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1. Introduction 

Successful endosymbiosis provides advantages to both the host and the 
endosymbiont. Benefits may include better adaptation to limited nutri-
ents or reduction of mortality via protection against damage by UV light 
or pathogens (e.g., viruses). In such scenarios, symbionts increase their 
reproductive capacity and fitness within their hosts relative to possible 
non-host environments [3,14,18,19]. For example, some protozoans har-
bor intracellular green algae in an inherited mutually beneficial symbiotic 
relationship, which serves as a well-recognized model for studying en-
dosymbiotic relationships [27,28,37,45]. These unicellular Chlorella-like 
green algae, often referred to as zoochlorellae, inhabit the gastrodermal 

symbiosomes (perialgal vacuoles) of different protozoans, and trans-
fer a significant amount of their photosynthetically fixed carbon (e.g., 
maltose, fructose) to their non-photosynthetic partners [7,18,31]. In this 
context, symbiotic Chlorella spp. still require nutrients such as nitrogen, 
which they obtain from the host and then assimilate into the algal me-
tabolome [33,50]. The mechanisms involved in these interactions have 
not been completely elucidated; however, the metabolic pathways in-
volved in nitrogen (N) and carbon (C) utilization could be crucial physi-
ological signatures of the endosymbiotic existence [32]. Therefore, elu-
cidating how such processes work would open new avenues of research 
in the understanding of the molecular, cellular, and organismal adapta-
tions that allow successful mutualism.  
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Abstract 
Most animal–microbe symbiotic interactions must be advantageous to the host and provide nutritional benefits to the endo-
symbiont. When the host provides nutrients, it can gain the capacity to control the interaction, promote self-growth, and in-
crease its fitness. Chlorella-like green algae engage in symbiotic relationships with certain protozoans, a partnership that signif-
icantly impacts the physiology of both organisms. Consequently, it is often challenging to grow axenic Chlorella cultures after 
isolation from the host because they are nutrient fastidious and often susceptible to virus infection. We hypothesize that the es-
tablishment of a symbiotic relationship resulted in natural selection for nutritional and metabolic traits that differentiate symbi-
otic algae from their free-living counterparts. Here, we compare metabolic capabilities of 5 symbiotic and 4 free-living Chlorella 
strains by determining growth levels on combinations of nitrogen and carbon sources. Data analysis by hierarchical clustering 
revealed clear separation of the symbiotic and free-living Chlorella into two distinct clades. Symbiotic algae did not grow on ni-
trate but did grow on two symbiont-specific amino acids (Asn and Ser) on which the free-living strains did not grow. The use of 
these amino acids was exclusively affected by the presence/absence of Ca2+ in the medium, and the differences were magnified 
if galactose was provided rather than sucrose or glucose. In addition, Chlorella variabilis NC64A genomic and differential expres-
sion analysis confirmed the presence of abundant amino acid transporter protein motifs, some of which were expressed consti-
tutively both axenically and within the host. Significantly, all 5 symbiotic strains exhibited similar physiological phenotypes even 
though they were isolated as symbionts from different host organisms. Such similarities indicate a parallel coevolution of shared 
metabolic pathways across multiple independent symbiotic events. Collectively, our results suggest that physiological changes 
drive the Chlorella symbiotic phenotype and contribute to their natural fitness.  

Keywords: Chlorella variabilis, Alga-paramecium symbiosis, Algal nitrogen metabolism, Amino acid transporters   
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Protozoa–Chlorella interactions can be disrupted, and some attempts 
to isolate intact algae free of the host have been successful. These in-
clude algae that associate with several species of protozoans, includ-
ing Paramecium bursaria [23,45], Acanthocystis turfacea [23], and Hydra 
viridis [32]. Another approach for identifying ex-symbiotic algal strains 
has relied on their susceptibility to large DNA virus infections after dis-
ruption of the host–Chlorella interaction [22,30,34,47]. The only doc-
umented symbiotic, virus-susceptible Chlorella strains that have been 
cultured axenically include Chlorella variabilis NC64A 1 [49], C. variabi-
lis Syngen 2-3 [47], C. variabilis F36-ZK [11,16,38], C. variabilis OK1-ZK 
([11, 38], Quispe et al., manuscript in preparation), and C. heliozoae SAG 
3.83 [6]. For the purpose of this paper, these symbiotic virus-susceptible 
algal strains will be referred to as symbiotic algae. 

We have studied the Chlorella–virus interaction for the past 35 years 
and have been aware of the fastidious nutrient requirements possessed 
by symbiotic algae [1,20,33]. For example, unlike most Chlorella species, 
the symbiotic algae do not grow on Bolds’ Basal Medium (BBM), which 
has nitrate (NO3) as its sole N source. Consequently, 0.1% peptone is 
added to BBM for axenic growth of these symbiotic strains [15,16,25, 
47,49]. We hypothesize that this requirement reflects a past symbiotic 
relationship that spurred selection for specific nutritional and metabolic 
features present in symbiotic algae. In this study, we test this idea by an-
alyzing some physiological traits and growth requirements in 4 free-liv-
ing and 5 symbiotic Chlorella species. 

Our physiological evaluation focused on alternative N and C sources. 
The results indicate that symbiotic algae are better able to assimilate N 
and C sources not normally available to the free-living strains. Signifi-
cantly, they prefer organic N sources rather than the inorganic N sources 
(e.g., NO3 or NH4),which are the primary N sources in the environment. 
Importantly, all symbiotic strains tested exhibit similar metabolic phe-
notypes even though they are polyphyletic and may have arisen as pro-
tozoan symbionts from several independent symbiotic events [13,38]. 
Importantly, these similarities denote a parallel coevolution of similar 
metabolic pathways across multiple independent symbiotic events. Taken 
together, this evolutionary genome plasticity and metabolic regulatory 
rewiring could come at a cost in the form of the inability of symbiotic 
Chlorella to survive as free-living organisms in virus replete and/ or nu-
trient limiting environments [39]. 

