaf senescence

has also been suggested in potato (Fleisher et al. 2013). The

plant dry weight and total leaf area followed similar trend

across the treatments at the first harvest in both the experi-

ments; however, it varied in the final harvest particularly

under Pi-stress due to leaf senescence. Elevated CO2 signifi-

cantly stimulated stem elongation, leaf area expansion and

total biomass at 0.20 mM Pi treatments; however, this stim-

ulation was rarely significant for 0.05 mM Pi and none for

0.01 mM Pi treatments suggesting unresponsiveness of

these traits to CO2 enrichment under Pi-stress treatments.

Biomass partitioning

The observed decrease (Pi-stress treatments) or increase

(elevated CO2, especially at higher Pi supply) in biomass

accumulation of plant organs was in accordance with other

studies and attributed to the adjustment of plant growth

under nutrient deficiency and CO2 enrichment (Kimball

and Mauney 1993, Reddy and Zhao 2005, Fleisher et al.

2012, Lenka and Lal 2012). In spite of an increased fruit

and root biomass at elevated CO2 under full nutrient sup-

ply (0.20 mM Pi), the main effect of elevated CO2 on fruit

and root biomass was not significant. The fruit abscission

was affected more under elevated CO2 than under ambient

(a)

(b)

(c)

Fig. 2 Photosynthetic rate (Pnet), phosphorus (P) and nitrogen (N) con-

tents of dry tissue for upper most fully expanded cotton leaves during

experiment grown at either ambient (filled symbols, 400 lmol mol�1)

or elevated (unfilled symbols, 800 lmol mol�1) CO2 under different

phosphate (Pi) treatments. The data are from two experiments (Exps I

and II). The error bars represent the standard error of 3–5 individual

plants.
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due to Pi-stress, reversing the positive effect of CO2 enrich-

ment observed under full nutrient supply. This might have

caused a non-significant effect of elevated CO2 on fruit.

Similarly, at elevated CO2, the root biomass was either

reduced (Exp. I) or showed minor increase (Exp. 2) in

Pi-stressed plants resulting in a lack of overall significant

effect of elevated CO2 on root biomass. Fleisher et al.

(2013) also reported non-significant effect of elevated CO2

on potato root biomass. Under Pi-stress, the increased bio-

mass partitioning to the roots was similar to trends previ-

ously observed in cotton and potato (Radin and Eidenbock

1984, Fleisher et al. 2012). Increased biomass partitioning

to the roots under Pi-stress may be a mechanism to exploit

below-ground resources in an effort to supply plant

demand for nutrients such as phosphorus. Similarly, under

elevated CO2, increased above-ground growth is often

associated with increased root biomass thus, indicating

adjustment between above- and below-ground plant

growths (Lenka and Lal 2012). Severe fruit abscission under

Pi-stress may also reduce the fraction of above-ground bio-

mass and increase the fraction of root biomass contributing

to total biomass. In field studies with cotton, Mullins and

Burmester (1990) found highest biomass partitioning

towards the fruiting structures, followed by leaves and then

stem. Because the experiments were terminated well before

plant maturity, the contribution of fruits to total biomass

was lower under the highest Pi supply except for ambient

CO2 in Exp. I.

Gas exchange measurements

Significant reductions in Pnet under Pi-stress have been

reported in other studies (Barrett and Gifford 1995, Fle-

isher et al. 2012). Although, gs reduced more than Pnet
under low Pi, it did not appear to be the main cause of

photosynthetic limitation as deduced from an insignifi-

cant effect of Pi on Ci/Ca. Similar results have also been

reported in other nutrient studies (Zhao et al. 2001, Jin

et al. 2011). However, the minor decrease in Pnet at ele-

vated vs. ambient CO2 under lowest Pi treatment

(0.01 mM) might also suggest critical role of stomatal

limitation to photosynthesis. The extremely low gs
(0.04 mol H2O m�2 s�1) under this particular situation

might have reduced Ci leading to lower Ci/Ca ratio, thus

the observed CO2 9 Pi interaction. An increase in Ci

(thus Ci/Ca ratio, as observed under Pi-stress across both

CO2 except the 0.01 mM Pi under elevated CO2) has

often been associated with the onset of mesophyll/bio-

chemical limitation to photosynthesis that highly depends

on the severity of the stress (Brodribb 1996, Singh and

Table 4 Effect of CO2 levels (lmol mol�1) and phosphate (Pi, mM) supply on phosphorus (P) and nitrogen (N) content in tissues of cotton plant and

its organs (leaves, stems and roots). Analysis of variance (ANOVA) between Pi and CO2 is given. Data are from six-eight individual plants at the final har-

vests of the two experiments

CO2 Pi

P (mg g�1) N (mg g�1)