2. Materials and methods 

2.1. Algal strains 

Symbiotic C. variabilis ATCC 50258 (NC64A), C. variabilis ATCC 30562 
(Syngen 2-3), and C. heliozoae SAG 3.83 (SAG 3.83) were maintained 
as slant stocks at 4 °C. Symbiotic C. variabilis NIES-2540 (F36-ZK) and 
C. variabilis NIES-2541 (OK1-ZK) were obtained from the Japanese 
Culture Collection of the National Institute for Environmental Studies 
(http://mcc.nies.go.jp). Stock samples of free-living Chlorella strains 
Chlorella sorokoniana UTEX-1230 (UTEX-1230), Cyamus kessleri UTEX- 
2228 (B228), and Chlorella protothecoides UTEX-29 (CP-29) were ob-
tained from the Culture Collection of Algae at the University of Texas 
at Austin (https://utex.org), and C. sorokoniana CCTCC M209220 (CS- 
01) was obtained from Minxi Wan at Johns Hopkins University. The se-
lection for free-living strains was based on the proposed phylogeny of 
Chlorella species published by Rosenberg et al. [41]), from which we 
chose four representative strains. 

2.2. Cell cultures 

Symbiotic and free-living strains were grown on BBM [3] supplemented 
with 0.1% (w/v) peptone, 0.5% (w/v) sucrose, and 0.001% (w/v) thiamine 
(complete MBBM). All of the BBM modifications had NO3 and sucrose 
omitted (N-/C-BBM) and being replaced by the labeled N and C sources. 
Where indicated, 0.1% peptone was replaced with 0.1% (w/v) casamino 

acids. The ability of algae to use different N and C sources was tested 
by adding them to unsupplemented BBM (N-/C-BBM). Thus, 0.22 μm 
filter-sterilized stock solutions of N and C sources were added to a fi-
nal concentration of 10 mM. All flasks were supplemented with 0.001% 
(w/v) thiamine. To test the effect of Ca2+

 deprivation on algal growth, we 
used a C-, N-, and Ca2+-deficient BBM (N-/C-/Ca2+-BBM), i.e., Ca2+

 was 
not included in the BBM. 

The algae were grown in 125 ml narrow mouth Erlenmeyer flasks 
with 30 ml of supplemented BBM. For the inoculum, MBBM log-phase 
actively growing cells were pelleted and washed 3 times with either N-
/C-BBM or N-/C-/Ca2+-BBM medium. Flasks were inoculated to a final 
low cell density of 3–5 × 104

 cells/ml and shaken at 26 °C and 180 rpm 
in continuous light for variable time periods because the symbiotic 
growth rates were slower than their free-living counterparts. Free-liv-
ing strains were grown for 9 days on BBM with added N or for 7 days 
when both N and C were added. Similarly, symbiotic strains were grown 
for 12 days on BBM with added N or for 9 days when both N and C 
were included. MBBM and un-supplemented BBM were used as con-
trols. Triplicate samples were used for the symbiotic algae, and dupli-
cate samples were used for the free-living strains. Photographs of the 
flasks were taken with a 12.1 M pixel Sony Cyber-shot digital camera 
and organized using Adobe Photoshop CS5.1. They are shown in Sup-
plementary Figures 1–6. 

2.3. Hierarchical clustering analysis 

Cluster 3.0 for Mac OS X (http://rana.lbl.gov/EisenSoftware.htm) and Ja-
vaTreeView Version 1.1.6r4 (http://jtreeview.sourceforge.net/) programs 
were used to analyze and quantify the growth experiments. The hier-
archical clustering algorithm was performed using the average-linkage 
method applied to the data set. This algorithm produced a dendrogram 
that assembled all elements into a single tree, which arranged the strains 
and treatments according to similarities in their growth patterns. The 
data set consisted of rows and columns representing the 9 algal strains 
and the numerical score for each media condition. Analyses were per-
formed both on the bulk data and as subsets by treatment. Numeri-
cal scores were assessed for individual flasks using a 0 to 5 scale, with 5 
representing the best growth and 0 the absence of visible growth. The 
data sets were represented graphically in hierarchical clusters by color-
ing each cell on the basis of the numerical flask score. Flasks with scores 
of 0 were colored black while the higher scores were reds of increasing 
intensity to denote growth. The dendrogram is attached on both axes to 
the colored graph to indicate the computed relationships among both 
growth conditions and Chlorella species. 

2.4. Comparative genomics 

Members of a collection of characterized AA transporters from Arabi-
dopsis thaliana [46] were used to perform reciprocal BLAST searches 
[2] against C. variabilis NC64A and C. sorokoniana UTEX-1230 (UNL al-
gal consortium, in preparation) genomes, using a value of 1 × 10–10

 as 
a cutoff. Each algal protein identified an A. thaliana AA transporter, and 
the gene designations and E-values for each gene are presented in Sup-
plementary Tables 1 and 2, respectively. Similarly, 35 putative AA trans-
porters from NC64A [4] were used to perform a reciprocal BLAST search 
against the UTEX 1230 proteome using a value of 1 × 10−10

 as a cutoff 
(Table 1). The orthology of candidate sequences was verified using the 
KEGG database [17]. 

2.5. RNAseq analysis 

Data sets from RNAseq experiments were downloaded to the pub-
lic Galaxy platform server (www.usegalaxy.org) and manipulated with 
data analysis tools as described below. Tophat settings were as defined 
by the usegalaxy.org defaults (Galaxy Version 0.9) except that the max-
imum intron length was set at 1500 bp. For axenic C. variabilis NC64A  
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(Figure 7), we used an uninfected control sample (NCBI SRA accession 
SRX316780) from a published viral infection experiment conducted in our 
lab [42]. For C. variabilis growing endosymbiotically within P. bursaria, 
we downloaded RNAseq data sets (NCBI SRA accessions DRX003053, 
DRX003054, and DRX003055) [26]. These sequence files were reported 
to contain RNAseq reads mapping to the NC64A genome, thus provid-
ing potential information regarding algal genes that are differentially ex-
pressed when grown axenically on MBBM versus its natural endosymbi-
ont stage within P. bursaria. 

The FASTQ files were converted to FASTQSANGER format with the 
FASTQ Groomer tool (default settings) [5] and then Tophat [24] was used 
to align these data sets to the NC64A genome assembly [4] with mini-
mum and maximum intron lengths of 50 and 5000, respectively. Around 
1% (~970,000) of the P. bursaria derived reads aligned to the C. variabilis 
NC64A genome, and these reads were taken to represent a snapshot of 
gene expression in the endosymbiont cells. The same analysis pipeline 
was applied to the axenic C. variabilis NC64A data. Reads that mapped 
to the genomic intervals for each putative AA transporter in Supplemen-
tary Table 1 were counted using the Integrated Genome Browser soft-
ware package [36] and normalized as total mapped reads per gene in 
each condition per million mapped reads. 

3. Results 

3.1. An overview of nitrogen metabolism in symbiotic algae 

This study addresses difficulties in the isolation and growth of symbiotic 
algae. For example, C. variabilis NC64A grows well on BBM with 0.1% 
peptone and 0.5% sucrose (MBBM) but does not grow on unsupple-
mented BBM [15,16,25,47,49]. Additionally, previous reports established 
that peptone supplemented BBM was sufficient for growth of C. varia-
bilis NC64A and C. variabilis F36-ZK [16]. We have now included three 
more symbiotic strains (C. variabilis OK1-ZK and Syngen 2-3 as well as 
C. heliozoae SAG 3.83), and these 5 Chlorella strains comprise the sym-
biotic algae used in this study. Our focus on N metabolism in the sym-
biotic algae was prompted by our observation that NC64A grew almost 
as well in a defined galactose-urea medium (BBM with 10 mM galac-
tose and 10 mM urea) as it did in MBBM. Two of the other symbiotic al-
gae (SAG 3.83 and Syngen 2-3) also grew well when NO3 and sucrose in 
BBM were replaced with 10 mM galactose and 10 mM urea, while F36-ZK 
and OK1-ZK grew well with the addition of 0.001% thiamine. Since ga-
lactose-urea-BBM is a chemically defined growth medium, we conclude 
that three of the symbiotic algae have no vitamin requirements while two 

Table 1. Accession and scaffold numbers of putative C. variabilis NC64A orthologs to Chlorella sorokiniana UTEX-1230 proteins involved in AA 
transport.

	 NC64A gene ID	 Protein ID	 Scaffold in 	 e-value	 Bit score	 Identity	 Protein length (aa)
			   C. sorokonian				    C. variabilis	 C. sorokoniana

1	 138810	 EFN52376	 18.g93.iso1	 3E-073	 231 bits (590)	 126/181 (70%)	 183	 504
2	 50436	 EFN58616	 4.g163.iso1	 5E-088	 284 bits (726)	 186/451 (41%)	 410	 690
3	 138809	 EFN52375	 18.g93.iso1	 2E-113	 340 bits (871)	 190/306 (62%)	 287	 504
4	 144770b	 EFN56324	 56.g4.iso2	 7E-128	 380 bits (977)	 193/361 (53%)	 471	 405
5	 144819	 EFN56345	 4.g37.iso3	 2E-120	 364 bits (935)	 213/389 (55%)	 489	 469
6	 142340a	 EFN58068	 34.g94.iso1	 1E-134	 426 bits (1096)	 219/305 (72%)	 695	 1070
7	 37093a,b	 EFN51991	 172.g106.iso1	 2E-141	 431 bits (1108)	 244/446 (55%)	 519	 815
8	 135113a	 EFN54610	 170.g37.iso1	 3E-134	 414 bits (1063)	 246/309 (80%)	 932	 461
9	 145403	 EFN55845	 4.g163.iso1	 2E-134	 410 bits (1053)	 255/547 (47%)	 535	 690
10	 133029	 EFN59609	 28.g135.iso1	 5E-139	 409 bits (1052)	 257/443 (58%)	 431	 449
11	 134730	 EFN54961	 57.g52.iso1	 2E-156	 455 bits (1171)	 261/424 (62%)	 453	 469
12	 134234a	 EFN55146	 33.g185.iso1	 4E-142	 420 bits (1079)	 263/484 (54%)	 473	 480
13	 142091	 EFN57962	 8.g116.iso2	 2E-158	 461 bits (1186)	 266/417 (64%)	 471	 466
14	 135437a	 EFN54731	 3.g27.iso1	 4E-161	 475 bits (1222)	 272/399 (68%)	 518	 606
15	 51413	 EFN57306	 84.g138.iso1	 1E-174	 503 bits (1294)	 282/452 (62%)	 452	 490
16	 49669	 EFN60144	 4.g158.iso1	 8E-179	 533 bits (1372)	 294/470 (63%)	 726	 742
17	 133360a	 EFN60071	 174.g65.iso1	 0	 552 bits (1422)	 296/405 (73%)	 692	 685
18	 56488a	 EFN59984	 53.g43.iso1	 0	 585 bits (1509)	 300/495 (61%)	 973	 515
19	 138717	 EFN52627	 21.g78.iso1	 0	 547 bits (1410)	 317/540 (59%)	 498	 547
20	 133351	 EFN60067	 27.g54.iso1	 0	 600 bits (1548)	 331/494 (67%)	 489	 473
21	 138133a,b	 EFN59501	 110.g43.iso1	 0	 594 bits (1532)	 336/587 (57%)	 576	 512
22	 58128a,b	 EFN54604	 15.g150.iso1	 0	 637 bits (1644)	 337/516 (65%)	 522	 484
23	 57473a,b	 EFN56726	 91.g67.iso3	 0	 681 bits (1758)	 346/471 (73%)	 476	 468
24	 138505	 EFN52920	 43.g21.iso1	 0	 659 bits (1701)	 353/546 (65%	 544	 560
25	 32765a,b,c	 EFN51990	 35.g117.iso2	 0	 659 bits (1701)	 366/650 (56%)	 605	 635
26	 59057a,b	 EFN51898	 35.g117.iso2	 0	 645 bits (1664)	 373/698 (53%)	 742	 635
27	 133392	 EFN60084	 39.g82.iso1	 0	 688 bits (1775)	 378/516 (73%)	 516	 496
28	 59479a,b,c	 EFN50622	 172.g106.iso1	 3E-056	 194 bits (492)	 97/158 (61%)	 270	 815
29	 133952	 EFN55688	 28.g105.iso1	 2E-023	 101 bits (251)	 50/88 (57%)	 336	 674
30	 133953	 EFN55689	 28.g102.iso1	 7E-053	 172 bits (435)	 93/183 (51%)	 197	 238
31	 24724a,b	 EFN54340	 76.g4.iso1	 1E-051	 177 bits (450)	 107/269 (40%)	 227	 560
32	 53357b	 EFN53996	 34.g191.iso1	 4E-066	 224 bits (572)	 166/486 (34%)	 385	 689
33	 137496a	 EFN53131	 27.g54.iso1	 7E-047	 176 bits (446)	 144/415 (35%)	 1010	 473
34	 138482	 EFN52813	 177.g11.iso1	 1E-065	 220 bits (560)	 215/445 (48%)	 425	 489
35	 17797b	 EFN50713	 172.g67.iso1	 4E-031	 115 bits (287)	 54/87 (62%)	 92	 815
36	 142334b	 EFN58316.1	 13.g249.iso3	 0	 661 bits (1706)	 365/420 (87%)	 535	 487
37	 140447b	 EFN58455.1	 106.g215.iso2	 1.00E-96	 302 bits (774)	 142/179 (79%)	 376	 576
38	 7483b	 EFN50706.1	 92.g116.iso2	 0	 667 bits (1720)	 373/497 (75%)	 493	 624
39	 58448b	 EFN53780.1	 136.g46.iso1	 0	 560 bits (1442)	 316/671 (47%)	 639	 1388
40	 36103b	 EFN54400.1	 139.g141.iso1	 2E-130	 400 bits (1028)	 247/427 (58%)	 444	 832