Plant Leaves Stems Roots Plant Leaves Stems Roots

Experiment I

400 0.20 1.05a 1.15a 0.83a 1.07a 27.5b 45.0b 20.6b 20.2a

0.05 0.88b 0.80b 0.97a 0.92ab 34.1a 52.3a 20.5b 20.2a

0.01 0.54c 0.87b 0.53b 0.62c 29.7cd 53.0a 22.0a 18.9ab

800 0.20 0.78b 0.82b 0.58b 0.92ab 22.6de 34.0c 15.7c 16.7b

0.05 0.65c 0.60c 0.62b 0.78bc 28.2bc 45.6b 17.9bc 18.4ab

0.01 0.60c 0.68bc 0.50b 0.60c 24.0e 45.0b 20.6b 20.2a

ANOVA CO2 *** *** *** ns *** *** *** ns

Pi *** *** *** *** *** *** ns ns

CO2 9 Pi ns ns * ns ns ns ns *

Experiment II

400 0.20 0.84a 1.01a 0.50b 1.13b 25.4bc 35.2ab 12.5b 25.8bc

0.05 0.61b 0.60b 0.31d 0.88bc 30.4a 38.6a 16.7a 35.8a

0.01 0.59b 0.63b 0.38cd 0.73cd 28.4ab 38.0a 17.7a 30.2ab

800 0.20 0.94a 1.00a 0.61a 1.23a 21.5d 28.2c 14.9ab 33.0ab

0.05 0.61b 0.60b 0.39cd 0.86c 23.0cd 32.1bc 18.6a 21.9cd

0.01 0.56b 0.59b 0.45bc 0.63d 22.0d 28.0c 17.3a 17.7d

ANOVA CO2 ns ns ** ns *** *** ns **

Pi *** *** *** *** * ns ** *

CO2 9 Pi ns ns ns ns ns ns ns ***

Significant at *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; and ns = non-significant (P > 0.05). Within columns for each experiment, means followed by

same letters are not significantly different at a = 0.05.

Published 2013. This article is a U.S. Government work and is in the public domain in the USA.8

Singh et al.



Reddy 2011). Therefore, the major influence of Pi on Pnet
can still be attributed to factors other than gs such as

mesophyll resistance and inhibition of photo-biochemical

processes as suggested in other studies (Longstreth and

Nobel 1980, Jacob and Lawlor 1991, Fleisher et al. 2012).

Jacob and Lawlor (1991) also found that relative stomatal

limitation did not vary due to phosphorus nutrition but

mesophyll limitation was greatly enhanced under Pi-stress

across species. The severe reduction in chlorophyll

concentration in the current study also suggested that

metabolic inhibition of photosynthesis had occurred

under Pi-stress. Enhancement of Pnet by elevated CO2

was greater at 0.20 mM vs. 0.05 mM Pi and none for

severe Pi-stress (0.01 mM) indicating reduction or lack in

the stimulatory effect of elevated CO2 on photosynthetic

response of plants as Pi-stress increased. Although tissue

P content (mg g�1) of the uppermost fully expanded

leaves was significantly lower at elevated vs. ambient

CO2, this study suggested that it was not associated with

downregulation of Pnet under elevated CO2 in Pi-stressed

plants (Barrett and Gifford 1995). This might be due to

the fact that the P content on a leaf area basis (mg

cm�2) did not differ between CO2 treatments. Plant leaf

nutrient status may provide a stable estimate based on

leaf area as suggested in other studies (B�elanger et al.

2011). The increased C content when estimated based on

leaf area (mg cm�2) may be caused by restricted carbon

export under Pi-stress, and increased carbon accumula-

tion under elevated CO2 as also suggested by Radin and

Eidenbock (1986).

Tissue constituents

In the uppermost fully expanded leaves, the observed

reduction in the tissue P content without a significant effect

on N content under Pi-stress treatments was comparable to

the results in Pi deficient potato (Fleisher et al. 2012).