a. C. variabilis gene ID of expressed AA transporter genes during axenic growth ([4] and [42]); see Figure 7.
b. C. variabilis gene ID of differentially expressed AA transporter genes during axenic and endosymbiont states ([42] and [26]); see Table 2.
c. Genes (32765 and 59479) that accounted for the majority of the mapped differentially expressed reads in axenic and symbiont growth.
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require thiamine. In particular, we did not find evidence that symbiotic 
Chlorella required biotin or cobalamin/vitamin B12 [9]. It is quite possi-
ble that these strains would grow better with added vitamin B12 [23]. For 
convenience, 0.001% thiamine was added to all subsequent test media. 

3.2. Nutritional analyses identified physiologic signatures for symbiotic 
and free-living chlorella species 

The 5 symbiotic and 4 free-living Chlorella strains [(C. sorokoniana (UTEX-
1230), C. sorokoniana (CS-01), C. kessleri (B228), and C. protothecoides 
(CP-29)] were compared with regard to their ability to utilize 64 differ-
ent N and C sources. For each combination, a low cell density of Chlo-
rella (3–5×104

 cells/ml)was inoculated into the indicated medium and 
cell growth was assessed by the intensity of the green color after 7–12 
days (Supplementary Figures 1–6). Triplicate and duplicate samples were 
used for the symbiotic and free-living algae, respectively. The matrix of 
64 growth conditions and 9 Chlorella strains was analyzed by two-way 
heat maps (Figure 1). These average-linkage maps display differences 
in the metabolic capabilities of the 5 symbiotic and 4 free-living Chlo-
rella. The organic and inorganic N sources were tested with or without 
one of three sugars (sucrose, glucose, or galactose) as a C source. Both 
the C and N sources were routinely added at 10 mM. The rows in Fig-
ure 1 represent combinations of 3C and 12 N sources (2 complex mix-
tures, 7 organic, and 3 inorganic) or the N sources alone, while the col-
umns represent the growth levels achieved by the 9 Chlorella strains on 
the 64 media combinations. The 9 Chlorella strains clearly separated into 
two clusters based on their nutritional capabilities: a symbiotic clade and 
a free-living clade (Figure 1). Purple labels identify inorganic N sources 
present at 1 mM instead of 10 mM while orange labels represent media 
prepared without Ca2+. As a major difference, 4 out of the 5 symbiotic 
Chlorella did not grow on NO3 as the sole N source, either with or with-
out added sugar, whereas the 4 free-living Chlorella grew well on NO3 
with sugar and poorly on NO3 without sugar (Figure 1). 

3.3. Casamino acids and peptone supply all the C and N needed by 
symbiotic algae 

The heat map presented in Figure 1 is cumbersome to read due to 
its large size. Therefore, we prepared 41 smaller analyses reflecting 

metabolic subsets of the data and of these the 6 most relevant subsets 
are presented here. In each subdivision, the 5 symbiotic and 4 free-liv-
ing Chlorella were compared based on their growth on the respective 
supplemented BBMs. In the first case (Figure 2), we analyzed peptone 
and casamino acids with and without sucrose. The symbiotic and free-
living strains formed two distinct clades (Figure 2) while two media clus-
ters appeared, one for casamino acids alone and another for peptone 
alone, peptone and sucrose (MBBM), and casamino acids and sucrose. 
The free-living strains did not grow as robustly as the symbiotic Chlo-
rella did on casamino acids alone (Figure 2). 

All the symbiotic Chlorella grew better on 0.1% casamino acids than 
on 0.1% peptone and, in all cases removal of sucrose and NO3 from the 
control MBBM had no effect on their growth (Figure 2). Although the 
differences were slight, the results suggest that organic N sources rich 
in AAs (casamino acids)were better assimilated by the symbiotic Chlo-
rella than the free-living strains. By contrast, the free-living Chlorella re-
sponded better to the addition of sucrose, suggesting that they were 
better adapted to the presence of a sugar source. 

3.4. Asn and Ser were better assimilated by symbiotic Chlorella 

The results in Figure 2 suggested that free AAs were better assimilated 
by the symbiotic strains. Therefore, we tested the 9 Chlorella strains on 
10 organic and inorganic N sources. The dendrogram (Figure 3) shows 
a clear separation between the symbiotic and free-living Chlorella based 
on their N assimilation patterns. All of the Chlorella grew with Arg, urea, 
Gln, and Gly as the sole N source but the symbiotic grew slightly bet-
ter. Additionally, a separate cluster was formed by Asn and Ser (Figure 
3). Again, the symbiotic algae grew better on these AAs, with Asn be-
ing better than Ser (Figure 3). Thus, Asn and Ser appeared to be symbi-
ont-specific in that they were used poorly, if at all, by free-living Chlo-
rella. Hence, Asn and Ser might be important N sources during symbiotic 
growth. Pro also clustered with Asn and Ser (Figure 3), but it did not sup-
port growth of the symbiotic Chlorella strains as well as Asn and Ser. It 
is important to note that these AAs were not simply fulfilling auxotro-
phic requirements because all symbiotic Chlorella were fully prototro-
phic for AA biosynthesis. That is, they all grew on minimal defined me-
dia with urea as the sole N source.  

Figure 1. Hierarchical heat map (average-linkage) clusters of symbiotic and free-living Chlorella strains based on their metabolic capabilities. Columns rep-
resent combinations of organic and inorganic nitrogen (N) sources with or without the addition of a carbon (C) source. All were added at 10 mM concentra-
tions except purple labels identify inorganic N sources at 1 mM concentration, and orange labels represent media without Ca2+. MBBM medium was the con-
trol. Rows represent the 5 symbiotic strains (green) and 4 free-living strains (blue). Tree diagrams indicate the nature of the computed relationship among 
growth conditions and among Chlorella species. A color scale indicates relative growth: red represents robust growth and black represents absence of growth. 
Flask tests were performed for 9–12 days for the symbiotic and 7–9 days for the free-living strains. Subsequent heat map Figures 2–6 follow a similar layout.   
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AA transport is coupled to movement of ions, including Na+, H+, K+, 
Ca2+, and/or Cl− as well as movement of sugars. Additionally, Kato and 
Imamura [21]) showed that the presence of divalent but not monova-
lent cations decreased AA uptake in C. variabilis F36-ZK. We also noticed 
minimal growth of 3 symbiotic strains when Ca2+

 was present in the me-
dia. Therefore, the influence of Ca2+

 on AA transport and possible differ-
ences between symbiotic and free-living Chlorella species was also ex-
amined. We compared the effectiveness of organic N sources both with 
(Figure 4, black color) and without Ca2+

 (Figure 4, orange color). Ca2+
 is 

one of the salts normally present in BBM so the Ca2+-free medium was 
made by not adding Ca2+. The method ensures that trace levels of Ca2+

 
will be presented from the water, inoculum, and other media compo-
nents. The effect of Ca2+

 on the assimilation of organic N sources was 
variable. However, we observed that Ca2+

 influenced the assimilation of 
Asn, Ser, and Pro in symbiotic growth but it was strain specific. By con-
trast, the absence of Ca2+

 had no appreciable effects on Asn, Ser, and Pro 
uptake in the free-living Chlorella, but strain-specific differences were 
observed for urea, Arg, Gly, and Gln. We concluded that Ca2+

 ions influ-
enced the assimilation of Asn, Ser, and Pro in symbiotic algae and the 
assimilation of Arg, Gly, and Gln in free-living Chlorella.

3.5. Inorganic nitrogen sources 

The only inorganic N source that clustered within the organic group was 
NH4 acetate (Figure 3). NH4 tartrate and sodium NO3 clustered in a dif-
ferent clade which, without added sugar, gave poor or no growth for all 
strains (Figure 3). This finding was surprising because NH4 and NO3 are  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the primary sources of N in most aquatic and marine environments [43]. 
The symbiotic algae exhibited a remarkable duality in that they were un-
able to use extracellular NH4 or NO3 but were able to use the intracellu-
lar NH4 formed after Arg, Gln, Asn, and urea uptake. These observations 
confirm reports on C. variabilis F36-ZK regarding the loss of NO3 assimi-
lation coupled with an enhanced ability to take up certain AAs [20]. F36-
ZK uses a pH-dependent proton symport for general AA transport [16].  

Figure 2. Heat map subgroup from Figure 1 displays variations of MBBM (su-
crose + peptone). Peptone is replaced by 1% casamino acids. A color scale 
indicates relative growth. Flask tests were performed for 9 days for the sym-
biotic and 7 days for the free-living strains.  

Figure 3. Heat map subgroup from Figure 1 compares inorganic and organic 
N sources at 10 mM concentrations as the sole N source. Inorganic sources 
include NH4 tartrate, sodium NO3, and NH4 acetate. Organic sources include 
arginine (Arg), urea, glutamine (Gln), glycine (Gly), asparagine (Asn), serine 
(Ser), and proline (Pro). A color scale indicates relative growth. Flask tests were 
performed for 12 days for the symbiotic and 9 days for the free-living strains.  

Figure 4. Heat map subgroup from Figure 1 compares removal of Ca2+ (or-
ange) from media with organic N sources. Flask tests were performed for 12 
days for the symbiotic and 9 days for the free-living strains.  
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3.6. Low NH4 concentrations are better assimilated by symbiotic strains 

Fungal growth media commonly include a 10 mM N source. However, 
10 mM NH4 could be inhibitory or toxic to some Chlorella strains (Figure 
3) and thus, we compared NH4 and NO3 at 1 and 10 mM in both the ab-
sence (Figure 5) and in the presence of sugars (Figure 6A). NH4 tartrate 
was chosen because it does not acidify fungal growth media as much 
as (NH4)2SO4 or NH4Cl [29]. Lower levels of NH4 acetate and NH4 tartrate 
(1mM) supported growth of all the symbiotic strains while higher con-
centrations (10 mM) were inhibitory (Figure 5). Similarly, Minaeva and 
Ermilova [35] demonstrated that in NH4-supplemented medium, C. vari-
abilis NC64A showed significantly lower growth rates than in the pep-
tone-containing MBBM. Thus, we conclude that the symbiotic Chlorella 
exhibit NH4 toxicity. Both symbiotic and free-living strains grew better 
on NH4 acetate (1 mM) than NH4 tartrate (1 mM). This inability to utilize 
NH4 efficiently might be different if we had included vitamin B12 in our 
basal medium since Kessler and Huss [23]) reported that related Chlo-
rella strains grow normally on NH4 in a B12- containing medium. How-
ever, our current understanding of the metabolic function of B12 in algae 
focuses on its role in methionine biosynthesis, not NH4 utilization [9]. 

The lower NO3 level (1mM) did not support any algal growth while 3 
of the free-living and Syngen 2-3 (symbiotic group) had minimal growth 
at the higher level (10mM) (Figure 5). This is the only cluster analysis 
where a symbiotic strain did not group within the symbiotic cluster. A 
separate question concerns why the 4 free-living Chlorella only exhibit 
minimal growth on NO3 (Figure 5). The answer is likely a combination 
of inoculating at low cell density (3–5×104

 cells/ml) and only following 
growth for the first 9 days. Additionally, all free-living Chlorella grew well 
on NO3 when either glucose or sucrose was added (Figure 6A). Presum-
ably, the sugars provided extra reducing power needed for the NO3 to 
NH4 conversion. In summary, symbiotic algae possess an efficient sys-
tem to import and metabolize many AAs and small oligopeptides but 
they cannot efficiently utilize NO3 or NH4 as sole N sources.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.7. Galactose is a better C source than glucose or sucrose for symbiotic 
Chlorella but not for free-living Chlorella 