Additionally, reduction in leaf tissue P and N contents

under elevated CO2 is often reported similar to the obser-

vation made in this study (Rogers et al. 1993, Taub and

Wang 2008, Lenka and Lal 2012). However, P content did

(a)

(b)

Fig. 3 Relationship between plant phosphorus (P) content and (a) total

biomass and (b) root:shoot ratio of cotton grown at either ambient

(filled symbols, 400 lmol mol�1) or elevated (unfilled symbols,

800 lmol mol�1) CO2 under different phosphate (Pi) treatments. The

slope (a) between CO2 differed significantly (P < 0.05) as designated by

an asterisk (*). Data are from individual plants at the final harvest of

both experiments.

Fig. 4 Relationship between mass (mg g�1 leaf dry weight) and area

bases (mg cm�2 leaf area) tissue P content in uppermost fully expanded

cotton leaves grown at either ambient (filled symbols, 400 lmol mol�1)

or elevated (unfilled symbols, 800 lmol mol�1) CO2 under different

phosphate (Pi) treatments. Data are from individual plants measured

between 57 and 112 days after planting across two experiments. A

polynomial second order equation was used, and intercept was forced

to pass through origin (zero). The asterisk (*) indicated significant

(P < 0.05) difference in the linear term of the equations between two

CO2 levels.
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not differ between CO2 levels in uppermost fully expanded

leaves when expressed on leaf area basis (mg cm�2) indicat-

ing the dilution of the nutrients (e.g. P and N) due to

increased leaf thickness (e.g. SLW) and carbon accumula-

tion under elevated CO2 (Taub and Wang 2008, Lenka and

Lal 2012). This was also supported by increased C:N ratio

of cotton leaves. Specific leaf weight signifies leaf thickness

and similar to the current study has also been reported to

increase in response to elevated CO2 in a wide range of

species (Gifford et al. 2000).

Tissue P content of plant organs decreased under

Pi-stress, but the differences between 0.05 and 0.01 mM

Pi treatments were mostly not significant. Compared with

other major nutrients, plants require phosphorus in smal-

ler amounts and the low Pi treatments may not have

shown large differences in the tissue P content, yet plant

growth parameters largely differed. The observed lower

nutrient content of stems compared with other plant

organs may be explained by the high mobility of N and

P (Prior et al. 1998). Mullins and Burmester (1990) also

reported lower shoot N and P contents as compared with

leaves and fruiting structures of cotton. The N content

often increased under Pi-stress across plant organs

indicating greater N uptake, as also suggested in earlier

studies (Almeida et al. 2000, Fleisher et al. 2012). In the

current study, the increased root:shoot ratio was due to

increased biomass partitioning to the roots under

Pi-stress suggesting relatively higher root volume might

have assisted in the uptake of other nutrients such as N.

Under Pi-stress, the trend in tissue P content of plant

organs was consistent with the uppermost fully expanded

leaves; however, the variable results with respect to CO2

treatments were similar to the inconsistencies reported in

other studies (Prior et al. 1998, 2003, Gifford et al.

2000). Under CO2 treatments, the variability in tissue P

content between upper most fully expanded leaves and

whole plant leaves might have partly been due to the fact

that later consisted all the leaves from main stem and

branches. The reductions in plant tissue P and N under ele-

vated CO2 across Pi treatments have been reported by oth-

ers; however, large variability also existed (Prior et al. 1998,

2003, Gifford et al. 2000). Elevated CO2 also exhibited a

relatively consistent response by decreasing N content

across plant components, except the roots in both experi-

ments. This was also supported by the lack of CO2 9 Pi

interaction for tissue N content. The lack of CO2 9 Pi

(a) (b)

(c) (d)

Fig. 5 Relationship of phosphorus (P) content

with photosynthetic rate (Pnet) (a,b) and sto-

matal conductance (gs) (c,d) for uppermost

fully expanded cotton leaves grown at either

ambient (filled symbols, 400 lmol mol�1) or

elevated (unfilled symbols, 800 lmol mol�1)

CO2 under different phosphate (Pi) treat-

ments. Data are from individual plants mea-

sured between 57 and 112 days after planting

across two experiments. The asterisk (*) indi-

cated significant (P < 0.05) difference in the

slope between two CO2 levels.
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interaction has also been reported in several potato organs

(Fleisher et al. 2013). Although not clearly understood,

factors such as dilution of N due to increased carbon

assimilation, decreased N demand and restricted uptake

and lower transpiration due to decrease in gs may contrib-

ute to the lower tissue N at elevated CO2 (Gifford et al.