All of the algal growth levels in Figures 3 and 5 were lower than those 
observed on MBBM, which contains both sucrose and peptone. Thus, 
the presence or absence of sugars is important for an analysis of N 
metabolism. In this regard, Schlee and Komor [44]) showed that Chlo-
rella had a single high-affinity NH4 transporter whose synthesis was re-
pressed by NH4 but stimulated by glucose. Similarly, Cho and Komor [8]) 
showed that Chlorella vulgaris expressed multiple AA transport systems, 
the synthesis of which was not repressed by NH4 but most were stimu-
lated by glucose. Accordingly, we supplemented all N sources with 3C 
sources: sucrose (present in MBBM), glucose, or galactose. Galactose was 
chosen because in other microbes it does not exert catabolite repres-
sion [12]. Results for the inorganic and organic N sources are reported 
in Figures 6A and 6B, respectively. They should be compared with Fig-
ures 3 and 5, which use the same N sources but without added sugars. 
None of the symbiotic strains grew with any combination of sugar and 
NO3 (Figure 6A) except for Syngen 2-3. Thus, even after addition of sug-
ars, 4 of the 5 symbiotic strains were unable to utilize NO3 as a sole N 
source (Figure 6A). Similarly, as had been observed in Figure 5, 1 mM 
NH4 salts gave better growth than 10 mM regardless of the sugar used, 

Figure 5. Heat map subgroup from Figure 1 displays growth on NO3 and 
ammonium salts at 1 mM (purple) and 10 mM concentrations. Inorganic 
N sources are listed in the columns. A color scale indicates relative growth. 
Flask tests were performed for 12 days for the symbiotic and 9 days for the 
free-living strains.  

Figure 6. Heat map subgroups from Figure 1. Inorganic (A) and organic (B) 
N sources supplemented with glucose, sucrose or galactose. Purple labels 
identify N sources at 1 mM concentration. A color scale indicates relative 
growth. Flask tests were performed for 9 days for the symbiotic and 7 days 
for the free-living strains.  
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and better growth was achieved with 1 mM NH4 acetate than with 1 
mM NH4 tartrate. 

In all cases, the symbiotic Chlorella grew with galactose or sucrose 
while they grew poorly with glucose (Figures 6A and 6B). The symbi-
otic Chlorella grew as well in galactose and organic N source as they 
did in MBBM (Figure 6B). NC64A appears to have more enzymes in-
volved in carbohydrate metabolism than other sequenced chlorophytes 
[4], including many which are related to galactose metabolism. Interest-
ingly, added glucose inhibited the symbiotic Chlorella on most organic 
N sources, with the most glucose-sensitive strain being NC64A (Figure 
6B). By contrast, the free-living strains had similar or better growth with 
sugars than on MBBM, and they preferred sucrose and glucose (Figure 
6A). Galactose had inhibitory effects on the growth of most free-living 
strains with all of the organic N sources except Gly. Strain B228 was the 
only free-living strain able to utilize multiple organic N sources in the 
presence of galactose (Figure 6B). 

3.8. Bioinformatic and transcriptomic analysis of amino acid transporter 
orthologs in Chlorella species 

AA transporters act as extracellular and intracellular nutrient sensors as 
well as transporters in all domains of life [10]. The five symbionts stud-
ied must have efficient systems for importing AAs from the P. bursaria 
host, which is reflected in their continued ability to use some AAs as a 
source of N instead of inorganic N sources (Figures 2, 3, and 6B as well 
as [1,4,18–20]). Thus, the physiological observations depicted in Figures 
1–6 led us to hypothesize that in nature the protozoan host regulates the 
population of symbiotic Chlorella by using AAs to restrict their N sup-
ply. Keeping the N supply low and the chlorophyll content high (5- to 
10-fold higher) is consistent with the symbiont functioning to provide 
excess photosynthate to the host in the form of secreted maltose [40]. 
It seemed likely that the function of symbiont-specific AA transporters 
might persist following their release from symbiosis. In order to evaluate 
potential contributions of endosymbiosis on the evolution and expres-
sion of the AA transporters identified, we compared the genes for AA 
transporters in the symbiont NC64A and the free-living alga C. soroko-
niana UTEX-1230 (Table 1), as well as analyzing gene expression profiles 
of NC64A growing both in axenic culture and within P. bursaria (Table 2). 

C. variabilis NC64A encodes at least 40 putative AA transporters (Ta-
ble 1). Genes 1 to 35 in Table 1 were identified by Blanc et al. [4] on the 
basis of their significant homology with the AA transporter protein family 
profile (PfamPF01490.9). Of these 35 genes, 15 of them were expressed 
at significant levels as judged by read counts from RNAseq experiments  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
shown in Figure 7 [4,42]. Each of these 35 genes had an apparent or-
tholog in C. sorokoniana UTEX-1230 (Table 1), and in 5 cases, two genes 
from NC64A identified the same gene from UTEX-1230 (Table 1). 

In a separate approach, the characterized AA transporters in the plant 
Arabidopsis thaliana (Table 1 in [46]) were used to perform reciprocal 
BLAST searches against NC64A [4] and UTEX-1230 (UNL algal consor-
tium, in preparation) genomes, using an expected value of 1 × 10−10

 as 
a cutoff. The major predicted isoform for each identified locus was se-
lected and used to perform a BLAST search against the Arabidopsis ge-
nome, again with an expected value of 1 × 10−10

 as a cutoff. Each algal 
protein returned an Arabidopsis AA transporter, and the gene designa-
tions and E-values for NC64A and UTEX 1230 are presented in Supple-
mentary Tables 1 and 2, respectively. Results of the initial and recipro-
cal BLAST searches identified 16 putative orthologs for Arabidopsis AA 
transporters in NC64A (Supplementary Table 1) and 11 of these putative 
orthologs coincided with genes, which had been identified by [4], see 
Table 1, while 5 of them had not been identified previously. These 5 are 
indicated by genes 36 to 40 in Table 1. By contrast, 25 putative orthologs 
were identified in UTEX 1230 (Supplementary Table 2). Due to the highly 
interrupted nature of the C. sorokoniana UTEX-1230 genome, there re-
main some discrepancies in the annotation. However, we are confident 
that even the partial nature of some UTEX-1230 AA transporter ortho-
logs (Table 1) reflects AA transporters  

Table 2. Expression summary of predicted AA transporter genes in C. variabilis NC64A grown in culture or as a symbiont in Paramecium bursaria. 
Expression data for each gene represent manual counts of reads aligning to the corresponding genomic interval normalized per million mapped 
reads.

NC64A Gene ID	 Protein ID	 Scaffold	 Axenic	 Symbiont	 Fold change	 Log2 FC

58128	 EFN54604	 13:78,798–84,676 (−)	 7	 99	 13.46	 3.7
24724	 EFN54340	 14:418,634–420,275 (−)	 30	 8	 0.27	 −1.8
36103	 EFN54400.1	 14:833,000–835,270 (−)	 3	 17	 6.01	 2.5
53357	 EFN53996	 15:290,406–294,216 (−)	 30	 8	 0.27	 −1.8
58448	 EFN53780.1	 16:626,917–630,844 (−)	 52	 6	 0.11	 −3
138133	 EFN59501	 2:2,150,538–2,155,669 (−)	 16	 9	 0.57	 −0.8
32765	 EFN51990	 25:222,544–226,977 (−)	 2635	 2794	 1.06	 0.08
37093	 EFN51991	 25:227,152–230,758 (−)	 35	 42	 1.19	 0.26
59057	 EFN51898	 25:231,079–235,117 (+)			   No Exp	
140447	 EFN58455.1	 3:553,777–556,173 (+)	 95	 32	 0.33	 −1.57
142334	 EFN58316.1	 4:1,840,877–1,844,482 (−)	 48	 12	 0.25	 −1.95
7483	 EFN50706.1	 43:40,210–42,680 (+)	 8	 8	 0.97	 −0.04
17797	 EFN50713	 43:87,189–87,664 (+)			   No Exp	
57473	 EFN56726	 7:287,118–291,257 (−)	 83	 84	 1	 0
59479	 EFN50622	 79:1541–9952 (+)	 1124	 4846	 4.31	 2.1
144770	 EFN56324	 8:392,270–395,765 (−)	 25	 29	 1.14	 0.19
AAT-All			   Sum of all reads	 4193	 7996	 1.9	 0.93

Figure 7. C. variabilis NC64A mRNAs coded by AA transporter genes during 
axenic growth. Normalized mRNA abundance of 15 AA transporter genes.   
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3.9. Comparison of in symbiont vs. axenic expression 

The 16 AA transporters identified in NC64A (Supplementary Table 1) 
were examined for their expression levels in the axenic and endosymbi-
ont states (Table 2). Fourteen of the AA transporter orthologs were ex-
pressed at detectable levels in the 2 P. bursaria assemblies (Table 2), and 
of these expressed isoforms, 3 were down regulated in axenic culture, 6 
were up regulated, and 5 remained roughly constant (Table 2). The sam-
ple size and differences in sequencing platform precluded a formal sta-
tistical analysis of the significance of these differential gene expressions. 
However, 2 genes (32765 and 59479) accounted for 90 and 95% of the 
mapped reads in axenic and symbiont growth, respectively; indicating 
that these transporters likely provide the majority of AA uptake capabil-
ities in NC64A and other symbiotic Chlorella. The expression of 32765 is 
equivalently high in the axenic and symbiotic states while 59479 is ele-
vated 4.3-fold in the symbiont (Table 2). Thus, mining the genomes and 
transcriptomes available for Chlorella has led us to identify AA trans-
porter genes that might play important roles in symbiotic N metabo-
lism. It will be of interest to learn the AA specificity of the 32765 and 
59479 AAT genes. 

4. Discussion 

Nine Chlorella strains (5 symbiotic and 4 free-living) were compared with 
regard to their abilities to grow on organic and inorganic N sources. The 
9 strains separated into two clusters, one containing all the symbiotic 
strains and the other all the free-living strains. This analysis confirms the 
robust nutritional/metabolic differences between symbiotic and free-
living Chlorella strains as well as the generalization that the free-living 
Chlorella are better adapted for inorganic N sources while the symbi-
otic Chlorella are adapted for organic N sources. In particular, symbi-
otic Chlorella strains (a) could not use NO3; (b) exhibited some NH4 tox-
icity in that the cells grew slightly on 1 mM NH4 but poorly or not at 
all on 10 mM NH4; (c) in general preferred urea or amino acids; and (d) 
used two amino acids (Asn and Ser) that were not utilized by the free-
living strains. We conclude that the symbiotic algae have physiological 
signatures that are conserved after they are separated from their sym-
biotic hosts and that one such signature concerns the constitutive ex-
pression of their AA transporters. For NC64A, it seems likely that these 
AA transporters reflect the mechanism by which P. bursaria might con-
trol the growth rate and population of its photosynthetic algal symbiont. 

Thus, we have physiological, genomic, and transcriptomic data show-
ing that the symbiotic and free-living Chlorella strains differ significantly 
in their N metabolism. The biological implications of this conclusion are 
three-fold. 

i) 	 The inability of 4 symbiotic Chlorella to use NO3 as the N source 
occurs despite the fact that recent work by Sanz-Luque et al. 
[43]) showed that C. variabilis NC64A has a complete set of 
genes needed for NO3 assimilation (transporters, reductases, 
and synthesis of the molybdenum cofactor Moco). They con-
cluded that the mechanism responsible for silencing NO3 utili-
zation is unknown [43]. 

ii) 	 The 5 symbiotic Chlorella strains may be polyphyletic [13,38]; 
namely, they arose from multiple independent symbiotic events. 
However, a competing hypothesis invokes a common ances-
tor with a specific genotype/genome flexible enough to en-
able symbiotic evolution with several hosts. The symbiotic Chlo-
rella we have studied are similar in their inability to use NO3 
and their rapid uptake and utilization of certain AAs as sole N 
sources. Additionally, their growth rates were slower compared 
to their free-living counterparts, and they all are susceptible to 
dsDNA chlorovirus infections ([48]; Quispe et al. manuscript in 
preparation). These phenotypic differences reflect major cellular 
and metabolic reprogramming at the structural and molecular 

levels. Our results provide a possible connection between the 
endosymbiotic life style, AA transporters, and virus suscepti-
bility, illustrating the trade-offs endosymbiotic Chlorella must 
make in nature. 

iii) 	 Although the scope of this paper focuses mainly on N metabo-
lism, the galactose preference exhibited by all symbiotic algae 
tested is also relevant. For instance, [4], suggested that NC64A 
has more enzymes involved in galactose metabolism than other 
sequenced chlorophytes. They looked for 2 protein families of 
galactose related carbohydrate esterases, 18 families of glyco-
syl hydrolases, and 8 families of glycosyl transferases present in 
the 6 algal genomes which had been sequenced at that time. 
NC64A had a total of 149 galactose related genes, whereas 
Chlamydomonas reinhardtii, Micromonas pusilla RCC299, Mi-
cromonas sp. CCMP, Ostreococcus lucimarinus, and O. tauri had 
84, 36, 30, 36, and 29 respectively [4]. Thus genetic and physi-
ological changes in the metabolic capabilities of Chlorella sym-
biotic strains include major changes in their ability to assimi-
late both N and C sources. Future studies should improve our 
knowledge about the entirety of nutrient acquisition in Chlo-
rella, including the assimilation of different N and C sources and 
its regulation, their relationship to the rest of metabolism, how 
metabolism is altered during symbiosis, and how these aspects 
of symbiosis are tied to the viral susceptibility of some Chlorella 
strains.   