2000, Taub and Wang 2008). The current study also

suggested the existence of a dilution effect and lower tran-

spiration as deduced from higher leaf thickness (SLW) and

decreased gs under elevated CO2. This clearly indicated

alteration in the uptake and utilization of N, and lower N

content under elevated CO2 might influence nitrate-

assimilation and biosynthesis of organic compounds

(Bloom et al. 2010, Kawakami et al. 2012).

Relationships between plant parameters and tissue P

content

Regardless of the CO2 levels, a linear increase in TBM,

Pnet, gs and chlorophyll concentration with tissue P con-

tent suggested that the highest Pi treatments of the cur-

rent study did not reflect excessive Pi supply. The

magnitude of the response of total biomass and Pnet to

the tissue P (mg g�1) differed between the two levels of

CO2, which was in accordance with the significant CO2

effect observed for these parameters across Pi nutrition.

Moreover, elevated CO2 increased Pnet response to leaf P

content regardless of P calculation methods (mass vs.

area). Studies reporting similar relationships between a

range of leaf tissue P content (mass- vs. area-based) or

with biomass and photosynthetic processes are limited.

Reddy and Zhao (2005) found that the critical leaf potas-

sium content varied between CO2 treatments for canopy

photosynthesis and biomass production. The curvilinear

relationships between mass- and area-based P contents

across CO2 levels for uppermost fully expanded leaves

delineated the subtle differences between expressions of

nutrient content in leaves. For example, the difference in

the coefficient of the linear regression (slope) of Pnet vs.

leaf P content was smaller between ambient and elevated

CO2 when P was expressed on leaf area basis than on a

leaf mass basis (Fig. 5b). Similarly, compared with ambi-

ent CO2, the significantly lower regression slope between

gs and leaf P under elevated CO2 was only observed when

P was expressed on an area basis (mg cm�2). Reduction

in gs in response to elevated CO2 is a well-known phe-

nomenon, which was also observed in the current study

across Pi supply (Ainsworth and Rogers 2007). Because

the overall Pnet, gs or light interception are based on leaf

area, it may be suitable to express leaf nutrient content

on area basis for determining their relationships. The

parallel response of chlorophyll concentration to tissue P

for the two level of CO2 was consistent with the potas-

sium nutrition study in cotton by Reddy and Zhao

(2005). Although, there was not a clear relationship

between leaf tissue N and P contents, N tended to be

lower at elevated CO2 across the range of tissue P con-

tent. The nutrient dilution in plant tissue due to

enhanced growth and decreased nutrient uptake may

contribute to the lower tissue N at elevated CO2. How-

ever, more studies are needed to confirm the underlying

physiological mechanisms (Taub and Wang 2008).

In summary, a substantial decrease in plant biomass

under Pi deficiency was attributed to stunted growth pri-

marily due to decreased leaf area accompanied with early

leaf senescence and reduced photosynthesis. Consequently,

Pi deficiency significantly shifted biomass partitioning by

decreasing leaf and fruit production and increasing the root

(a)

(b)

Fig. 6 Relationships of phosphorus (P) content with chlorophyll concen-

tration (a) and nitrogen (N) content (b) for uppermost fully expanded

cotton leaves grown at either ambient (filled symbols, 400 lmol mol�1)

or elevated (unfilled symbols, 800 lmol mol�1) CO2 under different

phosphate (Pi) treatments. Data are from individual plants measured

between 57 and 112 days after planting across two experiments. The

asterisk (*) indicated significant (P < 0.05) difference in the intercept

between two CO2 levels in (b).
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fraction of total biomass. Cotton growth and photosynthe-

sis increased with tissue P content. Furthermore, the plant

tissue N content tended to increase under Pi-stress. The

increased fraction of root biomass under Pi-stress might

have enhanced N uptake leading to higher tissue N content.

The CO2 9 Pi interactions were dependent on plant

organs and type of growth processes measured. The growth

enhancement effects of elevated CO2 were either highly

reduced or trivial under the studied range of Pi-stress treat-

ments. As a consequence, several processes such as number

of main stem nodes and leaf area development, fruit set,

photosynthesis, chlorophyll concentration were negatively

affected by elevated CO2 under severe Pi-stress (0.01 mM).

Despite the lower leaf P and stomatal conductance at ele-

vated CO2, the contribution of these factors to the inhibi-

tion of growth and photosynthetic response at elevated

CO2 under severe Pi-stress treatments were insignificant. A

significant reduction in tissue N content (up to 21 % in

plant, averaged across Pi supply) under elevated CO2

appears to be critical and may need more attention to

understand its influence on the overall effect of CO2

enrichment on plants.
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