Supplementary data to this article follows the References.
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Supplementary Table 1.  Accession numbers of putative C. variabilis NC64A orthologs to A. thaliana proteins involved in AA transport. 
AAP = amino acid permeases, AAT = amino acid transporters, LHT = lysine histidine transporter.	

	 AA transporter ortholog in NC64A 	 Protein ID	 A. thaliana best hit	 e-value

	 37093	 EFN51991	 AAP2	 2E-76
	 58128	 EFN54604	 AAP2	 9E-72
	 32765	 EFN51990	 AAP2	 1E-52
	 57473	 EFN56726	 LHT 1	 2E-83
	 138133	 EFN59501	 AAP2	 2E-49
	 59057	 EFN51898	 AAP2	 2E-45
	 53357	 EFN53996	 AAP	 3E-45
	 59479	 EFN50622	 AAP2	 3E-29
	 24724	 EFN54340	 AAP2	 1E-21
	 144770	 EFN56324	 GABA transporter 1	 7E-31
	 17797	 EFN50713	 AAP8	 1E-19
	 142334	 EFN58316.1	 AAP or GABA permease	 4E-158
	 140447	 EFN58455.1	 AAT1	 1E-34
	 7483	 EFN50706.1 	 AAT1	 5E-112
	 58448	 EFN53780.1	 AAT1	 2E-61
	 36103	 EFN54400.1	 AAT1	 2E-54
				  
				  
				  
	
	

Supplementary Table 2.  Scaffold numbers of putative C. sorokiniana UTEX-1230 orthologs to A. thaliana proteins involved in AA transport. 
AAP = amino acid permeases, AAT = amino acid transporters, LHT = lysine histidine transporter.

	 AA transporter ortholog in UTEX-1230	  A. thaliana best hit	 e-value

	 scaffold 82.g49.iso1	 AAP2	 4E-81
	 scaffold 181.g27.iso1	 AAP5	 1E-73
	 scaffold 172.g106.iso1	 AAP3	 1E-76
	  scaffold 15.g150.iso1	 AAP2	 4E-69
	 scaffold 99.g53.iso4	 AAP2	 1E-67
	 scaffold 106.g243.iso1	 AAP2	 4E-63
	 scaffold 34.g191.iso1	 AAP CAA54632.1	 1E-63
	 scaffold 91.g67.iso3	 LHT1	 6E-83
	 scaffold 35.g114.iso1	 AAP2	 2E-51
	 scaffold 13.g237.iso1	 AAP2	 2E-58
	 scaffold 35.g117.iso2	 AAP2	 2E-43
	 scaffold 6.g13.iso1	 AAP2	 5E-54
	 scaffold 270.g17.iso1	 LHT1	 6.5E-60
	  scaffold 56.g4.iso2	 GABA transporter 1	 3E-34
	 scaffold 124.g21.iso1	 AAP8	 1E-34
	 scaffold 57.g99.iso1	 AAT	 9E-64
	 scaffold 76.g4.iso1	 AAP2	 2E-45
	 scaffold 132.g58.iso1	 AAP AAB71468.1	 9E-29
	 scaffold 1.g418.iso1	 GABA transporter 1	 1E-87
	 scaffold 110.g43.iso1	 AAP2	 4E-36
	 scaffold 6.g14.iso2	 AAP3	 2E-11
	 scaffold 13.g234.iso1	 AAP4	 9E-13
	 scaffold 92.g116.iso1	 AAP1	 3E-117
	 scaffold 98.g9.iso1	 AAP1	 2E-60
	 scaffold 13.g249.iso1	 AAT1	 8E-125
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Supplementary Figure 1. In vitro flask test identifies metabolic differences between symbiotic and free-living Chlorella strains grown on variations 
of MBBM (sucrose + peptone). Columns represent combinations of complex N (0.1% peptone or 0.1% casamino acids) with or without the addition 
of sucrose (10 mM). MBBM is the control. Rows represent the 9 strains. The 5 symbiotic strains include Chlorella variabilis NC64A, C. heliozoae SAG 
3.83, C. variabilis Syngen 2-3, C. variabilis F36-ZK, and C. variabilis OK1-ZK. The 4 free-living strains are C. sorokiniana UTEX 1230, C. sorokiniana 
CS-01, C. kessleri B228, and C. protothecoides 29. Flasks were shaken at 200 rpm and 26 °C in constant light. Symbiotic strains were incubated for 
9 days and free-living strains were incubated for 7 days. For each growth medium, triplicates were performed for the symbiotic Chlorella strains and 
duplicates for the free-living Chlorella species. Flasks were evaluated based on the color scale included. Subsequent supplementary figures have 
similar layouts.

Supplementary Figure 2. In vitro flask test of organic N (10 mM). Nitrogen sources include urea, Arg, Gly, Gln, Asn, Ser, and Pro. Photographs were 
taken after 12 days for the symbiotic and after 9 days for the free-living strains.
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Supplementary Figure 3.  In vitro flask test of inorganic N (1 or 10 mM). Nitrogen sources include sodium NO3, NH4 tartrate, and NH4 acetate. 
Photographs were taken after 12 days for the symbiotic and after 9 days for the free-living strains.
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Supplementary Fig. 4. In vitro flask test of inorganic N (1 or 10 mM) supplemented with C source (10 mM). Carbon sources include (A) glucose, 
(B) sucrose, and (C) galactose. Nitrogen sources include sodium NO3, NH4 tartrate, and NH4 acetate. Photographs were taken after 9 days for the 
symbiotic and after 7 days for the free-living strains.

(A.)

(B.)

(C.)
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Supplementary Fig. 5.  In vitro flask test of organic N (10 mM) supplemented with C source (10 mM). Carbon sources include (A) glucose, (B) 
sucrose, and (C) galactose. Nitrogen sources include urea, Arg, Gly, Gln, Asn, Ser, and Pro. Photographs were taken after 9 days for the symbiotic 
and after 7 days for the free-living strains.

(A.)

(B.)

(C.)
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Supplementary Fig. 6. In vitro flask test displays removal of Ca2+ from media with organic N sources (10 mM). Nitrogen sources include Urea, Arg, 
Gly, Gln, Asn, Ser, and Pro. Photographs were taken after 12 days for the symbiotic and after 9 days for the free-living strains.
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